09-16大学生数学竞赛真题(非数学类)

09-16大学生数学竞赛真题(非数学类)
09-16大学生数学竞赛真题(非数学类)

2009年 第一届全国大学生数学竞赛预赛试卷

一、填空题(每小题5分,共20分)

1.计算=--++??y x y

x x y

y x D

d d 1)

1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.

2.设)(x f 是连续函数,且满足?

--

=20

22d )(3)(x x f x x f , 则=)(x f ____________.

3.曲面22

22

-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则

=2

2d d x y

________________.

二、(5分)求极限x

e

nx x x x n

e e e )(

lim 20+++→Λ,其中n 是给定的正整数.

三、(15分)设函数)(x f 连续,?

=10

d )()(t xt f x g ,

且A x

x f x =→)

(lim 0

,A 为常数,

求)(x g '并讨论)(x g '在0=x 处的连续性.

四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:

(1)??

-=---L

x y L

x y

x ye y xe x ye y xe

d d d d sin sin sin sin ;

(2)2sin sin 2

5

d d π?

≥--L

y y

x ye y xe .

五、(10分)已知x x e xe y 21+=,x

x e xe y -+=2,x

x x e e xe y --+=23是某二阶常系数

线性非齐次微分方程的三个解,试求此微分方程.

六、(10分)设抛物线c bx ax y ln 22

++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为3

1

.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.

七、(15分)已知)(x u n 满足),2,1()()(1Λ=+='-n e x x u x u x n n n

, 且n

e

u n =)1(, 求函数项级数∑∞

=1

)(n n

x u

之和.

八、(10分)求-

→1x 时, 与∑∞

=0

2

n n x

等价的无穷大量.

2010年 第二届全国大学生数学竞赛预赛试卷

一、(25分,每小题5分)

(1)设2

2(1)(1)(1),n

n x a a a =+++L 其中||1,a <求lim .n n x →∞

(2)求2

1lim 1x x

x e

x -→∞

??

+ ???

。 (3)设0s >,求0

(1,2,)sx n I e x dx n ∞

-=

=?

L 。

(4)设函数()f t 有二阶连续导数,1(,)r g x y f r ??

== ???

,求2222g g x y ??+??。

(5)求直线10:0

x y l z -=??=?与直线2213

:421x y z l ---==

--的距离。

二、(15分)设函数()f x 在(,)-∞+∞上具有二阶导数,并且

()0,lim ()0,lim ()0,x x f x f x f x αβ→+∞

→-∞

''''>=>=<且存在一点0x ,使得0()0f x <。

三、(15分)设函数()y f x =由参数方程2

2(1)()x t t t y t ψ?=+>-?

=?

所确定,其中()t ψ具有二阶导数,曲线()y t ψ=与2

2

1

3

2t u y e du e

-=+

?

在1t =出相切,求函数()t ψ。

四、(15分)设1

0,,n

n n k k a S a =>=

∑证明:

(1)当1α>时,级数

1n n n

a S α+∞

=∑收敛; (2)当1α≤且()n s n →∞→∞时,级数1n n n

a S α+∞

=∑发散。

五、(15分)设l 是过原点、方向为(,,)αβγ,(其中222

1)αβγ++=的直线,均匀椭球

222

222

1x y z a b c ++≤,其中(0,c b a <<<密度为1)绕l 旋转。 (1)求其转动惯量;

(2)求其转动惯量关于方向(,,)αβγ的最大值和最小值。

六、(15分)设函数()x ?具有连续的导数,在围绕原点的任意光滑的简单闭曲线C 上,曲线

积分

422()c

xydx x dy

x y ?++??的值为常数。 (1)设L 为正向闭曲线2

2

(2)1,x y -+=证明

422()0;c

xydx x dy

x y ?+=+?? (2)求函数()x ?;

(3)设C 是围绕原点的光滑简单正向闭曲线,求422()c

xydx x dy

x y ?++??。

2011年 第三届全国大学生数学竞赛预赛试卷

一. 计算下列各题(本题共3小题,每小题各5分,共15分)

(1).求11cos 0

sin lim x

x x x -→??

???

(2).求1

11lim ...12n n n n n →∞??+++ ?+++?

?;

(3)已知()2ln 1arctan t

t x e y t e ?=+?

?=-??

,求22d y dx 。

二.(本题10分)求方程

()()2410x y dx x y dy +-++-=的通解。

三.(本题15分)设函数f(x)在x=0的某邻域内具有二阶连续导数,且

()()()'"0,0,0f f f 均不为

0,证明:存在唯一一组实数123,,k k k ,使得

()()()()

1232

230lim

0h k f h k f h k f h f h

→++-=。

四.(本题17分)设

222

1222:1x y z a b c

∑++=,其中0

a b c >>>,

2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点

距离的最大值和最小值。

五.(本题16分)已知S 是空间曲线2231

x y z ?+=?=?绕y 轴旋转形成的椭球面的上半部

分(0z

≥)取上侧,∏是S 在(),,P

x y z 点处的切平面,(),,x y z ρ是原点到切

平面∏的距离,,,λμν表示S 的正法向的方向余弦。计算:

(1)(),,S

z

dS x y z ρ??;(2)()3S z x y z dS λμν++??

