激光焊接讲解

激光焊接的工作原理及其主要工艺参数(精)

激光焊接的工作原理及其主要工艺参数 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 2.3.受激吸收 受激辐射的反过程就是受激吸收。处于低能级E1的一个原子,在频率为的辐射场作用下吸收一个能量为hν的光子,并跃迁至高能级E2,这种过程称为受激吸收。自发辐射是不相干的,受激辐射是相干的。 由受激辐射和自发辐射的相干性可知,相干辐射的光子简并度很大。普通光源在红外和可见光波段实际上是非相干光源。如果能够创造这样一种情况:使得腔内某一特定模式的ρ很大,而其他所有模式的都很小,就能够在这一特定模式内形成很高的光子简并度,使相干

激光焊接应用讲解

激光焊接应用 一、激光焊接的主要特性。 激光焊接是激光材料加工技术应用的重要方面之一。20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。 高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。获得了以小孔效应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。 与其它焊接技术相比,激光焊接的主要优点是: 1、速度快、深度大、变形小。 2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。 但是,激光焊接也存在着一定的局限性: 1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。 2、激光器及其相关系统的成本较高,一次性投资较大。 二、激光焊接热传导。 激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,使金属熔化形成焊接。在激光与金属的相互作用过程中,金属熔化仅为其中一种物理现象。有时光能并非主要转化为金属熔化,而以其它形式表现出来,如汽化、等离子体形成等。然而,要实现良好的熔融焊接,必须使金属熔化成为能量转换的主要形式。为此,必须了解激光与金属相互作用中所产生的各种物理现象以及这些物理现象与激光参数的关系,从而通过控制激光参数,使激光能量绝大部分转化为金属熔化的能量,达到焊接的目的。 三、激光焊接的工艺参数。 1、功率密度。 功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/CM2。 2、激光脉冲波形。 激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。 3、激光脉冲宽度。 脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。 4、离焦量对焊接质量的影响。 激光焊接通常需要一定的离做文章一,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。 离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离做文章一相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池

动力电池激光焊接模式分析

动力电池激光焊接模式分析 1引言 动力电池是新能源汽车的核心零部件,直接决 定整车性能,其生产流程可分为前端、中端和后端 设备,设备的精度和自动化水平将直接影响到电池 的生产效率和一致性。2015年动力电池的扩产直 接拉动了设备需求,而作为新一代动力电池生产装 备,激光焊接已拓展至自动化产线的全工艺应用, 本文针对激光焊接在动力电池行业中的应用情况, 结合激光焊接工艺分析了铝合金的焊接难点以及焊 接模式对焊接质量的影响,阐述了激光焊接的特点,讨论了方形动力电池激光焊接时存在的问题和解决 措施。 2激光焊接工艺 动力电池制造过程焊接方法与工艺的合理选 用,将直接影响电池的成本、质量、安全以及电池 的一致性。在众多焊接方式中,激光焊接其独特的 优势在很多领域已得到广泛应用,其特点有如下几 点:首先,节能环保,且热影响区金相变化范围小, 不易变形。激光束易于聚焦、对准及受光学仪器所 导引,可放置在离工件适当之距离,可在工件周围 的夹具或障碍间再导引,其他焊接法则因受到上述 的空间限制而无法发挥。其次,工件可放置在封闭 的空间(经抽真空或内部气体环境在控制下)。激 光束可聚焦在很小的区域,可焊接小型且间隔相近 的部件,可焊材质种类范围大,亦可相互接合各种 异质材料。另外,易于实现自动化进行高速焊接, 可以数位或电脑控制。焊接薄材或细径线材时,不 会像电弧焊接般易有回熔的困扰。 电池通常都包含许多种材料,比如锌、钢、铝、铜、钛、镍等,这些金属可能被制成电极、导线, 或仅仅是外壳。用于动力电池的电芯由于遵循“轻 便”的原则,通常会采用较“轻”的铝材质外,还需要做得更“薄”,一般壳、盖、底基本都要求达 到1.0 mm以下,主流厂家目前基本材料厚度均在 0.8 mm左右。电池焊接的好坏其导电性、强度、 气密性、金属疲劳和耐腐蚀性能是典型的焊接质量 评价标准。 3工艺难点 目前,铝合金材料的电池壳占整个动力电池的 90%以上。其焊接的难点在于铝合金对激光的反 射率极高,焊接过程中气孔敏感性高,焊接时不可避免地会出现一些问题缺陷,其中最主要的是气孔 和热裂纹。铝合金的激光焊接过程中容易产生气孔, 主要有两类:氢气孔和匙孔破灭产生的气孔。由于 激光焊接的冷却速度太快,氢气孔问题更加严重, 并且在激光焊接中还多了一类由于小孔的塌陷而产 生的孔洞。 热裂纹问题。铝合金属于典型的共晶型合金,焊接时容易出现热裂纹,包括焊缝结晶裂纹和 HAZ液化裂纹,由于焊缝区成分偏析会发生共晶 偏析而出现晶界熔化,在应力作用下会在晶界处形 成液化裂纹,降低焊接接头的性能。 炸火(也称飞溅)问题。引起炸火的因素很多,如材料的清洁度、材料本身的纯度、材料自身的特 性等,而起决定性作用的则是激光器的稳定性。 壳体表面凸起、气孔、内部气泡。究其原因, 主要是光纤芯径过小或者激光能量设置过高所致。 并不是一些激光设备提供商宣传的“光束质量越好,焊接效果越优秀”,好的光束质量适合于熔深较大 的叠加焊接。寻找合适的工艺参数才是解决问题的 致胜法宝。 4焊接模式选择 4.1 脉冲模式焊接 ■冉昌林杨毛三武汉逸飞激光设备有限公司 39

