高分子形状记忆合金的发展及趋势

高分子形状记忆合金的发展及趋势
高分子形状记忆合金的发展及趋势

高分子形状记忆合金的发展及趋势

摘要:本论文主要讨论形状记忆合金相关内容,扼要地叙述了形状记忆合金的发现以及发展历史和分类, 介绍了形状记忆合金在工程中应用的现状以及发展前景。

关键词:形状记忆合金、形状记忆合金效应、应用

1.形状记忆分子材料的特性

形状记忆合金是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应。研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。到目前为止,应用得最多的是Ni2Ti 合金和铜基合金

形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。

1.1单程记忆效应:

形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。

1.2双程记忆效应:

某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。

1.3全程记忆效应:

加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。

2.形状记忆效应的应用

迄今为止,形状记忆合金在空间技术、医疗器械、机械器具、电子设备、能源开发、汽车工业及日常生活各方面都得到了广泛的应用,总的来说,按使用特性的不同,可归纳为下面几类:

2.1.自由回复

SMA 在马氏体相时产生塑性形变,温度升高自由回复到记忆的形状。自由回复的典型例子是人造卫星的天线和血栓过滤器。美国航空航天局(NASA) 将Ti2Ni

合金板或棒卷成竹笋状或旋涡状发条,收缩后安装在卫星内。发射卫星并进入轨道后,利用加热器或太阳能加热天线,使之向宇宙空间撑开。血栓过滤器把Ni2Ti 合金记忆成网状,低温下拉直,通过导管插入静脉腔,经体温加热后,形状变为网状,可以阻止凝血块流动。有人设想,利用形状记忆合金制作宇宙空间站的可展机构,即以小体积发射,于空间展开成所需的形状,这是很有吸引力的机构。

2.2.强制回复

强制回复最成功的例子是SMA 管接头。事先把内径加工成比被接管外径小

4 % ,当进行连接操作时,首先把管接头浸泡在液态空气中,在低温保温状态下扩径后,把被接管从两端插入,升高温度,内径回复到扩径前的状态,把被接管牢牢箍紧。利用SMA 制作的脑动脉瘤夹可夹住动脉瘤根部,防止血液流入,使动脉瘤缺血坏死。本田等人用厚度为015mm 的Ti2Ni 板制作的Ag2TiNi 复合夹满足小而轻、装卸简便等要求,效果良好。此外,类似的用途还有电源连接器、自紧固螺钉、自紧固夹板、固定销、密封垫圈、接骨板和脊柱侧弯娇形哈伦顿棒等。

2.3.动力装置

有些应用领域,要求形状记忆元件在多次循环往复运动中对外产生力的作用。温度继电器和温度保持器、自动干燥箱、电子灶、热机、卫星仪器舱窗门自动启闭、自动火警警报器、热敏阀门、液氨泄漏探测器、煤气安全阀、通风管道紧急启动闸门、自动收进烟头的烟灰盒及人工心脏等都属于这种应用类型。1997 年美国航空航天局(NASA) 的科学家利用长3cm ,直径0115mm(01006″) 的Ni-Ti SMA 驱动火星探测器上的太阳能电池挡板,加热SMA ,使其收缩,通过传动装置,打开太阳能电池上的玻璃挡板,电池充电。充电结束后,偏置弹簧重新使挡板复位。挡板的有效开合可起到防尘的目的。

2.4.精密控制

因为SMA 的相变发生在一定温度范围而不是某一固定温度点,我们往往只利用一部分形状回复,使机械装置定位于指定的位姿。微型机器人、昆虫型生物机械、机器人手抓及微型调节器、笔尖记录器及医用内窥镜都属于这一类。形状记忆合金用作机器智能人的执行器,集传感、控制、换能、制动于一身,具有仿真性好、控制灵活、动作柔顺、无振动噪声、易于结构微型集成化等优点。日本的日立公司已研制出具有13个自由度的能拣取鸡蛋的机器人。俄罗斯St1Petersburg 机器人及控制技术学院在Cu-Al-Ni 基合金材料的研究基础上,研制出了拟人机械手(115m 长) ,其手爪能移动200kg的物体。该研究小组还给出了手爪的精确控制系统。医学上用到的具有多自由度能弯曲转入肠道内诊断疾病,进行手术的机器人也属于这一类型。现有的大肠镜的直径为10~20mm ,这种内窥镜的直径为13mm ,因此它特别适用于作大肠镜。诊断过程中,医生一边看纤维镜中的图象,

一边移动操纵杆给出前端的第1 ,2 节弯曲角指令和内窥镜前进、后退指令,通过计算机进行柔性控制,使内窥镜能够平滑地沿着通路前进或后退,大大减小了患者的痛苦,也增加了诊断的准确性。随着目前超大规模集成电路技术的飞速发展,可进一步制成微米级甚至更小的超微仿生物。

2.5.超弹性应用

SMA 的伪弹性在医学上和日常生活中得到了广泛的应用,市场上的很多产品都应用了SMA 的伪弹性(超弹性) 性质。主要有牙齿娇形丝、人工关节用自固定杆、接骨用超弹性Ni2Ti 丝、玩具及塑料眼镜镜框等。Ni2Ti 丝用于娇形上,即使应变量高达10 %也不会产生塑性变形,而且应力诱发马氏体相变的过程中,应变增大较多时矫正力却增加很少。故能保持适宜的矫正力,既可保证疗效,也可减轻患者的不适感。

3.前景展望

在形状记忆合金的实用化进程中,急需积累并分析关于材料特性、功能可靠性、生物相容性和细胞毒性等方面的基础数据资料。可以预言,随着对SMA 研究的进一步深化,传统的机电一体化系统完全有可能发展成为材料电子一体化系统。

4.结语

记忆合金目前已发展到几十种,在航空、军事、工业、农业、医疗等领域有着用途,而且发展趋势十分可观。这些研究表明我们已经做出了一个迈步,但我们需要将这一步迈的更大。加以时日,它将大展宏图、造福于人类。

