关于磷酸铁锂电池的知识

关于磷酸铁锂电池的知识
关于磷酸铁锂电池的知识

关于磷酸铁锂电池的知识

导读:锂离子电池的正极材料主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中钴酸锂是目前绝大多数锂离子电池使用的正极材料。从材料的原理上讲,磷酸铁锂也是一种嵌入/脱嵌过程,这一原理与钴酸锂,锰酸锂完全相同。

磷酸铁锂电池,是指用磷酸铁锂作为正极材料的锂离子电池。锂离子电池的正极材料主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中钴酸锂是目前绝大多数锂离子电池使用的正极材料。从材料的原理上讲,磷酸铁锂也是一种嵌入/脱嵌过程,这一原理与钴酸锂,锰酸锂完全相同。

1.介绍

磷酸铁锂电池属于锂离子二次电池,一个主要用途是用作动力电池,相对NI-MH、Ni-Cd电池有很大优势。

磷酸铁锂电池充放电效率较高,倍率放电情况下充放电效率可达90%以上。而铅酸电池约为80%。

2.八大优势

安全性能的改善

磷酸铁锂晶体中的P-O键稳固,难以分解,即便在高温或过充时也不会像钴酸锂一样结构崩塌发热或是形成强氧化性物质,因此拥有良好的安全性。有报告指出,实际操作中针刺或短路实验中发现有小部分

样品出现燃烧现象,但未出现一例爆炸事件,而过充实验中使用大大超出自身放电电压数倍的高电压充电,发现依然有爆炸现象。虽然如此,其过充安全性较之普通液态电解液钴酸锂电池,已大有改善。寿命的改善

磷酸铁锂电池是指用磷酸铁锂作为正极材料的锂离子电池。

长寿命铅酸电池的循环寿命在300次左右,最高也就500次,而磷酸铁锂动力电池,循环寿命达到2000次以上,标准充电(5小时率)使用,可达到2000次。同质量的铅酸电池是“新半年、旧半年、维护维护又半年”,最多也就1~1.5年时间,而磷酸铁锂电池在同样条件下使用,理论寿命将达到7~8年。综合考虑,性能价格比理论上为铅酸电池的4倍以上。大电流放电可大电流2C快速充放电,在专用充电器下,1.5C 充电40分钟内即可使电池充满,起动电流可达2C,而铅酸电池无此性能。

高温性能好

磷酸铁锂电热峰值可达350℃-500℃而锰酸锂和钴酸锂只在200℃左右。工作温度范围宽广(-20C--+75C),有耐高温特性磷酸铁锂电热峰值可达350℃-500℃而锰酸锂和钴酸锂只在200℃左右。

大容量

具有比普通电池(铅酸等)更大的容量。5AH-1000AH(单体)

无记忆效应

可充电池在经常处于充满不放完的条件下工作,容量会迅速低于额定容量值,这种现象叫做记忆效应。像镍氢、镍镉电池存在记忆性,而

磷酸铁锂电池无此现象,电池无论处于什么状态,可随充随用,无须先放完再充电。

重量轻

同等规格容量的磷酸铁锂电池的体积是铅酸电池体积的2/3,重量是铅酸电池的1/3。

环保

该电池一般被认为是不含任何重金属与稀有金属(镍氢电池需稀有金属),无毒(SGS认证通过),无污染,符合欧洲RoHS规定,为绝对的绿色环保电池证。所以锂电池之所以被业界看好,主要是环保考量,因此该电池又列入了“十五”期间的“863”国家高科技发展计划,成为国家重点支持和鼓励发展的项目。随着中国加入WTO,中国电动自行车的出口量将迅速增大,而进入欧美的电动自行车已要求配备无污染电池。

但有专家表示,铅酸电池造成的环境污染,主要发生在企业不规范的生产过程和回收处理环节。同理,锂电池属于新能源行业不错,但它也不能避免重金属污染的问题。金属材料加工中有铅、砷、镉、汞、铬等都有可能会释放到灰尘和水中。电池本身就是一种化学物质,所以有可能会产生两种污染:一是生产工程中的工艺排泄物污染;二是报废以后的电池污染。

磷酸铁锂电池也有其缺点:例如低温性能差,正极材料振实密度小,等容量的磷酸铁锂电池的体积要大于钴酸锂等锂离子电池,因此在微

型电池方面不具有优势。而用于动力电池时,磷酸铁锂电池和其他电池一样,需要面对电池一致性问题。

动力电池的对比

目前最有希望应用于动力型锂离子电池的正极材料主要有改性锰酸锂(LiMn2O4)、磷酸铁锂(LiFePO4)和镍钴锰酸锂(Li(Ni,Co,Mn)O2)三元材料。镍钴锰酸锂三元材料由于钴的资源缺乏与镍、钴成高和价格波动大等原因,普遍认为很难成为电动汽车用动力型锂离子电池的主流,但可以与尖晶石锰酸锂在一定范围内混合使用。

行业应用

涂碳铝箔为锂电产业带来技术革新和产业提升

提升锂电产品性能,改善放电倍率

随着国内电池厂商对电池性能要求的日益提高,国内普遍认同新能源电池材料:导电材料&导电涂层铝箔/铜箔。

其优势在于:在处理电池材料的时候,常拥有高倍率充放电性能好,较大比容量,但循环稳定性较差,衰减较为严重等原因,不得不做取舍放弃。

这是个神奇的涂层,将电池的性能提高,带入新纪元。

导电涂层是由分散好的纳米导电石墨包覆颗粒等所组成。它能提供极佳的静态导电性能,是一层保护能量吸收层。它也能提供好的遮盖防护性能。涂层有水性的和溶剂性的,能应用在铝片,铜片,不锈钢,铝和钛双极板上。

涂碳涂层对锂电池的性能带来以下提升

1. 降低电池内阻,抑制充放电循环过程中的动态内阻增幅;

2. 显着提高电池组的一致性,降低电池组成本;

3. 提高活性材料和集流体的粘接附着力,降低极片制造成本;

4. 减小极化,提高倍率性能,减低热效应;

5. 防止电解液对集流体的腐蚀;

6. 综合因子进而延长电池使用寿命。

7. 涂层厚度:常规单面厚1~3μm。

日本和韩国近几年主要开发以改性锰酸锂和镍钴锰酸锂三元材料为正极材料的动力型锂离子电池,如丰田和松下合资成立的Panasonic EV能源公司、日立、索尼、新神户电机、NEC、三洋电机、三星以及LG等。美国主要开发以磷酸铁锂为正极材料的动力型锂离子电池,如A123系统公司、Valence公司,但美国的主要汽车厂家在其PHEV与EV中却选择锰基正极材料体系动力型锂离子电池,并且据说美国

A123公司在考虑进军锰酸锂材料领域,而德国等欧洲国家主要采取和其它国家电池公司合作的方式发展电动汽车,如戴姆勒奔驰和法国Saft联盟、德国大众与日本三洋协议合作等。目前德国的大众汽车和法国的雷诺汽车在本国政府的支持下也正在研发和生产动力型锂离子电池。

