中考数学轨迹问题精选

中考数学轨迹问题精选
中考数学轨迹问题精选

运动轨迹

1、如图1,已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边三角

形APE和等边三角形PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为_______.

2、正△ABC的边长为3cm,边长为1cm的正△RPQ的顶点R与点A重合,点P,Q分

别在AC,AB上,将△RPQ沿着边AB,BC,CA逆时针连续翻转(如图所示),直至点P

第一次回到原来位置,则点P运动的路径长为_______ cm.(结果保留π)

3、如图,AB为⊙O的直径,AB=8,点C为圆上任意一点,OD⊥AC于D,

当点C在⊙O上运动一周,点D运动的路径长为_______

4、如图,一块边长为6cm的等边三角形木板ABC,在水平桌面上绕C点按顺

时针方向旋转到△A′B′C′的位置,则边AB的中点D运动的路径长是_______

5、如图所示,扇形OAB从图①无滑动旋转到图②,再由图②到图③,∠O=60°,OA=1.

(1)求O点所运动的路径长;(2)O点走过路径与直线L围成图形的面积.

6、如图,OA⊥OB,垂足为O,P、Q分别是射线OA、OB上两个动点,点C是线段PQ的中点,且PQ=4.则动点C运动形成的路径长是______

7、如图,半径为2cm,圆心角为90°的扇形OAB的弧AB上有一运动的点P.从点P向半径OA引垂线PH交OA于点H.设△OPH的内心为I,当点P在弧AB上从点A运动到点B时,内心I所经过的路径长为______ .

8、某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.

问题思考:

如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC、BPEF.

(1)当点P运动时,这两个正方形的面积之和是定值吗?若是,请求出;若不是,请求出这两个正方形面积之和的最小值.(2)分别连接AD、DF、AF,AF交DP于点K,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.

问题拓展:

(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C →D的线路,向点D运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长.

(4)如图3,在“问题思考”中,若点M、N是线段AB上的两点,且AM=BN=1,点G、H分别是边CD、EF的中点,请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.

9、如图,抛物线y=ax2+bx+3过点A(1,0),B(3,0),与y轴相交于点C.

(1)求抛物线的解析式;

(2)若点E为抛物线对称轴上的一点,请探索抛物线上是否存在点F,使以A,B,E,F为顶点的四边形为平行四边形?若存在,请求出所有点F的坐标;若不存在,请说明理由;

(3)若点P为线段OC上的动点,连接BP,过点C作CN垂直于直线BP,垂足为N,当点P从点O运动到点C时,求点N运动路径的长.

10、等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P.

的值.

(1)若AE=CF.①求证:AF=BE,并求∠APB的度数.②若AE=2,试求AP AF

(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.

11、如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作⊙O,点F为⊙O与射线BD 的公共点,连接EF、CF,过点E作EG⊥EF,EG与⊙O相交于点G,连接CG.

(1)试说明四边形EFCG是矩形;

(2)当⊙O与射线BD相切时,点E停止移动.在点E移动的过程中,

①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;

②求点G移动路线的长.

中考数学动点问题专题练习(含答案)

动点专题 一、应用勾股定理建立函数解析式 例1(2000年2上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 二、应用比例式建立函数解析式 例2(2006年2山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式; (2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由. A E D C B 图2 H M N G P O A B 图1 x y

C 三、应用求图形面积的方法建立函数关系式 例4(2004年2上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y . (1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积. 一、以动态几何为主线的压轴题 (一)点动问题. 1.(09年徐汇区)如图,ABC ?中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长; (2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时, 求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. A B C O 图8 H