六.(本题12分)设f(x)是在

(),-∞+∞内的可微函数,且()()f x mf x <、,其

中01m <<,任取实数0a ,定义()1ln ,1,2,...,n n a f a n -==证明:

()11

n

n n a

a ∞

-=-∑绝对收敛。

七.(本题15分)是否存在区间

[]0,2上的连续可微函数f(x),

满足()()021f f ==, ()()2

01,1f

x f x dx ≤≤?、

?请说明理由。

2012年 第四届全国大学生数学竞赛预赛试卷

一、(本大题共5小题,每小题6分共30分)解答下列个体(要求写出要求写出重要步骤)

(1) 求极限2

1

)!(lim n n n ∞

(2) 求通过直线???=+-+=+-+0

34550

232:z y x z y x l 的两个互相垂直的平面1π和2π,使其中

一个平面过点)1,3,4(-。

(3) 已知函数by

ax e

y x u z +=),(,且02=???y

x u

。确定常数a 和b ,使函数),(y x z z =满足方程

02=+??-??-???z y

z

x z y x z (4) 设函数)(x u u =连续可微,1)2(=u ,且udy u x udx y x )()2(3+++?在右半平面与路径无关,求),(y x u 。

(5) 求极限dt t

t t x x x x cos sin lim 13

+?++∞→

二、(本题10分)计算dx x e x sin 20

-∞+?

三、求方程50121

sin

2-=x x

x 的近似解,精确到0.001. 四、(本题12分)设函数)(x f y =二阶可导,且0)(>''x f ,0)0(=f ,0)0(='f ,

求u x f u f x x 330sin )()

(lim →,其中u 是曲线)(x f y =上点))(,(x f x P 处的切线在x 轴上的截距。

五、(本题12分)求最小实数C ,使得满足1)(10

=?

dx x f 的连续函数)(x f 都 有

C dx x f ≤?

)(10

六、(本题12分)设)(x f 为连续函数,0>t 。区域Ω是由抛物面22y x z += 和球面2222t z y x =++)0(>z 所围起来的部分。定义三重积分 dv z y x f t F )()(222++=???Ω

求)(t F 的导数)(t F ''

七、(本题14分)设n n a ∑∞=1

与n n b ∑∞

=1

为正项级数,证明:

(1)若()01

lim 1

1>-++∞→n n n n n b b a a ,则级数n n a ∑∞

=1收敛; (2)若()01

lim 11<-++∞→n n

n n n b b a a ,且级数n n b ∑∞=1发散,则级数n n a ∑∞

=1发散。

2013年 第五届全国大学生数学竞赛预赛试卷

一、 解答下列各题(每小题6分共24分,要求写出重要步骤)

1.

求极限(

lim 1sin n

n →∞

+.

2.证明广义积分

sin x

dx x

+∞

?

不是绝对收敛的 3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值。

4.

过曲线)0y x ≥上的点A 作切线,使该切线与曲线及x 轴所围成的平面图形的

面积为3

4

,求点A 的坐标。

二、(满分12)计算定积分2

sin arctan 1cos x

x x e I dx x

π

π

-?=

+?

三、(满分12分)设()f x 在0x =处存在二阶导数()0f '',且()

lim

0x f x x

→=。证明 :级数11n f n

=??

???

∑收敛。

四、(满分12分)设()()(),0f x f x a x b ππ'≤≥>≤≤,证明()2

sin b

a

f x dx m

?

五、(满分14分)设∑是一个光滑封闭曲面,方向朝外。给定第二型的曲面积分()()()33323I x x dydz y y dzdx z z dxdy ∑

=-+-+-??。试确定曲面

∑,使积分I 的值最小,并求该最小值。

六、(满分14分)设()()

2

2a a

C

ydx xdy

I r x

y

-=+?

?,其中a 为常数,曲线C 为椭

圆222x xy y r ++=,取正向。求极限()lim

a r I r →+∞

七(满分14分)判断级数()()

1111212n n n n ∞

=+

++++∑L 的敛散性,若收敛,求其和。

2014年 全国大学生数学竞赛预赛试题

一、 填空题(共有5小题,每题6分,共30分)

1. 已知x

e y =1和x

xe y =1是齐次二阶常系数线性微分方程的解,则该方程是___

2. 设有曲面2

22:y x z S +=和平面022:=++z y x L 。则与L 平行的S 的切平面方程是

_______________________________ 3. 设函数)(x y y =由方程?

-???

??=

x

y dt t x 1

24sin π所确定。求==0

x dx dy _______________ 4. 设∑=+=

n

k n k k

x 1

)!1(。则=∞→n n x lim ______________________ 5. 已知3

1

)(1lim e x x f x x

x =??