参考文献

1.崔海宁. 形状记忆合金在建筑领域中的应用[J]. 山西建筑, 2006

2.高志刚. 形状记忆合金的应用[J]. 现代制造技术与装备, 2007

3.吴根华. 形状记忆合金及其应用[J]. 安庆师范学院学报(自然科学版), 2004

4.周海锋. 形状记忆合金及其应用[J]. 机电设备, 2002

5.王永前,赵连城. 高温形状记忆合金研究进展[J]. 功能材料, 1995

6.杨凯,辜承林. 形状记忆合金的研究与应用[J]. 金属功能材料, 2000

形状记忆功能高分子材料的研究现状和进展

Value Engineering 0引言 随着社会的进步和科学技术的发展,一般的材料难以满足日益复杂的环境,因此需要具有自修复功能的智能材料——— 形状记忆材料。20世纪50年代以来,各国相继研究出在外加刺激的条件(如光、电、热、化学、机械等)经过形变可以回复到原始形状的具有形状记忆功能的材料,它 可分为三大类,形状记忆合金、 形状记忆陶瓷和形状记忆聚合物材料。高分子产业的迅速发展, 推动了功能高分子材料得到了蓬勃发展。形状记忆聚合物材料的独特性,广泛应用于很多领域并发展潜力巨大,人们开始广泛关注[1]。 1功能高分子材料研究概况 功能高分子材料是20世纪60年代的新兴学科,是渗 透到电子、 生物、能源等领域后开发涌现出的新材料。由于它的内容丰富、品种繁多、发展迅速,成为新技术革命不可或缺的关键材料,对社会的生活将产生巨大影响。 1.1功能高分子材料的介绍功能高分子材料是指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、 选择分离性、能量转换性、磁性等功能的高分子及其复合材料,通常也可简称为功能高分子,也可称为精细高分子或特种高分子[2]。 1.2功能高分子材料分类可分为两类:第一类:以原高分子材料为基础上进行改性或其他方法,使其成为具有人们所需要的且各项性能更好的高分子材料;第二类:是具有新型特殊功能的高分子材料[3]。 1.3形状记忆功能高分子材料自19世纪80年代发 现热致形状记忆高分子材料[4],人们开始广泛关注作为功能材料的一个分支———形状记忆功能高分子材料。和其它功能材料相比的特点:首先,原料充足,形变量大,质量轻,易包装和运输,价格便宜,仅是金属形状记忆合金的1%;第二,制作工艺方简便;形状记忆回复温度范围宽,而且容易加工,易制成结构复杂的异型品,能耗低;第三,耐候性,介电性能和保温效果良好。 形状记忆聚合物(SMP )代表一项技术上的重要的类别刺激响应的材料,在于形状变动的反应。更确切地说,传统意义上的SMP 是聚合物变形,随后能固定在一个临时的形状,这将保持稳定,除非它暴露在一个适当的外部刺激激活了聚合物恢复到它原来的(或永久的形状)。因此,相关的反应被称为聚合物内的形状记忆效应(SME )。虽然各种形式的外部刺激可以被用来作为恢复触发,最典型的一种是直接加热,通向温度增加[4]。 2部分形状记忆高分子材料的制备方法 2.1接枝聚乙烯共聚物在形状记忆聚乙烯中,交联(辐射或化学)是必须的,但是交联程度过高会导致聚合物的加工性能不好,因此最好是将交联放在产品制造的最后 一步: Feng Kui Li 等采用尼龙接枝HDPE 获得了形状记忆聚合物。他们采用马来酸酐和DC 处理熔融HDPE 在180℃反应5分钟,然后在230℃下和尼龙-6反应5分钟得到产物。SEM 照片显示尼龙微粒小于0.3μm ,在HDPE 中分散良好,两者界面模糊,显示两者形成化学粘合;而尼龙和HDPE 简单混合的SEM 照片中两者界面明显试验同 时表明,随着DCP 含量和尼龙含量的提高,共聚物中形成了更多的共聚物具有和射线交联聚乙烯(XPE )SMP 相似 的形状记忆效应,形变大于95%,恢复速度好于射线交联 ———————————————————————基金项目:渭南师范学院科研计划项目(12YKF018)。 作者简介:李建锋(1979-),男,陕西大荔人,讲师,理学硕士,研究 方向为分子生物学。 形状记忆功能高分子材料的研究现状和进展 Status and Progress of the Study on Shape Memory Polymer 李建锋①②LI Jian-feng ;李锋③LI Feng (①渭南师范学院科学技术处,渭南714099; ②陕西省多河流湿地生态环境重点实验室,渭南714099;③燕山大学材料科学与工程学院,秦皇岛066004) (①Science and Technology Department , Weinan Normal University ,Weinan 714099,China ;②Shaanxi Key Laboratory of Many River Wetland Ecological Environment ,Weinan 714099,China ; ③Yanshan University College of Materials Science and Engineering ,Qinhuangdao 066004,China ) 摘要:通过对形状记忆功能高分子材料制作和表征方法方面,以及国内外发展现状进行研究总结,得出形状记忆聚合物的发展 趋势。 Abstract:Function polymer materials are rapidly developing in recently years.But there are not any generalizations to the development of shape memory polymers.The defined,mechanism,characterization and the preparation of the most simulative shape memory polymer are briefly introduced in this paper.Then the developing prospects are also reviewed. 关键词:功能高分子材料;展望;形状记忆 Key words:functional polymer materials ;outlook ;shape memory polyer 中图分类号:TB324 文献标识码:A 文章编号:1006-4311(2012)31-0303-02 ·303·

浅谈记忆材料

浅谈形状记忆合金 引言:时代的发展与材料的发展是相辅相成的。随着科学技术的进步,材料研究变得尤为重要。现如今材料的研究越来越专业化,并且逐渐倾向于功能化、多样性。例如形状记忆材料就是一种典型的新型功能材料。形状记忆材料是指具有形状记忆效应的金属、陶瓷和高分子等材料,在高温下材料形成一种形状,在冷却到低温时会塑性变形成为另外一种形状,如果对材料进行加热,通过马氏体的逆相变,又可以恢复到高温时的形状,这就是形状记忆效应。 一、形状记忆合金及形状记忆效应 形状记忆材料是集感知和驱动于一体的特殊功能材料,其中形状记忆合金是形状记 忆材料中较为重要的材料之一。形状记忆合金(Shape Memory Alloy简称SMA)是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界 温度以上又可恢复成初始形状的一类合金。 1、形状记忆合金分类 到目前为止,被开发出来的形状记忆合金主要是Ti-Ni基、Cu基与Fe基三种。在这三大类中,根据不同的要求和工作环境,分别在基体中加入和调整一些合金元素的量,使得每一个大类中都有一系列合金被开发出来,应用在各行各业,以满足各种不同的特殊需求。 (a)Ti-Ni形状记忆合金开发的最早,形状记忆效应最稳定,相对比较成熟,已在航天工业、汽车工业、电子工业、医学及人类生活领域获得应用。但由于其原材料Ni?、Ti价格昂贵,且加工成本高等因素,其应用受到限制。 (b)Cu基形状记忆合金因价格便宜、原材料来源广泛、易于加工和制造等原因而得到迅速发展。铜基形状记忆合金是这三类合金中种类最多的一类,但有实际应用价值的目前只有Cu-Zn-Al和Cu-Al-Ni两种。 (c)Fe基形状记忆合金发展较晚,成本较Ti-Ni系和铜系合金低得多,易于加工,在应用方面具有明显的竞争优势,被认为是一种具有广泛应用前景的功能材料,受到广泛的关注。 2、呈现形状记忆效应的合金的必备条件 (a)马氏体相变只限于驱动力极小的热弹性型,即马氏体与母相之间的界面的移动是完全可逆的 (b)合金中的异类原子在母相与马氏体中必须为有序结构