中考数学专题复习-轨迹问题

E 中考数学核心知识专题复习----轨迹问题探究 符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹 六种常用的基本轨迹: ①到已知线段的两个端点距离相等的点的轨迹是这条线段的垂直平分线。 ②到已知角的两边距离相等的点的轨迹是这个角的平分线。 ③到已知直线的距离等于定长的点的轨迹是与这条直线平行,且与已知直线的距离等于定长的两条直线。 ④到两条平行线距离相等的点的轨迹是和这两条平行线平行且到这两条平行线距离相等的一条直线。 ⑤到定点的距离等于定长的点轨迹是与定点为圆心,定长为半径的圆。 ⑥和已知线段的两个端点的连线的夹角等于已知角的点的轨迹是以已知线段为弦,所含圆周角等于已知角的两段弧(端点除外)。 一、尺规作图:轨迹法确定动点位置 1)已知∠AOB,求作点P,使得点P到角两边距离相等,且满足OP=2 2)已知∠AOB和直线L,在直线L上确定点P,使得使得点P到角两边距离相等 3)已知∠AOB和线段CD,使得点P到角两边距离相等且满足PC=PD 4)已知线段AB和直线L,在直线L上确定点P使得∠APB=600 C A A D O B O B 1)2) L A L O B A B 3)4) 二交轨法应用 1.在正方形ABCD中,为AD边上一点,以BE边所在直线为折痕将?ABE对折之?PBE位置。若AB=2,且PC=1. 1)不全图形

B 2) 求 tan ∠ PCD 的值 A D B C 2.如图,在 △Rt ABC 中,∠CAB =90°,∠ACB=300,BC =8,D 为线段 AB 上的动点,过点 A 作 AH ⊥CD 于点 H ,连接 BH ,则 ② 求 AB 的长 ②求 BH 的最小值。 A D H C B 3.等边三角形 ABC 的边长为 6,在 AC ,BC 边上各取一点 E ,F ,连接 AF ,BE 相交于点 P .且 AE =CF ; (1)求证:AF =BE ,并求∠APB 的度数; (2)若 AE =2,试求 AP AF 的值; (3)当点 E 从点 A 运动到点 C 时,试求点 P 经过的路径长. 4.如图,以 G (0,1)为圆心,半径为 2 的圆与 x 轴交于 A ,B 两点,与 y 轴交于 C ,D 两点,点 E 为⊙G 上一动点, CF ⊥ AE 于 F .当点 E 从点 B 出发顺时针运动到点 D 时,点 F 所经过的路径长 y C G E A D

初三数学动点问题

数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。 动态几何形成的面积问题是动态几何中的基本类型,包括单动点形成的面积问题,双(多)动点形成的面积问题,线动形成的面积问题,面动形成的面积问题。本专题原创编写单动点形成的面积问题模拟题。 在中考压轴题中,单动点形成的面积问题的重点和难点在于应用数形结合的思想准确地进行分类。 原创模拟预测题1.某数学兴趣小组对线段上的动点问题进行探究,已知AB=8. 问题思考: 如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE. (1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值. (2)分别连接AD、DF、AF, AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由. 问题拓展: (3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中, PQ 的中点O所经过的路径的长。

中考数学综合题专题复习[几何中的动点问题]专题解析

中考数学综合题专题复习【几何中的动点问题】专题解析 【真题精讲】 【例1】如图,在梯形ABCD 中,AD II BC , AD 3 , DC 5 , BC 10,梯形的高为4 ?动 点M 从 B 点出发沿线段B C 以每秒2个单位长度的速度向终点 C 运动;动点N 同时从C 点 出发沿线段C D 以 每秒1个单位长度的速度向终点 D 运动?设运动的时间为t (秒)? (1)当MN I AB 时,求t 的值; 2)试探究:t 为何值时,△ MNC 为等腰三角形. 【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同 学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分 析动态条件和静态条件之间的关系求解。对于大多数题目来说,都有一个由动转静的瞬间, 就本题而言,M N 是在动,意味着 BM,MC 以及DN,NC 都是变化的。但是我们发现,和这些 动态的条件密切相关的条件 DC,BC 长度都是给定的,而且动态条件之间也是有关系的。所 以当题中设定 MN//AB 时,就变成了一个静止问题。由此,从这些条件出发,列出方程,自 然得出结果。 【解析】 解:(1 )由题意知,当 M 、N 运动到t 秒时,如图①,过 D 作DE II AB 交BC 于E 点,则 四边形ABED 是平行四边形. ??? AB II DE , AB II MN . ??? DE II MN . (根据第一讲我们说梯形内辅助线的常用做法,成功将 内,将动态问题转化成平行时候的静态问题) MN 放在三角形 ? MC NC EC CD (这个比例关系就是将静态与动态联系起来的关键) 即可,于是就漏掉了 MN=MC,MC=C ^两种情况。在中考中如果在动态问题当中碰见等腰三 (2)分三种情况讨论: ①当MN NC 时,如图②作 NF BC 交BC 于F ,则有MC 2FC 即.(利用等腰三角形 底边高也是底边中线的性质) .4丄?解得t 50 . 10 3 5 17 【思路分析2】第二问失分也是最严重的, 很多同学看到等腰三角形, 理所当然以为是 MN=NC 角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。具体分类以后,就成为了 较为简单的解三角形问题,于是可以轻松求解 【解析】

