辅助角公式的推导讲解学习

辅助角公式的推导讲解学习
辅助角公式的推导讲解学习

辅助角公式的推导

辅助角公式sin cos )a b θθθ?+=+的推导

在三角函数中,有一种常见而重要的题型,即化sin cos a b θ

θ+为一个角的

一个三角函数的形式,进而求原函数的周期、值域、单调区间等.为了帮助学生

记忆和掌握这种题型的解答方法,教师们总结出公式

sin cos a b θθ+

)θ?+或sin cos a b θθ+

cos()θ?-,让学生在大量的训练和考试中加以记忆和活用.但事与愿违,半个

学期不到,大部分学生都忘了,教师不得不重推一遍.到了高三一轮复习,再次忘记,教师还得重推!本文旨在通过辅助角公式的另一种自然的推导,体现一种解决问题的过程与方法,减轻学生的记忆负担;同时说明“辅助角”的范围和常见的取角方法,帮助学生澄清一些认识;另外通过例子说明辅助角公式的灵活应用,优化解题过程与方法;最后通过例子说明辅助公式在实际中的应用,让学生把握辅助角与原生角的范围关系,以更好地掌握和使用公式. 一.教学中常见的的推导方法

教学中常见的推导过程与方法如下 1.引例 例1

α+cos α=2sin (α+6π)=2cos (α-3

π

).

其证法是从右往左展开证明,也可以从左往右“凑”,使等式得到证明,并得出

结论: 可见

α+cos α可以化为一个角的三角函数形式.

一般地,asin θ+bcos θ是否可以化为一个角的三角函数形式呢 2.辅助角公式的推导 例2化sin cos a b θ

θ+为一个角的一个三角函数的形式.

解:asin θ+bcos θ

sin θ

cos θ),

=cos ?

=sin ?,

则asin θ+bcos θ

θcos ?+cos θsin ?)

θ+?),(其中tan ?=b

a

)

=sin ?

=cos ?,则

asin θ+bcos θ

θsin ?+cos θcos ?

θ-?),(其中tan ?=

a b

) 其中?的大小可以由sin ?、cos ?的符号确定?的象限,再由tan ?的值求出.或由tan ?=

b

a

和(a,b)所在的象限来确定. 推导之后,是配套的例题和大量的练习.

但是这种推导方法有两个问题:

一是为什么要令

=cos ?

=sin ?让学生费解.二是这种“规定”式的推导,

学生难记易忘、易错! 二.让辅助角公式sin cos a b θ

θ+

)θ?+来得更自然

能否让让辅助角公式来得更自然些这是我多少年来一直思考的问题.2009年春.我又一次代2008级学生时,终于想出一种与三角函数的定义衔接又通俗易懂的教学推导方法.

首先要说明,若a=0或b=0时,sin cos a b θθ+已经是一个角的一个三角

函数的形式,无需化简.故有ab ≠0. 1.在平面直角坐标系中,以a 为横坐标,b 为纵坐标描一点P(a,b)如图1所示,则总有一个角?,它的终边经过点P.设

由三角函数的定义知 sin ?=

b r

cos ?

=a r

=

.

所以asin θ+bcos θ

?sin θ

?cos θ

)θ?+.(其中tan ?=b

a

)

2.若在平面直角坐标系中,以b 为横坐标,以a 为纵坐标可以描点P(b,a),如图2所示,则总有一个角?的终边经过点P(b,a),设OP=r,则

三角函数的定义知

sin ?=a

r

,

cos ?=b r

asin θ+bcos θ

sin cos cos ?θ?θ+

s()θ?-.(其中tan ?=a b

)

例3

cos θθ+为一个角的一个三角函数的形式.

解:在坐标系中描点

设角?的终边过点P,则

?=

1

2

,cos ?=

2.

cos θθ+=2cos ?sin θ+2sin ?cos θ=2sin(θ?+

).tan ?=3

.

26

k π

=

+,cos θθ+=2sin(6

π

θ+

).

经过多次的运用,同学们可以在教师的指导下,总结出辅助角公式 asin

θ+bcos θ

sin θ

cos θ)=

)θ?+,(其中tan ?=b

a

).或者

asin

θ+bcos θ

sin θ

cos θ)=

)θ?-,(其中tan ?=a

b

)

我想这样的推导,学生理解起来会容易得多,而且也更容易理解

asinθ+bcosθ

sinθ

cosθ)的道理,以

及为什么只有两种形式的结果.

例4

化sinαα

-为一个角的一个三角函数的形式.

解法一:点

在第四象限.OP=2.设角?过P点.

sin

2

?=-,

1

cos

2

?=.满足条件的最小正角为

5

3

π,

5

2,.

3

k k Z

?ππ

=+∈

1

sin2(sin cos)2(sin cos cos sin)

22

55

2sin()2sin(2)2sin().

33

k

ααααα?α?

α?αππαπ

∴-=-=+

=+=++=+

解法二:点

在第二象限,OP=2,设角?过P点.则

1

sin

2

?=

,cos

2

?=-.满足条件的最小正角为

5

6

π,

5

2,.

6

k k Z

?ππ

=+∈

三.关于辅助角的范围问题

由sin cos)

a b

θθθ?

+=+中,点P(a,b)的位置可知,终

边过点P(a,b)的角可能有四种情况(第一象限、第二象限、第三象限、第四象

限).

设满足条件的最小正角为

1

?,则

1

2k

??π

=+.由诱导公式(一)知

1 sin cos))

a b

θθθ?θ?

+=+=+.其

1

(0,2)

∈,

1

tan

b

a

?=,

1

?的具体位置由

1

sin?与

1

cos?决定,

1

?的

大小由

1

tan

b

a

?=决定.