形状记忆合金的制备方法作用及发展前景

形状记忆合金的制备方法,作用及发展前景摘要:本论文主要论述形状记忆合金的相关内容,扼要地叙述了形状记忆合金的制备方法,作用,介绍了形状记忆合金在工程中应用的现状以及发展前景。 关键词:形状记忆合金制备方法应用发展前景 引言 形状记忆合金(Shape Memory Alloys,SMA)是一种在加热升温后能完全消除其在较低温度下发生的形变,恢复其形变前原始形状的合金材料。除上述形状记忆效应外,这种合金的。另一个独特性质是在高温(奥氏体状态)下发生的“伪弹性”(又称“超弹性”,英文pseudoelasticity)行为,表现为这种合金能承载比一般金属大几倍甚至几十倍的可恢复应变。形状记忆合金的这些独特性质源于其内部发生的一种独特的固态相变——热弹性马氏体相变。研究表明,很多合金材料都具有SME,但只有在形状变化过程中产生较大回复应变和较大形状恢复力的才具有利用价值。到目前为止,应用最多的是Ni2Ti合金和铜基合金(CuZnAl 和CuAlNi)。 形状记忆合金作为一种特殊的新型功能材料,集感知与驱动于一体的智能材料,因其功能独特,可制作小巧玲珑,高度自动化,性能可靠的元器件而备受瞩目,并获得广泛应用。 正文 一.形状记忆合金的制备方法

形状记忆合金及其制备方法,该合金含有主要合金元素Ti、Zr、Nb及添加元素包括Mo、V、Cr、Sn,并加入元素Al;各组分重量百分比分别为:Ti:46-60,Zr:15-25,Nb:15-25;添加元素选取Mo、V、Cr、Sn其中一种或两种,其重量百分比<2.0;Al:0.5-2.5。本发明选用的主要合金元素均为对人体无毒性反应且生体适应性良好的物质;经溶解合金化后,该合金具有出色的形状记忆性能及超弹性特点,并可以进行超过50%乃至99%的冷加工变形性。经过固溶、时效处理的合金可在更广的范围内具有较高的形状记忆回复功能、较高的冷加工塑性及对人体无毒性等优良性能。? 二.形状记忆合金的应用 迄今为止,形状记忆合金在空间技术、医疗器械、机械器具、电子设备、能源开发、汽车工业及日常生活各方面都得到了广泛的应用,总的来说,按使用特性的不同,可归纳为下面几类: (1)自由回复 SMA在马氏体相对产生塑性变形,温度升高自由回复到记忆的形状。自由回复的典型例子是人造卫星的天线和血栓过滤器。美国航空航天局将Ti2Ni合金板或棒卷成竹笋状或旋涡状发条,收缩后安装在卫星内。发射卫星并进入轨道后,利用加热器或者太阳能加热天线,使之向宇宙空间撑开。血栓过滤器把Ni2Ti合金记忆成网状,低温下拉直,通过导管插入静腔,经体温加热后,形状变成网状,可以阻止凝血块流动。有人设想,利用形状记忆合金制作宇宙空间站的可展机构,即以小体积发射,于空间展开成所需的形状,这是很有吸引力的机构。

形状记忆高分子材料研究进展(综述)

形状记忆的高分子材料的研究进展 Research Progress of Shape Memory Polymer Material 1 综述 摘要:形状记忆高分子(SMP)是一类新型的功能高分子材料,是高分子材料研究、开发、应用的一个新的分支点,它同时兼具有塑料和橡胶的特性。形状记忆高分子材料是一种可以响应外界刺激,并调整自身状态参数,从而回复到预先设定状态的一种智能高分子材料。本文简单介绍了形状记忆高分子材料的性能、种类和应用。 关键词:形状记忆;高分子材料;聚合物;研究进展 1形状记忆高分子材料简介. 形状记忆的高分子材料是一种能够感知外部环境如光、热、、电、磁等,并且能够根据外部环境的变化而自发的对自身的参数进行调整还原到预先设定状态的一种智能高分子材料。形状记忆高分子( Shape Memory Polymer,简称 SMP) 材料具有可恢复形变量大、质轻价廉、易成型加工、电绝缘效果好等优点,从20世纪80年代以来赢得广泛关注和研究,并得到了快速发展,因其独特的性能和特点,使其这些年来在材料领域中扮演着重要的角色。近40年来,科研工作者们相继开发出了多种形状记忆高分子材料,如聚乙烯、聚异戊二烯、聚酯、共聚酯、聚酰胺、共聚酰胺、聚氨酯等,它们被广泛应用于航空航天、生物医用、智能纺织、信息载体、自我修复等多个材料领域。显示出了形状记忆高分子材料广泛的应用前景的地位。 2.形状记忆高分子材料的分类及应用 根据响应方式的不同可以将形状记忆高分子分材料大致分为热致型、光致型、化学感应型、电致型等类型。其中,热致感应型和光致感应型应用最为广泛。 2.1热致感应型 热致SMP是一种通过施加电场或红外光照射等刺激促使其在室温以上变形,并能在室温固定形变且可长期存放,当再次升温至某一固定温度时,材料能够恢复到初始形状。热致型SMP被广泛用于医疗卫生、体育运动、建筑、包装、汽车及科学实验等领域,如医用器械、泡沫塑料、坐垫、光信息记录介质及报警器等。 2.2光致感应型 光致SMP可以将光能转化为机械能,根据记忆机理的不同,可分为光化学反应型和光热效应型两种。光化学反应型是经光照后发生化学反应,它是将具有光