(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.

中考数学轨迹问题精选

运动轨迹 1、如图1,已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边三角 形APE和等边三角形PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为_______. 2、正△ABC的边长为3cm,边长为1cm的正△RPQ的顶点R与点A重合,点P,Q分 别在AC,AB上,将△RPQ沿着边AB,BC,CA逆时针连续翻转(如图所示),直至点P 第一次回到原来位置,则点P运动的路径长为_______ cm.(结果保留π) 3、如图,AB为⊙O的直径,AB=8,点C为圆上任意一点,OD⊥AC于D, 当点C在⊙O上运动一周,点D运动的路径长为_______ 4、如图,一块边长为6cm的等边三角形木板ABC,在水平桌面上绕C点按顺 时针方向旋转到△A′B′C′的位置,则边AB的中点D运动的路径长是_______ 5、如图所示,扇形OAB从图①无滑动旋转到图②,再由图②到图③,∠O=60°,OA=1. (1)求O点所运动的路径长;(2)O点走过路径与直线L围成图形的面积. 6、如图,OA⊥OB,垂足为O,P、Q分别是射线OA、OB上两个动点,点C是线段PQ的中点,且PQ=4.则动点C运动形成的路径长是______ 7、如图,半径为2cm,圆心角为90°的扇形OAB的弧AB上有一运动的点P.从点P向半径OA引垂线PH交OA于点H.设△OPH的内心为I,当点P在弧AB上从点A运动到点B时,内心I所经过的路径长为______ .

8、某数学兴趣小组对线段上的动点问题进行探究,已知AB=8. 问题思考: 如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC、BPEF. (1)当点P运动时,这两个正方形的面积之和是定值吗?若是,请求出;若不是,请求出这两个正方形面积之和的最小值.(2)分别连接AD、DF、AF,AF交DP于点K,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由. 问题拓展: (3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C →D的线路,向点D运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长. (4)如图3,在“问题思考”中,若点M、N是线段AB上的两点,且AM=BN=1,点G、H分别是边CD、EF的中点,请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值. 9、如图,抛物线y=ax2+bx+3过点A(1,0),B(3,0),与y轴相交于点C. (1)求抛物线的解析式; (2)若点E为抛物线对称轴上的一点,请探索抛物线上是否存在点F,使以A,B,E,F为顶点的四边形为平行四边形?若存在,请求出所有点F的坐标;若不存在,请说明理由; (3)若点P为线段OC上的动点,连接BP,过点C作CN垂直于直线BP,垂足为N,当点P从点O运动到点C时,求点N运动路径的长.