? ??

++→。则=→20)(lim x x f x ____________________

二、 (本题12分)设n 为正整数,计算?

-??

?

??=

1

21ln cos π

n e dx x dx d I 。

三、 (本题14分)设函数)(x f 在]1,0[上有二阶导数,且有正常数B A ,使得

B x f ≤|)("|。证明:对任意]1,0[∈x ,有2

2|)('|B A x f +

≤。

四、 (本题14分)(1)设一球缺高为h ,所在球半径为R 。证明该球缺体积为

2)3(3

h h R -π

。球冠面积为Rh π2;

(2)设球体12)1()1()1(2

22≤-+-+-z y x 被平面6:=++z y x P 所截得小球缺为Ω,记球冠为∑,方向指向球外。求第二型曲面积分

??∑

++=zdxdy ydzdx xdydz I

五、 (本题15分)设f 在],[b a 上非负连续,严格单增,且存在],[b a x n ∈,使得

?-=b

a

n n

n dx x f a b x f )]([1)]([。求n n x ∞→lim

六、 (本题15分)设2222221n n n n n n n A n ++++++=Λ。求??

?

??-∞→n n A n 4lim π

2015年 第七届全国大学生数学竞赛预赛试卷

一、填空题(每小题6分,共5小题,满分30分)

(1)极限2222sin sin sin lim 12n n n n n n n n πππ→∞?? ?+++= ?+++ ???

L . (2)设函数(),z z x y =由方程,0z z F x y y x ??

+

+= ???

所决定,其中(),F u v 具有连续偏导数,且0u v xF yF +≠。则z z

x

y x y

??+=?? . (3)曲面2

2

1z x y =++在点()1,1,3M -的切平面与曲面所围区域的体积是 .

(4)函数()[)[)

3,5,00.0,5x f x x ?∈-?=?∈??在(]5,5-的傅立叶级数在0x =收敛的值是 . (3)设区间()0,+∞上的函数()u x 定义域为的()2

xt u x e dt +∞

-=

?

,则()u x 的初等函数表

达式是 .

二、(12分)设M 是以三个正半轴为母线的半圆锥面,求其方程。

三、(12分)设()f x 在(),a b 内二次可导,且存在常数,αβ,使得对于(),x a b ?∈,有

()()()f x f x f x αβ'=+,则()f x 在(),a b 内无穷次可导。

四、(14分)求幂级数()()30211!

n

n n x n ∞

=+-+∑的收敛域,及其和函数。

五、(16分)设函数()f x 在[]0,1上连续,且()()11

0,1f x dx xf x dx ==??

。试证:

(1)[]00,1x ?∈使()04f x > (2)[]10,1x ?∈使()14f x =

六、(16分)设(),f x y 在2

2

1x y +≤上有连续的二阶偏导数,且222

2xx xy yy f f f M ++≤。

()()()0,00,0,00,00,x y f f f ===证明:

(

)221

,4

x y f x y dxdy +≤≤

??

2016年 第八届全国大学生数学竞赛

一、填空题(每小题5分,满分30分)

1、若()f x 在点x a =可导,且()0f a ≠,则()1lim n

n f a n f a →∞

????+ ? ???

?= ? ???

.

2、若()10f =,()1f '存在,求极限()()

2

20

sin cos tan 3lim

1sin x x f x x x

I e

x

→+=-.

3、设()f x 有连续导数,且()12f =,记(

)

2x z f e y =,若z

z x

?=?,求()f x 在0x >的表达式.

4、设()sin 2x f x e x =,求02

n a <<π

,()

()40f

.

5、求曲面2

2 2

x z y =+平行于平面220x y z +-=的切平面方程.

二、(14分)设()f x 在[]0,1上可导,()00f =,且当()0,1x ∈,()01f x '<<, 试证当()0,1a ∈,()()()2

30

a

a

f x dx

f x dx >?

?

.

三、(14分)某物体所在的空间区域为2

2

2

:22x y z x y z Ω++≤++,密度函数为

222()

222

四、(14分)设函数()f x 在闭区间[]0,1上具有连续导数,()00f =,()11f =,

证明:()10

111lim 2n

n k k n f x dx f

n n →∞=??

??-=- ? ?

????

∑?.

五、(14分)设函数()f x 在闭区间[]0,1上连续,且()1

0I f x dx =≠?,证明:在()0,1内

存在不同的两点12,x x ,使得()()12112

f x f x I

+=.

六、设()f x 在(),-∞+∞可导,且()(

)(2f x f x f x =+=. 用Fourier 级数理论证明()f x 为常数.