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理及其主要工艺参数摘要:焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊, 电子束焊,激光焊等多种,本文详细介绍了激光焊接的工作原理与工艺参数,还讨论了激光焊接技术在现代工业中的应用,并与其他焊接方法进行对比。研究表明激光焊接技术将逐步得到广泛应用。 关键词:焊接技术;激光焊接;工作原理;工艺参数。 1. 引言 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,

激光焊接分析

一、原理 原理分类: 热传导型焊接:功率密度小于104~105W/cm2为热传导焊,此时熔深浅、焊接速度慢;热传导型激光焊接,需控制激光功率和功率密度,金属吸收光能后,不产生非线性效应和小孔效应。激光直接穿透深度只在微米量级,金属内部升温靠热传导方式进行。 激光深熔焊接:功率密度大于105~107W/cm2时,金属表面受热作用下凹成“小孔”,形成深熔焊,具有焊接速度快、深宽比大的特点。 1.透射或反射镜聚焦后可获得直径小于0.01mm、功率密度高达106~l012W/cm2的能束。 2.微观上是一个量子过程,宏观上则表现为反射、吸收、加热、熔化和汽化等现象。激光焊时,激光照射到被焊接件的表面,与其发生作用,一部分被反射,另一部分进入焊件内部。 3.加热:光子的能量→晶格的热振动能,温度升高,达到2500℃。 熔化和汽化:当功率密度大于106W/cm2时,被焊材料会产生急剧的蒸发。被焊材料蒸发,

①光束焦斑 ②透镜焦距,最短焦深多为焦距126mm; ③焦点位置,通常焦点的位置设置在工件表面之下大约所需熔深的1/4处。 2.材料吸收值 (1)材料的电阻系数,材料吸收率与电阻系数的平方根成正比,而电阻系数又随温度而变化; (2)材料的表面状态(或者光洁度)对光束吸收率有较重要影响; 3.焊接速度 提高速度会使熔深变浅,但速度过低又会导致材料过度熔化、工件焊穿。(需要一个速度范围) 4.保护气体 (1)使工件在焊接过程中免受氧化;

(2)保护聚焦透镜免受金属蒸气污染和液体熔滴的溅射; (3)驱散高功率激光焊接产生的等离子屏蔽; 等离子云对熔深的影响在低焊接速度区最为明显。当焊接速度提高时,它的影响就会减弱。吹气方法学问大啊! 5.焊接起始、终止点的激光功率渐升、渐降控制。 起始和终止端产生凹坑,为了防止这个现象发生,可对功率起止点编制程序,使功率起始和终止时间变成可调,即起始功率用电子学方法在一个短时间内从零升至设置功率值,并调节焊接时间,最后在焊接终止时使功率由设置功率逐渐降至零值。 6.焊缝形状 (1)直线型 (2)正弦型 (3)摇摆型:稳定性高±15% 7.焊缝长度