类似地,sin cos )a b θθθ?+=-,?的终边过点P

(b,a),设满足条件的最小正角为2?,则22.k ??π=+由诱导公式有

2sin cos cos())a b θθθ?θ?+=-=-,

其中2(0,2)?π∈,2

tan a

b

?=

,2?的位置由2sin ?和2cos ?确定,2?的大小由2tan a

b

?=确定.

注意:①一般地,1

2??≠;②以后没有特别说明时,角1?(或2?)是所

求的辅助角.

四.关于辅助角公式的灵活应用

引入辅助角公式的主要目的是化简三角函数式.在实际中结果是化为正弦还是化为余弦要具体问题具体分析,还有一个重要问题是,并不是每次都要化为

1sin cos )a b θθθ?+=+

的形式或

2sin cos )a b θθθ?+=-的形式.可以利用两角和与差的

正、余弦公式灵活处理.

例5 化下列三角函数式为一个角的一个三角函数的形式.

cos αα-;

(2)sin()cos()6363

ππαα-+-. 解:

(1)

1

cos sin cos )22

2(sin cos

cos sin )2sin()

666

ααααπ

ππ

ααα-=-=-=-

(2)sin()cos()63631[sin()cos()]32323

[sin()cos cos()sin ]333332sin()33

ππααππααππππααπα-+-=-+-=-+-=-

在本例第(1)小题中,a =1b =-

a 、

b 中至少有一个是负

值时.我们可以取P(

a ,

b ),或者P(b ,

a

).这样确定的角1?(或

2?)是锐角,就更加方便.

例6已知向量(cos(),1)3a x π=+r ,1

(cos(),)32

b x π=+-r ,

(sin(),0)3

c x π

=+r ,求函数()h x =2a b b c ?-?+r r r r 的最大值及相应的x

的值.

解:2

1()cos

()sin()cos()23233

h x x x x πππ

=+--+++

=2

1cos(2)

1233sin(2)2232

x x ππ++-++

=

1212

cos(2)sin(2)22323x x ππ+-++

=

22cos(2)sin(2)]222323

x x ππ+-++

=11

cos(2)2212

x π++ 这时111122,.1224

x k x k k Z ππππ+==-∈.

此处,若转化为两角和与差的正弦公式不仅麻繁,而且易错,请读者一试. 五.与辅助角有关的应用题

与辅助角有关的应用题在实际中也比较常见,而且涉及辅角的范围,在相应范围内求三角函数的最值往往是个难点.

例7如图3,记扇OAB 的中心角为

45?,半径为1,矩形PQMN 内接于这个扇形,求矩形的对角线l 的最小值.

解:连结OM,设∠AOM=θ.则MQ=sin θ,OQ=cos θ,OP=PN=sin θ. PQ=OQ-OP=cos sin θ

θ-.

=2

2sin (cos sin )θθθ+-

=

31

(sin 2cos 2)22

θθ-+

=13sin(2)22θ?-

+,其中11tan 2?=,1(0,)2π?∈,11

arctan 2

?=. 04π

θ<

πθ?∴<+<+

2min

322l

∴=-

,min 12

l -=. 所以当11

arctan 422

π

θ=

-时,矩形的对角线l

的最小值为

12-. N

B

M

A

P O

(完整word版)辅助角公式的推导

辅助角公式sin cos )a b θθθ?+=+的推导 在三角函数中,有一种常见而重要的题型,即化sin cos a b θ θ+为一个角 的一个三角函数的形式,进而求原函数的周期、值域、单调区间等.为了帮助学 生记忆和掌握这种题型的解答方法,教师们总结出公式 sin cos a b θθ+ )θ?+或sin cos a b θθ+ cos()θ?-,让学生在大量的训练和考试中加以记忆和活用.但事与愿违,半个 学期不到,大部分学生都忘了,教师不得不重推一遍.到了高三一轮复习,再次忘记,教师还得重推!本文旨在通过辅助角公式的另一种自然的推导,体现一种解决问题的过程与方法,减轻学生的记忆负担;同时说明“辅助角”的范围和常见的取角方法,帮助学生澄清一些认识;另外通过例子说明辅助角公式的灵活应用,优化解题过程与方法;最后通过例子说明辅助公式在实际中的应用,让学生把握辅助角与原生角的范围关系,以更好地掌握和使用公式. 一.教学中常见的的推导方法 教学中常见的推导过程与方法如下 1.引例 例1 α+cos α=2sin (α+ 6π)=2cos (α-3 π). 其证法是从右往左展开证明,也可以从左往右“凑”,使等式得到证明,并得出 结论: 可见 α+cos α可以化为一个角的三角函数形式. 一般地,asin θ+bcos θ 是否可以化为一个角的三角函数形式呢? 2.辅助角公式的推导 例2 化sin cos a b θ θ+为一个角的一个三角函数的形式. 解: asin θ+bcos θ sin θ cos θ), ① =cos ? =sin ?, 则asin θ+bcos θ θcos ?+cos θsin ?) θ+?),(其中tan ?= b a )

辅助角公式专题练习

辅助角公式专题练习 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

辅助角公式专题训练 一.知识点回顾 对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx+bcosx =++++a b x a a b x b a b 222 2 2 2 (sin cos )· · 。记 a a b 2 2 +=cos θ, b a b 22 +=sin θ,则cos cos sin ))y x x x θθθ+=+ 由此我们得到结论:asinx+bcosx=a b x 22++sin()θ,(* cos ,θ= sin θ=来确定。通常称式子(*)为辅助角公式,它可以将多个三角式的函数 问题,最终化为y=Asin(?+ωx )+k 的形式。 二.训练 1.化下列代数式为一个角的三角函数 (1 )1sin cos 22 αα+ ; (2 cos αα+; (3)sin cos αα- (4 )sin()cos()6363 ππ αα-+-. (5)5sin 12cos αα+ (6)sin cos a x b x + 2.函数y =2sin ? ????π3-x -cos ? ?? ??π6+x (x ∈R)的最小值等于 ( ) A .-3 B .-2 C .-1 D .- 5 3. 若函数()(1)cos f x x x =+,02 x π ≤<,则()f x 的最大值为 ( ) A .1 B .2 C 1 D 2