最新全国大学生数学竞赛简介

全国大学生数学竞赛 百度简介

中国大学生数学竞赛

该比赛指导用书为《大学生数学竞赛指导》,由国防科技大学大学数学竞赛指导组组织编写,已经由清华大学出版社出版。 编辑本段竞赛大纲 中国大学生数学竞赛竞赛大纲 (2009年首届全国大学生数学竞赛) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分

一、集合与函数 1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、上的闭矩形套定理、聚点定理、有限覆盖定理、基本点列,以及上述概念和定理在上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性),归结原则和Cauchy收敛准则,两个重要极限及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O与o的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学

全国大学生数学竞赛预赛试题

第一届全国大学生数学竞赛预赛试题 一、填空题(每小题5分,共20分) 1.计算__ ,其中区域由直线与两坐标轴所围成三角形区域. 2.设是连续函数,且满足, 则____________. 3.曲面平行平面的切平面方程是__________. 4.设函数由方程确定,其中具有二阶导数,且,则_____. 二、(5分)求极限,其中是给定的正整数. 三、(15分)设函数连续,,且,为常数,求并讨论在处的连续性. 四、(15分)已知平面区域,为的正向边界,试证: (1);(2) . 五、(10分)已知,,是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线过原点.当时,,又已知该 抛物线与轴及直线所围图形的面积为.试确定,使此图形绕轴旋转一周而成的旋转体的体积最小. 七、(15分)已知满足, 且, 求函 数项级数之和. 八、(10分)求时, 与等价的无穷大量.

第二届全国大学生数学竞赛预赛试题 一、(25分,每小题5分) (1)设其中求(2)求。 (3)设,求。 (4)设函数有二阶连续导数,,求。 (5)求直线与直线的距离。 二、(15分)设函数在上具有二阶导数,并且 且存在一点,使得,证明:方程在恰有两个实根。 三、(15分)设函数由参数方程所确定,其中具 有二阶导数,曲线与在出相切,求函数。 四、(15分)设证明:(1)当时,级数收敛; (2)当且时,级数发散。 五、(15分)设是过原点、方向为,(其中的直线,均 匀椭球,其中(密度为1)绕旋转。(1)求其转动惯量;(2)求其转动惯量关于方向的最大值和最小值。 六、(15分)设函数具有连续的导数,在围绕原点的任意光滑的简单闭曲线上,曲线积分的值为常数。(1)设为正向闭曲线

原创!!全面大学生数学竞赛试题

2011年数学竞赛练习题C_3解答 1. 设数列{}n x 满足: 11 sin (2)sin 11 n n x n n n <<+++, 则1 1lim 1n k n k x n →∞==+∑_______。 11 sin (2)sin 111 n n n x n x n n <<+∴→++解 ; Q 1 1 1 1lim lim lim lim 1111n n k k n k k k n n n n k x x n n x n n n n n ==→∞→∞→∞→∞ =∴=?=?=+++∑∑∑ 2.设曲线()y f x =与sin y x =在原点相切, 则极限lim n ________。 (0)0,(0)1n n f f '===已知有: 2. 设(1n n a b =+, 其中,n n a b 为正整数,lim n n n a b →∞=__ 2224 113 (1) 1)3)(13)3) )()3) ) n n n n n n n C C C C C C =+++ =+++++ 224 41133(1(1)() n n n n n C C C C =++-++ (1=+(1=n n n n n n a b a b a b -所以,若则解得:

lim =n n n n n a b →∞∴= 3. 设()f x 有连续导数且0 () lim 0x f x a x →=≠, 又20 ()()()x F x x t f t dt =-?, 当0x →时()F x '与n x 是同阶无穷小, 则n =________。 2020 ()()()()()x x x F x x t f t dt x f t dt tf t dt =-=-? ?? 20 ()2()()()x F x x f t dt x f x xf x '=+-? 0() lim 0x F x x →'=显然 20 2 02()()() lim x x x f t dt x f x xf x x →+-?考虑: 2()() lim lim ()x x x f t dt f x f x x →→-=+? 2()() lim lim ()x x x f t dt f x f x x →→-=+? 2()() lim lim 0x x x f t dt f x x x →→=-+?0a =-≠ 2n ∴= 5. ()f x ∞设在[1,+)上可导,下列结论成立的是:________。 +lim ()0()x f x f x →∞ '=∞A.若,则在[1,+)上有界;

全国大学生数学竞赛试题及答案

河北省大学生数学竞赛试题及答案 一、(本题满分10 分) 求极限))1(21(1 lim 222222--++-+-∞→n n n n n n Λ。 【解】 ))1(21(12 22222--++-+-= n n n n n S n Λ 因 21x -在]1,0[上连续,故dx x ?1 02-1存在,且 dx x ? 1 2 -1=∑-=∞→-1 21 .)(1lim n i n n n i , 所以,= ∞ →n n S lim n dx x n 1lim -11 2∞→-? 4 -1102π ==?dx x 。 二、(本题满分10 分) 请问c b a ,,为何值时下式成立.1sin 1 lim 22 0c t dt t ax x x b x =+-?→ 【解】注意到左边得极限中,无论a 为何值总有分母趋于零,因此要想极限存在,分子必 须为无穷小量,于是可知必有0=b ,当0=b 时使用洛必达法则得到 22 022 01)(cos lim 1sin 1lim x a x x t dt t ax x x x x +-=+-→→?, 由上式可知:当0→x 时,若1≠a ,则此极限存在,且其值为0;若1=a ,则 21)1(cos lim 1sin 1lim 22 220-=+-=+-→→?x x x t dt t ax x x x b x , 综上所述,得到如下结论:;0,0,1==≠c b a 或2,0,1-===c b a 。 三、(本题满分10 分) 计算定积分? += 2 2010tan 1π x dx I 。