九年级 第9讲 (1)最值与轨迹问题专题

共线类最值问题?单动点共线最值 A.5 2B.3 2C.2 5 2+D.2 3 2+ 3. 已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=45,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为() A. (0,0) B.(1,2 1 ) C.(5 6 ,5 3 ) D.(7 10 ,7 5 ) 4. 如图,已知在矩形ABCD中,AB=4,BC=2,点M,E在AD上,点F在边AB上,并且DM=1,现将△AEF沿着直线EF折叠,使点A落在边CD上的点P处,则当PB+PM的和最小时,ME的长度为() A. 3 1 B. 9 4 C. 3 2 D. 9 5

? 多动点最值 1.如图,已知等边△ABC 的边长为8,点D 为AC 的中点,点E 为BC 的中点,点P 为BD 上一动点,则PE+PC 的最小值为( ) A .3 B .24 C .32 D .34 2.如图,已知正比例函数y=kx (k >0)的图象与x 轴相交所成的锐角为70°,定点A 的坐标为(0,4),P 为y 轴上的一个动点,M 、N 为函数y=kx (k >0)的图象上的两个动点,则AM+MP+PN 的最小值为( ) A .2 B .4 C .32 ? 动线段类型 1. 如图,矩形ABCD 中,AB=4,BC=8,E 为CD 边的中点,点P 、Q 为BC 边上两个动点,且PQ=2,当BP=________时,四边形APQE 的周长最小. 2.如图,已知平面直角坐标系,A 、B 两点的坐标分别为A (2,-3),B (4,-1).若C (a ,0),D (a+3,0)是x 轴上的两个动点,则当a=___________时,四边形ABDC 的周长最短.

中考数学轨迹问题

1.如图,正方形ABCD 的边长是2,M 是AD 的中点,点E 从点A 出发,沿AB 运动到点B 停止.连接EM 并延长交射线CD 于点F ,过M 作EF 的垂线交射线BC 于点G ,连结EG 、FG . (1)设AE =x 时,△EGF 的面积为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (2)P 是MG 的中点,请直接写出点P 运动路线的长. 2.如图①,在等腰梯形ABCD 中,AD ∥BC ,AE ⊥BC 于点E ,DF ⊥BC 于点F .AD =2cm ,BC =6cm ,AE =4cm .点P 、Q 分别在线段AE 、DF 上,顺次连接B 、P 、Q 、C ,线段BP 、PQ 、QC 、CB 所围成的封闭图形记为M .若点P 在线段AE 上运动时,点Q 也随之在线段DF 上运动,使图形M 的形状发生改变,但面积始终为10cm 2.设EP =x cm ,FQ =y cm ,解答下列问题: (1)直接写出当x =3时y 的值; (2)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)当x 取何值时,图形M 成为等腰梯形?图形M 成为三角形? (4)直接写出线段PQ 在运动过程中所能扫过的区域的面积. A B C D E F (备用图) A B C D E F Q P 图①

3.如图,在平面直角坐标系中,矩形OABC 的两边OA 、OC 分别在x 轴、y 轴的正半轴上,OA =4,OC =2.点P 从点O 出发,沿x 轴以每秒1个单位长的速度向点A 匀速运动,当点P 到达点A 时停止运动,设点P 运动的时间是t 秒.将线段CP 的中点绕点P 按顺时针方向旋转90°得点D ,点D 随点P 的运动而运动,连接DP 、DA . (1)请用含t 的代数式表示出点D 的坐标; (2)求t 为何值时,△DP A 的面积最大,最大为多少? (3)在点P 从O 向A 运动的过程中,△DP A 能否成为直角三角形?若能,求t 的值;若不能,请说明理由; (4)请直接写出随着点P 的运动,点D 运动路线的长. 4.如图,直角坐标系中,已知点A (2,4),B (5,0),动点P 从B 点出发沿BO 向终点O 运动,动点Q 从A 点出发沿AB 向终点B 运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了x 秒. (1)Q 点的坐标为( , )(用含x 的代数式表示); (2)当x 为何值时,△APQ 是一个以AP 为腰的等腰三角形? (3)记PQ 的中点为G .请你直接写出点G 随点P ,Q 运动所经过的路线的长度.