4.(2009安徽卷理)已知函数 ()cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是( )A.5[,],1212 k k k Z ππππ-+∈ B.511[,],1212 k k k Z ππππ++∈C.[,],3 6 k k k Z ππππ-+∈ D.2[,],6 3 k k k Z ππππ++∈5. 如果函数y=sin2x+acos2x 的图象关于直线x=-π 8 对称,那么a= ( ) (A )2 (B )-2 (C )1 (D )-1 6.函数y =cos x +cos ? ?? ?? x + π3的最大值是________. 7.2)cos()12 12 3x x π π + ++ = ,且 02 x π -<<,求sin cos x x -的值。 8.求函数f x k x k x x ()cos( )cos()sin()=+++--++61326132233 2πππ (,)x R k Z ∈∈的值域。 6.(2006年天津)已知函数x b x a x f cos sin )(-=( a 、b 为常数,0≠a ,R x ∈)在 4 π = x 处取得最小值,则函数)4 3( x f y -=π 是 ( ) A .偶函数且它的图象关于点)0,(π对称 B .偶函数且它的图象关于点)0,2 3(π 对称 C .奇函数且它的图象关于点)0,2 3(π 对称 D .奇函数且它的图象关于点)0,(π对称 9. 若sin(50)cos(20)3x x +++=,且0360x ≤<,求角x 的值。 11.已知向量(cos(),1)3a x π=+,1 (cos(),)32 b x π=+-, (sin(),0)3 c x π =+,求函数()h x =2a b b c ?-?+的最大值及相应的x 的值. (本题中可以选用的公式有21cos 21 cos ,sin cos sin 222 a αααα+= =)

辅助角公式的推导讲解学习

辅助角公式的推导

辅助角公式sin cos )a b θθθ?+=+的推导 在三角函数中,有一种常见而重要的题型,即化sin cos a b θ θ+为一个角的 一个三角函数的形式,进而求原函数的周期、值域、单调区间等.为了帮助学生 记忆和掌握这种题型的解答方法,教师们总结出公式 sin cos a b θθ+ )θ?+或sin cos a b θθ+ cos()θ?-,让学生在大量的训练和考试中加以记忆和活用.但事与愿违,半个 学期不到,大部分学生都忘了,教师不得不重推一遍.到了高三一轮复习,再次忘记,教师还得重推!本文旨在通过辅助角公式的另一种自然的推导,体现一种解决问题的过程与方法,减轻学生的记忆负担;同时说明“辅助角”的范围和常见的取角方法,帮助学生澄清一些认识;另外通过例子说明辅助角公式的灵活应用,优化解题过程与方法;最后通过例子说明辅助公式在实际中的应用,让学生把握辅助角与原生角的范围关系,以更好地掌握和使用公式. 一.教学中常见的的推导方法 教学中常见的推导过程与方法如下 1.引例 例1 α+cos α=2sin (α+6π)=2cos (α-3 π ). 其证法是从右往左展开证明,也可以从左往右“凑”,使等式得到证明,并得出 结论: 可见 α+cos α可以化为一个角的三角函数形式. 一般地,asin θ+bcos θ是否可以化为一个角的三角函数形式呢 2.辅助角公式的推导 例2化sin cos a b θ θ+为一个角的一个三角函数的形式. 解:asin θ+bcos θ sin θ cos θ), ① =cos ? =sin ?, 则asin θ+bcos θ θcos ?+cos θsin ?) θ+?),(其中tan ?=b a )

必修4之《辅助角公式》

高一数学期末复习————必修4之《辅助角公式》 一.知识点回顾 对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx+bcosx = ++++a b x a a b x b a b 222 2 2 2 (sin cos )· · 。记 a a b 2 2 +=cos θ, b a b 22 +=sin θ,则cos cos sin ))y x x x θθθ+=+ 由此我们得到结论:asinx+bcosx=a b x 22++sin()θ,(* cos ,θ= sin θ=来确定。通常称式子(*)为辅助角公式,它可以将多个三角式的函数问 题,最终化为y=Asin(?+ωx )+k 的形式。 二.训练 1.化下列代数式为一个角的三角函数 (1 )1sin 2αα+; (2 cos αα+; (3)sin cos αα- (4 )sin()cos()6363 ππ αα-+-. (5)5sin 12cos αα+ (6)sin cos a x b x +

2.函数 y =2sin ? ???? π 3-x -cos ? ?? ?? π 6+x (x ∈R)的最小值等于 ( ) A .-3 B .-2 C .-1 D .- 5 3.若函数()(1)cos f x x x =,02 x π ≤<,则()f x 的最大值为 ( ) A .1 B .2 C 1 D 2 4.(2009安徽卷理)已知函数()cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是( )A.5[,],1212k k k Z ππππ-+∈ B.511[,],1212k k k Z ππππ++∈C.[,],36k k k Z ππππ-+∈ D.2[,],63k k k Z ππππ++∈ 5. 如果函数y=sin2x+acos2x 的图象关于直线x=-π 8 对称,那么a= ( ) (A )2 (B )-2 (C )1 (D )-1 6.函数y =cos x +cos ? ????x +π3的最大值是________. 7.已知向量(cos(),1)3a x π=+r ,1 (cos(),)32 b x π=+-r , (sin(),0)3 c x π =+r ,求函数()h x =2a b b c ?-?+r r r r 的最大值及相应的x 的值. (本题中可以选用的公式有21cos 21 cos ,sin cos sin 222 a αααα+= =)