【解】 作变换t x -= 2 π ,则 =I 22 20π π = ?dt , 所以,4 π= I 。 四、(本题满分10 分) 求数列}{1n n - 中的最小项。 【解】 因为所给数列是函数x x y 1- =当x 分别取ΛΛ,,,3,2,1n 时的数列。 又)1(ln 21-=--x x y x 且令e x y =?='0, 容易看出:当e x <<0时,0<'y ;当e x >时,0>'y 。 所以,x x y 1-=有唯一极小值e e e y 1)(-=。 而3 3 1 2 132> ? <

全国大学生数学竞赛简介资料

全国大学生数学竞赛 第一届 2009年,第一届全国大学生数学竞赛由中国数学会主办、国防科学技术大学承办。该比赛将推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才。 第二届 2011年3月,历时十个月的第二届全国大学生数学竞赛在北京航空航天大学落幕。来自北京、上海、天津、重庆等26个省(区、市)数百所大学的274名大学生进入决赛,最终,29人获得非数学专业一等奖,15人获数学专业一等奖。这次赛事预赛报名人数达3万余人,已成为全国影响最大、参加人数最多的学科竞赛之一。 竞赛用书 该比赛指导用书为《大学生数学竞赛指导》,由国防科技大学大学数学竞赛指导组组织编写,已经由清华大学出版社出版。 竞赛大纲 中国大学生数学竞赛竞赛大纲 (2009年首届全国大学生数学竞赛) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 1.竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 1.竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。(一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分 1.集合与函数 2. 1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性 定理、闭区间套定理、聚点定理、有限覆盖定理. 3. 2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、 上的闭矩形套定理、聚点定理、有限覆盖定理、基本点列,以及上述概念和定理在上的推广.

历届全国大学生数学竞赛预赛试卷

全国大学生数学竞赛预赛试卷(非数学类) 2009年 第一届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,共20分) 1. 计算()ln(1) d y x y x y ++=??,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足22 ()3()d 2f x x f x x =--? ,则()f x =. 3.曲面2 222 x z y =+-平行平面022=-+z y x 的切平面方程是. 4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且 1≠'f ,则=22d d x y . 二、(5分)求极限x e nx x x x n e e e )(lim 20+++→Λ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,10()() g x f xt dt =?,且A x x f x =→) (lim 0,A 为常数,求()g x '并讨论)(x g '在0=x 处的连续性. 四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证: (1)??-=---L x y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 2 5d d π?≥--L y y x ye y xe . 五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为3 1.试确定 c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积V 最小. 七、(15分)已知)(x u n 满足1()()1,2,n x n n u x u x x e n -'=+=L ,且n e u n =)1(,求 函数项级数∑∞ =1 )(n n x u 之和.

大学生数学竞赛真题非数学类

2009年第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足? -- =20 22d )(3)(x x f x x f ,则=)(x f ____________. 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则 =2 2d d x y ________________. 二、(5分)求极限x e nx x x x n e e e )( lim 20+++→Λ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,? =10 d )()(t xt f x g , 且A x x f x =→) (lim 0 ,A 为常数, 求)(x g '并讨论)(x g '在0=x 处的连续性. 四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证: (1)?? -=---L x y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 2 5 d d π? ≥--L y y x ye y xe . 五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数 线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线c bx ax y ln 22 ++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为3 1 .试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小. 七、(15分)已知)(x u n 满足),2,1()()(1Λ=+='-n e x x u x u x n n n ,且n e u n =)1(,求函数项级数 ∑∞ =1 )(n n x u 之和. 八、(10分)求- →1x 时,与 ∑∞ =0 2 n n x 等价的无穷大量.

中国大学生数学竞赛竞赛大纲(数学专业类).