2017中考数学备考专题复习动点综合问题含解析

1 / 20 动点综合问题 一、单选题(共12题;共24分) 1、(2016?安徽)如图,Rt △ ABC 中,AB 丄BQ AB=6, BC=4 P 是厶ABC 内部的一个动点,且满足 / PAB 2 PBC 则线段 CP 长的最小值为( ) B 、 2 C.]+1 C 、 9 D — 3、( 2016?十堰)如图,将边长为 10的正三角形 OAB 放置于平面直角坐标系 xOy 中,C 是AB 边上 的动点(不与端点 A , B 重合),作CDLOB 于点D,若点C, D 都在双曲线y= 上(k > 0, x > 0), C D 5、( 2016?宜宾)如图,点 P 是矩形ABCD 的边AD 上的一动点, AC 和 BD 的距离之和是( B 、2 4、(2016?娄底)如图,已知在 Rt △ ABC 中,/ ABC=90,点 C 不重合),作 BE 丄AD 于E , CF 丄AD 于F ,贝U BE+CF 勺值( D 沿BC 自B 向C 运动(点D 与点B ) 13 2、(2016?台州)如图,在△ ABC 中,AB=10 AC=8 BC=6以边 AB 的中点 O 为圆心,作半圆与 AC 相切,点P, Q 分别是边BC 和半圆上的动点,连接 PQ 贝U PQ 长的最大值与最小值的和是( ) C 6 D 7.2 不变 增大 减小 先变大 再变小 矩形的两条边 AB BC 的长分别是 ) D 9 B 5

6、( 2016?龙岩)如图,在周长为12的菱形ABCD中,AE=1, AF=2,若P为对角线BD上一动点, 则EP+FP的最小值为( ) A、1 B、2 C、3 D 4 O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点 7、(2016?漳州)如图,在△ ABC中,AB=AC=5 BC=8, D是线段BC上的动点(不含端点B、C).若线段 AD长为正整数,则点D的个数共有( 沿折线A- B- M方向匀速运动,到M时停止运动,速度为1cm/s .设P点的运动时间为P的 运动路径与OA OP所围成的图形面积为S (cm?),则描述面积S (cm2)与时间t P由A开始 t (s),点 (s)的关系 的图象可以是( ) D______________ C A 、 B 、 C 、 D 5个 4个 3个 2个 8、(2016?荆门)如图,正方形ABCD的边长为的 方向运动到点C停止,设点P的运动路程为关于 x (cm)的函数关系的图象是( ) 2cm,动点P从点A出发,在正方形的边上沿A T B-C x( cm),在下列图象中,能表示△ ADP的面积y( cm2)

最新中考数学复习专题《几何图形中的动点问题》

运动型问题 第17课时 几何图形中的动点问题 (58分) 一、选择题(每题6分,共18分) 1.[·安徽]如图6-1-1,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △ PAB =S 矩形ABCD ,则点P 到A ,B 两点距离之和PA +PB 的最小值为( D )13A. B. C.5 D. 2934241 图6-1-1 第1题答图 【解析】 令点P 到AB 的距离为h ,由S △PAB =S 矩形ABCD ,得×5h =×5131213 ×3,解得h =2,动点P 在EF 上运动,如答图,作点B 关于EF 的对称点B ′,BB ′=4,连结AB ′交EF 于点P ,此时PA +PB 最小,根据勾股定理求得最小值为=,选D. 52+42412.如图6-1-2,在矩形ABCD 中,AB =2a ,AD =a ,矩 形边上一动点P 沿A →B →C →D 的路径移动.设点P 经 过的路径长为x ,PD 2=y ,则下列能大致反映y 与x 的 函数关系的图象是 ( D )【解析】 ①当0≤x ≤2a 时,∵PD 2=AD 2+AP 2,AP = x ,∴y =x 2+a 2;② 图6-1-2

当2a <x ≤3a 时,CP =2a +a -x =3a -x ,∵PD 2=CD 2+CP 2,∴y =(3a -x )2+(2a )2=x 2-6ax +13a 2;③当3a <x ≤5a 时,PD =2a +a +2a -x =5a -x , ∴PD 2=y =(5a -x )2,y =∴能大致反映y {x 2+a 2(0≤x ≤2a ),x 2-6ax +13a 2(2a