激光焊接的工艺参数及特性分析讲解

激光焊接的工艺参数及特性分析 一、激光焊接的工艺参数:1、功率密度。功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。2、激光脉冲波形。激光脉冲波形在激光焊接 一、激光焊接的工艺参数: 1、功率密度。功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。 2、激光脉冲波形。激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。 3、激光脉冲宽度。脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。 4、离焦量对焊接质量的影响。激光焊接通常需要一定的离焦,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离做文章一相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。负离焦时,可获得更大的熔深,这与熔池的形成过程有关。实验表明,激光加热50~200us材料开始熔化,形成液相金属并出现问分汽化,形成市压蒸汽,并以极高的速度喷射,发出耀眼的白光。与此同时,高浓度汽体使液相金属运动至熔池边缘,在熔池中心形成凹陷。当负离焦时,材料内部功率密度比表面还高,易形成更强的熔化、汽化,使光能向材料更深处传递。所以在实际应用中,当要求熔深较大时,采用负离焦;焊接薄材料时,宜用正离焦。 二、激光焊接工艺方法: 1、片与片间的焊接。包括对焊、端焊、中心穿透熔化焊、中心穿孔熔化焊等4种工艺方法。

激光焊接焊缝跟踪

应用背景 与传统焊接技术相比,激光焊接在焊接质量和效率等各方面都具有明显优势。由于激光束的光斑直径较小,使得激光束准确对中焊缝成为实现高质量焊接的前提。因此,准确跟踪焊缝是激光焊接的关键所在。机器视觉检测是焊缝跟踪的主要方法之一,通过高速视觉传感器拍摄动态熔池图像序列,获取熔池特征参数,分析焊缝路径偏差与熔池特征参数之间的内在规律,建立焊缝路径与激光束偏差实时测量的视觉模型。然后输出调整量给机器人控制器,控制机械手指引焊枪运行,实现自动跟踪。 应用优势 1、拍摄过程缓慢,可以获取高度清晰的熔池特征参数; 2、可以控制机械手指引焊枪运行,实现自动跟踪。 拍摄效果 科天健已有多款高速相机用于焊缝跟踪项目应用中中,下面介绍两款常用高速相机。。

1、德国Optronis的CP80-4-M-500,该相机为Coaxpress接口,全分辨率为1696X1710下可达500fps,开窗分辨率为512X512时可达5000fps,它的这些特点可使拍摄画面更清晰,拍摄过程更缓慢。 图一CP80-4-M-500在5000fps@512X512下的拍摄效果 2、瑞士Photonfocus的MV-D1024E-160,该相机采用Photonfocus的LINLOG技术,动态范围高达120dB;在全分辨率1024*1024分辨率下可达150帧/秒;开窗分辨率256*256时,帧率达到2241帧/秒。在Linlog功能下能有效抑制强等离子干扰,在焊机电压、电流较小时可直接用相机拍摄,无需光学辅助系统即可得到对比度较好的图像,借助光学辅助手段可得到高清晰的、细节清晰的图像。 图二MV-D1024E-160相机的拍摄效果

激光焊接基本原理讲解-共14页

一、激光基本原理 1、 LASER 是什么意思 Light Amplification by Stimulated Emission of Radiation(通过诱导放出实现光能增幅的英语开头字母 2、激光产生的原理 激光――“受激辐射放大”是通过强光照射激光发生介质,使介质内部原子的电子获得能量,受激而使电子运动轨道发生迁移,由低能态变为高能态。处于激发态的原子,受外界辐射感应,使处于激发态的原子跃迁到低能态,同时发出一束光;这束光在频率、相位、传播方向、偏振等方面和入射光完全一致,此时的光为受激辐射光。 为了得到高能量密度、高指向性的激光,必须要有封闭光线的谐振腔,使观光束在置于激光发生介质两侧的反射镜之间往复振荡,进而提高光强,同时提高光的方向性。含有钕 (ND的 YAG 结晶体发生的激光是一种人眼看不见的波长为 1.064um 的近红外光。这种光束在微弱的受激发情况下,也能实现连续发振。 YAG 晶体是宝石钇铝石榴石的简称,具有优异的光学特性,是最佳的激光发振用结晶体。 3、激光的主要特长 a 、单色性――激光不是已许多不同的光混一合而成的,它是最纯的单色光 (波长、频率 b 、方向性――激光传播时基本不向外扩散。 c 、相干性――激光的位相 (波峰和波谷很有规律,相干性好。 d 、高输出功率――用透镜聚焦激光后,所得到的能量密度是太阳光的几百倍。 二、 YAG 激光焊接