形状记忆合金的应用现状与发展趋势

形状记忆合金的应用现状与发展趋势 摘要:综述了形状记忆合金的发展概况,简要介绍了形状记忆合金在不同领域的应用现状,分析了当前形状记忆合金研究中存在的问题,指出了今后的发展前景与研究方向。 关键词:形状记忆合金、形状记忆合金效应、应用 一、引言 形状记忆合金(Shape Memory Alloy ,SMA) 是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应(Shape Memory Effect ,SME) 。 形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 二、形状记忆合金的发展史与现状 在金属中发现现状记忆效应最早追溯到20世纪30年代。1938年。当时美国的 Greningerh和Mooradian在Cu-Zn合金小发现了马氏体的热弹件转变。随后,前苏联的Kurdiumov对这种行为进行了研究。1951年美国的Chang相Read 在Au47·5Cd(%原子)合金中用光学显微镜观察到马氏体界面随温度的变化发生迁动。这是最早观察到金属形状记忆效应的报道。数年后,Burkhart 在In-Ti 合金中观察到同样的现象。然而在当时,这些现象的发现只被看作是个别材料的特殊现象而未能引起人们足够的兴趣和重视。直至1963年,美国海军武器实验室的Buehler等人发现了Ni-Ti合金中的的形状记忆效应,才开创了“形状记忆”的实用阶断[1]。

形状记忆高分子材料性能评价的分子模拟研究

形状记忆高分子材料性能评价的分子模拟研究 张慧军,岳 红,刘 倩,陈 冲 (西北工业大学理学院应用化学系,西安710129) 摘要 分子模拟在新材料研究领域中有着广泛的应用。介绍了形状记忆高分子材料的分类,阐述了用分子模拟形状记忆材料性能的理论,分析了统计弹性力学原理,提出了构建模型和模拟的方法,概述了近年来分子模拟的研究现状及存在的问题,并展望了形状记忆高分子材料的发展。 关键词 形状记忆高分子 性能 评价 分子模拟中图分类号:T B34 文献标识码:A Performance Evaluation of Shape Memory Polymer by Molecular Simulation ZHAN G H uijun,YU E Hong,LIU Qian,CHEN Chong (Department of A pplied Chemistr y,No rthw est ern Polytechnical U niv ersity ,Xi an 710129) Abstract M olecular simulation is widely used in the study field o f new materials.T he categ or ies o f shape memor y polymer ar e intro duced.Based o n r ubber elasticity theor y,the const ruction and simulatio n methods are also elabor ated.T he cur rent status in molecular simulatio n is a lso pr esented and pr oblems of shape memor y po ly mer a re proposed.It makes pr ospects fo r the dev elo pment of shape memor y polymer materia ls. Key words shape memo ry po ly mer,perfo rmance,evaluat ion,mo lecular simulatio n 张慧军:1984年生,硕士生,研究方向为形状记忆高分子材料分子模拟 E mail:zhang huijun10624@163.co m 0 引言 近年来,随着计算机技术的飞速发展,利用计算机进行分子模拟已成为现代科学研究中一种很重要的方法,从分子水平上进行产品开发过程设计已成为一种潮流[1-6]。分子模拟法可以模拟现代物理实验方法无法考察的物理现象和物理过程,从而发展新的理论;研究化学反应的路径、过渡态、反应机理等十分关键的问题,代替以往的化学合成、结构分 析、物理检测等实验[7] 。最近分子模拟技术在形状记忆高分子材料中也得到了广泛应用。 形状记忆高分子材料(SM P)是指具有初始形状的聚合物制品经形变固定后,通过加热等外部刺激手段的处理又可使其恢复初始形状的聚合物。形状记忆聚合物是一种新型的功能材料,自1981年发现热致形状记忆高分子交联聚乙烯以来,形状记忆功能高分子材料得到了很大发展,其作为功能材料的一个分支受到广泛关注。形状记忆高分子材料品种繁多,不同的划分标准可得到不同的分类。根据形状回复原理,形状记忆高分子材料可分为4类:(1)热致形状记忆高分子材料[8],是在室温以上变形,即能在室温固定形变且可长期存放,当再升温至某一特定响应温度时,制件能很快 回复初始形状的聚合物。(2)电致形状记忆高分子材料[9] ,是热致型形状记忆功能高分子材料与具有导电性能物质如导电炭黑、金属粉末及导电高分子等的复合材料。该复合材料通过电流产生的热量使体系温度升高,致使形状回复。所以既具有导电性能,又具有良好的形状记忆功能。(3)光致 形状记忆高分子材料[10],是将某些特定的光致变色基团(PC G)引入高分子主链和侧链中,当受到紫外光照射时,PCG 发生异构化反应使分子链的状态发生显著变化的材料。(4)化学感应型形状记忆高分子材料[11-14],是利用材料周围介质性质的变化来激发材料的变形和形状回复。常见的化学反应方式有平衡离子置换、pH 值变化、螯合反应、氧化还原反应和相转变反应等,这类物质包括部分皂化的聚丙烯酰胺、聚乙烯醇和聚丙烯酸混合物薄膜等。 1 模拟理论 借用橡胶的弹性理论,可以对聚合物材料的形状记忆特性及影响材料形状记忆特性的因素进行分析。因为聚合物材料的弹性模量可以理解为材料的弹性系数,所以形状记忆材料的热收缩性可以用材料的弹性模量来特性化。 记忆特性 模量E =3Vk 2gT 式中:T 为绝对温度(T m 以上);g 为纠缠因子;k 为玻兹曼常数; 为线性扭曲因子=定向时的平均链长/非定向时的平均链长;V 为单位体积的链数目;V = N /[M c (1-2M c /M n )]( 为密度;N 为阿佛加德罗常数;M n 为链的数均分子量;M c 为交联链之间的分子量)。由此可以看出,交联度越大,缠结点越多,M c 变小,V 越大,则E 越大,形状记忆性越好。从上面的公式还可以看到分子量M n 以及密度 的影响, 、M n 越大,E 越大,形状记忆性能越好。 也可理解为定向度形成交联后,定向度增加, 可大于1,E 也就越大,形变回复力也越大[15]。