3.缺点

一种材料是否具有应用发展潜力,除了关注其优点外,更为关键的是该材料是否具有根本性的缺陷。

国内现在普遍选择磷酸铁锂作为动力型锂离子电池的正极材料,从政府、科研机构、企业甚至是证券公司等市场分析员都看好这一材料,将其作为动力型锂离子电池的发展方向。分析其原因,主要有下列两点:首先是受到美国研发方向的影响,美国Valence与A123公司最早采用磷酸铁锂做锂离子电池的正极材料。其次是国内一直没有制备出可供动力型锂离子电池使用的具有良好高温循环与储存性能的锰酸锂材料。但磷酸铁锂也存在不容忽视的根本性缺陷,归结起来主要有以下几点:

1、在磷酸铁锂制备时的烧结过程中,氧化铁在高温还原性气氛下存在被还原成单质铁的可能性。单质铁会引起电池的微短路,是电池中最忌讳的物质。这也是日本一直不将该材料作为动力型锂离子电池正极材料的主要原因。

2、磷酸铁锂存在一些性能上的缺陷,如振实密度与压实密度很低,导致锂离子电池的能量密度较低。低温性能较差,即使将其纳米化和碳包覆也没有解决这一问题。美国阿贡国家实验室储能系统中心主任Don Hillebrand博士谈到磷酸锂铁电池低温性能的时候,他用terrible 来形容,他们对磷酸铁锂型锂离子电池测试结果表明表明磷酸铁锂电池在低温下(0℃以下)无法使电动汽车行驶。尽管也有厂家宣称磷酸锂铁电池在低温下容量保持率还不错,但是那是在放电电流较小和放电截止电压很低的情况下。在这种状况下,设备根本就无法启动工作。

3、材料的制备成本与电池的制造成本较高,电池成品率低,一致性差。磷酸铁锂的纳米化和碳包覆尽管提高了材料的电化学性能,但是

也带来了其它问题,如能量密度的降低、合成成本的提高、电极加工性能不良以及对环境要求苛刻等问题。尽管磷酸铁锂中的化学元素Li,Fe与P很丰富,成本也较低,但是制备出的磷酸铁锂产品成本并不低,即使去掉前期的研发成本,该材料的工艺成本加上较高的制备电池的成本,会使得最终单位储能电量的成本较高。

4、产品一致性差。目前国内还没有一家磷酸铁锂材料厂能够解决这一问题。从材料制备角度来说,磷酸铁锂的合成反应是一个复杂的多相反应,有固相磷酸盐、铁的氧化物以及锂盐,外加碳的前驱体以及还原性气相。在这一复杂的反应过程中,很难保证反应的一致性。

5、知识产权问题。最早的有关磷酸铁锂专利申请在1993年6月25日由

F X MITTERMAIER & SOEHNE OH

G (DE)获得,并于同年8月19日公布申请结果。磷酸铁锂的基础专利被美国德州大学所有,而碳包覆专利被加拿大人所申请。这两个基础性专利是无法绕过去的,如果成本中计算上专利使用费的话,那产品成本将会进一步提高。

此外,从研发和生产锂离子电池的经验来看,日本是锂离子电池最早商业化的国家,并且一直占据着高端锂离子电池市场。而美国尽管在一些基础研究上领先,但是到目前为止还没有一家大型锂离子电池生产企业。因此,日本选择改性锰酸锂作为动力型锂离子电池正极材料更有其道理。即使是在美国,利用磷酸铁锂和锰酸锂作为动力型锂离子电池正极材料的厂家也是各占一半,联邦政府也是同时支持这两种体系的研发。鉴于磷酸铁锂存在的上述问题,很难作为动力型锂离子电池的正极材料在新能源汽车等领域获得广泛应用。如果能够解决锰

铁锂电池与铅酸对比

铁锂电池与铅酸对比

磷酸铁锂电池和密封阀控式铅酸蓄电池的比较 一、产品性能比较和系统组成比较 磷酸铁锂电池和铅酸电池性能比较详见表4。 表4 磷酸铁锂电池和铅酸电池性能比较 电池性能 说明 磷酸铁锂电池 铅酸电池 单体电压 (V ) 3.2 2 重量比能量 (wh/kg ) 110~130 30~50 体积比能量 (wh/L ) 180~220 80~120 循环寿命 1C100%充放 ≥1000次 250~350次 高温性能 循环寿命变化 45℃为25℃时减半 35℃为25℃时减半 低温性能 -20℃容量保持率 50% 55% 自放电 常温搁置28天 4% 5% 充放电效率 >99% 80% 耐过充性能 一般 好 安全性 优 优 环保 无污染 污染 磷酸铁锂蓄电池与铅酸蓄电池在-48V 直流电源系统的组成比较如表5所示。 表1 磷酸铁锂电池组和铅酸电池组参数比较 组单体组单体组单体组单体浮充均充铅酸电池40~572448243.2 1.854.0 2.2556.4 2.35 1.13 1.18铁锂电池40~571651.2 3.243.2 2.755.2 3.4557.6 3.6 1.08 1.13铁锂电池 40~57 1548 3.243.2 2.88 54.0 3.6 56.4 3.76 1.13 1.18 电池设备工作范围只数 标称电压(V)电压比值放电终止电压(V)浮充电压(V) 均充电压(V) 资料显示: ? 充满电后4.0V 的磷酸铁锂蓄电池静置15分钟后回落到3.4V ,电池开 口电压3.4V 。 ? 单体工作电压为2.0V~4.2V 。 ? 在3.65V 以下可以充电性能稳定。 ? 单体电池放电时,3.0V 以下电压下降很快。 综合以上信息,建议48V 直流系统的蓄电池组只数选择16只的配置方案。 二、基站应用方案比较及投资比较 磷酸铁锂电池应用在基站中,主要考虑到不同放电率对该种电池放电容量的影响较小,以及耐受较宽的环境温度。以下将针对基站的功耗、后备时间进行电池容量选择的分析。

锂电池规格书

储能型磷酸铁锂电池规格书STORAGE LiFePO4 BATTERY SPECIFICATIONS 客户名称(Customer): 产品型号(Type): CF12V80Ah 发行日期(Issuing Date):

1. 适用范围(Product Scope) 本规格书描述了锂离子二次电池的技术要求、测量方法、运输、储存及注意事项。 This Specification describes the requirements of the lithium ion rechargeable battery supplied by 2. 电池组特性 (Battery Group Specifications)

单只电芯曲线图feature curve for single cell 3. 技术要求(Technical Requirements) 测试条件(除特别规定) Testing Conditions (unless otherwise specified) 温度Temperature: 15~35℃ 相对湿度Relative Humidity: 45%~75% 大气压Atmospheric pressure: 86~106Kpa 充放电性能 (Electrical Characteristics)

环境性能 (Environmental Characteristic) 机械性能(Mechanical characteristics)

安全性能(Safe Characteristic)