中国大学生数学竞赛竞赛大纲(数学专业类) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分 一、集合与函数 1. 实数集 、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 2上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、2上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在n 上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性 定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy 准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限1lim(1)n n e n →∞+=及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式 性质、迫敛性),归结原则和Cauchy 收敛准则,两个重要极限sin 10lim 1,lim(1)x x x x x x e →→∞ =+=及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O 与o 的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学 1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性. 2.微分学基本定理:Fermat 定理,Rolle 定理,Lagrange 定理,Cauchy 定理,Taylor 公式(Peano 余项与Lagrange 余项). 3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、

全国大学生数学竞赛决赛试题(非数学类)

首届全国大学生数学竞赛决赛试卷 (非数学类) 考试形式: 闭卷 考试时间: 150 分钟 满分: 100 分. 一、 计算下列各题(共20分,每小题各5分,要求写出重要步骤). (1) 求极限1 21lim (1)sin n n k k k n n π-→∞=+∑. (2) 计算 2∑其中∑ 为下半球面z =0a >. (3) 现要设计一个容积为V 的一个圆柱体的容器. 已知上下两底的材料费为单位面积a 元,而侧面的材料费为单位面积b 元.试给出最节省的设计方案:即高与上下底的直径之比为何值时所需费用最少? (4) 已知()f x 在11,42?? ???内满足 331()sin cos f x x x '=+,求()f x .

二、(10分)求下列极限 (1) 1lim 1n n n e n →∞????+- ? ? ?????; (2) 111lim 3n n n n n a b c →∞??++ ? ? ???, 其中0,0,0a b c >>>. 三、(10分)设()f x 在1x =点附近有定义,且在1x =点可导, (1)0,(1)2f f '==. 求 220(sin cos )lim tan x f x x x x x →++. 四、(10分) 设()f x 在[0,)+∞上连续,无穷积分0()f x dx ∞?收敛. 求 0 1lim ()y y xf x dx y →+∞?.

五、五、(12分)设函数()f x 在[0,1]上连续,在(0,1)内可微,且 1(0)(1)0,12f f f ??=== ???. 证明:(1) 存在 1,12ξ??∈ ???使得()f ξξ=;(2) 存在(0,)ηξ∈使得()()1f f ηηη'=-+. 六、(14分)设1n >为整数, 20()1...1!2!!n x t t t t F x e dt n -??=++++ ????. 证明: 方程 ()2n F x =在,2n n ?? ???内至少有一个根.

全国大学生数学竞赛大纲(数学专业组)

中国大学生数学竞赛竞赛大纲(数学专业组) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分 一、集合与函数 1. 实数集 、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 2 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、2 上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在n 上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy 准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限1lim(1)n n e n →∞+=及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式 性质、迫敛性),归结原则和Cauchy 收敛准则,两个重要极限sin 10lim 1,lim(1)x x x x x x e →→∞ =+=及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O 与o 的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学 1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性. 2.微分学基本定理:Fermat 定理,Rolle 定理,Lagrange 定理,Cauchy 定理,Taylor 公式(Peano 余项与Lagrange 余项). 3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、

历届全国大学生数学竞赛真题及答案非数学类

高数竞赛预赛试题(非数学类) (参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书 及相关题目,主要是一些各大高校的试题。) 2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 11 10 det d d =??? ? ? ?-=, v u u v u u u y x y x x y y x D D d d 1ln ln d d 1) 1ln()(????--= --++ ????----=---=10 2 1 00 0d 1)ln (1ln d )d ln 1d 1ln ( u u u u u u u u u u v v u u v u u u u u ? -=1 2 d 1u u u (*) 令u t -=1,则21t u -= dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-, ?+--=0 1 42d )21(2(*)t t t ? +-=10 42d )21(2t t t 1516513 2 21 053= ??????+-=t t t 2.设)(x f 是连续函数,且满足? -- =20 22d )(3)(x x f x x f , 则=)(x f ____________. 解: 令? = 20 d )(x x f A ,则23)(2--=A x x f , A A x A x A 24)2(28d )23(20 2-=+-=--= ? , 解得34= A 。因此3 10 3)(2-=x x f 。 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是__________.

历届全国大学生数学竞赛真题

高数竞赛预赛试题(非数学类) 2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足? -- =20 22d )(3)(x x f x x f , 则=)(x f ____________. 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln ) (y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则 =2 2d d x y ________________. 二、(5分)求极限x e nx x x x n e e e )(lim 20+++→ ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,?=10d )()(t xt f x g ,且A x x f x =→) (lim 0,A 为常数,求) (x g '并讨论)(x g '在0=x 处的连续性. 四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证: (1)?? -=---L x y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 2 5 d d π? ≥--L y y x ye y xe . 五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线 与x 轴及直线1=x 所围图形的面积为3 1 .试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小. 七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n , 且n e u n =)1(, 求函数项级数 ∑∞ =1 )(n n x u 之和. 八、(10分)求- →1x 时, 与∑∞ =0 2 n n x 等价的无穷大量.