激光焊接是利用激光束优异的方向性和高功么密度等特点进行工作。通过光学系统将激光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。 常用的激光焊接方式有两种:脉冲激光焊和连续激光焊。前者主要用于单点固定连续和薄件材料的焊接。后者主要用于大厚件的焊接和切割。 l 、激光焊接加工方法的特征 A 、非接触加工,不需对工件加压和进行表面处理。 B 、焊点小、能量密度高、适合于高速加工。 C 、短时间焊接,既对外界无热影响,又对材料本身的热变形及热影响区小,尤其适合加工高熔点、高硬度、 特种材料。 D 、不需要填充金属、不需要真空环境 (可在空气中直接进行、不会像电子束那样在空气中产生 X 射线的危险。 E 、与接触焊工艺相比 . 无电极、工具等的磨损消耗。 F 、无加工噪音,对环境无污染。 G 、微小工件也可加工。此外,还可通过透明材料的壁进行焊接。 H 、可通过光纤实现远距离、普通方法难以达到的部位、多路同时或分时焊接。 I 、很容易改变激光输出焦距及焊点位置。 J 、很容易搭载到自动机、机器人装置上。

焊接结构名词解释

1.焊接温度场:指在焊接过程中,某一时刻所有空间各点温度的总计或分布。 2.焊接热循环:在焊接过程中,工件上的温度随着瞬时热源或移动热源的作用而发生变化, 温度随时间由低而高,达到最大值后,又由高而低的变化称为焊接热循环。 3.温度应力(热应力):变形不受约束,则说明变形是温度变化的唯一反映;若这种变形 受到约束,就会在物体内部产生应力,这种应力即为温度应力。 4.残余应力:当不均匀温度恢复到原始的均匀状态后残存在物体中的内应力。 5.自由变形(量、率):当金属物体的温度发生变化或发生相变没有受到外界的任何阻碍 而自由进行,它的形状和尺寸的变形就称为自由变形。自由变形的大小称之为自由变形量。单位长度上的自由变形量称之为自由变形率。 6.外观变形(量、率):当物体的变形受到阻碍而不能完全自由变形时,所表现出来的部 分变形称为外观变形或可见变形。外观变形的大小称为外观变形量。单位长度上的外观变形量称为外观变形率。 7.内部变形(量、率):当物体的变形受到阻碍而不能完全自由变形时,未表现出来的部 分变形称为内部变形或可见变形。内部变形的大小称为内部变形量。单位长度上的内部变形量称为内部变形率。 8.高组配:焊缝金属强度比母材高强度高的接头匹配。 9.低组配:焊缝金属强度比母材高强度低的接头匹配。 10.工作焊缝:一种与被连接的元件是串联的焊缝,承担着传递全部载荷的作用,焊缝一旦 开裂,结构就立即失效。 11.联系焊缝:一种与被连接的元件是并联的焊缝,主要起元件之间相互联系的作用,焊缝 一旦开裂,结构就不会立即失效。 12.焊接工艺评定:为验证所拟定的焊接工艺的正确性而进行的试验过程及结果的评价。 13.焊接工艺指导书:就是为验证试验所拟定的、经评定合格的、用于指导生产的焊接工艺 文件。 14.生产过程:使原材料或半成品的形状和重量不断的按照人们的意图发生改变的过程。或 者定义为把原材料变成成品的直接和间接的劳动过程的总和。 15.工艺过程:是指直接改变毛坯的形状、尺寸、力学性能以及物理性能,使之成为半成品 或成品的生产过程。 16.放样:指按设计图样在放样平台上,将其局部或全部按1:1的比例画出结构部件或零 件的图形和平面展开尺寸的加工工序。 17.划线:根据设计图样及工业上的要求按1:1的比例,将待加工工件形状、尺寸及各种 加工符号划在钢板或经粗加工的坯料上的加工工序。 18.号料:是用放样所取得的样板或样杆,在原材料或经粗加工的坯料上划下料线、加工线、 检查线及各种位置线的工艺过程。 19.夹具:是指将待装配的零件准确组对、定位并加紧的工艺装配,是定位器、夹紧器和各 种推拉装置的总称。 20.疲劳强度:指金属材料在无限多次交变载荷作用下而不破坏的最大应力。 21.疲劳极限:在疲劳试验中,应力交变循环大至无限次而试样仍不破损时的最大应力。 22.疲劳图:表达疲劳强度和循环特性之间关系的图形。 23.疲劳曲线:描述疲劳试验中所加交变应力振幅值S与试样达到破坏的交变应力周数N之 间的关系曲线。

