第六章样本及样本函数的分布(概率论)

第六章样本及样本函数的分布(概率论)
第六章样本及样本函数的分布(概率论)

Standard

特点关于y轴对称;随着自由度的逐渐增大,

密度曲线逐渐接近于标准正态密度曲线.

Standard

α

(n

)

二次函数根的分布专题

一元二次方程根的分布专题 一元二次方程根的分布是二次函数中的重要内容。这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用。下面我们将主要结合二次函数图象的性质,分两种情况系统地介绍一元二次方程实根分布的充要条件及其运用。 一.一元二次方程根的基本分布——零分布 所谓一元二次方程根的零分布,指的是方程的根相对于零的关系。比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。 设一元二次方程20(0)ax bx c a ++=≠的两个不等实根为1x ,2x ①方程有两个不等正根 ??? ? ? ? ??? >=>-=+>-=?>>00040,0212 1221a c x x a b x x ac b x x ②方程两根一正一负 :0021<<=<-=+>-=?<<00040,02121221a c x x a b x x ac b x x 即时应用: (1)若一元二次方程 0)1(2)1(2 =-++-m x m x m 有两个不等正根,求m 的取值范围。 (2)k 在何范围内取值,一元二次方程0332 =-++k kx kx 有一个正根和一个负根?

二、一元二次方程的非零分布——k分布 设一元二次方程20(0) ax bx c a ++=>的两不等实根为1x,2x,k为常数。则一元二次方 k1x2x k 根 的 分 布 ① 12 x x k② 12 k x x③ 12 x k x 图 象 充 要 条 件 2 b k a f k 2 b k a f k f k 根 的 分 布 ④ 1122 k x x k⑤ 11223 k x k x k⑥两根有且仅有一根在 12 ,k k内 图 象 充 要 条 件 1 2 12 2 f k f k b k k a 1 2 3 ()0 ()0 ()0 f k f k f k 12 f k f k 或 1 12 1 ()0 22 f k k k b k a 或 2 12 2 ()0 22 f k k k b k a k k k 2 k 1 k 2 k 1 k 3 k 2 k 1 k

样本及抽样分布知识讲解

第六章 样本及抽样分布 【内容提要】 一、简单随机样本与统计量 1. 总体 用来表征某一随机试验的数量指标X ,其概率分布称为总体的分布。 2. 简单随机样本 在相同条件下,对总体X 进行n 次独立的重复观察,将所得结果12,,...,n X X X 称为从总体X 中抽取的容量为n 的简单随机样本,试验结束后,可得一组数值12,,...,n x x x ,称其为 12,,...,n X X X 的观察值。 注:若12,,...,n X X X 为总体X 的简单随机样本,则12,,...,n X X X 相互独立,且与总体X 同分布。 3. 统计量 设12,,...,n X X X 为总体X 的简单随机样本,12(,,...,)n T g X X X =为样本12,,...,n X X X 的实值函数,且不含任何未知参数,则称12(,,...,)n T g X X X =为一个统计量,将样本值12,,...,n x x x 代入后算出的函数值12(,,...,)n t g x x x =称为该统计量的值。 注:设12,,...,n X X X 为总体X 的简单随机样本,12,,...,n x x x 为相应的样本值,则常用的统计量有: 4. 经验分布函数 设12,,...,n X X X 为总体X 的简单随机样本,12,,...,n x x x 为相应的样本值,将样本值 按由小到大的顺序重新编号12,1r x x x r n ***<

样本及抽样分布

第六章样本及抽样分布 【基本要求】1、理解总体、个体和样本的概念; 2、理解样本均值、样本方差和样本矩的概念并会计算; 3、理解统计量的概念,掌握几种常用统计量的分布及其结论; 4、理解分位数的概念,会计算几种重要分布的分位数。 【本章重点】样本均值、样本方差和样本矩的计算;抽样分布——2 分布,t分布, F分布;分位数的理解和计算。 【本章难点】对样本、统计量及分位数概念的理解;样本矩的计算。 【学时分配】4学时 【授课内容】 §6.0 前言 前面五章我们研究了概率论的基本内容,从中得知:概率论是研究随机现象统计规律性的一门数学分支。它是从一个数学模型出发(比如随机变量的分布)去研究它的性质和统计规律性;而我们下面将要研究的数理统计,也是研究大量随机现象的统计规律性,并且是应用十分广泛的一门数学分支。所不同的是数理统计是以概率论为理论基础,利用观测随机现象所得到的数据来选择、构造数学模型(即研究随机现象)。其研究方法是归纳法(部分到整体)。对研究对象的客观规律性做出种种合理性的估计、判断和预测,为决策者和决策行动提供理论依据和建议。数理统计的内容很丰富,这里我们主要介绍数理统计的基本概念,重点研究参数估计和假设检验。 §6.1 随机样本 1