辅助角公式专题训练

辅助角公式专题训练 Revised by Petrel at 2021

辅 助角公式专题训练 教学目标 1、会将ααcos sin b a +(a 、b 不全为零)化为只含有正弦的一个三角比的形式 2、能够正确选取辅助角和使用辅助角公式 教学重点与难点辅助角公式的推导与辅助角的选取 教学过程 一、复习引入 (1)两角和与差的正弦公式 ()sin αβ+=_______________________;()sin αβ-=________________________. (2)利用公式展开sin 4πα??+ ???=___________________ αα=____________. 尝试:将以下各式化为只含有正弦的形式,即化为)sin(βα+A ()0A >的形式 (1 1cos 2 αα+(2 )sin αα 二、辅助角公式的推导 对于一般形式ααcos sin b a +(a 、b 不全为零),如何将表达式化简为只含有正弦的三角比形式? 其中辅助角β 由cos sin ββ?=????=?? β(通常πβ20<≤)的终边经过点(,)a b ,我们称上述公式为辅助角公式,其中角β为辅助角. 三、例题反馈 例1、试将以下各式化为)sin(βα+A ()0A >的形式. (1 1cos 2 αα-(2)ααcos sin + (3 αα(4)ααcos 4sin 3- 例2、试将以下各式化为)sin(βα+A (),[,0ππβ-∈>A )的形式. (1)sin cos αα-(2)ααsin cos -

(3)cos αα- 例3、若sin(50)cos(20)3x x +++=,且0360x ≤<,求角x 的值. 例42)cos()12123 x x π π +++=,且02x π-<<,求sin cos x x -的值. 四、小结思考(1)公式()sin cos a b αααβ++中角β如何确定 (2)能否会将ααcos sin b a +(a 、b 不全为零)化为只含有余弦的一个三角比的 形式? 五、作业布置 1.3cos 66ππαα????+-+ ? ????? 化为)sin(βα+A ()0A >的形式=________________. 2.关于x 的方程12sin x x k =有解,求实数k 的取值范围. 3.已知46sin 4m x x m -=-,求实数m 的取值范围. 4.利用辅助角公式化简:() sin 801cos50? ?? 5.已知函数1()cos 4f x x x =-.(1)若5cos 13x =-,,2x ππ??∈???? ,求()f x 的值;(2)将函数()f x 的图像向右平移m 个单位,使平移后的图像关于原点对称,若0m π<<,求m 的值. 6.已知函数211()sin 2sin cos cos sin()222 f x x x π???=+-+(0)?π<<,其图像过点1(,)62 π (1)求的?值;(2)将函数()y f x =的图像上各点的横坐标缩短到原来的12 ,纵坐标不变,得到 函数()y g x =的图像,求函数()y g x =在区间0,4π?????? 上的最值. 7.已知函数()2cos sin()3f x x x π=+-.(1)求函数()f x 的最小正周期及取得最大值时x 的取值集合;(2)求函数()f x 图像的对称轴方程.

辅助角公式 教案

辅助角公式2010-4-7 一、教学目标 1、会将ααcos sin b a +(a 、b 不全为零)化为只含有正弦的一个三角比的形式 2、能够正确选取辅助角和使用辅助角公式 二、教学重点与难点 辅助角公式的推导与辅助角的选取 三、教学过程 1、复习?引入 两角和与差的正弦公式 ()sin αβ+=_________________________________ ()sin αβ-=_________________________________ 口答:利用公式展开sin 4πα??+ ??? =_____________________ 反之, αα 化简为只含正弦的三角比的形式,则可以是αα=_____________________________ 尝试:将以下各式化为只含有正弦的形式,即化为)sin(βα+A ()0A >的形式 (1 1cos 2 αα+ (2 )sin αα 2、辅助角公式?推导 对于一般形式ααcos sin b a +(a 、b 不全为零),如何将表达式化简为只含有正弦的三角比形式? sin cos )) a b αααααβ+==+ 其中辅助角β 由cos sin ββ?=????=?? β(通常πβ20<≤)的终边经过点(,)a b ------------------我们称上述公式为辅助角公式,其中角β为辅助角。

3、例题?反馈 例1、试将以下各式化为)sin(βα+A ()0A >的形式. (11cos 2αα- (2)ααcos sin + (3αα (4)ααcos 4sin 3- 例2、试将以下各式化为)sin(βα+A (),[,0ππβ-∈>A )的形式. (1)sin cos αα- (2)ααsin cos - (3)cos αα- 例3、若sin(50)cos(20)x x +++ 0360x ≤< ,求角x 的值。 例42)cos()12123x x ππ+ ++=,且 02 x π-<<,求sin cos x x -的值。 4、小结?思考 (1)公式()sin cos a b αααβ++中角β如何确定? (2)能否会将ααcos sin b a +(a 、b 不全为零)化为只含有余弦的 一个三角比的形式? 5、作业布置 (1)3cos 66ππαα????+-+ ? ????? =________________(化为)sin(βα+A ()0A >的形式) (2) 、关于x 的方程12sin x x k =有解,求实数k 的取值范围。 (3)、已知46sin 4m x x m -=-,求实数m 的取值范围。 (4)、利用辅助角公式化简: ()sin801cos50??? 四、教学反思

(完整版)辅助角公式专题训练

辅 助 角 公 式 专 项 训 练(主观题安徽2012高考数学) 1.已知函数1()sin cos 44f x x x = -。 (1)若5cos 13x =-,,2x ππ??∈???? ,求()f x 的值; (2)将函数()f x 的图像向右平移m 个单位,使平移后的图像关于原点对称,若0m π<<,求m 的值。 2.已知函数211()sin 2sin cos cos sin()222 f x x x π???=+-+(0)?π<<,其图像过点1(,)62π。 (1)求的?值; (2)将()y f x =的图像上各点的横坐标缩短到原来的12 ,纵坐标不变,得到函数()y g x =的图像,求函数()y g x =在区间0, 4π??????上的最值。 3.已知函数()2cos sin()32 f x x x π =+-。 (1)求函数()f x 的最小正周期及取得最大值时x 的取值集合; (2)求函数()f x 图像的对称轴方程。 4.已知函数2()2cos sin cos f x a x b x x =+,且(0)f =,1()42 f π=。 (1)求()f x 的单调递减区间; (2)函数()f x 的图像经过怎样的平移才能使所得图像对应的函数成为奇函数?