蔡璐-形状记忆高分子材料

形状记忆高分子材料 蔡璐 (中国科学技术大学高分子材料与工程系) 形状记忆这个概念并非是近期出现,上个世纪六十年代,它已引起人们的极大兴趣。所谓形状记忆,是指具有初始形状的物体经形变并固定之后,经过加热等外部条件刺激手段的处理又可使其恢复初始形状的现象。外部条件除热能外,还可是光能、电能等物理因素及酸碱度、相转变反应和螯合反应等化学因素。 形状记忆发展之初,是合金材料为主导。直至上个世纪80年代,形状记忆高分子材料才有所发展。与形状记忆合金相比,形状记忆高分子材料不仅具有形变量大,赋性容易、形状恢复温度便于调整、保温及绝缘性能好等优点,而且,不锈蚀、易着色,可印刷,质轻价廉,因此应用十分广泛。最早开发出的形状记忆高分子材料是polynorbornene [聚冰片烯]。目前,日本已有四种形状记忆高分子材料拥有工业化的生产技术。 高分子的形状记忆过程可以简单表示为: l-----[变形t>tg或t>tms]---→l+l′--[固定t>tg或t>tms]----→l+l′--[回复t>tg或t>tms]---→l 式中:l———样品原长; l′———形变量; tg———聚合物玻璃态温度; tms———聚合物软链段熔化温度。 通常认为,这类形状记忆聚合物可看作是两相结构。 固定相(或硬链段):在形状记忆过程中保持固定形状,包括物理交联结构或化学交联结构。可逆相(或软链段):随温度变化,能可逆地固化和软化;一般为物理交联结构,通常在形状记忆过程中表现为软链段结晶态、玻璃态与熔化态的可逆转换。 高分子材料的形状记忆机理是当温度上升到软链段的熔点或高弹态时,软链段的微观布朗运动加剧,易产生形变,但硬链段仍处于玻璃态或结晶态,阻止分子链滑移,抵抗形变,施以外力使其定形;当温度降低到软链段玻璃态时,其形变被冻结固定下来,提高温度,可以回复至其原始形状。 形状记忆高分子材料可以划分为热塑性和热固性两种。划分依据是构成软硬段的结构的不同,而两者的形变机理及各项性能并非有本质差别。热塑性高分子材料是由两种不同玻璃化温度的高分子材料聚合而成的嵌段共聚物,由于在1个分子中的两种(或几种)组分不能完全互容,形成的是微相相分离组织。热固性高分子材料是由高分子的均聚物或共聚物组成,通过化学交联使其具有网形结构. 对于通用的热塑性弹性体而言,由柔性软段组成的相互密合的基质,使其形成的

形状记忆合金论文

形状记忆合金 摘要:扼要地叙述了形状记忆合金及其机理, 介绍了形状记忆合金在工程中应用的现状以及发展前景。 关键词:形状记忆合金、形状记忆合金效应、应用 引言:有一种特殊的金属材料,经适当的热处理后即具有回复形状的能力,这种材料被称为形状记忆合金( Shape Memory Alloy ,简称为SMA) ,这种能力亦称为形状记忆效应(Shape Memory Effect , 简称为SME) 。通常,SMA 低温时因外加应力产生塑性变形,温度升高后,克服塑性变形回复到所记忆的形状。研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。到目前为止,应用得最多的是Ni2Ti 合金和铜基合金(CuZnAl 和CuAlNi) 。 形状记忆合金(Shape Memory Alloys, SMA)是一种在加热升温后能完全消除其在较低的温度下发生的变形,恢复其变形前原始形状的合金材料。除上述形状记忆效应外,这种合金的另一个独特性质是在高温(奥氏体状态)下发生的“伪弹性”(又称“超弹性”,英文 pseudoelasticity)行为,表现为这种合金能承载比一般金属大几倍甚至几十倍的可恢复应变。形状记忆合金的这些独特性质源于其内部发生的一种独特的固态相变——热弹性马氏体相变。 一、形状记忆合金的发展史 最早关于形状记忆效应的报道是由Chang及Read等人在1952年作出的。他们观察到Au-Cd合金中相变的可逆性。后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。直到1962年,Buehler及其合作者在等原子比的TiNi合金中观察到具有宏观形状变化的记忆效应,才引起了材料科学界与工业界的重视。到70年代初,CuZn、CuZnAl、CuAlNi等合金中也发现了与马氏体相变有关的形状记忆效应。几十年来,有关形状记忆合金的研究已逐渐成为国际相变会议和材料会议的重要议题,并为此召开了多次专题讨论会,

关于形状记忆合金的若干论述

关于形状记忆合金的若干论述 摘要:19世纪70年代,世界材料科学中出现了一种具有“记忆”形状功能的合金。这种记忆合金具有很广阔的应用前景,如今记忆合金已然在交通、医疗、自动化控制等方面有了重要的应用。本文介绍了它的相关概念、微观机理、分类及其在材料学中的地位。 关键字:形状记忆合金;形状记忆效应;功能材料;机理;应用 引言:形状记忆合金作为一种新型功能性材料为人们所认识,并成为一个独立的学科分支,可以认为是始于1963年。当时美国的海军武器实验室的 W.J.Buchler博土研究小组,在一次偶然的情况下发现,TiNi合金工件因为温度不同,敲击时发出的声音明显不同,这说明该合金的声阻尼性能与温度相关。通过进一步研究,将这种材料制成的细丝的一端弯曲,并靠近点烟火柴火焰,发现弯曲的细丝伸直了,近等原子比TiNi合金具有良好的形状记忆效应,并且报道了通过x射线衍射等实验的研究结果.以后TiNi合金作为商品进入市场。 记忆合金是一种颇为特别的金属条,它极易被弯曲,我们把它放进盛着热水的玻璃缸内,金属条向前冲去;将它放入冷水里,金属条则恢复了原状。在盛着凉水的玻璃缸里,拉长一个弹簧,把弹簧放入热水中时,弹簧又自动的收拢了。凉水中弹簧恢复了它的原状,而在热水中,则会收缩,弹簧可以无限次数的被拉伸和收缩,收缩再拉开。 这些都由一种有记忆力的智能金属做成的,它的微观结构有两种相对稳定的状态,在高温下这种合金可以被变成任何你想要的形状,在较低的温度下合金可以被拉伸,但若对它重新加热,它会记起它原来的形状,而变回去。这种材料就叫做记忆金属。它主要是镍钛合金材料。 一、相关概念:形状记忆效应 一般金属材料收到外力作用后,首先发生弹性变形,达到屈服点,金属就产生塑性变形,应力消除后就产生了永久变形。有些金属在高温下定形后冷却到低温并施加变形,从而形成残余形变。当材料加热时,材料的残余形变消失,并回复到高温下所固有的形状。再进行加热或冷却时,形状保持不变,这就是所谓的形状记忆效应,它就像合金记住了高温状态的形状一样。具有形状记忆效应的金属通常是两种以上金属的合金,因此称为形状记忆合金 [1] 形状记忆效应是在马氏体相变中发现的。通 常把马氏体相变中的高温相叫做母相,或奥氏体 相(P),是一种体心立方晶体结构的CsCl相(又 称B2)。低温相叫做马氏体相(M),是一种低对 称性的单斜晶体结构。从母相到马氏体相的相变 叫做马氏体正相变,或马氏体相变。从马氏体相 到母相的相变叫做马氏体逆相变 [2][3]。 这类相变具有热滞效应。四个相变特征温度分别 为马氏体转变开始温度Ms、终了温度Mf、母相转 变(即逆转变)开始温度As和终了温度Af。热滞 回线间的热滞大小一般为20K~40K[3]。 二、微观机理