4 电池组基本性能 (Basic Characteristics of Battery) 5 电池组保护功能要求 (Battery Required Protection Functions) To insure the safety, charger and the protection circuit shall be satisfied the items below. As safety device, please use in combination with the temperature fuse. The standard charge method is CC/CV (constant current/constant voltage) 为确保安全,充电器和保护电路应符合以下要求。同时请使用装有热熔保险丝的安全装置。标准充电方法为CC/CV(恒流/恒压)

太阳能光伏电池检验测试结果与分析

H a r b i n I n s t i t u t e o f T e c h n o l o g y 近代光学创新实验 实验名称:太阳能光伏电池测试与分析院系: 专业: 姓名: 学号: 指导教师: 实验时间: 哈尔滨工业大学

一、实验目的 1、了解pn结基本结构和工作原理; 2、了解太阳能电池的基本结构,理解工作原理; 3、掌握pn结的IV特性及IV特性对温度的依赖关系; 4、掌握太阳能电池基本特性参数测试原理与方法,理解光源强度、波长、环境温度等因素对太阳能 电池特性的影响; 5、通过分析PN结、太阳能电池基本特性参数测试数据,进一步熟悉实验数据分析与处理的方法,分 析实验数据与理论结果间存在差异的原因。 二、实验原理 1、光生伏特效应 半导体材料是一类特殊的材料,从宏观电学性质上说它们导电能力在导体和绝缘体之间,导电能力随外界环境(如温度、光照等)发生剧烈的变化。半导体材料具有负的带电阻温度系数。从材料结构特点说,这类材料具有半满导带、价带和半满带隙,温度、光照等因素可以使价带电子跃迁到导带,改变材料的电学性质。通常情况下,都需要对半导体材料进行必要的掺杂处理,调整它们的电学特性,以便制作出性能更稳定、灵敏度更高、功耗更低的电子器件。基于半导体材料电子器件的核心结构通常是pn结,pn结简单说就是p型半导体和n型半导体的基础区域,太阳能电池本质上就是pn结。 常见的太阳能电池从结构上说是一种浅结深、大面积的pn结,如图1所示,它的工作原理的核心是光生伏特效应。光生伏特效应是半导体材料的一种通性。当光照射到一块非均匀半导体上时,由于内建电场的作用,在半导体材料内部会产生电动势。如果构成适当的回路就会产生电流。这种电流叫做光生电流,这种内建电场引起的光电效应就是光生伏特效应。 非均匀半导体就是指材料内部杂质分布不均匀的半导体。pn结是典型的一个例子。N型半导体材料和p型半导体材料接触形成pn结。pn结根据制备方法、杂质在体内分布特征等有不同的分类。制备方法有合金法、扩散法、生长法、离子注入法等等。杂质分布可能是线性分布的,也可能是存在突变的,pn结的杂质分布特征通常是与制备方法相联系的。不同的制备方法导致不同的杂质分布特征。

磷酸铁锂电池

磷酸鐵鋰啟動電池 磷酸鐵鋰電池﹙以下簡稱為鋰鐵﹚,用於啟動電池的設計,在此首先了解一些問題,如下: 汽機車發電機電壓範圍 啟動瞬間電流大小及應用時間 電池瞬間啟動電流壽命 最低截止電壓 與鉛酸電池相對應成本比較(初期投入成本及使用帄均成本) 對車內電器的影響性 環保性 鋰鐵啟動電池使用方式鉛酸化 使用鋰鐵電池來設計車用電池,在坊間已經有數年之久,在這段開發時間,各個開發及銷售廠商如雨後春筍般的出現,但截至目前為止,鋰鐵啟動電池尚未成為市場上的主流,不論是機車類別會是汽車類別。 在開發此類產品時,每一位研究開發人員只要細心的了解比對鋰鐵電池與鉛酸電池的差異性,均會認為以鋰鐵高效率的放電C數及瞬間放電能力和低內阻的特性,均會擠下一般的鉛酸電池,成為汽機車類啟動電池的新寵兒,奈何發展至今卻尚未看到市場的佔有率的出現,更遑論是否有形成節能減碳的風潮。 “產品的規格是來自於需求,不論何時何地都有新產品規格誕生,因為來自於需求” 在設計啟動電池,我們會去注重瞬間的放電能力,在這裡每一位研究開發人員都會注意到這一個問題,一輛機車的瞬間啟動電流可能高達70A 以上,機車的c.c.數越大,其啟動電流越大,一輛2000c.c.的汽車瞬間啟動電流可以高達300A 以

上(每一車種其啟動電流不一,並端看車內電器使用多寡),每一次啟動時間範圍不一,因此在啟動電池設計上,我們必須了解一些問題,來輔助設計。 一般鉛酸電池分為極板、隔離板、電解液,其極板分為正極是二氧化鉛和負極為海綿狀鉛(絨狀鉛)等,隔離板可分為強化纖維、微孔橡膠、合成樹脂等,電解液一般為硫酸等;概分析組成結構,其正負極板放置在電解液中,其正負極輸出入端子直接連結到極板,如此一單元其電壓為2V,其容量大小取決於面積大小。其極板及極頭尺寸和極板連接極頭的尺寸均以10mm單位起跳,這些尺寸會影響到整體瞬間輸出電流承受能力,截面積越大,承受大功率輸出能力越大。 鋰鐵電池分為正負極材料、隔離膜、電解液,其正極材料磷酸鐵鋰粉使用銅做為傳導介質,負極材料石墨或碳使用鋁做為傳導介質,隔離膜以不織布或和紙為材料,電解液如高氯酸鋰有機溶劑;概分析組成結構,正極材料經過篩選、研磨、過濾後,塗佈在銅片上,負極材料經過篩選、研磨、過濾後,塗佈在鋁片上,正負極片分別碾壓過後,在兩極片之間放置一層隔離膜,重覆這些步驟,如此多層的架構組合成一個單元(Cell),端看其正負極片連接至極頭部份,需要極耳做為傳導介質,而這極耳的大小多寡取決了充放電電流大小及壽命,因此在啟動電池的設計上,會來挑選瞬間大放電C數來使用,這個數值越高對於啟動電池設計越有利,這部份數值與電池壽命有其相對關係,極耳越小,數量越少,在瞬間大放電C數上,雖也可承受,但使用次數一多,會造成極耳焦黑情形,甚至導致帽蓋裂開,因此在鋰鐵Cell的瞬間大放電C數壽命的要求是有其必要,如果可以,與Cell廠商討論其瞬間放電C數的次數壽命,這一個規格,往往在啟動電池設計上都會忽略。 一、汽機車發電機電壓範圍 車種皆不相同,一般汽車發電機電壓為12.5~14.5V左右(此輸出電壓並非一定,詳細規格可詢問廠商),當汽機車啟動時,一開始有電池供電,帶動啟動馬達,再由啟動馬達帶動引擎的發動,同時,車上發電機也跟隨著啟動,供應車內所有電器及分電盤使用,此時,電池從原本的供應電源狀態轉換成充電狀態,發電機有一調節器,這調節器會跟隨電器使用多寡及加油速度改變,直到調節器調節到最大時,電力仍供應不足,這才會有從電池供電情形(這部份情形大多出現在改車),在鉛酸電池與鋰鐵電池比較,前者內阻高,放電效率低,後者內阻低,放電效率高,因此一般汽機車啟動後,鋰鐵電池可以快速充電完畢,不浪費電力,因此可以減輕發電機的負載,造成省油的情形。