5.设22()cos()2cos ,32 x f x x x R π=++∈。 (1)求()f x 的值域;(2)求()f x 的对称中心。 6.已知()cos(2)2sin()sin()344f x x x x πππ =-+-+。 (1)求函数()f x 的最小正周期和图像的对称轴方程; (2)求函数()f x 在区间,122ππ??- ????上的值域。 7.已知函数11()cos()cos(),()sin 23324 f x x x g x x ππ=+-=-。 (1)求()f x 的最小正周期; (2)求函数()()()h x f x g x =-的最大值,并求使()h x 取得最大值的x 的集合。 8.设2()sin()cos 1468f x x x πππ =--+,若函数()y g x =与()y f x =的图像关于直线x=1对称,求当40,3 x ??∈????时,()y g x =的最大值。 9.已知函数2()2cos 2sin 4cos f x x x x =+-。 (1)求()3 f π 的值;(2)求()f x 的最值。 10.已知向量(sin ,cos )m A A =r ,1)n =-r ,1m n =r r g ,且A 为锐角。 (1)求角A 的大小;(2)求函数()cos 24cos sin ()f x x x A x R =+∈的值域。

辅助角公式

辅助角公式 一. 合一变形?把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(??形式。()sin cos ααα?A +B =+,其中tan ?B = A . 二. 练习 1.x x y cos sin += 2. x x y cos sin 3+= 3. x x y 3cos 3sin 3+= 4. x x y 2cos 2sin += 5. x x y cos 23sin 21+= 6. )cos (sin 2x x y -= 7. x x y sin 6cos 2-= 8. x x y cos 53sin 153+= 9. )4 cos(46)4sin(42x x y -+-=ππ 10. x x y 2cos 2sin 23+= 11. ()x x x y cos sin cos 2+= 12. 4 3cos 33sin cos 2+-??? ?? +=x x x y π 13. x x y sin 2 3cos 23-= 14.已知函数2π()2sin 24f x x x ??=+- ???,ππ42x ??∈???? ,. (I )求()f x 的最大值和最小值;

(II )若不等式()2f x m -<在ππ42 x ??∈????,上恒成立,求实数m 的取值范围. 分析:观察角,单角二次型,降次整理为sin cos a x b x +形式. 解:(Ⅰ)π()1cos 221sin 222f x x x x x ? ???=-+=+ ??????? ∵ π12sin 23x ??=+- ?? ?. 又ππ42x ??∈????,∵,ππ2π2633x -∴≤≤,即π212sin 233x ??+- ???≤≤, max min ()3()2f x f x ==,∴. (Ⅱ)()2()2()2f x m f x m f x --∴且min ()2m f x <+, 14m <<∴,即m 的取值范围是(1 4),. 15. (1)已知1sin sin 3 x y +=,求2sin cos y x -的最大值与最小值. (2)求函数sin cos sin cos y x x x x =?++的最大值. 分析:可化为二次函数求最值问题. 解:(1)由已知得:1sin sin 3y x = -,sin [1,1]y ∈-,则2sin [,1]3 x ∈-. 22111sin cos (sin )212y x x ∴-=--,当1sin 2x =时,2sin cos y x -有最小值1112 -;当2sin 3x =-时,2sin cos y x -有最小值49. (2)设sin cos x x t +=(t ≤≤,则21sin cos 2t x x -?=,则21122 y t t =+-,当 t =时,y 有最大值为12 +

(完整版)辅助角公式专题训练

辅助角公式专项训练(主观题安徽2012高考数学) 1.已知函数3 1 ()sin cos 44f x x x 。 (1)若5 cos 13x ,,2x ,求()f x 的值; (2)将函数 ()f x 的图像向右平移m 个单位,使平移后的图像关于原点对称,若0m , 求m 的值。2.已知函数211()sin 2sin cos cos sin()222f x x x (0),其图像过点1(,)62 。(1)求的 值;(2)将()y f x 的图像上各点的横坐标缩短到原来的1 2,纵坐标不变,得到函数()y g x 的 图像,求函数()y g x 在区间0,4上的最值。 3.已知函数3 ()2cos sin()32f x x x 。 (1)求函数 ()f x 的最小正周期及取得最大值时x 的取值集合; (2)求函数()f x 图像的对称轴方程。4.已知函数23 ()2cos sin cos 2f x a x b x x ,且3 (0)2f ,1 ()42f 。 (1)求()f x 的单调递减区间; (2)函数()f x 的图像经过怎样的平移才能使所得图像对应的函数成为奇函数?