一、总体与样本 1.总体、个体 在数理统计学中,我们把所研究的全部元素组成的集合称为总体;而把组成总体的每个元素称为个体。 例如:在研究某批灯泡的平均寿命时,该批灯泡的全体就组成了总体,而其中每个灯泡就是个体;在研究我校男大学生的身高和体重的分布情况时,该校的全体男大学生组成了总体,而每个男大学生就是个体。 但对于具体问题,由于我们关心的不是每个个体的种种具体特性,而仅仅是它的某一项或几项数量指标X(可以是向量)和该数量指标X在总体的分布情况。在上述例子中X是表示灯泡的寿命或男大学生的身高和体重。在试验中,抽取了若干个个体就观察到了X的这样或那样的数值,因而这个数量指标X是一个随机变量(或向量),而X的分布就完全描写了总体中我们所关心的那个数量指标的分布状况。由于我们关心的正是这个数量指标,因此我们以后就把总体和数量指标X可能取值的全体组成的集合等同起来。 定义1:把研究对象的全体(通常为数量指标X可能取值的全体组成的集合)称为总体;总体中的每个元素称为个体。 我们对总体的研究,就是对相应的随机变量X的分布的研究,所谓总体的分布也就是数量指标X的分布,因此,X的分布函数和数字特征分别称为总体的分布函数和数字特征。今后将不区分总体与相应的随机变量,笼统称为总体X。根据总体中所包括个体的总数,将总体分为:有限总体和无限总体。 例1:考察一块试验田中小麦穗的重量: X=所有小麦穗重量的全体(无限总体);个体——每个麦穗重x 2

二次函数根的分布

二次方程根的分布与二次函数在闭区间上的最值归纳 1、一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->? ??>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>???-?? ()0 20 b k a a f k ?>???->? ??>?? ()0

习题六 样本及抽样分布.

习题六样本及抽样分布 一、填空题 1.设来自总体的一个样本观察值为:2.1,5.4,3.2,9.8,3.5,则样本均值 = 4.8 ,样本方差 =; 2.在总体中随机地抽取一个容量为 36 的样本,则均值落在4与6之间的概率 = 0.9332 ; 3.设某厂生产的灯泡的使用寿命 (单位:小时,抽取一容量为9的样本,得到 ,则; 4.设为总体的一个样本,则 0.025 ; 5.设为总体的一个样本,且服从分布,这里, ,则1/3 ; 6.设随机变量相互独立,均服从分布且与分别是来自总体的简单随机样本,则统计量服从参数为 9 的 t 分布。 7.设是取自正态总体的简单随机样本且 ,则 0.05 , 0.01 时,统计量服从分布,其自由度为 2 ;

8.设总体 X 服从正态分布,而是来自总体的简单随机样 本,则随机变量 服从 F 分布,参数为 10,5 ; 9.设随机变量则 F(n,1 ; 10.设随机变量且,A为常数,则 0.7 二、选择题 1.设是来自总体的简单随机样本,是样本均值, 记 则服从自由度的分布的随机变量是( A ); A. B. C. D. 2.设是经验分布函数,基于来自总体的样本,而是总体的分布函数,则下列命题错误的为,对于每个给定的( B ) A.是分布函数 B.依概率收敛于 C.是一个统计量 D.其数学期望是

3.设总体服从0-1分布,是来自总体的样本,是样本均值,则下列各选项中的量不是统计量的是( B ) A. B. C. D. 4.设是正态总体的一个样本,其中已知而未知,则下列各选项中的量不是统计量的是( C )。 A. B. C. D. 5.设和分别来自两个正态总体和的样本,且相互独立,分别为两个样本的样本方差,则服从的统计量是( B ) A. B. C. D. 6.设是正态总体的一个样本,和分别为样本均值和样本方差,则下面结论不成立的有( D ) A.相互独立; B.与相互独立; C.与相互独立D.与相互独立。