3.太阳能电池基本特性

太阳能电池的基本特性 1、太阳能电池的基本特性 太阳能电池的基本特性有太阳能电池的极性、太阳电池的性能参数、太阳能电池的伏安特性三个基本特性。具体解释如下 1、太阳能电池的极性 硅太阳能电池的一般制成P+/N型结构或N+/P型结构,P+和N+,表示太阳能电池正面光照层半导体材料的导电类型;N和P,表示太阳能电池背面衬底半导体材料的导电类型。太阳能电池的电性能与制造电池所用半导体材料的特性有关。 2、太阳电池的性能参数 太阳电池的性能参数由开路电压、短路电流、最大输出功率、填充因子、转换效率等组成。这些参数是衡量太阳能电池性能好坏的标志。 3 太阳能电池的伏安特性 P-N结太阳能电池包含一个形成于表面的浅P-N结、一个条状及指状的正面欧姆接触、一个涵盖整个背部表面的背面欧姆接触以及一层在正面的抗反射层。当电池暴露于太阳光谱时,能量小于禁带宽度Eg的光子对电池输出并无贡献。能量大于禁带宽度Eg的光子才会对电池输出贡献能量Eg,大于Eg的能量则会以热的形式消耗掉。因此,在太阳能电池的设计和制造过程中,必须考虑这部分热量对电池稳定性、寿命等的影响。 2、有关太阳电池的性能参数 1、开路电压 开路电压UOC:即将太阳能电池置于100 mW/cm2的光源照射下,在两端开路时,太阳能电池的输出电压值。 2、短路电流 短路电流ISC:就是将太阳能电池置于标准光源的照射下,在输出端短路时,流过太阳能电池两端的电流。 3、最大输出功率 太阳能电池的工作电压和电流是随负载电阻而变化的,将不同阻值所对应的工作电压和电流值做成曲线就得到太阳能电池的伏安特性曲线。如果选择的负载电阻值能使输出电压和电流的乘积最大,即可获得最大输出功率,用符号Pm表示。此时的工作电压和工作电流称为最佳工作电压和最佳工作电流,分别用符号Um和Im表示。 4、填充因子FF

磷酸铁锂电池简介

磷酸铁锂电池简介 1.磷酸铁锂电池定义 磷酸铁锂电池是指用磷酸铁锂作为正极材料的锂离子电池。 2.磷酸铁锂正极材料 磷酸铁锂作为锂离子电池用正极材料具有良好的电化学性能,充放电平台十分平稳,充放电过程中结构稳定。同时,该材料无毒、无污染、安全性能好、可在高温环境下使用、原材料来源广泛等优点,是目前电池界竞相开发研究的热点。该材料具有发上图所示的晶体结构。工作电压范围:2.5~3.6V,平台约3.3V,比钴酸锂电池3.7V低一些。由于该材料导电性差,需往磷酸铁锂颗粒内部掺入导电碳材料或导电金属微粒,或者往磷酸铁锂颗粒表面包覆导电碳材料,提高材料的电子电导率;或掺杂金属离子来提高导电性。这样材料的密度低,做成电池的体积比容量低,只有180Wh/L(钴酸锂可做到400Wh/L 以上),在小电池领域,同样尺寸电池只有现有电池容量的一半不到。 3.磷酸铁锂的优点: (1)安全。磷酸铁锂的安全性能是目前所有的材料中最好的。绝不用担心爆炸。 (2)稳定性高。包括高温充电的容量稳定性,储存性能等。这是最大的优点。 (3)环保。整个生产过程清洁无毒。所有原料都无毒。不像钴是有

毒的物质。 (4)价格便宜。 4.磷酸铁锂的缺点: (1)导电性差,目前可通过添加C或其它导电剂得到解决。即:LiFePO4/C正极。 (2)振实密度较低。一般只能达到1.3-1.5,电池极片的面密度低,所以同样型号的电池容量更低。从消费便携电子产品上看,磷酸铁锂没有前途,在特定的电池领域使用较有优势,如动力电池。 (3)制造成本偏高,在电池生产上加工困难、倍率放电不稳定(需要特定的电池工艺配合,受工艺影响很大)。 (4)技术还未成熟。由于振实密度低,比表面积大,需要改变电池先行工艺。而且电解液也需重新开发适用的电解液体系,用现有的成熟电解液难发挥其性能。没有批量配套的保护线路和充电器,较难在现有的电子设备上发挥出其特性,需要一个整体的行业整合。 5.磷酸铁锂电池产业:优势分析 (1)磷酸铁锂产业符合政府产业政策的导向,各国都把储能电池和动力电池的发展放在国家战略层面高度,配套资金和政策支持的力度很大,中国在这方面有过之而不及,过去关注镍氢电池,现在则把目光更多的集中到磷酸铁锂电池上。 (2)LFP代表了电池未来发展的方向,随着技术成熟,甚至可能成为

磷酸铁锂概况

磷酸铁锂概况 1.1 磷酸铁锂的基本概况 磷酸铁锂英文名:LITHIUM IRON PHOSPHATE CARBON COATED;简称LFP; 分子式:LiFePO4; 分子量:157.76; CAS:15365-14-7; 磷酸铁锂(分子式LiFePO4,简称LFP),是锂离子电池的一种正极材料,其特点是原料价格低廉丰富,工作电压适中、电容量大、高放电功率、可快速充电且循环寿命长、稳定性高,自90年代被发现后,成为了引发了锂电池革命的新材料,是当前电池发展领域的前沿。 磷酸铁锂电极材料主要用于各种锂离子电池。采用磷酸铁锂作为锂离子电池正极材料的电池被称为磷酸铁锂电池,由于磷酸铁锂电池的众多优点,被广泛使用于各个领域。 目前全球已经有很多厂家开始了工业化生产磷酸铁锂,国外加拿大Phostech Lithium公司、美国Valence(威能)公司和A123(高博),国内天津斯特兰,北大先行等。世界各国正竞相实现产业化生产。 目前,国内的磷酸铁锂产业投资热正在兴起,其势头超过了其他任何国家。 1.2 磷酸铁锂性能特点 锂离子电池的性能主要取决于正负极材料,磷酸铁锂作为锂电池正极材料其安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标。1C充放循环寿命达2000次。单节电池过充电压30V不燃烧,穿刺不爆炸。磷酸铁锂正极材料做出大容量锂离子电池更易串联使用。以满足电动车频繁充放电的需要。具有无毒、无污染、安全性能好、原材料来源广泛、价格便宜,