5.设22 ()cos()2cos ,32x f x x x R 。 (1)求()f x 的值域;(2)求()f x 的对称中心。 6.已知()cos(2)2sin()sin()344f x x x x 。 (1)求函数()f x 的最小正周期和图像的对称轴方程; (2)求函数()f x 在区间,122上的值域。 7.已知函数1 1 ()cos()cos(),()sin 23324f x x x g x x 。 (1)求()f x 的最小正周期; (2)求函数()()()h x f x g x 的最大值,并求使()h x 取得最大值的x 的集合。 8.设2 ()sin()cos 1468f x x x ,若函数()y g x 与()y f x 的图像关于直线 x=1对称,求当4 0,3x 时,()y g x 的最大值。 9.已知函数2()2cos 2sin 4cos f x x x x 。 (1)求()3f 的值;(2)求()f x 的最值。 10.已知向量(sin ,cos )m A A r ,(3,1)n r ,1m n r r g ,且A 为锐角。 (1)求角A 的大小;(2)求函数()cos24cos sin ()f x x x A x R 的值域。

三角函数公式大全及推导过程

一、任意角的三角函数 在角α的终边上任取.. 一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y =αtan 二、同角三角函数的基本关系式 商数关系:α ααcos sin tan =,平方关系:1cos sin 22=+αα,221cos 1tan αα=+ 三、诱导公式 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα 公式三: 任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan(-α)= -tanα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα 公式六: 2 π±α及23π±α与α的三角函数值之间的关系: sin (2π-α)= cosα cos(2 π-α)= sinα sin (2π+α)= cosα cos(2 π+α)= -sinα

sin ( 23π-α)= -cosα cos(2 3π-α)= -sinα sin (23π+α)= -cosα cos(23π+α)= sinα 三、两角和差公式 βαβαβαsin cos cos sin )sin(?+?=+ βαβαβαsin cos cos sin )sin(?-?=- βαβαβαsin sin cos cos )cos(?-?=+ βαβαβαsin sin cos cos )cos(?+?=- β αβαβαtan tan 1tan tan )tan(?-+=+ βαβαβαtan tan 1tan tan )tan(?+-= - 四、二倍角公式 αααcos sin 22sin = ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(* α αα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角) αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-其它公式 五、辅助角公式: )sin(cos sin 22?++=+x b a x b x a (其中a b =?tan ) 其中:角?的终边所在的象限与点),(b a 所在的象限相同,(以上k ∈Z) 六、其它公式: 1、正弦定理: R C c B b A a 2sin sin sin ===(R 为ABC ?外接圆半径) 2、余弦定理 A bc c b a cos 2222?-+=

辅助角公式专题训练 (2)

辅助角公式专题训练 教学目标 1、会将ααcos sin b a +(a 、b 不全为零)化为只含有正弦的一个三角比的形式 2、能够正确选取辅助角与使用辅助角公式 教学重点与难点 辅助角公式的推导与辅助角的选取 教学过程 一、复习引入 (1)两角与与差的正弦公式 ()sin αβ+=_______________________; ()sin αβ-=________________________、 (2)利用公式展开sin 4πα??+ ???=___________________; 反之 αα=____________、 尝试:将以下各式化为只含有正弦的形式,即化为)sin(βα+A ()0A >的形式 1cos 2 αα+ (2)sin αα 二、辅助角公式的推导 对于一般形式ααcos sin b a +(a 、b 不全为零),如何将表达式化简为只含有正弦的三角比形式? )sin()cos sin (cos sin 2 2222222βααααα++=++++=+b a b a b b a a b a b a 其中辅助角β 由cos sin ββ??????? ,即辅助角β(通常πβ20<≤)的终边经过点(,)a b ,我们称上述公式为辅助角公式,其中角β为辅助角、 三、例题反馈 例1、试将以下各式化为)sin(βα+A ()0A >的形式、 1cos 2 αα- (2)ααcos sin + αα (4)ααcos 4sin 3- 例2、试将以下各式化为)sin(βα+A (),[,0ππβ-∈>A )的形式、 (1)sin cos αα- (2)ααsin cos - (3)cos αα- 例3 、若sin(50)cos(20)x x +++o o 且0360x ≤

化一公式,辅助角公式学习教案.docx

化一公式(第一课时) 一、教材分析 化一公式在必修 4 的教材中并没有出现专门的一节进行讲解,是因为化一公式的本质其实就是两角和的正弦公式的逆应用。二、教学重点 对特殊角的化一公式的应用,两角和正弦的逆应用。知道要从系数中提出 a 2b2 . 三、教学难点 对a2b2的探究,理解为什么要提这个出来。 四、教学过程 (一)、知识回顾引入 前面我们学习了两角和的正弦公式,大家回顾一下应该等于: sin() sin cos sin cos 那我们看一下 sin=sin cos cos sin 3 cos 1 sin 33322 则那么请同学看下面两个题应该等于多少 例一:化简下面式子 ( 1)2 sin 2 cos 22 ( 2)1 sin 3 cos 22 解释:第一个式子中的2 可以看成 sin, cos, 变式后利用两角和正弦的逆应244 用课进行化简。第二个式子中的 1 和3 可以看成 cos , sin。 2233(二)、新授知识 那么现在我们来看下一个题: 例二:化简下面式子 ( 1) 2 sin 2 cos ( 2)sin 3 cos (提示学生和例一的关系,让学生自己转化到例一去)

解答:(1)22 sin 2 cos2sin 224 (2) 2 1 sin 3 cos2sin 3 22 为什么要提 2 出来呢? 因为提出来后可以在里面创造出特殊角的三角函数,是我们想要的 那么刚才的这些题我们都比较容易看出他们和特殊角之间的关系,那么如果遇到较为复杂的系数我们该提多少出来呢?例三:化简下面式子 a sin x b cosx (让学生思考并讨论) 学生讨论后指出这里应该提出 a 2b2,因为里面剩下的a,b刚好 a 2b2a2b2 可以构一个角的正弦与余弦。 所以 a sin x b cosx a2b2sin(x) ,我们把这种把两三角函数变为一个三角 函数的公式称为化一公式。 由此我们就可以处理任何类似的式子了 例三:化简下面式子 3 15 sin x 3 5 cos x 解答:先观察,把315 与3 5 的公因式 35先提出来,变为 3 sin x cos x ,再利用公式,提出32 2 ,可以变为 653sin x1cos x65 sin x 12 226练习:化简下面式子: ( 1)3 cos x 3 sin x(2) 3 sin x cos x( 3) 2 sin x 6 cos x 2244 (让学生上来做并讲解) (三)总结 同学们你们来说说这节课你收获到了什么? 1,化一公式 2 ,逆向思维3,化归的思想(四)作业 练习册