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

2019中考数学热点,阿氏圆问题讲义无答案.doc

定义:已知平面上两点A,B,则所有满足 PA/PB=k 且不等于 1 的点 P 的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,具体的描述:一动点P 到两定点A、B 的距离之比等于定比m:n,则 P 点的轨迹,是以定比m: n 内分和外分定线段AB 的两个分点的连线为直径的圆。该圆称为阿波罗尼斯圆,简称阿氏圆。 解题策略:利用两边成比例且夹角相等构造相似三角形(简称美人鱼相似) “阿氏圆”一般解题步骤 第一步 :连接动点至圆心0(将系数不为 1 的线段的两个端点分别与圆心相连接),则连接 0P、 OB; 第二步 :计算出所连接的这两条线段OP、 OB 长度 ; 第三步 :计算这两条线段长度的比=k; 第四步 :在 0B 上取点 C,使得; 第五步 :连接 AC,与圆 0 交点即为点P. 阿氏圆最值问题例题精讲 例 1:问题提出 :如图 1,在 R△ ABC中 ,∠ ACB=90 ,CB=4,AC=6圆. C 半经为 2,P 为圆上一助点,连结 AP,BP求 AP+ BP 的最小值 尝试解决:为了解块这个间题,下面给出一种解题思路、如图2,连接 CP,在 CB 上取点D,使 CD=1 则有 ,又∵∠ PCD=∠BCP,∴△ PCD △ BCP,

∴,∴ PD=,∴ AP+AP+PD 请你完成余下的思考,并直接写出答案:AP+BP的最小值为。 自主探索 :在“间题提出”的条件不变的情况下,AP+BP的最小值为。 拓展延伸 :已知扇形COD中 ,∠ COD=90 ,0C=6,OA=3,0B=5,点 P 是弧 CD 上一点 ,求 2A+PB 的最小值。 强化训练 向内构造类型 1,如图 ,已知 AC=6,BC=8,AB=10,圆 C 的半经为4,点 D 是圆 C 上的动点 ,连接 AD、 BD, 则 AD+ BD 的最小值为。 2.在 Rt△ABC 中 ,∠ ACB=90° AC=4,BC=3,点 D 为△ ABC内一动点 ,且满足 CD=2, 则 AD+ BD 的最小值为。 3、如图 ,在 R△ ABC中 ,∠C=90° ,CA=3,CB=4⊙.C 的半径为2,点 P 是⊙ C 上一 动点 ,则 AP+ PB 的最小值为。 4、如图 ,四边形 ABCD为边长为 4 的正方形 , ⊙ B 的半径为 2,P是⊙ B 上一动点 ,则 PD+ PC的最小值为。 PD+4PC的最小值为。

中考数学轨迹问题集锦

动点问题讲义 1、如图1,已知线段 AB= 6, C D 是AB 上两点,且 AC = DB= 1, P 是线段CD 上一动点,在 AB 同侧 分别作等边三角形 APE 和等边三角形PBF G 为线段EF 的中点,点P 由点C 移动到点D 时,G 点移 动的路径长度为 . 2、正△ ABC 的边长为3cm,边长为1cm 的正△ RPQ 的顶点R 与点A 重合,点P, Q 分别在AC, AB 上,将△ RPQ 沿着边AB BC, CA 逆时针连续翻转(如图所示),直至点 P 第一次回到原来位置,则点 P 运动的路径长为 3、如图,AB 为O O 的直径,AB=8,点C 为圆上任意一点,ODL AC 于D,当点C 在O 0上运动一周,点 D 运动 的路径长为 ______________ 4、如图,一块边长为 6cm 的等边三角形木板 ABC 在水平桌面上绕 C 点按顺时针方向旋转到厶 A B ' C'的 位置,则边AB 的中点D 运动的路径长是 ____________________ 5、如图所示,扇形 OAB 从图①无滑动旋转到图②,再由图②到图③,/ 0=60°, OA=1. (1 )求O 点所运动的路径长; (2) O 点走过路径与直线 L 围成图形的面积 .cm .(结果保留n) O A O 图L 图2 C

6、如图,0从0B,垂足为0, P、Q分别是射线OA 0B上两个动点,点C是线段PQ的中点,且PQ=4则动 点C运动形成的路径长是_______ 90°的扇形0AB的弧AB上有一运动的点P.从点P向半径0A引垂线PH交当点 P在弧AB上从点A运动到点B时,内心I所经过的路径长为. &如图,正方形ABC啲边长是2, M是AD的中点,点E从点A出发,沿AB运动到点B停止?连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G连结EG FG (1 )设AE= x时,△ EGF的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围; (2) P是MG的中点,请直接写出点P运动路线的长.