统计学常用分布及其分位数

§1、4 常用得分布及其分位数 1、 卡平方分布 卡平方分布、t 分布及F 分布都就是由正态分布所导出得分布,它们与正态分布一起,就是试验统计中常用得分布。 当X 1、X 2、… 、Xn 相互独立且都服从N(0,1)时,Z=∑i i X 2 得分布称为自由度等于n 得2χ分布,记作Z ~2χ(n),它得分布 密度 p(z )=??? ????>??? ??Γ--,,00,2212122其他z e x n z n n 式中得??? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ?? ? ??Γ21=π。2χ分布就是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、 X n+m 相互独立且都服从N(0,1),再根据2χ分布得定义以及上述随机变量得相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2、 t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 得分布称为自由度等于n 得t 分布,记作Z ~ t (n ),它得分布密度 P(z)=)()(221n n n ΓΓ+2121+-???? ??+n n z 。 请注意:t 分布得分布密度也就是偶函数,且当n>30时,t

(版)导数题型归类讲:交点与根的分布

2015版导数题型归类 第二讲 交点与根的分布 一、学习目标 1.交点问题转化为函数的最值问题 2.根的分布利用数形结合转化为基本的不等式问题 二、重难点 重点:交点问题 难点:交点问题 三、引入 我们知道导数可以用于研究切线、单调性、极值、最值问题,那么: 已知3x =是函数2()ln(1)10f x a x x x =++-的一个极值点,若直线y b =与函数()y f x =的图象有3个交点,则b 的取值范围为 . 它是哪一类啦? 四、过程 【知识点一】交点(零点或其变形) 两个函数的图像有交点也就是方程组有解,但是对于超越函数我们往往解不出,那么转化为一个函数,再利用图像研究其极值和最值问题成为了一种思路。 例题1.已知函数33y x x c =-+的图象与x 轴恰有两个公共点,则c = . A .-2或2 B .-9或3 C .-1或1 D .-3或1 例题2.(交点个数与根的分布)已知x=3是函数f(x)=aln(x+1)+2 x -10x 的一个极值点。 1)求a; 2)求函数的单调区间; 3)若直线y=b 与函数y=f(x)的图像有三个交点,求b 的取值范围.

【巩固练习】 1.若函数x e y x a 4)1(+=-有大于零的极值点,则a 的范围为_______. 2.(2011年福建)已知a,b 为常数,且0≠a ,函数x ax b ax x f ln )(++-=,2)(=e f 1)求实数b; 2)求函数的单调区间 3)当a=1时,是否同时存在实数m 和M (m

(完整版)样本及抽样分布.doc

第六章样本及抽样分布 【基本要求】 1、理解总体、个体和样本的概念; 2、理解样本均值、样本方差和样本矩的概念并会计算; 3、理解统计量的概念,掌握几种常用统计量的分布及其结论; 4、理解分位数的概念,会计算几种重要分布的分位数。 【本章重点】样本均值、样本方差和样本矩的计算;抽样分布—— 2 分布,t分布, F分布;分位数的理解和计算。 【本章难点】对样本、统计量及分位数概念的理解;样本矩的计算。 【学时分配】 4 学时 【授课内容】 §6.0前言 前面五章我们研究了概率论的基本内容,从中得知:概率论是研究随机现象统计规律性的一 门数学分支。它是从一个数学模型出发(比如随机变量的分布)去研究它的性质和统计规律性; 而我们下面将要研究的数理统计,也是研究大量随机现象的统计规律性,并且是应用十分广泛的 一门数学分支。所不同的是数理统计是以概率论为理论基础,利用观测随机现象所得到的数据来 选择、构造数学模型(即研究随机现象)。其研究方法是归纳法(部分到整体)。对研究对象的客观规律性做出种种合理性的估计、判断和预测,为决策者和决策行动提供理论依据和建议。数理 统计的内容很丰富,这里我们主要介绍数理统计的基本概念,重点研究参数估计和假设检验。 § 6.1随机样本 1