形状记忆高分子材料朱梦成 1308052064

形状记忆高分子材料的研究及应用(南通大学化学化工学院高分子材料与工程132 朱梦成1308052064) [摘要]简要介绍了形状记忆高分子材料的形状记忆原理、形状记忆高分子材料类型和用途。其类型大致分为电致感应型、光致感应型、化学感应型和热致感应型,重点介绍了热致感应型高分子材料的主要品种、研究现状和用途。概括了形状记忆高分子材料的研究方向。 [关键词]形状记忆;高分子材料;记忆原理功能性; 形状记忆高分子材料(Shape Memory Polymer,简称SMP)可通过热、化学、机械、光、磁或电等外加刺激,触发材料做出响应,从而改变材料的技术参数,即形状、位置、应变、硬度、频率、摩擦和动态或静态特征等。由于形状记忆材料具有优异的性能,诸如形状记忆效应、高回复形变、良好的抗震性和适应性,以及易以线、颗粒或纤维的形式与其他材料结合形成复合材料等,使其发展越来越受到重视。形状记忆高分子材料或形状记忆聚合物作为一种功能性高分子材料,是高分子材料研究、开发、应用的一个新分支,并且由于形状记忆高分子材料与纺织材料具有相容性,在纺织、服装以及医疗护理产品中具有潜在应用优势。迄今为止,法国、日本、美国等国家已相继开发出聚降冰片烯、苯乙烯一丁二烯共聚物、聚酰胺等多种形状记忆高分子材料【l,2】。近年来我国的一些科研及生 产单位也开展了相关的研究工作【3,4】。笔者将形状记忆高分子材料的形状记 忆原理、各类型形状记忆高分子材料的用途及研究方向介绍如下。1形状记忆原理形状记忆性是指某种材料在成型加工过程中形成某种固有形状的物品,在某些条件下发生变形并被固定下来后,当需要时只要对它施加一定手段(如加热、光照、通电、化学处理等),使其迅速恢复到初始形状。也就是说,具有形状记忆 性的物质就像有生命的东西,当其在成型加工中被塑造成具有某种固有的初始形状的物品后,就对自己所获得的这种初始形状始终保持有终生记忆的特殊功能,即使在某些情况下被迫改变了本来面目,但只要具备了适当的条件,就会迅速回复到原有的初始形状。这种可逆性的变化可循环往复许多次,甚至几万次。高分子材料的形状记忆性,是通过它所具有的多重结构的相态变化来实现,如结晶的形成与熔化、玻璃态与橡胶态的转化等。迄今开发的形状记忆高分子材料都具有两相结构,即能够固定和保持其成型物品固有初始形状的固定相以及在一定条件

形状记忆合金未来展望

形状记忆合金未来展望 一、引言 形状记忆合金是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应。 形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 二、形状记忆合金的发展史与现状 在金属中发现现状记忆效应最早追溯到20世纪30年代。1938年。当时美国的 Greningerh和Mooradian在Cu-Zn合金小发现了马氏体的热弹件转变。随后,前苏联的Kurdiumov对这种行为进行了研究。1951年美国的Chang相Read在Au47·5Cd合金中用光学显微镜观察到马氏体界面随温度的变化发生迁动。这是最早观察到金属形状记忆效应的报道。数年后,Burkhart 在In-Ti 合金中观察到同样的现象。然而在当时,这些现象的发现只被看作是个别材料的特殊现象而未能引起人们足够的兴趣和重视。直至1963年,美国海军武器实验室的Buehler等人发现了Ni-Ti合金中的的形状记忆效应,才开创了“形状记忆”的实用阶断。 1969年,Rsychem公司首次将Ni-Ti合金制成管接头应用于美国

F14 战斗机上;1970年,美国将Ti-Ni记忆合金丝制成宇宙飞船用天线。这些应用大大激励了国际上对形状记忆合金的研究与开发。20世纪7 年代,相继开发出了Ni-Ti 基、Cu-Al2-Ni 基和Cu-Zn-Al 基形状记忆合金;80 年代开发出了Fe-Mn-Si 基、不锈钢基等铁基形状记忆合金,由于其成本低廉、加工简便而引起材料工作者的极大兴趣。从20世纪90 年代至今,高温形状记忆合金、宽滞后记忆合金以及记忆合金薄膜等已成为研究热点。 从SMA 的发现至今已有四十余年历史,美国、日本等国家对SMA 的研究和应用开发已较为成熟,同时也较早地实现了SMA 的产业化。我国从上世纪70 年代末才开始对SMA 的研究工作,起步较晚,但起点较高。在材料冶金学方面,特别是实用形状记忆合金的炼制水平已得到国际学术界的公认,在应用开发上也有一些独到的成果。但是,由于研究条件的限制,在SMA 的基础理论和材料科学方面的研究我国与国际先进水平尚有一定差距,尤其是在SMA 产业化和工程应用方面与国外差距较大。近十年来,我国在SMA的应用和开发方面更是取得了长足进步。现在,我国的SMA产业化进程方兴未艾,国内涌现了一大批以SMA原料及产品为主要生产、经营项目的高科技公司。可以预见,未来几年我国SMA的研究和应用开发将会有令人瞩目的发展,甚至可能出现较大突破。 SMA的形状记忆效应源于热弹性马氏体相变,这种马氏体一旦形成,就会随着温度下降而继续生长,如果温度上升它又会减少,以完全相反的过程消失。两项自由能之差作为相变驱动力。两项自由能相