激光焊接工艺详解

激光焊接工艺详解 随着科学技术的发展,近年来出现了激光焊接。那么什么是激光焊接呢?激光焊接的特点与优点又有哪些呢? 下图是激光焊接的工作原理: 首先,什么是激光?世界上的第一个激光束于1960年利用闪光灯泡激发红宝石晶粒所产生,因受限于晶体的热容量,只能产生很短暂的脉冲光束且频率很低。虽然瞬间脉冲峰值能量可高达106瓦,但仍属于低能量输出. 激光技术采用偏光镜反射激光产生的光束使其集中在聚焦装置中产生巨大能量的光束,假如焦点靠近工件,工件就会在几毫秒内熔化和蒸发,这一效应可用于焊接工艺高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。激光焊接设备的关键是大功率激光器,主要有两大类,一类是固体激光器,又称Nd:YAG 激光器。Nd(钕)是一种稀土族元素,YAG代表钇铝柘榴石,晶体结构与红宝石相似。Nd:YAG激光器波长为1.06μm,主要优点是产生的光束可以通过光纤传送,因此可以省往复杂的光束传送系统,适用于柔性制造系统或远程加工,通常用于焊接精度要求比较高的工件。汽车产业常用输出功率为3-4千瓦的Nd:YAG激光器。另一类是气体激光器,又称CO2激光器,分子气体作工作介质,产生均匀为10.6μm的红外激光,可以连续工作并输出很高的功率,标准激光功率在2-5千瓦之间。 与其它传统焊接技术相比,激光焊接的主要优点是: 1、速度快、深度大、变形小。 2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远间隔焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。

激光焊接工艺参数讲解

激光焊接原理与主要工艺参数 作者:opticsky 日期:2006-12-01 字体大小: 小中大 1.激光焊接原理 激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于104~105 W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。 其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。 用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。下面重点介绍激光深熔焊接的原理。 激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500 0C左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。 2. 激光深熔焊接的主要工艺参数 1激光功率。激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。只有当工件上的激光功率密度超过阈值(与材料有关),等离子体才会产生,这标志着稳定深熔焊的进行。如果激光功率低于此阈值,工件仅发生表面熔化,也即焊接以稳定热传导型进行。而当激光功率密度处于小孔形成的临界条件附近时,深熔焊和传导焊交替进行,

激光焊接基础知识

米亚奇公司 Nd(钕):YAG激光器激光焊接指南 米亚奇公司2003年版 此处包含的材料,未经米亚奇公司书面同意,严禁复 制或用于任何用途 联系方式: 米亚奇公司 Myrtle大道1820号 蒙罗维亚CA, 91017-7133 Tel.: 626 303 5676 Fax: 626 599 9636 https://www.360docs.net/doc/1514064995.html,

目录 1.激光基础 1.1 介绍 1.2 激光产生的原理 1.3 Nd:YAG激光的介质 1.4 泵浦源 1.5 谐振器 1.6 激光安全 2.激光焊接基本原理 2.1脉冲激光焊接 2.1.1实时功率反馈 2.1.2输出功率斜波 2.1.3脉冲的成形 2.1.4时间的分配 2.1.5能量分配 2.1.6光束的传输 2.1.7聚焦头 2.2激光是怎么实现焊接的 2.3主要焊接参数 2.3.1接缝设计与配合 2.3.2部分聚焦 2.3.3材料的选择和其表面镀层 2.4激光的参数 2.4.1名词术语 2.4.2光学系统 2.4.3聚焦镜片 2.4.4峰值功率和脉冲宽度 2.4.5接缝的焊接 2.4.6保护气体 2.5焊接举例

1.激光基础 1.1介绍 “激光”一词是Light Amplification by Stimulated Emission of Radiation(受激辐射而放大的光)的缩写,激光器的要素有: Nd:YAG激光器有两种类型,连续波的和脉冲波的,正如它们的名字所指,连续激光的波形要么是开,要么是关,但脉冲激光只用部分脉冲完成焊接。脉冲激光利用峰值功率进行焊接,反之连续激光使用的是平均功率,这使得脉冲激光只用很小的能量就能实现焊接,并形成了更小的热影响区,脉冲激光焊提供了无与伦比的点焊性能和极低的焊接热输入,米亚奇的就是脉冲激光焊机。 1.2激光产生的原理 激光本质上是分三步产生的,发生几乎是瞬间的。 1.泵浦源给介质提供能量,将介质内部原子激活,使得带电原子暂时被激发到 高能级,处在此活跃级的带电原子是不稳定的,于是跃迁到低能级,在这个过程中,从泵浦源吸收能量的电子释放多余的能量并辐射出一个光子,这个过程叫做自发辐射,通过这种方式产生的光子是激光的种子。 2.光子自发传播并最终撞击到别的处于高能级的电子,由于光速极快,处在激 发态的原子的密度很大,所以这个过程是极其短暂的,入射光子将电子从高能级激发到低能级并产生另一个光子,这两个光子是相干的,这意味着它们相位相同,波长相同,传播方向相同,这个过程叫做受激辐射。 3.光子传播方向是不定的,然而一些沿着介质传播的光子撞击共振器的反射镜, 又通过介质反射回来,共振反射镜决定了受激辐射的优先扩大方向,为了使