大学生数学竞赛习题及详细解答

一、 填空题(每小题4分,共40分) 1. 设 ? ????? +=∞→x t x x t t f 2)11(lim )(,则=')(t f . 解:)(t f t x x x t 2)11(lim ?? ???? +=∞ →t te 2=,t t t e t te e t f 222)21(2)(+=+='∴. 2. 设曲线L 的方程为t e x 2=,t e t y --=,则L 的拐点个数为 . 解:)(2 1213-22t t t t t t e e e e x y dx dy += += ' '=--, )32(4 12/)32(2 15-423-22 2 t t t t t t t e e e e e x dx dy dx y d +- =--= '' ?? ? ??=--. 02 2

09-16大学生数学竞赛真题(非数学类)

2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足? -- =20 22d )(3)(x x f x x f , 则=)(x f ____________. 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则 =2 2d d x y ________________. 二、(5分)求极限x e nx x x x n e e e )( lim 20+++→ ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,? = 10 d )()(t xt f x g ,且A x x f x =→) (lim ,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性. 四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证: (1)?? -=---L x y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 2 5 d d π? ≥--L y y x ye y xe . 五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系 数线性非齐次微分方程的三个解,试求此微分方程.

大学生数学竞赛(非数)试题及答案

大学生数学竞赛(非数学类)试卷及标准答案 考试形式: 闭卷 考试时间: 120 分钟 满分: 100 分. 一、填空(每小题5分,共20分). 计算)cos 1(cos 1lim 0x x x x --+→= . (2)设() f x 在2x =连续,且2 ()3 lim 2 x f x x →--存在,则(2)f = . (3)若tx x x t t f 2)1 1(lim )(+=∞→,则=')(t f . (4)已知()f x 的一个原函数为2ln x ,则()xf x dx '?= . (1) 2 1. (2) 3 . (3)t e t 2)12(+ . (4)C x x +-2 ln ln 2. 二、(5分)计算 dxdy x y D ??-2 ,其中 1010≤≤≤≤y x D ,:. 解: dxdy x y D ?? -2= dxdy y x x y D )(2 1:2 -??<+ ?? ≥-2 2:2 )(x y D dxdy x y -------- 2分 =dy y x dx x )(2 210 -??+dy x y dx x )(1 2102??- -------------4分 姓名: 身份证号 所在院校: 年级 专业 线 封 密 注意:1.所有答题都须写在此试卷纸密封线右边,写在其它纸上一律无效. 2.密封线左边请勿答题,密封线外不得有姓名及相关标记.

= 30 11 -------------5分. 三、(10分)设)](sin[2 x f y =,其中f 具有二阶 导数,求22dx y d . 解: )],(cos[)(2 22x f x f x dx dy '=---------------3分 )](sin[)]([4)](cos[)(4)](cos[)(22 222222222 2x f x f x x f x f x x f x f dx y d '-''+'=-----7分 = )]}(sin[)]([)](cos[)({4)](cos[)(222222222x f x f x f x f x x f x f '-''+'---------10 分. 四、(15分)已知3 1 23ln 0 = -?? dx e e a x x ,求a 的值. 解: )23(232123ln 0 ln 0 x a x a x x e d e dx e e --- =-??? ---------3分 令t e x =-23,所以 dt t dx e e a a x x ?? -- =-?231ln 0 2 123---------6分 =a t 231 2 33 2 21-?-------------7分 =]1)23([31 3--?-a ,-----------9分 由3123ln 0=-??dx e e a x x ,故]1)23([313--?-a =31 ,-----------12分 即3)23(a -=0-----------13分 亦即023=-a -------------14分 所以2 3 =a -------------15分.

全国大学生数学竞赛(数学类)模拟试题一

全国大学生数学竞赛(数学类)模拟试题 一、解答题(本题满分10分) 1、下面的说法可以用作()0 lim x x f x A →=的定义吗? “00,0,:0x x x εδδ?>?>?<-<,有()f x A εδ-<”。 正确的给以证明,不正确的举例说明。 2、求sin sin sin lim sin x t x t x t x -→?? ??? ,记此极限为()f x 。求()f x 的间断点并指出其类型。 二、(本题满分10分) 证明数列{}n x 是收敛的并求其极限,其中{}n x 满足:10x <()11n n n c x x c x ++=+,1c >。 三、(本题满分10分) 设()f x 在[),a +∞()0a >内连续,且满足Lipschitz 条件,即存在0L >,使得 [)12,,x x a ?∈+∞,有()()1212f x f x L x x -≤-,证明()f x x 在[),a +∞内有界且一致连续。 四、(本题满分10分)

若()f x 在[],a b 上连续,且()f x 在[],a b 上每点处都取极值,则()f x 恒等于某个常数。 五、(本题满分10分) 记()[]()()(){}:0,10,00,11E f f x f f x f f =≥==在上连续,。 (i )求(){}1 0inf :f x dx f E ∈?; (ii )不存在g E ∈,使得()1 0o g x dx =?。 六、(本题满分15分) 设()f t 在[],a x 上连续,(),a x ξ∈,使得()()()x a f t dt f x a ξ=-? 若()f t 在t a =可导,且()0f a '≠,则1 lim 2a a x a ξξ→-=-。 七、(本题满分15分) 已知向量组m ααα,,,21 线性无关,向量s βββ,,,21 都可用m ααα,,,21 表出, 即1 (1,2,,)m i ij j j c i s βα===∑ 求证:s βββ,,,21 线性相关的充分必要条件是矩阵m s ij c C ?=)(的秩s C R <)(.