一、总体与样本 1.总体、个体 在数理统计学中,我们把所研究的全部元素组成的集合称为总体;而把组成总体的每个元素称为个体。 例如:在研究某批灯泡的平均寿命时,该批灯泡的全体就组成了总体,而其中每个灯泡就是 个体;在研究我校男大学生的身高和体重的分布情况时,该校的全体男大学生组成了总体,而每 个男大学生就是个体。 但对于具体问题,由于我们关心的不是每个个体的种种具体特性,而仅仅是它的某一项或几 项数量指标 X ( 可以是向量 ) 和该数量指标X在总体的分布情况。在上述例子中 X 是表示灯泡的寿命或男大学生的身高和体重。在试验中,抽取了若干个个体就观察到了X 的这样或那样的数值,因而这个数量指标X 是一个随机变量(或向量),而 X 的分布就完全描写了总体中我们所关心的那个数量指标的分布状况。由于我们关心的正是这个数量指标,因此我们以后就把总体和数量指标 X 可能取值的全体组成的集合等同起来。 定义 1:把研究对象的全体(通常为数量指标X 可能取值的全体组成的集合)称为总体;总体中的每个元素称为个体。 我们对总体的研究,就是对相应的随机变量X 的分布的研究,所谓总体的分布也就是数量指 标 X 的分布,因此, X 的分布函数和数字特征分别称为总体的分布函数和数字特征。今后将不区分总体与相应的随机变量,笼统称为总体 X 。根据总体中所包括个体的总数,将总体分为:有限总体 和无限总体。 例 1:考察一块试验田中小麦穗的重量: X =所有小麦穗重量的全体(无限总体);个体——每个麦穗重x 2

概率论中几种常用重要分布

概率论中几种常用的重要的分布 摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常 用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X x x =∈-∞=-∞ +∞. 这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈= 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使 ([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那 么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。 特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。 (3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

第六章抽样调查练习及答案

第六章抽样调查 一、填空题 1.抽选样本单位时要遵守原则,使样本单位被抽中的机会。 2.常用的总体指标有、、。 3.在抽样估计中,样本指标又称为量,总体指标又称为。 4.全及总体标志变异程度越大,抽样误差就;全及总体标志变异程度越小, 抽样误差。 5.抽样估计的方法有和两种。 6.整群抽样是对被抽中群内的进行的抽样组织方式。 7.误差分为和代表性误差;代表性误差分为________和偏差;偏差是 ____________________________,也称为________________。 8.简单随机抽样的成数抽样平均误差计算公式是:重复抽样条件下:; 不重复抽样条件下:。 9.误差范围△,概率度t和抽样平均误差 之间的关系表达式为。 10.抽样调查的组织形式有:。 二、单项选择题 1.所谓大样本是指样本单位数在( )及以上 A 30个 B 50个 C 80个D100个 2.抽样指标与总体指标之间抽样误差的可能范围是( )

A 抽样平均误差 B 抽样极限误差 C 区间估计范围 D 置信区间 3.抽样平均误差说明抽样指标与总体指标之间的( ) A 实际误差 B 平均误差 C 实际误差的平方 D 允许误差 4.是非标志方差的计算公式( ) A P(1-P) B P(1-P)2 C )1(P P D P 2(1-P) 5.总体平均数和样本平均数之间的关系是( ) A 总体平均数是确定值,样本平均数是随机变量 B 总体平均数是随机变量,样本平均数是确定值 C 两者都是随机变量 D 两者都是确定值 6.对入库的一批产品抽检10件,其中有9件合格,可以( )概率保证合格率不低于80%。 A 95.45% B 99.7396 C 68.27% D 90% 7.在简单随机重复抽样情况下,若要求允许误差为原来的2/3,则样本容量( ) A 扩大为原来的3倍 B 扩大为原来的2/3倍 C 扩大为原来的4/9倍 D 扩大为原来的2.25倍 8.根据抽样调查得知:甲企业一等品产品比重为30%,乙企业一等品比重为50% 一等品产品比重的抽样平均误差为 ( ) A 甲企业大 B 两企业相同 C 乙企业大 D 无法判断 9.是非标志的平均数是( ) A -P)1P( B P(1-P) C p D (1-P)2 10.重复抽样的误差一定( )不重复抽样的误差。

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 (1) 2. 正态分布(高斯分布) (2) 3. 指数分布 (2) 4. Beta分布(:分布) (2) 5. Gamm 分布 (3) 6. 倒Gamm分布 (4) 7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8. Pareto 分布 (6) 9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) 2 10. 分布(卡方分布) (7) 8 11. t分布................................................ 9 12. F分布 ............................................... 10 13. 二项分布............................................ 10 14. 泊松分布(Poisson 分布)............................. 11 15. 对数正态分布........................................

1. 均匀分布 均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作 X~N (」f 2)。正态分布为方差已知的正态分布 N (*2)的参数」的共轭先验分布。 1 空 f (x ): —— e 2- J2 兀 o' E(X), Var(X) _ c 2 3. 指数分布 指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。其 中,.0为尺度参数。指数分布的无记忆性: Plx s t|X = P{X t}。 f (X )二 y o i E(X) 一 4. Beta 分布(一:分布) f (X )二 E(X) Var(X)= (b-a)2 12 Var(X)二 1 ~2

第六章 样本及抽样分布.