手持激光焊接行业分析

手持焊接行业分析 2018年下半年以来,手持式的激光焊接逐渐受到欢迎,并且成为了今年上半年激光焊接市场的一个亮点,2019年工博会上各家激光设备也纷纷展出了手持激光焊接设备。以目前手持激光焊的技术水平和应用场景,最有可能替代的正是TIG焊机(氩弧焊机)市场。氩弧焊机单台价值量仅2000元,而手持激光焊设备单台价值量高达12万元。 综合考虑效率提升、单台价格等因素,若每年有10%的氩弧焊机被手持激光焊设备替代,则年均手持激光焊需求量约为40000台,市场规模高达48亿元。 焊接速度快,比传统焊接快2-10倍,一台机器一年至少可以省2个焊工。 焊接可以分为熔化焊、压力焊及钎焊。熔焊是在焊接过程中将工件接口加热至熔化状态,不用加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后形成连续焊缝而将两工件连接成为一体。激光焊属于熔化焊的一种。 手持激光焊接机一般由激光器(一般配500-1500W光纤连续激光器)、冷水机组、控制软件、激光焊接头、光纤等部件组成。配套1000W激光器的焊接设备价格在10万元左右,配套1500W激光器的焊接设备价格在13万元左右。

手持激光焊发展时间尚短,应用的领域集中在钣金、机箱、水箱、配电箱等机柜、橱柜厨卫、不锈钢门窗护栏等复杂不规则、不需要夹具的焊接工序,在这些应用场景中取代了传统氩弧焊、电焊在薄不锈钢板、铁板、铝板等金属材料方面的焊接。未来,激光手持焊设备形成标准后,可应用于轨道交通、航空航天、汽车制造等支柱行业。 设备市场空间巨大,带动中低功率光纤激光器需求 据中国电器工业协会电焊机分会年度报告数据,2018年各类电焊机总销量(56家协会成员企业)374万台,其中直流手工弧焊机占比49.4%, MIG/MAG熔化极气体保护弧焊机占比23.7%,TIG焊机(氩弧焊机)占比10.2%,交流弧焊机占比6.3%。主流焊机中,直流焊机主要用在制造压力容器锅炉、管道等。交流焊机主要用于针对钢板的电焊作业。 埋弧焊主要的焊接物体是大梁、桥梁等其他钢结构件这类比较厚的钢体材料。气体保护焊,包括二氧化碳保护焊和氩弧焊,对有色金属以及对2MM以下的薄板进行焊接。从设备特性和下游应用来看,手持激光焊主要替代的是氩弧焊的市场。 据中国电器工业协会电焊机分会年度报告数据,2018年TIG焊机(氩弧焊机)总销量38.22万台,同比下降7.1%,价值量7.6亿元,同比下降