中考数学动点综合问题

动点综合问题一 【例1】(2016广东梅州)如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P是抛 物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为. (3)若⊙P与线段QC只有一个公共点,求t的取值范围. 【例2】(2016四川攀枝花)如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心 Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方 向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,P A长为半径的⊙P 与AB、OA的另一个交点分别为C、D,连结CD、QC. (1)当t为何值时,点Q与点D重合? 【例3】(2016山东济南)如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=AD=5,BC=4,M、N、 E分别是AB、AD、CB上的点,AM=CE=1,AN=3,点P从点M出发,以每秒1个单位长度的速度沿折 线MB﹣BE向点E运动,同时点Q从点N出发,以相同的速度沿折线ND﹣DC﹣CE向点E运动,当其 中一个点到达后,另一个点也停止运动.设△APQ的面积为S,运动时间为t秒,则S与t函数关系的大 致图象为() (2)当⊙Q经过点A时,求⊙P被OB截得的弦长.

5.(2016青海西宁)如图,在△ABC中,∠B=90°,tan∠C=3 同步练习 一、选择题 1.(2016山东泰安)如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()4.(2016湖北荆州)如图,过⊙O外一点P引⊙O的两条切线P A、PB,切点分别是A、B,OP交⊙O 于点C,点D是优弧ABC上不与点A、点C重合的一个动点,连接A D、CD,若∠APB=80°,则∠ADC 的度数是() A.15°B.20°C.25°D.30° 2.(2016山东烟台)如图,○O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发 (P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大 致是() 4,AB=6cm.动点P从点A开始沿边AB 向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分 别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是() A.18cm2B.12cm2C.9cm2D.3cm2 3.(2016广东省)如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是()二、填空题 6.(2016四川泸州)如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C (1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.

历年中考数学动点问题题型方法归纳

x A O Q P B y 动点问题题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 64 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。

图(3) A B C O E F A B C O D 图(1) A B O E F C 图(2) y M C D 2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

平面几何轨迹问题分类例析

平面几何轨迹问题分类例析 近年来,在各地中考中出现了一类求动点轨迹的路径长的问题,由于较难确定动点轨迹的形状,往往导致学生无从下手.本文以部分中考题为例,就如何确定动点轨迹的形状进行分类解析,供读者参考. 一、直线型动点轨迹 事实上,要说明一动点轨迹为直线型(直线、射线或线段),必须证明两点:第一、该轨迹恒过一定点(确定位置);第二、轨迹上任一点与该定点的连线和一定直线的夹角为定值或平行(明确方向). 例1 (2013年湖州)如图1,已知点A 是第一象限内横坐标为AN x ⊥轴于点M ,交直线y x =-于点N .若点P 是线段ON 上的一个动点,30APB ∠=?, BA PA ⊥,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.求当点P 从点O 运动到 点N 时,点B 运动的路径长是___. 图1 解析 如图2,由点P 位于O 、N 时,点B 所对应的位置0B 、n B 以及点P 在线段OC 上运动,可猜想点B 的轨迹是线段0n B B .如何证明呢? 显然,点B 的轨迹已经过0B 点,下面只需证明0AB B ∠为定值,即证明它与某一个定角相等即可. 观察可得,APN ∠就是与0AB B ∠相等的 定角,再由两角的位置特征和题设条件,不难 想到用三角形相似来证明两角相等. 由0tan30,tan30AB AO AB AP =?=?,得0::tan30AB AO AB AP ==? 又易知0OAC B AB ∠=∠ ,得0AB B ?∽AOP ?, 所以0AB B AOP ∠=∠为定值. 故点B 在线段0n B B 上,