第六章样本及抽样分布 §1总体与样本 从理论上讲,对随机变量进行大量的观测,被研究的随机变量的概率特征一定能显现出来,可是实际进行的观测次数只能是有限的,有时甚至是少量的。因此,我们关心的问题就是怎样有效地利用收集到的有限的资料,尽可能地对被研究的随机变量的概率特征作出精确而可靠的结论. 我们把被研究的对象的全体称为总体(或母体),而把组成总体的各个元素称为个体。代表总体的指标是一个随机变量,所以总体就是指某个随机变量可能取的值的全体。 从总体中抽取一个个体,就是对代表总体的随机变量进行一次试验(或观测),得到的一个试验数据(或观测值)。从总体中抽取一部分个体,就是对随机变量进行若干次试验(观测)。 从总体中抽取若干个个体的过程称为抽样。抽样结果得到的一组试验数据(观测值),称为样本(或子样);样本中所含个体的数量称为样本容量。 从总体中抽取样本,一般总是假设满足下述两个条件: (1)随机性为了使样本具有充分的代表性,抽样必须是随机的,应使总体中的每一个个体都有同等的机会被抽取到,通常可以用编号抽签的方法或利用随机数表来实现。 (2)独立性各次抽样必须是相互独立的,即每次抽样的结果既不影响其它各次抽样的结果,也不受其它各次抽样结果的影响。 这种随机的、独立的抽样方法称为简单随机抽样,由此得到的样本称为简单随机样本。 例如,从总体中进行放回抽样,显然是简单随机抽样,得到的样本就是简单随机样本。 从有限总体(即其中只含有有限多个个体的总体)中,进行不放回抽样,虽然不是简单随机抽 样,但是若总体容量很大而样本容量较小(,则可以近似地看作是放回抽样,因而也就可以近似地看作是简单随机抽样,得到的样本可以近似地看作是简单随机样本。 今后,凡是提到抽样与样本,都是指简单随机抽样与简单随机样本。 从总体中抽取容量为n的样本,就是对代表总体的随机变量随机地、独立地进行n次试验(观测),每次试验的结果可以看作是一个随机变量,n次试验的结果就是n个随机变量 。 这些随机变量相互独立,并且与总体服从相同的分布。设得到的样本观测值分别是 ,

样本与抽样分布

第六章样本与抽样分布 §6.1 数理统计的基本概念 一.数理统计研究的对象 例:有一批灯泡,要从使用寿命这个数量指标来看其质量,设寿命用X表示。 (1)若规定寿命低于1000小时的产品为次品。此问题是求P(X 1000)=F(10000),求F(x)? (2)从平均寿命、使用时数长短差异来看其质量,即求E(x)?、D(x)?。 要解决二个问题

1.试验设计抽样方法。 2.数据处理或统计推断。 方法具有“从局部推断总体”的特点。 二.总体(母体)和个体 1.所研究对象的全体称为总体,把组成总体的每一个对象成员(基本单元)称为个体。 说明: (1)对总体我们关心的是研究对象的某一项或某几项数量指标(或属性指标)以及他们在整体中的分布。所以总体是个体的数量指标的全体。 (2)为研究方便将总体与一个R.V X

对应(等同)。 a.总体中不同的数量指标的全体, 即是R.V.X的全部取值。 b.R.V X的分布即是总体的分布 情况。 例:一批产品是100个灯泡,经测试其寿命是: 1000小时1100小时 1200小时 20个30个50个 X 1000 1100 1200 P 20/100 30/100

50/100 (设X表示灯泡的寿命)可知R.V.X的分布律, 就是总体寿命的分布,反之亦然。 常称总体X,若R.VX~F(x),有时也用F(x)表示一个总体。 (3)我们对每一个研究对象可能要观测两个或多个数量指标,则可用多维随机向量(X,Y,Z, …)去描述总体。 2.总体的分类 有限总体 无限总体

三.简单随机样本. 1.定义6.1 :从总体中抽得的一部分个体组成的集合称为子样(样本),取得的个体叫样品,样本中样品的个数称为样本容量(也叫样本量)。每个样品的测试值叫观察值。 取得子样的过程叫抽样。 样本的双重含义: (1)随机性: 用(X 1,X 2, ……X n) n维随机向量表 示。 X i表示第i个被抽到的个体,是随机变量。(i=1,2,…n)