寿命长等优点,是新一代锂离子电池的理想正极材料。 磷酸铁锂优势性能主要有: 1、比容量大,高效率输出,高能量密度。磷酸铁锂标准放电为2~5C、连续高电流放电可达10C,瞬间脉冲放电(10S)可达20C;理论比容量为170mAh/g,产品实际比容量可超过140 mAh/g(0.2C,25℃); 2、结构稳定、安全性能好。磷酸铁锂是目前最安全的锂离子电池正极材料;不含任何对人体有害的重金属元素;即使电池内部或外部受到伤害,电池不燃烧、不爆炸、安全性最好。 3、循环寿命长。经500次循环,其放电容量仍大于95%;实验室制备的磷酸铁锂单体电池在进行IC的循环测试时,循环寿命高达2000次。在100%DOD 条件下,可以充放电2000次以上;(原因:磷酸铁锂晶格稳定性好,锂离子的嵌入和脱出对晶格的影响不大,故而具有良好的可逆性。存在的不足是电子离子传到率差,不适宜大电流的充放电,在应用方面受阻。解决方法:在电极表面包覆导电材料、掺杂进行电极改性。) 4、资源丰富、成本低廉。磷酸铁锂原材料来源广泛、价格便宜。 5、充电性能好。磷酸铁锂正极材料的锂电池,可以使用大倍率充电,最快可在1小时内将电池充满。可快速充电,自放电少,无记忆效应。可大电流2C 快速充放电,在专用充电器下,1.5C充电40分钟内即可使电池充满,起动电流可达2C。过放电到零伏也无损坏,零电压存放7天后电池无泄漏,性能良好,容量为100%;存放30天后,无泄漏、性能良好,容量为98%;存放30天后的电池再做3次充放电循环,容量又恢复到100%。 6、工作温度范围宽广(-20℃~+75℃)。高温时性能良好:外部温度65℃时内部温度则高达95℃,电池放电结束时温度可达160℃,电池内部结构安全、完好。 磷酸铁锂性能缺点主要有: 1、导电性能差。目前在实际生产过程中通过在前驱体添加有机碳源和高价金属离子联合掺杂的办法来改善材料的导电性(A123、烟台卓能正采用这种方法),研究表明,磷酸铁锂的电导率提高了7个数量级,使磷酸铁锂具备了和钴

各种储能系统优缺点对比

史上最全储能系统优缺点梳理 谈到储能,人们很容易想到电池,但现有的电池技术很难满足电网级储能的要求。实际上,储能的市场潜力非常巨大,根据市场调研公司Pike Research 的预测,从2011年到2021年的10年间,将有1220亿美元投入到全球储能项目中来。而在大规模储能系统中,最为广泛应用的抽水蓄能和压缩空气储能等传统的储能方式也在经历不断改进和创新。今天,无所不能(caixinenergy)为大家推荐一篇文章,该文章分析了目前全球的储能技术以及其对电网的影响和作用。 现有的储能系统主要分为五类:机械储能、电气储能、电化学储能、热储能和化学储能。目前世界占比最高的是抽水蓄能,其总装机容量规模达到了127GW,占总储能容量的99%,其次是压缩空气储能,总装机容量为440MW,排名第三的是钠硫电池,总容量规模为316MW。 全球现有的储能系统 1、机械储能 机械储能主要包括抽水蓄能、压缩空气储能和飞轮储能等。 (1)抽水蓄能:将电网低谷时利用过剩电力作为液态能量媒体的水从地势低的水库抽到地势高的水库,电网峰荷时高地势水库中的水回流到下水库推动水轮机发电机发电,效率一般为75%左右,俗称进4出3,具有日调节能力,用于调峰和备用。 不足之处:选址困难,及其依赖地势;投资周期较大,损耗较高,包括抽蓄损耗+线路损耗;现阶段也受中国电价政策的制约,去年中国80%以上的抽蓄都晒太阳,去年八月发改委出了个关于抽蓄电价的政策,以后可能会好些,但肯定不是储能的发展趋势。 (2)压缩空气储能(CAES):压缩空气蓄能是利用电力系统负荷低谷时的剩余电量,由电动机带动空气压缩机,将空气压入作为储气室的密闭大容量地下洞

太阳能电池组件特性与辐照度、温度等关系

太阳能电池组件把接收的光能转换成电能,其输出电流一电压的特性如图1所示。这个特性也称为I-V曲线。在图中标注的各点在标准状态下具有以下含义。 最大输出功率(Pm):最大输出工作电压(Vpm)×最大输出工作电流(IPM); 开路电压(Voc):正负极间为开路状态时的电压; 短路电流(1SC):正负极间为短路状态时流过的电流; 最大输出工作电压(VPm):输出功率最大时的工作电压; 最大输出工作电流(IPM):输出最大功率时的工作电流。 图中的最佳工作点是得到最大输出功率时的工作点,此时的最大输出功率Pm是IM和VM乘积。这些具体的数值从表2.3中作为太阳能电池组件特性值可以了解到。在实际的太阳能电池工作中,工作点与负载条件和辐射条件有关,所以工作点偏离最佳工作点。 图1太阳能电池组件的电流一电压特性

作为太阳能电池组件的输出功率,与太阳光辐射照度、光源的种类及温度等各种自然条件有关。因此评价太阳能电池组件输出特性时,基于模拟太阳光辐射照度和光谱分布的太阳光模拟装置的室内测试作为标准测试方法。最近太阳能电池组件均用太阳光模拟装置测试,在如下所示的标准状态下进行试验,得出表图2所示的数据 (注:对于辐射照度,因平时用日照强度来表示,所以也有用“日照强度”替代辐射照度的场合)。 标准状态:太阳能电池组件表面温度,25℃,光谱分布AMI.5,辐射照度1000W/m2。 图2辐射照度依赖特性和辐射照度---最大输出功率特性 这里AM是Air Mass(气团)的缩写。它表示太阳光线射入地面所通过的大气量,也是假设正上方(太阳光线垂直)的日照射为AM=1时,用其倍率表示的参数。如AM-1.5是光的通过距离为1.5倍,相当于太阳光线与地面夹角为42。。如果AM变大,像早晨和傍晚

浅析磷酸铁锂电池的优点及缺点

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/168061513.html,)浅析磷酸铁锂电池的优点及缺点 磷酸铁锂电池的全名是磷酸铁锂锂离子电池,这名字太长,简称为磷酸铁锂电池。由于它的性能特别适于作动力方面的应用,则在名称中加入“动力”两字,即磷酸铁锂动力电池。也有人把它称为“锂铁(LiFe)动力电池。 一、工作原理 磷酸铁锂电池,是指用磷酸铁锂作为正极材料的锂离子电池。锂离子电池的正极材料主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中钴酸锂是目前绝大多数锂离子电池使用的正极材料。 二、意义 金属交易市场,钴(Co)最贵,并且存储量不多,镍(Ni)、锰(Mn)较便宜,而铁(Fe)存储量较多。正极材料的价格也与这些金属的价格行情一致。因此,采用LiFePO4正极材料做成的锂离子电池应是挺便宜的。它的另一个特点是对环境环保无污染。 作为充电电池的要求是:容量高、输出电压高、良好的充放电循环性能、输出电压稳定、能大电流充放电、电化学稳定性能、使用中安全(不会因过充电、过放电及短路等操作不当而引起燃烧或爆炸)、工作温度范围宽、无毒或少毒、对环境无污染。采用LiFePO4作正极的磷酸铁锂电池在这些性能要求上都不错,特别在大放电率放电(5~10C 放电)、放电电压平稳上、安全上(不燃烧、不爆炸)、寿命上(循环次数)、对环境无污染上,它是最好的,是目前最好的大电流输出动力电池。 三、结构与工作原理