特种加工:名词解释-填空-简答题..教学提纲

12-13-2 《特种加工》复习: 名词解释 1.特种加工:特种加工亦称“非传统加工”或“现代加工方法”,泛指用电能、热能、光能、电化学能、化学能、声能及特殊机械能等能量达到去除或增加材料的加工方法,从而实现材料被去除、变形、改变性能或被镀覆等。 2.电火花加工:电火花加工是利用浸在工作液中的两极间脉冲放电时产生的电蚀作用蚀除导电材料的特种加工方法,又称放电加工或电蚀加工。 3.极性效应:在电火花加工过程中,无论是正极还是负极,都会受到不同程度的电蚀。即使是相同的材料,正负电极的电蚀也是不同的。这种单纯由于正负极性不同而彼此电蚀量不一样的现象叫做极性效应。 4.电火花线切割:电火花线切割简称线切割。它是在电火花穿孔、成形加工的基础上发展起来的。它不仅使电火花加工的应用得到了发展,而且某些方面已取代了电火花穿孔、成形加工。如今,线切割机床已占电火花机床的大半。 5.极间介质消电离:放电通道中的带电粒子复合为中性粒子,恢复本次放电通道处间隙介质的绝缘强度,以免总是重复在同一处发生放电发生而导致电弧放电,这样可以保证按两级相对最近处或电阻率最小处形成下一击穿放电通道。 6.混气电解加工:混气电解加工就是将一定压力的气体(主要是压缩空气)用混气装置使之与电解液混合在一起,并使电解液成分为包含无数气泡的气液混合物,然后送入加工区进行电解加工。 7.电化学加工:电化学加工也称为电解加工,是利用金属在外电场作用下的高速局部阳极溶解实现电化学反应,对金属材料进行加工的方法。 8.阳极溶解:金属作为阳极发生氧化反应的电极过程。 9.阴极沉淀: 10.电极极化:一般将有电流通过电极时,电极的平衡状态被破坏,阳极电位向更加正的方向移动,阴极的电位向更加负的方向移动,电极电位偏离平衡电位的现象称为电极极化。11.电化学钝化:在电解加工过程中海油一种叫钝化的现象,它使金属阳极溶解过程的超电位升高,使电解速度减慢。 12.电解加工:基于电解过程中的阳极溶解原理并借助于成型的阴极,将工件按一定形状和尺寸加工成型的一种工艺方法,称为电解加工。 13.电解抛光:是以被抛工件为阳极,不溶性金属为阴极,两级同时浸入到电解槽中,通以直流电而产生有选择性的阳极溶解,从而达到工件表面光亮度增大的效果。 14.电解磨削:是由电解作用和机械磨削作用相结合而进行加工的,比电解加工的加工精度高,表面粗糙度小,比机械磨削的生产率高。 15.电铸加工:电铸是在芯模表面电沉积金属,然后使两者分离来支取零件的工艺。 16.涂镀加工:涂镀又称为刷镀或无槽电镀,是在金属工件表面局部快速电化学沉积金属的技术。 17.激光加工:是利用光的能量,经过透镜聚焦,在焦点上达到很高的能量密度,考光热效应来加工各种材料 17.激光打孔: 18.激光切割:材料在激光热源照射下,工件与激光束相对移动,进行加工的过程。 19.激光焊接:激光焊接是以聚焦的激光束作为能源,利用轰击焊件所产生的热量进行焊接的一种高效精密的焊接方法。 20.激光淬火:激光淬火是以高密度能量激光束作为能源,迅速加热工件并使其自冷硬化的

激光焊接两种异常现象的分析

激光焊接两种异常现象的分析 提要:研究了在激光焊接中出现的两种异常现象,即焊缝的缩颈和表面凸起现象。结果表明:焊缝截面的缩颈是因激光束的偏振、小孔壁聚焦、小孔内高压金属蒸气的 动态行为引起的;表面凸起是因组织的变化、熔池熔体的流动、热膨胀及热应力引起的。 关键词:激光焊接异常现象焊缝成型 1 引言 激光焊接采用高能束的激光作为热源,与传统焊接方法相比具有速度快、组织细腻、热影响区小、成型好等特点。但在激光焊接中,经常会出现两种异常现象,即焊缝截面的缩颈和表面凸起,如图1所示。焊缝截面的缩颈是指在激光焊缝截面上,在熔深的中段焊缝呈现收缩特征,出现焊缝的上下两端宽、中间窄的现象。在激光焊接中一般并不添加焊丝等填充材料,但在焊接后焊缝表面常出现凸起,这往往影响了激光焊接的表面光洁度。对此现象很多激光焊接工作者都没有给予应有的重视。在实际某些应用中,如汽车蒙皮、汽车底盘钢板对焊后表面质量要求很高,不允许有任何不平。在一些精密零件的激光焊接也对此有着严格要求, 任何表面的不平整都可能造成功能失效或者对使用有严重影响。因此探索这两种现象的形成机理,对于控制焊缝的成型、提高焊缝质量是很重要的。本文通过多角度、多侧面的分析,对其进行了具体的解释。 2 理论分析 2.1 焊缝截面的缩颈现象 激光焊缝截面的缩颈现象,与激光焊接的特性是分不开的。经大量的研究和试验,分析认为缩颈现象这个特征的形成是由于下列因素所造成的。 ①激光束的偏振 激光是一种电磁波,具有偏振性。高功率CO2激光器输出的是偏振面不固定的线偏振光。 工件金属表面对入射光中S成分的反射率Rs与P成分的反射率Rp不同。由于高功率激光焊接时,产生深的小孔,并且激光沿焊缝移动,造成小孔前侧壁的倾斜,其斜面的法向与激光束的中心线成θ角,θ一般在75°~85°之间。在这种入射角很大的情况下,偏振面与入射面平行的P光和垂直的S光反射系数相差很大。S光几乎全部被反射,Rs接近于1.0,而P光则大部分被吸收,反射率只有0.3~0.4,如图2所示。