全国大学生数学竞赛知识点列表

知识点列表 (1) 基于夹逼定理的求和式极限的计算方法 (2) 基于定积分定义的求和式极限的计算方法 (3) 求和式极限的级数法 (4) 多元复合函数求导的一般思路与方法 (5) 多元复合函数链式法则的具体使用方法 (6) 多元复合函数复合结构变量关系图的绘制方法 (7) 求空间立体体积的定积分方法 (8) 求空间立体体积的二重积分方法 (9) 求空间立体区域的三重积分方法 (10) 二重积分计算的换元法 (11) 二重积分计算的极坐标方法 (12) 二重积分直角坐标系下的计算方法及其逆运算 (13) 三重积分直角坐标系下的计算方法及其逆运算 (14) 定积分的绝对值不等式 (15) 二重积分的绝对值不等式 (16) 定积分基本公式及其逆运算 (17) 狄利克雷收敛定理与傅里叶级数的和函数 (18) 函数的傅里叶级数的不确定性 (19) 曲面的切平面计算方法 (20) 定积分的换元法 (21) 反常积分的计算方法 (22) 概率积分及其应用 (23) 用二重积分计算定积分的方法 (24) 空间图形构建方程的一般思路与步骤 (25) 圆锥面的几种几何特征 (26) 向量夹角的计算 (27) 点之间的距离计算 (28) 向量的数量积 (29) 向量的模的计算 (30) 直线的点向式方程 (31) 平面的点法式方程 (32) 两种曲面方程法向量的计算公式 (33) 空间曲线的一般式方程 (34) 空间曲线的参数式方程 (35) 空间曲线一般式方程的不唯一性。

(36) 证明函数无穷次可导的方法 (37) 高阶导数的线性运算法则 (38) 函数项级数收敛域计算的一般思路与步骤 (39) 幂级数收敛区间、收敛半径和收敛域的计算步骤 (40) 基于已有幂级数和函数求幂级数未知和函数的方法 (41) 基于求解微分方程初值问题的幂级数和函数计算方法 (42) 幂级数收敛域内和函数的连续性 (43) 幂级数的线性运算、逐项可导、逐项可积的性质 (44) 常值级数收敛性的判定方法 (45) 常值级数收敛判定的比值审敛法与根值方法 (46) 利用函数的连续性求极限 (47) 利用等价无穷小求极限 (48) 函数极限的加减运算法则 (49) 证明问题的反证法 (50) 闭区间上连续函数的介值定理与零点定理 (51) 积分计算的保号性与保序性 (52) 二重积分的绝对值不等式

[实用参考]大学生数学竞赛试题(专业组).doc

优质参考文档 优质参考文档 大学生数学竞赛试题(数学专业组) 1.求平面10Ax By Cz +++=与椭球222 2221x y z a b c ++=之间的最短距离( 令h = ,m =,试用代数式表示并讨论平面在椭球外面的条件。(10分) 2.利用定积分求极限221lim n n k n n k →∞=+∑.(10分) 3.证明:若函数()f x 在[,]a b 连续,在(,)a b 内存在二阶导数,且()()0f a f b ==,()0f c >,其中 a c b <<,则在(,)a b 内至少存在一点ξ,使()0f ξ''<。 (10分) 4.证明:函数 1nx n ne ∞-=∑在(0,)+∞内连续.(10分) 5. 求积分3 1(1)x ?;1311(2)d x x x e e +∞+-+?.(10分) 6.设(,,)L x y z 为从原点到球面2222x y z R ++=上的点(,,)P x y z 的切平面的距离,求积分 (,,)d L x y z S ∑ ??,其中∑为球面2222x y z R ++=.(10分) 7.证明下列命题: (1).如果多项式(),()f x g x 不全为零,证明: ()((),())f x f x g x 与()((),()) g x f x g x 互素。 (2).证明:0x 是()f x 的k 重根的充分必要条件是1000()()()0k f x f x f x -'====而0()0k f x ≠.(10分) 8.设数域K 上的n 级矩阵A 的),(j i 元为j i b a - (1).求A ; (2).当2≥n 时,2121,b b a a ≠≠.求齐次线性方程组0=AX 的解空间的维数和一个基。(10分) 9.设A 是数域R 上n 维线性空间V 上的一个线性变换,用I 表示V 上的恒等变换,证明: n rank rank =+++-?=)()(23A A I A I I A .(10分) 10.设矩阵11111,1112a A a a β???? ? ?== ? ? ? ?-???? ,已知线性方程组AX β=有解但不唯一,试求:(1)a 的值;(2) 正交矩阵Q ,使T Q AQ 为对角矩阵,其中T Q 表示Q 的转置(求Q 和T Q AQ ).(10分)

相关文档
最新文档