LiFePO4作为电池的正极,由铝箔与电池正极连接,中间是聚合物的隔膜,它把正极与负极隔开,但锂离子Li可以通过而电子e-不能通过,右边是由碳(石墨)组成的电池负极,由铜箔与电池的负极连接。电池的上下端之间是电池的电解质,电池由金属外壳密闭封装。 LiFePO4电池在充电时,正极中的锂离子Li通过聚合物隔膜向负极迁移;在放电过程中,负极中的锂离子Li通过隔膜向正极迁移。锂离子电池就是因锂离子在充放电时来回迁移而命名的。 四、主要性能 LiFePO4电池的标称电压是3.2V、终止充电电压是3.6V、终止放电压是2.0V。由于各个生产厂家采用的正、负极材料、电解质材料的质量及工艺不同,其性能上会有些差异。例如同一种型号(同一种封装的标准电池),其电池的容量有较大差别(10%~20%)。 这里要说明的是,不同工厂生产的磷酸铁锂动力电池在各项性能参数上会有一些差别;另外,有一些电池性能未列入,如电池内阻、自放电率、充放电温度等。 磷酸铁锂动力电池的容量有较大差别,可以分成三类:小型的零点几到几毫安时、中型的几十毫安时、大型的几百毫安时。不同类型电池的同类参数也有一些差异。 五、过放电到零电压试验: 采用STL18650(1100mAh)的磷酸铁锂动力电池做过放电到零电压试验。试验条件:用0.5C充电率将1100mAh的STL18650电池充满,然后用1.0C放电率放电到电池电压为0C。再将放到0V的电池分两组:一组存放7天,另一组存放30天;存放到期后再用0.5C充电率充满,然后用1.0C放电。最后比较两种零电压存放期不同的差别。

太阳能电池特性(精)

如何设计锂离子电池充电器,以从太阳能电池板获得最大电力 作者:Jinrong Qian,德州仪器(TI) 应用工程设计经理和Nigel Smith,TI 系统工程师摘要 太阳能对便携式设备供电而言相当有吸引力,也一度广泛应用于计算器和航天飞行器等应用中。近期,我们正考虑将太阳能应用于包括移动电话充电器在内的更广泛的消费类产品应用中。 不过,太阳能电池板能提供的电力主要取决于工作环境,如光照强度、时间、地点等因素。电池通常用作能量存储设备,如果太阳能电池板能提供更多电力,就可给电池充电;如果太阳能电池板提供的电力不足,那么反过来电池就给系统供电。我们要如何设计锂离子电池充电器才能尽可能地利用太阳能电池并给锂离子电池充电呢?首先,我们来讨论太阳能电池的工作原理与电子输出特性,然后,我们再讨论电池充电系统的要求以及系统解决方案与太阳能电池特性相匹配的问题,从而尽可能地利用太阳能电池。 太阳能电池的I-V 特性 基本上,太阳能电池包括一个p-n 接点,光能(光子)在此使得电子和空穴重新组合,从而产生电流。由于p-n接点的特性类似于二极管,因此我们通常将图1 所示的电路用作太阳能电池特性的简化模型。 此处插入图1 图1 :太阳能电池的简化电路模型 电流源IPH 生成的电流与太阳能电池接收的光照量成正比。在不接负载时,几乎所有生成的电流都流经二极管D,其正向电压决定着太阳能电池的开路电压(VOC)。VOC 因不同类型太阳能电池的具体特性而有所差异。但对大多数硅电池来说,VOC 值都在0.5V~0.6V

之间,这也是p-n 接点二极管的正常正向电压范围。 并行电阻(RP) 表示实际电池发生的较小漏电流,而Rs 则表示连接损耗。随着负载电流的增加,太阳能电池生成的电流会有更多一部分偏离二极管而进入负载。对大多数负载电流值来说,这对输出电压仅产生很小的影响。 图2 显示了太阳能电池的输出特性。太阳能电池的输出随着二极管的I-V 特性不同而略有变化,且串联电阻(RS) 也会造成较小的压降,但输出电压基本保持为常量。不过,在某一时刻,通过内部二极管的电流会非常小,导致偏置不足,这样二极管上的电压会随负载电流的上升而快速下降。最后,当所有生成的电流都流经负载而不通过二极管时,输出电压为零。这种电流称作太阳能电池的短路电流(ISC),它与VOC 都是决定电池工作性能的主要参数,因此,我们将太阳能电池视为“电流有限的”电源。当输出电流增加时,输出电压会下降,最后降为零,这时负载电流为短路电流。 此处插入图2 图2 :典型的太阳能电池I-V 特性 在大多数应用中,理想情况是尽可能从太阳能电池获得最大电力。由于输出功率是输出电压与电流的乘积,因此我们应明确电池哪部分工作区能实现最大的输出电压与电流乘积值,即所谓的最大功率点(MPP)。在一种极端情况下,输出电压为最大值(VOC),但输出电流为零;在另一种极端情况下,输出电流为最大值(ISC),但输出电压为零。在上述两种情况下,输出电压与电流的乘积均为零,因此,MPP 必须在两种极端情况之间。 我们可以很容易地证明(或通过实验观察到),不管在何种应用,MPP 实际上总会出现在太阳能电池输出特性图的转弯处(见图3)。实践中的问题在于,太阳能电池MPP 的确切位置会随着光照和环境温度的变化而变化,因此,为了尽可能利用太阳能,系统设计时必须在实际工作条件下实现或接近MPP。

磷酸铁锂动力电池维护手册 整合版

沃特玛电池有限公司 磷酸铁锂动力电池使用手册 电子部 2013-3-15 [为了方面售后服务更好的对OPT管理系统进行维护,特此制定本手册,希望对售后服务有所帮助]

前言 为应对日益突出的燃油供求矛盾和环境污染问题,世界主要汽车生产国纷纷加快部署,将发展新能源汽车作为国家战略,加快推进技术研发和产业化,同时大力发展和推广应用汽车节能技术。节能与新能源汽车已成为国际汽车产业的发展方向。新能源客车,目前正在飞速发展。 当新能源客车穿行于街市,走进人们的生活时,对它的了解和认知也就成我们的必修课。然而,在这新能源之风势在必行之际,谈到动力电池,我们中大多数的人对其都知之甚少,这其中包括很多从事纯电动客车工作的相关从业人员,也正因为如此,才给你们的工作和和生活到来了诸多的困难和疑惑。 为解决这些问题,让从事纯电动客车工作的相关从业人员对动力电池有一些初步的了解和认识,本手册将通过重点介绍磷酸铁锂动力电池和管理系统的运用与维护来让大家了解动力电池的相关知识。为了更好服务客户,让相关从业人员熟悉和掌握我公司的纯电动客车动力电池,也为更好的发挥磷酸铁锂动力电池优越的性能,做好相关的维护保养工作,特制定本手册。希望此举能为大家避免在使用或维护我公司产品时造成不必要的困扰和预防产生一些不可挽回的损失。 烦请在使用或维护沃特玛公司纯电动客车动力电池之前,详细阅读本手册!