磁性形状记忆合金

二、文献综述 1.磁性形状记忆合金 磁性形状记忆合金是既受温度控制的热弹性记忆效应,同时也具有受磁场控制的磁性形状记忆效应。磁性形状记忆合金具有很多优良的性能,如:高响应频率、大输出应力,磁致伸缩应变大等1,所以是一种理想的驱动和传感材料。 3. Heusler合金及其结构 Heusler合金是在研究MSMA中研究最多的一种合金,也是现在备受关注的一类功能材料,具有独特的磁性、半金属性、磁性形状记忆效应,有着广泛的应用前景。Heusler合金是1903年,德国人F.Heusler第一次报道两种金属间化合物的磁性,这两种化合物是Cu2MnAl 和Cu2MnSn。随后,英国人P. Webster 发表了一篇关于高有序度合金(Heusler 合金)的文章10 Heusler合金是一种金属间化合物,通常具有L21性结构,化学分子式为X2YZ,Z则是周期表右边B类IV族,及其两边的III 族和V族的元素。X、Y 可以是元素周期表中钪、钛、矾、铬、锰、铁、钴、镍、铜等3d 元素以及排列在它们所在列中下面的扩展的过渡族元素,共有约30个。 Heusler 合金可以看成由四个面心立方结构的亚晶格沿对角线四分之一相互交叉而成。X 和Y原子占据(A,C)以及B位,Z原子占据D位。其中ABCD的坐标分别为A (0, 0, 0), B ( 1/4,1/41/4 , ), C ( 1/2,1/2 1/2, ) 和D (3/4 3/4,3/4 , ) 图1.Heusler 合金晶体结构示意图 1.2 Heusler合金的结构和开发潜力 Heusler型合金是一种高度有序的金属间化合物,具有立方L21结构,空间

形状记忆高分子材料

形状记忆高分子材料 引言 形状记忆高分子材料(SMP)作为一类智能材料,因其可以在适当的刺激条件(如温度、光、电磁或溶剂等)下,响应环境变化,而相应发生形状转变的能力,为解决科学技术难题带来了一种新的方法。1950年,第一次报道了具有形状记忆效应的交联聚乙稀聚合物,并在文中描述了具体的表征方法。这类形状记忆高分子材料与其它形状记忆材料如形状记忆合金和陶瓷相比,具有变形量大、赋形容易、响应温度易于调整,质量轻、价格低、以及易加工成型等优点。而且易于设计成具有良好的生物相容性、可生物降解性的生物材料,比如手术缝合线、支架、心脏瓣膜、组织工程、药物释放、矫形术及光学治疗等。 1.形状记忆高分子材料的分类 SMPs根据刺激响应的不同可分为热致型,电磁致型,光致型,化学型以及水致型,其中热致型是研究最广也是研究最成熟的一种高分子材料。热致型SMPs 由固定相和可逆相两部分组成,其中固定相通常是由化学交联或物理交联点构成,其可以决定初始形变;可逆相通常由结晶结构构成,可随温度变化而进行可逆的软硬化转变。 1.1 热致型SMP 热致型SMP是指材料在初始条件下开始受热,当加热温度达到相转变温度时,同时给材料施加外应力,然后再外力不变的情况下,将温度迅速下降至室温,材料会保持暂时形状,即使在撤去外应力后材料依旧可保持这种状态,直到再次在无应力条件下加热,温度再次达到相转变温度时,材料才会自发地恢复到初始形状。以聚氨酯为例其可以通过改变嵌段共聚物的成分和比例,来改变聚氨酯材料物理化学性质、生物相容性、组织相容性,以及可生物降解性质。形状记忆聚氨酯由软段和硬段组成,其中硬段主要由二异氰酸酯和扩链剂组成,因此刚度比较大,抑制了材料变形过程中大分子链的塑性滑移;软段主要由聚酯多元醇或聚醚多元醇等线性分子组成,因此能够进行较大的形变.一般情况下,在温度增加到软段的转变温度之上时形状记忆聚氨酯材料处于高弹态,而且软段微观布朗运动的加剧,致使材料容易变形,此时因为硬段还处于玻璃态,所以阻止了分子链滑移的同时产生了一个内部的回弹力;当温度从冷却的温度增加到软段的转变温度以上时,硬段储存的应力释放,进而导致了材料能够回复到初始形变。但是并非所有的聚氨酯都具有形状记忆效应,只有当软硬段分子量控制在一个的合适范围内时,聚氨酯才具备形状记忆效应.

高分子形状记忆合金的发展及趋势

高分子形状记忆合金的发展及趋势 摘要:本论文主要讨论形状记忆合金相关内容,扼要地叙述了形状记忆合金的发现以及发展历史和分类, 介绍了形状记忆合金在工程中应用的现状以及发展前景。 关键词:形状记忆合金、形状记忆合金效应、应用 1.形状记忆分子材料的特性 形状记忆合金是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应。研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。到目前为止,应用得最多的是Ni2Ti 合金和铜基合金 形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 1.1单程记忆效应: 形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。 1.2双程记忆效应: 某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。 1.3全程记忆效应: 加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。 2.形状记忆效应的应用 迄今为止,形状记忆合金在空间技术、医疗器械、机械器具、电子设备、能源开发、汽车工业及日常生活各方面都得到了广泛的应用,总的来说,按使用特性的不同,可归纳为下面几类: 2.1.自由回复 SMA 在马氏体相时产生塑性形变,温度升高自由回复到记忆的形状。自由回复的典型例子是人造卫星的天线和血栓过滤器。美国航空航天局(NASA) 将Ti2Ni

形状记忆合金文献综述

形状记忆合金性能及其应用 摘要:形状记忆合金具有形状记忆效应、超弹性效应、高阻尼特性、电阻突变效应以 及弹性模量随温度变化等一般金属不具备的力学特性,使其在仪器仪表、自动控制、机器人、机械制造、汽车、航天航空、生物医学等工程领域都能发挥重要的作用,对其本 构性能和在工程应用中的性能的研究十分必要。形状记忆合金作为一种特殊的新型功能 材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 关键字:形状记忆合金形状记忆合金效应分类应用 1形状记忆合金简介 1.1 形状记忆材料是指具有形状记忆效应(shape memory effect,简称SME)的材料。形 状记忆效应是指将材料在一定条件下进行一定限度以内的变形后,再对材料施加适当的 外界条件,材料的变形随之消失而回复到变形前的形状的现象。通常称有SME的金属材料为形状记忆合金(shape memory alloys,简称SMA)。研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。到目前为止,应用得最多的是Ni2Ti 合金和铜基合金(CuZnAl 和CuAlNi) 。 1.2 至今为止发现的记忆合金体系: Au-Cd、Ag-Cd、Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Sn、Cu-Zn-Ga、In-Ti、Au-Cu-Zn、Fe-Pt、Ti-Ni、Ti-Ni-Pd、Ti-Nb、U-Nb和Fe-Mn-Si等。 1.3 形状记忆合金的历史只有70多年,开发迄今不过20余年,但由于其在各领域的特效应用,正广为世人所瞩目,被誉为"神奇的功能材料",其实用价值相当广泛,其应用范围涉及机械、电子、化工、宇航、能源和医疗等许多领域。 2形状记忆合金效应分类 2.1 单程记忆效应 形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过