最新两角和与差及二倍角公式经典例题及答案

:两角和与差及其二倍角公式知识点及典例 知识要点: 1、两角和与差的正弦、余弦、正切公式 C(α-β):cos(α-β)= ; C(α+β):cos(α+β)= ; S(α+β):sin(α+β)= ; S(α-β):sin(α-β)= ; T(α+β):tan(α+β)= ; T(α-β):tan(α-β)= ; 2、二倍角的正弦、余弦、正切公式 2S α:sin2α= ; 2T α:tan2α= ; 2C α:cos2α= = = ; 3、在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。 如T(α±β)可变形为: tan α±tan β=___________________; tan αtan β= = . 考点自测: 1、已知tan α=4,tan β=3,则tan(α+β)=( ) 711 A 、 711 B 、- 713 C 、 7 13D 、- 2、已知cos ????α-π6+ sin α=4 5 3,则 sin ????α+7π6的值是( ) A .-235 B.235 C .-45 D.4 5 3、在△ABC 中,若cos A =45,cos B =5 13 ,则cos C 的值是( ) A.1665 B.5665 C.1665或5665 D .-1665 4、若cos2θ+cos θ=0,则sin2θ+sin θ的值等于( ) A .0 B .±3 C .0或 3 D .0或 ±3 5 、三角式2cos55°-3sin5° cos5° 值为( ) A.3 2 B.3 C .2 D .1 题型训练 题型1 给角求值 一般所给出的角都是非特殊角,利用角的关系(与特殊角的联系)化为特殊角 例1求[2sin50sin10(1)]???+. 变式1:化简求值:2cos10sin 20.cos 20 ?? ? - 题型2给值求值 三角函数的给值求值问题解决的关键在于把“所求角”用“已知角”表示.如()()ααββαββ=+-=-+,2()() ααβαβ=++-, 2()() αβαβα=+--, 22 αβαβ++=? ,()( ) 222αββ ααβ+=--- 例2 设cos ????α-β2=-19 ,sin ????α2-β=2 3,其中α∈????π2,π,β∈????0,π2,求cos(α+β). 变式2:π3π33π5 0π,cos(),sin(),4445413 βααβ<< <<-=+=已知求sin(α+β)的值. 题型3给值求角 已知三角函数值求角,一般可分以下三个步骤:(1)确定角所在的范围;(2)求角的某一个三角函数值(要求该三角函数应在角的范围内严格单调);(3)求出角。 例3已知α,β∈(0,π),且tan(α-β)=12, tan β=-1 7 ,求2α-β的值. 变式3:已知tan α= 17,tan β= 1 3 ,并且α,β 均为锐角,求α+2β的值. 题型4辅助角公式的应用 ()sin cos a x b x x θ+=+ (其中θ角所在的象限由a , b 的符号确定,θ角的值由 tan b a θ= 确定) 在求最值、化简时起着重要作用。 例4求函数2 5f (x )sin x cos x x =- x R )∈的单调递增区间? 变式4(1)如果()()sin 2cos()f x x x ??=+++是奇函数,则tan ?= ; (2)若方程sin x x c -=有实数解,则c 的取值范围是___________. 题型5公式变形使用 二倍角公式的升幂降幂

辅助角公式专题训练

辅助角公式专项训练(主观题安徽 2012高考数学) 1 ⑵ 将函数f (x)的图像向右平移 m 个单位,使平移后的图像关于原点对称,若 0 m 求m 的值。 1 (,)。 6 2 (1)求的值; 1 ,纵坐标不变,得到函数y g(x)的 2 图像,求函数y g(x)在区间0,— 上的最值。 4 3.已知函数f (x) 2cos xsin(x —) (1)求函数f (x)的最小正周期及取得最大值时 x 的取值集合; (2)求函数f (x)图像的对称轴方程。 1.已知函数f(x) in x 4 COSX 。(1)右 COSX 4 13 ,求f (x)的值; 2.已知函数 f(x) 珈2xsin cos 2xcos ^si n (- )(0 2 2 ),其图像过点 ⑵ 将y f(x)的图像上各点的横坐标缩短到原来的

2 (1 )求f(x)的单调递减区间; (2)函数f(X )的图像经过怎样的平移才能使所得图像对应的函数成为奇函数? (1 )求f (x)的值域;(2)求f (x)的对称中心。 (1)求函数f (x)的最小正周期和图像的对称轴方程; (2)求函数f (x)在区间 一,一上的值域。 12 2 4.已知函数 f (X ) 2a cos 2 x bsin xcosx 弓,且f(0) 5.设 f (x) cos(x 2r ) 2cos 2 -, x 2 6.已知f(x) COs(2x 3) 2sin(x 4)sin(x

3 7.已知函数 f (x) cos(§ x)cos(§ x),g(x) (1) 求 f (x)的最小正周期; f (x) g (x)的最大值,并求使 h(x)取得最大值的x 的集合。 4 对称,求当x 0,-时,y g(x)的最大值。 3 2 9.已知函数 f (x) 2cos 2x sin x 4cos x 。 (1 )求f(—)的值;(2)求f (x)的最值。 3 10.已知向量 mn (si nA cos A),n (、、3, 1),rrnign 1,且 A 为锐角。 (1)求角A 的大小;(2)求函数f (x) cos2x 4cos xsin A(x R)的值域。 1sin2x 1。 2 4 (2)求函数h(x) 8.设 f (x) 2 sin(—x ) cos x 1,若函数 y 4 6 8 g(x)与 y f (x)的图像关于直线x=1