即线段0n B B 就是点B 运动的路径(或轨迹). 同理可证 0n A B B ?∽AON ?,且相似比为 t a n 3?, 则 0t a n 22 n B B O N = ?= 图2 注 例1利用角来确定动点的运动方向,还可用与定直线平行确定动点的运动方向. 例2 (2010年桂林)如图3,已知AB =10,点C 、D 在线段AB 上,且2AC DB ==. P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边AEP ?和等边PFB ?,连结EF ,设EF 的中点为G .当点P 从点C 运动到点D 时,点G 移动路径的长 是 . 图3 解析 如图4,分别延长AE 、BF 交于点H ,由60EAP FBP ∠=∠=?可知,当点P 在线段CD 上移动时,点E 、F 分别在线段AH 、BH 上移动. 图4 由60A FPB ∠=∠=?,知AH //PF , 同理BH //PE .

2021年中考数学总复习动点问题练习(含答案)

2021中考数学总复习动点问题 年班姓名成绩: 1.如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°. (1)求ED、EC的长; (2)若BP=2,求CQ的长; (3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长. 图1 备用图 解:(1)在Rt△ABC中,AB=6,AC=8,所以BC=10. 在Rt△CDE中,CD=5,所以 315 tan5 44 ED CD C =?∠=?=, 25 4 EC=. (2)如图2,过点D作DM⊥AB,DN⊥AC,垂足分别为M、N,那么DM、DN是△ABC的两条中位线,DM=4,DN=3. 由∠PDQ=90°,∠MDN=90°,可得∠PDM=∠QDN. 因此△PDM∽△QDN. 所以 4 3 PM DM QN DN ==.所以 3 4 QN PM =, 4 3 PM QN =. 图2 图3 图4 ①如图3,当BP=2,P在BM上时,PM=1. 此时 33 44 QN PM ==.所以 319 4 44 CQ CN QN =+=+=. ②如图4,当BP=2,P在MB的延长线上时,PM=5. 此时 315 44 QN PM ==.所以 1531 4 44 CQ CN QN =+=+=. (3)如图5,如图2,在Rt△PDQ中, 3 tan 4 QD DN QPD PD DM ∠===. 在Rt△ABC中, 3 tan 4 BA C CA ∠==.所以∠QPD=∠C. 由∠PDQ=90°,∠CDE=90°,可得∠PDF=∠CDQ. 因此△PDF∽△CDQ. 当△PDF是等腰三角形时,△CDQ也是等腰三角形. ①如图5,当CQ=CD=5时,QN=CQ-CN=5-4=1(如图3所示).此时 44 33 PM QN ==.所以 45 3 33 BP BM PM =-=-=. ②如图6,当QC=QD时,由cos CH C CQ =,可得5425 258 CQ=÷=. 所以QN=CN-CQ= 257 4 88 -=(如图2所示). 此时 47 36 PM QN ==.所以 725 3 66 BP BM PM =+=+=. ③不存在DP=DF的情况.这是因为∠DFP≥∠DQP>∠DPQ(如图5,图6所示). 图5 图6 2.如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式; (2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标; (3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由. 图1 解:(1)因为抛物线与x轴交于A(-1,0)、B(3, 0)两点,设y=a(x+1)(x-3), 代入点C(0 ,3),得-3a=3.解得a=-1. 所以抛物线的函数关系式是y=-(x+1)(x-3)=-x2+2x+3. (2)如图2,抛物线的对称轴是直线x=1. 当点P落在线段BC上时,P A+PC最小,△P AC的周长最小. 设抛物线的对称轴与x轴的交点为H. 由 BH PH BO CO =,BO=CO,得PH=BH=2. 所以点P的坐标为(1, 2). 图2 (3)点M的坐标为(1, 1)、(1,6)、(1,6 -)或(1,0).

相关文档
最新文档