统计学常用分布及其分位数

§1.4 常用的分布及其分位数 1. 卡平方分布 卡平方分布、t 分布及F 分布都是由正态分布所导出的分布,它们与正态分布一起,是试验统计中常用的分布。 当X 1、X 2、…、Xn 相互独立且都服从N(0,1)时,Z=∑i i X 2 的 分布称为自由度等于n 的2χ分布,记作Z ~2χ(n),它的分 布密度 p(z )=???????>??? ??Γ--,,00,2212122其他z e x n z n n 式中的??? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ?? ? ??Γ21=π。2χ分布是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、 X n+m 相互独立且都服从N(0,1),再根据2χ分布的定义以及上述随机变量的相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2. t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 的分布称为自由度等于n 的t 分布,记作Z ~ t (n ),它的分布密度 P(z)=)()(221n n n ΓΓ+2121+-???? ??+n n z 。 请注意:t 分布的分布密度也是偶函数,且当n>30时,t

第六章样本及抽样分布

第六章样本及抽样分布 【授课对象】理工类本科二年级 【授课时数】4学时 【授课方法】课堂讲授与提问相结合 【基本要求】1、理解总体、个体和样本的概念; 2、了解经验分布函数和直方图的作法,知道格林汶科定理; 3、理解样本均值、样本方差和样本矩的概念并会计算; 4、理解统计量的概念,掌握几种常用统计量的分布及其结论; 5、理解分位数的概念,会计算几种重要分布的分位数。 【本章重点】样本均值、样本方差和样本矩的计算;抽样分布——2 分布,t分布,F分布;分位数的理解和计算。 【本章难点】对样本、统计量及分位数概念的理解;样本矩的计算。 【授课内容及学时分配】 §6.0 前言 前面五章我们研究了概率论的基本内容,从中得知:概率论是研究随机现象统计规律性的一门数学分支。它是从一个数学模型出发(比如随机变量的分布)去研究它的性质和统计规律性;而我们下面将要研究的数理统计,也是研究大量随机现象的统计规律性,并且是应用十分广泛的一门数学分支。所不同的是数理统计是以概率论为理论基础,利用观测随机现象所得到的数据来选择、构造数学模型(即研究随机现象)。其研究方法是归纳法(部分到整体)。对研究对象的客观规律性做出种种合理性的估计、判断和预测,为决策者和决策行动提供理论依据和建议。数理统计的内容很丰富,这里我们主要介绍数理统计的基本概念,重点研究参数估计和假设检验。 §6.1 随机样本 一、总体与样本 1.总体、个体 在数理统计学中,我们把所研究的全部元素组成的集合称为总体;而把组成总体的每个

元素称为个体。 例如:在研究某批灯泡的平均寿命时,该批灯泡的全体就组成了总体,而其中每个灯泡就是个体;在研究我校男大学生的身高和体重的分布情况时,该校的全体男大学生组成了总体,而每个男大学生就是个体。 但对于具体问题,由于我们关心的不是每个个体的种种具体特性,而仅仅是它的某一项或几项数量指标X (可以是向量)和该数量指标X 在总体的分布情况。在上述例子中X 是表示灯泡的寿命或男大学生的身高和体重。在试验中,抽取了若干个个体就观察到了X 的这样或那样的数值,因而这个数量指标X 是一个随机变量(或向量),而X 的分布就完全描写了总体中我们所关心的那个数量指标的分布状况。由于我们关心的正是这个数量指标,因此我们以后就把总体和数量指标X 可能取值的全体组成的集合等同起来。 定义1:把研究对象的全体(通常为数量指标X 可能取值的全体组成的集合)称为总体;总体中的每个元素称为个体。 我们对总体的研究,就是对相应的随机变量X 的分布的研究,所谓总体的分布也就是数量指标X 的分布,因此,X 的分布函数和数字特征分别称为总体的分布函数和数字特征。今后将不区分总体与相应的随机变量,笼统称为总体X 。根据总体中所包括个体的总数,将总体分为:有限总体和无限总体。 例1:考察一块试验田中小麦穗的重量: X =所有小麦穗重量的全体(无限总体);个体——每个麦穗重x 对应的分布: +∞<<σμσ π= ≤= ≤ξ=?∞ -σμ-- x N dt e x 重量x P x F x t 0) ,(~21 }{)(22)(2 2总麦穗数 的麦穗数 例2:考察一位射手的射击情况: X =此射手反复地无限次射下去所有射击结果全体; 每次射击结果都是一个个体(对应于靶上的一点) 个体数量化???=未中射中 01x 1在总体中的比例p 为命中率 0在总体中的比例p -1为非命中率 总体X 由无数个0,1构成,其分布为两点分布),1(p B p X P p X P -====1}0{,}1{ 2.样本与样本空间 为了对总体的分布进行各种研究,就必需对总体进行抽样观察。