目录第一章 第二章

第一章为何选择磷酸铁锂电池作为动力电池 电池的概念 1.1.1什么是电池 化学电源俗称为电池,是一种利用物质的化学反应所释放出来的能量直接转化为电能的装置。顾名思义,电池是装电的池子,尤如水池,电池的电压及容量类似于水池的水位高低和蓄

锂电池、磷酸铁锂电池类-名词解析

电池名词解释 最近发现有许多人对电池的专有名词有一些误解,因此笔者在此 对这些名词做一些整理,希望能帮助大家正确的了解,而不要产生一些认知的误会。 一次电池 顾名思义为只可使用一次性的电池,当电池内以化学能转变为电 能来提供电力,也无法透过充电或其它方式将原有电能补充回来,因此完全放电后将不可再使用,这是电化学反应为不可逆转。一般市面上常见的干电池、碳锌电池、碱性电池、水银电池、锌空气电池等, 皆属此一次性电池。不同的一次性电池种类有不同的使用方式,但都局限于单次的使用。在制造上许多电池种类的原料使用及制程上所使用的材料具有污染性,对环境以及人体具有相当大的影响。 二次电池 二次电池是可以再重复使用的电池,可持续的充电、放电使用, 二次电池一样是经过化学能转换成电能,但可以藉由充电方式,将电能重新转化成化学能,便可让电池再次使用,而使用的次数随着材料与设计有其差异性。市面上常见的有铅酸电池、胶体电池、镍镉电池、镍氢电池、锂离子电池、锂离子聚合物电池、磷酸铁锂电池等。不同种类的二次电池因为其额定电压、额定容量、使用温度以及安全性, 有其不同的使用。在制造上许多电池种类的原料使用及制程上所使用的材料具有污染性,对环境以及人体具有相当大的影响。 碳锌电池 碳锌电池又称碳锌干电池、碳性电池、碳性电芯,外壳由锌构成。 既可以作为电池的容器,又可以作为电池的负极。碳锌电池是从液体Leelanche电池发展而来。传统或一般型以氯化铵为电解质;电池则

通常是使用氯化锌为电解质的碳锌电池,是一般使用的廉价电池的一种改良版。电池的正极主要是由粉末状的二氧化锰和碳构成。电解液 是把氯化锌和氯化铵溶于水中所形成的糊状溶液。碳锌电池是最便宜的原电池,因此成为很多厂商的首选,因为这些厂商所销售的设备中常常需要配送电池。锌碳电池可以用于遥控器、闪光灯、玩具或晶体管收音机等功率不大的设备。此电池正极的碳棒与二氧化锰中所混合的碳只负责引出电流,并不参与反应,正极实际参与还原反应并提供正电的是二氧化锰中的锰,因此,又称为锰锌电池、锌锰电池或锌一 氧化锰电池,也有简称锰干电池的。碳锌电池的电压为。 锌空气电池 锌空气电池(Zinc-air battery) 是一类结构特殊的品种。负极采用了锌合金。而正极材料,则是空气中的氧。在储存时一般保持密封, 所以基本上没有自放电。又称锌氧电池,有时也被称为锌空电池。由于锌空电池内部含有高浓度的电解质 (氢氧化钾具有强碱性、强腐蚀

太阳能电池基本特性实验报告

竭诚为您提供优质文档/双击可除太阳能电池基本特性实验报告 篇一:实验报告--太阳能电池伏安特性的测量 实验报告 姓名:张伟楠班级:F0703028学号:5070309108实验成绩:同组姓名:张家鹏实验日期:08.03.17指导教师:批阅日期: 太阳能电池伏安特性的测量 【实验目的】 1.了解太阳能电池的工作原理及其应用 2.测量太阳能电池的伏安特性曲线 【实验原理】 1.太阳电池的结构 以晶体硅太阳电池为例,其结构示意图如图1所示.晶体硅太阳电池以硅半导体材料制成大面积pn结进行工作.一般采用n+/p同质结的结构,即在约10cm×10cm面积的p型硅片(厚度约500μm)上用扩散法制作出一层很薄(厚度~0.3μm)的经过重掺杂的n型层.然后在n型层上面制作金属

栅线,作为正面接触电极.在整个背面也制作金属膜,作为背面欧姆接触电极.这样就形成了晶体硅太阳电池.为了减少光的反射损失,一般在整个表面上再覆盖一层减反射膜.图一太阳电池结构示意图 2.光伏效应 图二太阳电池发电原理示意图 当光照射在距太阳电池表面很近的pn结时,只要入射光子的能量大于半导体材料的禁带宽度eg,则在p区、n区和结区光子被吸收会产生电子–空穴对.那些在结附近n区中产生的少数载流子由于存在浓度梯度而要扩散.只要少数载流子离pn结的距离小于它的扩散长度,总有一定几率扩散到结界面处.在p区与n区交界面的两侧即结区,存在一空间电荷区,也称为耗尽区.在耗尽区中,正负电荷间形成一电场,电场方向由n区指向p区,这个电场称为内建电场.这些扩散到结界面处的少数载流子(空穴)在内建电场的作用下被拉向p区.同样,如果在结附近p区中产生的少数载流子(电子)扩散到结界面处,也会被内建电场迅速被拉向n区.结区内产生的电子–空穴对在内建电场的作用下分别移向n区和p区. 如果外电路处于开 路状态,那么这些光生电子和空穴积累在pn结附近,使p区获得附加正电荷,n区获得附加负电荷,这样在pn结

锂电池规格书

储能型磷酸铁锂电池规格书 STORAGE LiFePO4 BATTERY SPECIFICATIONS 客户名称(Customer): 产品型号(Type): CF12V80Ah 发行日期(Issuing Date): 1. 适用范围(Product Scope) 本规格书描述了锂离子二次电池的技术要求、测量方法、运输、储存及注意事项。 This Specification describes the requirements of the lithium ion rechargeable battery supplied by Prepared 制定 Checked 审核 Approved 批准

2. 电池组特性(Battery Group Specifications) Cell 电芯 Model规格型号IFP8081230-10Ah Capacity容量10 Ah Rated Voltage 标称电压 3.2 V Internal Resistance 内阻标准≤4 mΩ Combination Standard配组标准 A. 容差Capacity Difference≤1% B. 内阻Resistance()=1~2 mΩ C. 荷电保持能力Current-maintaining Ability≥90% D. 电压Voltage3.3~3.4V Combination Method组合方式4串8并4S 8P Pile Index 成品参数 Rated Capacity 标称容量80.0Ah Minimal Capacity最小容量(0.3C5A)80.0Ah Nominal Voltage额定电压12.0V Max. Charge Voltage 最大充电电压14.8 V Discharge cut-off voltage放电截止电压10.0V Charge Current充电电流5-10A Working Current工作电流10-20A Output and Inpu t输出端与输入端P+(red) / P-(black) Weight电池重量9.2Kg Dimension外形尺寸(L×W×H)168×260×132mm(不包含外露开关) Charge Method 适用充电 Standard标准5A×16hrs Quick快速20A×4hrs. Operating Temperature 适用温度 Charge充电0℃~45℃;32o F~113o F Discharge放电-20℃~60℃;-4o F~149o F