焊接课后答案及名词解释

焊接课后答案及名词解 释 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

1.试述熔化焊接、钎焊和粘接在本质上有何区别 熔化焊接:使两个被焊材料之间(母材与焊缝)形成共同的晶粒 针焊:只是钎料熔化,而母材不熔化,故在连理处一般不易形成共同的晶粒,只是在钎料与母材之间形成有相互原于渗透的机械结合。 粘接:是靠粘结剂与母材之间的粘合作用,一般来讲没有原子的相互渗透或扩散。 2.怎样才能实现焊接,应有什么外界条件 从理论来讲,就是当两个被焊好的固体金属表面接近到相距原子平衡距离时,就可以在接触表面上进行扩散、再结晶等物理化学过程,从而形成金属键,达到焊接的目的。然而,这只是理论上的条件,事实上即使是经过精细加工的表面,在微观上也会存在凹凸不平之处,更何况在一般金属的表面上还常常带有氮化膜、油污和水分等吸附层。这样,就会阻碍金属表面的紧密接触。为了克服阻碍金属表面紧密接触的各种因素,在焊接工艺上采取以下两种措施: 1)对被焊接的材质施加压力目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。 2)对被焊材料加热(局部或整体) 对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。 3.焊条的工艺性能包括哪些方面(详见:焊接冶金学(基本原理)p84) 焊条的工艺性能主要包括:焊接电弧的稳定性、焊缝成形、在各种位置焊接的适应性、飞溅、脱渣性、焊条的熔化速度、药皮发红的程度及焊条发尘量等 4.低氢型焊条为什么对于铁锈、油污、水份很敏感(详见:焊接冶金学(基本原理)p94) 由于这类焊条的熔渣不具有氧化性,一旦有氢侵入熔池将很难脱出。所以,低氢型焊条对于铁锈、油污、水分很敏感。 5.焊剂的作用有哪些 隔离空气、保护焊接区金属使其不受空气的侵害,以及进行冶金处理作用。 6.能实现焊接的能源大致哪几种它们各自的特点是什么 见课本p3 :热源种类 7.焊接电弧加热区的特点及其热分布(详见:焊接冶金学(基本原理)p4) 热源把热能传给焊件是通过焊件上一定的作用面积进行的。对于电弧焊来讲,这个作用面积称为加热区,如果再进一步分析时,加热区又可分为加热斑点区和活性斑点区; 1)活性斑点区活性斑点区是带电质点(电子和离于)集中轰击的部位,并把电能转为热能; 2)加热斑点区在加热斑点区焊件受热是通过电弧的辐射和周围介质的对流进行的。 8.什么是焊接,其物理本质是什么 焊接:被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子问的结合而形成永久性连接的工艺过程称为焊接。 物理本质:1)宏观:焊接接头破坏需要外加能量和焊接的的不可拆卸性(永久性) 2)微观:焊接是在焊件之间实现原子间结合。 9,焊接化学冶金与炼钢相比,在原材料方面和反应条件方面主要有哪些不同P8 (1)原材料不同:普通冶金材料的原材料主要是矿石、废钢铁和焦炭等;而焊接化学冶金的原材料主要是焊条、焊丝和焊剂等。(2)反应条件不同:普通化学冶金是对金属熔炼加工过程,是在放牧特定的炉中进行的;而焊接化学冶金过程是金属在焊接条件下,再熔炼的过程,焊接时焊缝相当于高炉。 10.为什么电弧焊时熔化金属的含氮量高于它的正常溶解度(详见:焊接冶金学(基本原理) p34) 电弧焊时熔化金属的含氮量高于溶解度的主要原因在于:1)电弧中受激的氮分子,特别是氮原子的溶解速度比没受激的氮分子要快得多;2)电弧中的氮离子可在阴极溶解;3)在氧化性电弧气氛中形成NO,遇到温度较低的液态金属它分解为N和O,N迅速溶于金属。

相关文档
最新文档