浅谈形状记忆合金材料

浅谈形状记忆合金材料 引言:时代的发展与材料的发展是相辅相成的。随着科学技术的进步,材料研究变得尤为重要。现如今材料的研究越来越专业化,并且逐渐倾向于功能化、多样性。例如形状记忆材料就是一种典型的新型功能材料。形状记忆材料是指具有形状记忆效应的金属、陶瓷和高分子等材料,在高温下材料形成一种形状,在冷却到低温时会塑性变形成为另外一种形状,如果对材料进行加热,通过马氏体的逆相变,又可以恢复到高温时的形状,这就是形状记忆效应。 一、形状记忆合金及形状记忆效应 形状记忆材料是集感知和驱动于一体的特殊功能材料,其中形状记忆合金是形状记忆材料中较为重要的材料之一。形状记忆合金(Shape Memory Alloy简称SMA)是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。 1、形状记忆合金分类 到目前为止,被开发出来的形状记忆合金主要是Ti-Ni基、Cu 基与Fe基三种。在这三大类中,根据不同的要求和工作环境,分别在基体中加入和调整一些合金元素的量,使得每一个大类中都有一系列合金被开发出来,应用在各行各业,以满足各种不同的特殊需求。

(a)Ti-Ni形状记忆合金开发的最早,形状记忆效应最稳定, 相对比较成熟,已在航天工业、汽车工业、电子工业、医学及人类生活领域获得应用。但由于其原材料Ni 、Ti价格昂贵,且加工成本 高等因素,其应用受到限制。 (b)Cu基形状记忆合金因价格便宜、原材料来源广泛、易于加工和制造等原因而得到迅速发展。铜基形状记忆合金是这三类合金中种类最多的一类,但有实际应用价值的目前只有Cu-Zn-Al和 Cu-Al-Ni两种。 (c)Fe基形状记忆合金发展较晚,成本较Ti-Ni系和铜系合金低得多,易于加工,在应用方面具有明显的竞争优势,被认为是一种具有广泛应用前景的功能材料,受到广泛的关注。 2、呈现形状记忆效应的合金的必备条件 (a)马氏体相变只限于驱动力极小的热弹性型,即马氏体与母 相之间的界面的移动是完全可逆的 (b)合金中的异类原子在母相与马氏体中必须为有序结构 (c)马氏体相变在晶体学上是完全可逆的 3、状记忆效应的分类 (a)单程记忆效应 形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。 (b)双程记忆效应

材料发展的回顾与展望未来

材料发展的回顾与展望未来 摘要:回顾过去,人类的生活、生产和发展离不开材料。从人类早期发展到现在,材料的发展在人类发展史上占着不可或缺的地位。直到现代,人类的材料生产与制备技术已经相当成熟,各种新材料如雨后春笋般不断涌现。展望未来,材料依然将在人类社会的各个方面扮演重要角色。主要向半导体材料、结构材料、有机高分子材料等方向发展。 关键词:材料,发展 一、回顾材料发展历程 材料是人类生活和生产的物质基础,是人类认识自然和改造自然的工具。人类文明曾被划分为旧石器时代、新石器时代、青铜器时代、铁器时代等,由此可见材料的发展对人类社会的影响——没有材料就是没有发展。 人类诞生以前其实就有了材料,材料的历史与人类史一样久远,可能还要比之久远呢! 在人类文明的进程中,材料大致经历了以下五个发展阶段,他们是 1.使用纯天然材料的初级阶段:旧石器时代,人类只能使用天然材料(如兽皮、甲骨、羽毛、树木、草叶、石块、泥土等),之后也都只是纯天然材料的简单加工而已。 2.人类单纯利用火制造材料的阶段:新石器时代、铜器时代和铁器时代,是人类利用火来对天然材料进行煅烧、冶炼和加工的时代,主要材料有:陶、铜和铁。 3.利用物理与化学原理合成材料的阶段:20世纪初,由于物理和化学等科学理论在材料技术中的应用,从而出现了材料科学。在此基础上,人类开始了人工合成材料的新阶段,主要材料:人工合成塑料、合成纤维及合成橡胶等合成高分子材料的出现,加上已有的金属材料和陶瓷材料(无机非金属材料)构成了现代材料(除合成高分子材料以外,人类也合成了一系列的合金材料和无机非金属材料。超导材料、半导体材料、光纤等材料都是这一阶段的杰出代表)。 4.材料的复合化阶段:20世纪50年代金属陶瓷的出现标志着复合材料时代的到来。人类已经可以利用新的物理、化学方法,根据实际需要设计独特性能的复合材料(只要是由两种不同的相组成的材料都可以称为复合材料)。 5.材料的智能化阶段:如形状记忆合金、光致变色玻璃等等都是近年研发的智能材料(自然界中的材料都具有自适应、自诊断合资修复的功能,而目前研制成功的智能材料还只是一种智能结构)。 20 世纪以来,物理、化学、力学、生物学等学科的研究和发展推动了对于物质结构、材料的物理化学和力学性能的深入认识和了解。同时,金属学、冶金学、工程陶瓷技术、高分子科学、半导体科学、复合材料科学以及纳米技术等学科的发展促进了各种新型材料的产生,并推进了对于材料的制备、生产工艺、结构、性能及其相互之间关系的研究,为材料的设计、制造、工艺优化和材料功能和性能的合理使用,提供了充分的科学依据。现代材料科学更注重于研究新型复合材料和纳米材料的制备和创新,对于设计具有不同性能要求的材料复合工艺和纳米态材料的凝聚过程,以及各类材料之间的相互渗透和交叉的性能以及综合性能的研究给予了更多的重视。现代材料科学的发展不仅与揭露材料本质及其演化

相关文档
最新文档