太阳能电池关于温度的综述

关于硅和砷化镓太阳能电池组件在热性能方面的综述 摘要: 本综述总结了近年来在结晶和非晶硅太阳能电池组件领域获得的温度性能。它给出了一个通用的结果分析和评论的应用程序构建集成光伏(PV)热系统,将光能转化成电能,热能等。空气冷却和水冷却以及“混合式”光伏热太阳能收集器也被提及到。本文还包括非晶硅太阳能模块在塑料薄膜,薄膜太阳能电池等方面的灵活应用以及对将来这方面的展望。其主要包括对光伏模块传热机制的实验结果的分析。 关键词:太阳能电池;光伏;太阳能;能量转换;混合系统 目录 1.介绍﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒408 1.1.太阳能电池早期研究的回顾﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒408 1.2.半导体硅和砷化镓的温度上限﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒410 2.高温太阳能电池和组件的影响:理论背景﹒﹒﹒﹒﹒﹒﹒﹒﹒411 2.1.热对硅太阳能电池的输出参数的影响﹒﹒﹒﹒﹒﹒﹒﹒41

1 2.2.硅太阳能电池的温度系数﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒411 2.2.1.短路电流﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒411 2.2.2.暗电流﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒412 2.2.3.开路电压﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒412 2.2.4.输出功率﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒412 2.3.照明光源对输出参数的影响﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒4 13 3.光伏热电混合太阳能系统﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 413 3.1.空气冷却﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒414 3.2.水冷却﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒414 3.2.1.冷却组件中的输出温度﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒

太阳能电池的原理与特性

学校代码学号00909017 分类号密级 太阳能电池期末论文 学院、系物理科学与技术学院 专业名称应用物理学 年级2009 学生姓名郭建宽 学号00909017 指导教师王延来 2012年11 月16 日

简述太阳能电池的原理与特性 内容摘要:太阳能是一种辐射能,它必须借助于能量转换器才能变换成为电能。这个把太阳能(或其他光能)变换成电能的能量转换器,就叫做太阳能电池。太阳能电池的电性能与制造电池所用半导体材料的特性有关。在太阳光或其他光照射时,太阳能电池输出电压的极性,p 型一侧电极为正,n 型一侧电极为负。 关键字:能量极性光谱响应 一、太阳能电池的基本工作原理 太阳能是一种辐射能,它必须借助于能量转换器才能变换成为电能。这个把太阳能(或其他光能)变换成电能的能量转换器,就叫做太阳能电池。太阳能电池工作原理的基础,是半导体p-n 结的“光生伏打”效应。所谓光生伏打效应,简单地说,就是当物体受到光照时,其体内的电荷分布状态发生变化而产生电动势和电流的一种效应。在气体、液体和固体中均可产生这种效应,但在固体尤其是在半导体中,光能转换为电能的效率特别高。因此半导体中的光电效应引起人们的格外关注,研究得最多,并发明制造出了半导体太阳能电池。可将半导体太阳能电池的发电过程概括成如下4点:(1)首先是收集太阳光和其他光使之照射到太阳能电池表面上。(2)太阳能电池吸收具有一定能量的光子,激发出非平衡载流子(光生载流子)—电子-空穴对。这些电子和空穴应有足够的寿命,在它们被分离之前不会复合消失。(3)这些电性符号相反的光生载流子在太阳能电池p-n 结内建电场的作用下,电子- 空穴对被分离,电子集中在一边,空穴集中在另一边,在p-n 结两边产生异性电荷的积累,从而产生光生电动势,即光生电压。(4)在太阳能电池p-n 结的两侧引出电极,并接上负载,则在外电路中即有光生电流通过,从而获得功率输出,这样太阳能电池就把太阳能(或其他光能)直接转换成了电能。下面以单晶硅太阳能电池为例,对太阳能电池的基本工作原理进行具体阐述。众所周知,物质的原子是由原子核和电子组成的。原子核带正电,电子带负电。电子就像行星围绕太阳转动一样,按照一定的轨道绕着

IFR 14500-500mAh 3.2V磷酸铁锂电池规格书超详细版

地址:广东省深圳市坪山新区金荔科技园4栋 TEL:86(0)0755-2308 8336 FAX:86(0)0755-2308 8396 DATE: 2015/11/04 Cylindrical LIFEPO4 Battery Specification 圆柱型磷酸铁锂电池规格书MODEL/型号: IFR 14500-500mAh 3.2V Prepared By/Date 编制/日期Checked By/Date 审核/日期 Approved By/Date 批准/日期 冯时春/2015.11.04 Customer Approval 客户批准 Signature 确认 Date 日期 Company Name: 公司名称: Company Stamp: 客户印章: --- 保密文件---

地址:广东省深圳市坪山新区金荔科技园4栋 TEL:86(0)0755-2308 8336 FAX:86(0)0755-2308 8396 DATE: 2015/11/04 Amendment Records (修正记录) Edition (版本) Description (记述) Prepared by (编制) Approved by (批准) Date (日期) A First Publish 冯时春2015/11/04

地址:广东省深圳市坪山新区金荔科技园4栋 TEL:86(0)0755-2308 8336 FAX:86(0)0755-2308 8396 DATE: 2015/11/04 1 Scope(适用范围) This specification is applied to the reference battery in this Specification that manufactured by Yinkai Power Technology Co., Ltd. 本说明书适用于本书中所提及的银凯动力科技有限公司制造的电池。 2 Product Specification(产品技术规格) Table 1 (表1) No. (序号) Item (项目) General Parameter (常规参数) Remark (备注) 1 Rated Capacity (额定容量) Typical (标称容量) 500mAh Standard discharge(0.2C 5 A) after Standard charge (标准充电后0.2C5A标准放电) Minimum (最小容量) 475mAh 2 Nominal Voltage (正常电压) 3.2V Mean Operation Voltage (即工作电压) 3 Voltage at end of Discharge (放电终止电压) 2.0V Discharge Cut-off Voltage (放电截止电压) 4 Charging Voltage (充电电压) 3.65V 5 来料电压≥3.3V 6 Internal Impedance (内阻) ≤80mΩ Internal resistance measured at AC 1KH Z after 50% charge (半电态下用交流法测量内阻) The measure must uses the new batteries that within one week after shipment and cycles less than 5 times (使用出货后不到一个星期及循 环次数少于5次的新电池测量) 7 Standard charge (标准充电) Constant Current 0.2C5A Constant Voltage 3.65V 0.01 C cut-off (持续电流:0.2C5A 持续电压:3.65V 截止电流:0.01 C) 8 Standard discharge (标准放电) Constant current 0.2C5A end voltage 2.0V (持续电流:0.2C5A 截止电压:2.0V)

相关文档
最新文档