二次函数根的分布专题

一元二次方程根的分布 一元二次方程根的分布是二次函数中的重要内容。这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用。下面我们将主要结合二次函数图象的性质,分两种情况系统地介绍一元二次方程实根分布的充要条件及其运用。 一.一元二次方程根的基本分布——零分布 所谓一元二次方程根的零分布,指的是方程的根相对于零的关系。比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。 设一元二次方程20(0)ax bx c a ++=≠的两个不等实根为1x ,2x ①方程有两个不等正根 ??? ?? ? ??? >=>-=+>-=?>>00040,0212 1221a c x x a b x x ac b x x ②方程两根一正一负 :0021<<=<-=+>-=?<<00040,0212 1221a c x x a b x x ac b x x 即时应用: (1)若一元二次方程 0)1(2)1(2 =-++-m x m x m 有两个不等正根,求m 的取值范围。 (2)k 在何范围内取值,一元二次方程0332 =-++k kx kx 有一个正根和一个负根?

二、一元二次方程的非零分布——k 分布 设一元二次方程20(0)ax bx c a ++=>的两不等实根为1x ,2x , k 为常数。则一元二次方k 1x 2x k k k k 2k 1k 2 k 1 k 3 k 2 k 1 k

(完整word版)习题六样本及抽样分布

习题六 样本及抽样分布 一、填空题 1.设来自总体X 的一个样本观察值为:2.1,5.4,3.2,9.8,3.5,则样本均值 = 4.8 ,样本方差 =22.716; 2.在总体~(5,16)X N 中随机地抽取一个容量为 36 的样本,则均值X 落在4与6之间的概率 = 0.9332 ; 3. 设某厂生产的灯泡的使用寿命2~(1000,)X N σ (单位:小时),抽取一容量为9的样本,得到940,100x s ==,则(940)P X <= ; 4.设127,,...,X X X 为总体2 ~(0,0.5)X N 的一个样本,则7 21 (4)i i P X =>=∑ 0.025 ; 5.设126,,...,X X X 为总体~(0,1)X N 的一个样本,且cY 服从2χ分布,这里, 22123456()()Y X X X X X X =+++++,则c =1/3 ; 6.设随机变量,X Y 相互独立,均服从2(0,3)N 分布且129,,...,X X X 与129,,...,Y Y Y 分 别是来自总体,X Y 的简单随机样本,则统计量U =服从参数为 9 的 t 分布。 7.设1234,,,X X X X 是取自2~(0,2)X N 正态总体的简单随机样本且 22!234(2)(34),Y a X X b X X =-+-,则a = 0.05 ,b = 0.01 时,统计量Y 服从 2χ分布,其自由度为 2 ; 8.设总体 X 服从正态分布2~(0,2)X N ,而1215,,...,X X X 是来自总体的简单随机 样本,则随机变量 22 110 22 1115...2(...) X X Y X X ++=++ 服从 F 分布,参数为 10,5 ; 9.设随机变量21 ~()(1),,X t n n Y X >=则~Y F(n,1) ; 10.设随机变量~(,)X F n n 且()0.3P X A >=,A 为常数,则1 ()P X A > = 0.7 二、选择题 1.设12,,...,n X X X 是来自总体2(,)N μσ的简单随机样本,X 是样本均值, 记22222 21 23111 111(),(),(),11n n n i i i i i i S X X S X X S X n n n μ====-=-=---∑∑∑ 2 241 1(),n i i S X n μ==-∑则服从自由度1n -的t 分布的随机变量是T =( A ); A . B C D 2.设()n F x 是经验分布函数,基于来自总体X 的样本,而()F x 是X 总体的 分布函数,则下列命题错误的为,对于每个给定的,()n x F x ( B ) A .是分布函数 B .依概率收敛于()F x C .是一个统计量 D .其数学期望是()F x