辅助角公式

辅助角公式Revised on November 25, 2020

推导 对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形 ,设点(a,b)为某一角φ(-π/2<φ<π/2)终边上的点,则 ,因此 就是所求辅助角公式。 又因为 ,且-π/2<φ<π/2,所以 ,于是上述公式还可以写成 该公式也可以用余弦来表示(针对b>0的情况) ,设点(b,a)为某一角θ(-π/2<θ<π/2)终边上的点,则 ,因此 同理, ,上式化成 若正弦和余弦的系数都是负数,不妨写成f(x)=-asinx-bcosx,则 再根据 得 记忆 很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。 其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,的位置永远是你用来表示函数名称的系数。 例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。如果用余弦来表示,那反正切就要变成a/b(余弦的系数b在分母)。 疑问 为什么在推导辅助角公式的时候要令辅助角的取值范围为(-π/2,π/2)其实是在分类讨论a>0或b>0的时候,已经把辅助角的终边限定在一、四象限内了,此时辅助角的范围是(2kπ-π/2,2kπ+π/2)(k是整数)。而根据三角函数的周期性可知加上2kπ后函数值不变,况且在(-π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了。 提出者

,原名李心兰,字竟芳,号秋纫,别号壬叔。出身于读书世家,其先祖可上溯至南宋末年汴梁(今)人李伯翼。生于1811年 1月22日,逝世于1882年12月9日,人,是中国近代着名的数学家、天文学家、力学家和,创立了二次的幂级数展开式。[1](就是现在的)他研究各种,和对数函数的幂级数展开式,这是李善兰也是19 世纪中国数学界最重大的成就。[1]在19世纪把西方近代知识翻译为中文的传播工作中﹐李善兰作出了重大贡献。他的译书也为中国近代物理学的发展起了启蒙作用。同治七年,李善兰到北京担任同文馆天文﹑算学部长﹐执教达13年之久﹐为造就中国近代第一代科学人才作出了贡献。 李善兰为近代科学在中国的传播和发展作出了开创性的贡献。 继之后,李善兰成为清代数学史上的又一杰出代表。他一生翻译西方科技书籍甚多,将近代科学最主要的几门知识从天文学到植物细胞学的最新成果介绍传入中国,对促进近代科学的发展作出卓越贡献。[1] 公式应用 例1 求sinθ/(2cosθ+√5)的最大值 解:设sinθ/(2cosθ+√5)=k 则sinθ-2kcosθ=√5k ∴√[1+(-2k)2]sin(θ+α)=√5k 平方得k2=sin2(θ+α)/[5-4sin2(θ+α)] 令t=sin2(θ+α) t∈[0,1]则k2=t/(5-4t)=1/(5/t-4) 当t=1时有kmax=1 辅助角公式可以解决一些sin与cos角之间的转化 例2 化简5sina-12cosa 解:5sina-12cosa =13(5/13*sina-12/13*cosa) =13(cosbsina-sinbcosa) =13sin(a-b) 其中,cosb=5/13,sinb=12/13 例3 π/6≤a≤π/4 ,求sin2a+2sinacosa+3cos2a的最小值

辅助角公式_教案

辅助角公式 一、教学目标 1、会将ααcos sin b a +(a 、b 不全为零)化为只含有正弦的一个三角比的形式 2、能够正确选取辅助角和使用辅助角公式 二、教学重点与难点 辅助角公式的推导与辅助角的选取 三、教学过程 1、复习?引入 两角和与差的正弦公式 ()sin αβ+=_________________________________ ()sin αβ-=_________________________________ 口答:利用公式展开sin 4πα??+ ??? =_____________________ 反之, αα 化简为只含正弦的三角比的形式,则可以是αα=_____________________________ 尝试:将以下各式化为只含有正弦的形式,即化为)sin(βα+A ()0A >的形式 (1 1cos 2 αα+ (2 )sin αα 2、辅助角公式?推导 对于一般形式ααcos sin b a +(a 、b 不全为零),如何将表达式化简为只含有正弦的三角比形式? sin cos )) a b αααααβ+==+ 其中辅助角β 由cos sin ββ?=????=?? β(通常πβ20<≤)的终边经过点(,)a b ------------------我们称上述公式为辅助角公式,其中角β为辅助角。

3、例题?反馈 例1、试将以下各式化为)sin(βα+A ()0A >的形式. (11cos 2αα- (2)ααcos sin + (3αα (4)ααcos 4sin 3- 例2、试将以下各式化为)sin(βα+A (),[,0ππβ-∈>A )的形式. (1)sin cos αα- (2)ααsin cos - (3)cos αα- 例3、若sin(50)cos(20)3x x +++=,且0360x ≤<,求角x 的值。 例42)cos()12123x x ππ+ ++=,且 02 x π-<<,求sin cos x x -的值。 4、小结?思考 (1)公式()sin cos a b αααβ++中角β如何确定? (2)能否会将ααcos sin b a +(a 、b 不全为零)化为只含有余弦的 一个三角比的形式? 5、作业布置 (1)3cos 66ππαα????+-+ ? ????? =________________(化为)sin(βα+A ()0A >的形式) (2) 、关于x 的方程12sin x x k =有解,求实数k 的取值范围。 (3)、已知46sin 4m x x m -=-,求实数m 的取值范围。 (4)、利用辅助角公式化简: ()sin801cos50??? 四、教学反思

相关文档
最新文档