@2-第6章 统计量及其抽样分布 练习题

第六章 统计量及其抽样分布 练习题 一、填空题(共10题,每题2分,共计20分) 1.简单随机抽样样本均值X 的方差取决于_________和_________,要使X 的标准差降低到原来的50%,则样本容量需要扩大到原来的_________倍。 2. 设1217,,,X X X L 是总体(,4)N μ的样本,2S 是样本方差,若2()0.01P S a >=, 则a =____________。 3.若(5)X t :,则2X 服从_______分布。 4.已知0.95(10,5) 4.74F =,则0.05(5,10)F 等于___________。 5.中心极限定理是说:如果总体存在有限的方差,那么,随着_________的增加,不论这个总体变量的分布如何,抽样平均数的分布趋近于_____________。 6. 总体分布已知时,样本均值的分布为_________抽样分布;总体分布未知,大样本情况下,样本均值的分布为_________抽样分布。 7. 简单随机样本的性质满足_________和_________。 8.若(2,4)X N :,查分布表,计算概率(X 3)P ≥=_________。若(X )0.9115P a ≤=,计算a =_________。 9. 若12~(0,2),~(0,2),X N X N 1X 与2X 独立,则2212X X +()/2服从______分布。 10. 若~(16,4)X N ,则5X 服从___________分布。 二、选择题(共10题,每题1分,共计10分) 1.中心极限定理可保证在大量观察下 ( ) A . 样本平均数趋近于总体平均数的趋势 B . 样本方差趋近于总体方差的趋势 C . 样本平均数分布趋近于正态分布的趋势 D. 样本比例趋近于总体比例的趋势

样本及抽样分布讲解学习

样本及抽样分布

第六章样本及抽样分布 【基本要求】1、理解总体、个体和样本的概念; 2、理解样本均值、样本方差和样本矩的概念并会计算; 3、理解统计量的概念,掌握几种常用统计量的分布及其结论; 4、理解分位数的概念,会计算几种重要分布的分位数。 【本章重点】样本均值、样本方差和样本矩的计算;抽样分布——2 分布,t分布, F分布;分位数的理解和计算。 【本章难点】对样本、统计量及分位数概念的理解;样本矩的计算。 【学时分配】4学时 【授课内容】 §6.0 前言 前面五章我们研究了概率论的基本内容,从中得知:概率论是研究随机现象统计规律性的一门数学分支。它是从一个数学模型出发(比如随机变量的分布)去研究它的性质和统计规律性;而我们下面将要研究的数理统计,也是研究大量随机现象的统计规律性,并且是应用十分广泛的一门数学分支。所不同的是数理统计是以概率论为理论基础,利用观测随机现象所得到的数据来选择、构造数学模型(即研究随机现象)。其研究方法是归纳法(部分到整体)。对研究对象的客观规律性做出种种合理性的估计、判断和预测,为决策者和决策行动提供理论依据和建议。数理统计的内容很丰富,这里我们主要介绍数理统计的基本概念,重点研究参数估计和假设检验。

§6.1 随机样本 一、总体与样本 1.总体、个体 在数理统计学中,我们把所研究的全部元素组成的集合称为总体;而把组成总体的每个元素称为个体。 例如:在研究某批灯泡的平均寿命时,该批灯泡的全体就组成了总体,而其中每个灯泡就是个体;在研究我校男大学生的身高和体重的分布情况时,该校的全体男大学生组成了总体,而每个男大学生就是个体。 但对于具体问题,由于我们关心的不是每个个体的种种具体特性,而仅仅是它的某一项或几项数量指标X(可以是向量)和该数量指标X在总体的分布情况。在上述例子中X是表示灯泡的寿命或男大学生的身高和体重。在试验中,抽取了若干个个体就观察到了X的这样或那样的数值,因而这个数量指标X是一个随机变量(或向量),而X的分布就完全描写了总体中我们所关心的那个数量指标的分布状况。由于我们关心的正是这个数量指标,因此我们以后就把总体和数量指标X可能取值的全体组成的集合等同起来。 定义1:把研究对象的全体(通常为数量指标X可能取值的全体组成的集合)称为总体;总体中的每个元素称为个体。 我们对总体的研究,就是对相应的随机变量X的分布的研究,所谓总体的分布也就是数量指标X的分布,因此,X的分布函数和数字特征分别称为总体的分布函数和数字特征。今后将不区分总体与相应的随机变量,笼统称为总体X。根据总体中所包括个体的总数,将总体分为:有限总体和无限总体。 例1:考察一块试验田中小麦穗的重量:

相关文档
最新文档