磁光材料简介

磁光材料简介
磁光材料简介

磁光材料的研究现状

1. 综述

磁光材料是具有磁光效应的材料,磁光效应包括法拉第效应、磁光克尔效应、塞曼效应和磁致线双折射效应(科顿-穆顿效应和瓦格特效应)等。磁光材料需要同时具备一定的光学特性和磁学特性。

法拉第效应

法拉第效应指偏振光通过磁场下的介质后,偏振面因磁场作用而发生偏转。

6 f = VBd|

其中是沿着光线传播方向看去偏振面的旋转角,叫做法拉第转角;V是Verdet 常数,与材料性质有关;B是磁感应强度在光线传播方向上的投影;d是光在介质中传播的距离。当磁感应强度投影B与光线传播方向同向时,偏振面右旋,|e t <0;反之,偏振面左旋,阡>0。

与普通旋光效应不同的是,光线通过介质后再反射,原路返回再次通过介质,偏振面会在原来的基础上再旋转角,而不是恢复原状。这为利用法拉第效应的磁致旋光材料提供了一种新的应用空间,如磁光调制器、磁光隔离器等。

目前,对法拉第效应磁光材料的研究相对透彻,应用也相对广泛。以钇铁石榴石(¥才忧0口,简称YIG)为代表的稀土铁石榴石(R材料是常见的法拉第效应磁光材料

[1]。

磁光克尔效应

磁光克尔效应指线偏振光在磁化的介质表面反射后,在磁场作用下偏振面发生偏转,偏转角度称为磁光克尔转角戸。根据磁场强度方向的不同,磁光克尔效应分为三种:极向克尔效应:磁场方向垂直于介质表面,通常,° k随入射角的减小而增大;

横向克尔效应:磁场方向平行与介质表面且垂直于入射面,光线的偏振方向不会发生变化,p偏振光入射时会发生微小的反射率变化;

纵向克尔效应:磁场方向平行与介质表面且平行于入射面,随入射角的减小而减小,纵向克尔效应的强度比极向克尔效应小几个数量级,不易观察。

应用最广的是极向克尔效应,可用来进行磁光存储和观察磁体表面或磁性薄膜的磁

畴分布。

塞曼效应

塞曼效应指光源位于强磁场中时,分析其发光的谱线,发现原来的一条谱线分裂成三条或更多条。原子位于强磁场中时,破坏自旋-轨道耦合,一个能级分裂成多个能级,而且新能级间有一定的间隔,能级的分裂导致了谱线的分裂。能级分裂的方式与角量子数J和朗德因子g有关。

塞曼效应证明了原子具有磁矩,而且磁矩的空间取向量子化。塞曼效应可应用于测定角量子数和朗德因子,还可分析物质的元素组成。

磁致线双折射效应

磁致线双折射效应指透明介质处于磁场中时,表现出单轴晶体的性质,光线入射能产生两条折射线。在铁磁和亚铁磁体中的磁致线双折射效应称作科顿-穆顿效应,反铁磁体中的磁致线双折射效应称作瓦格特效应[2].

磁致线双折射效应可用于测量物质能级结构,研究单原子层磁性的微弱变化等

2. 研究现状

本章将介绍多种磁光材料的前沿应用和理论研究,并结合本人所学知识给出相应的评价和启发。个人评价用加粗字体给出。

利用法拉第效应进行焊接检测[3]

根据法拉第效应,偏振光通过磁场中的介质后,偏振面转过一定角度,通过偏振角一定的偏振片后,就会表现为不同的亮度。工作时,将光源、起偏器、反射镜、直流电磁铁、光反射面、磁光薄膜、检偏器、CMO成像装置和焊件按图1组装。

其中磁光薄膜应具有以下特性:透光性好,色散强,具有顺磁性,磁化率较大。

这样能在磁光薄膜处准确地反应焊件的磁化状态,并获得较高的

Verdet 常数和较大的 法拉第转角。

若被检测处没有缺陷,焊件连为一体,与直流电磁铁组成完整磁路, 由于焊件较薄, 焊件的

磁化方向是由 N 极指向S 极,与焊件表面水平,这样磁光薄膜中,在光线方向上 磁场的投影为0,透过检偏器后成像时光强度是均匀的, I 匚二Icos 2 ? ;

若被检测处有缺陷,则焊件在缺陷两侧分为两个独立部分,

无法连成完整磁路,这 样就出现了不均匀的磁化,即 N 极、S 极附近的焊件被垂直磁化,不闭合的焊缝处存在

水平磁场,同样的磁场分布体现在磁光薄膜中, N 极上的焊件反射光偏振面转过B 角 (实

际在入射和反射过程中都发生了法拉第效应,若薄膜厚度为

d ,应有8二2VBd ) , S 极 上的焊件反射光偏振面转过 -B 角,缺陷处不发生偏振面转动。透过检偏器后,将得到 不同的光强:

I 1 = ICOE 2(0 - 0 )

I 2 - I I 8 }

控制 掾动面 mi

顺时TOR

k 山

,则有 I ?,成像后得到明暗不等的区域,如图 2

Hi : 3

ill- 了康严君

八逹时軒旅转

图1焊接缺陷磁光成像原理图

蛊光薄籐

光反射面

桿件

(a)焊件实物(b)焊件带磁时的磁光图像

图2焊件磁光成像

可见,磁光成像技术可明显显示焊件中的微小缺陷,系统容易接入自动化控制,可在焊接同时进行检测,大大提高了作业效率。同理,磁光成像技术还可用于其他金属件的无损探伤。与其他无损探伤方式[4]相比,磁光成像具有易读、明显和数字化的特点,在无损探伤领域由广泛的应用前景。

磁光隔离器

磁光隔离器是保证光单向传播的器件[1],一般用来保护激光光源,防止其激发受到反射光的干扰,对光纤通信和激光技术由重要意义。

磁光隔离器由一个45°法拉第旋光器和一对Gian-Thompson棱镜⑸ 组成,并按照图3的方式组装。

Pi

图3磁光隔离器示意图

设置起偏器角度以使偏振光能完全透过第一个Gian-Thompson棱镜。之后偏振光透过法拉第旋光器,偏振角增大45°,由于Gian-Thompson棱镜的组装方式为相互错开

45 °,通过法拉第旋光器的偏振光刚好能透过第二个Gia n-Thomps on棱镜,反射光也如

此。之后反射光也通过法拉第旋光器,由于法拉第效应的特性,偏振面会向相同方向再转45°,得到与入射光偏振面夹角为90°的偏振光,这样的偏振光不能通过第一个

Gian-Thompson棱镜,因而防止反射光干扰光源的激发。

磁光隔离器应注重改良磁光材料的光学性能,减少透过旋光器时的强度损耗。为了实现设备的小型化,材料应有较大的Verdet常数,以在介质长度较小的条件下实现45 ° 法拉第转角。目前已发现掺Bi稀土石榴石有较强的法拉第效应[1],日本实现了

单晶的制取[6] ,Verdet常数非常高,可在薄膜尺度实现45 °法拉第转角,为集成磁光隔离器的制造提供了条件。

基于磁光克尔效应的磁畴成像

磁光克尔效应指线偏振光在磁化的介质表面反射后,在磁场作用下偏振面发生偏转的现象。根据磁场方向不同分为极向、横向和纵向克尔效应,常用的是效果较为明显的极向克尔效应和纵向克尔效应。

偏振光在磁性材料表面反射时,由于入射角和磁场强度和方向的差别,偏振角会产生不同的变化,经过偏振片后成像体现为不同的亮度。铁磁体中原子磁矩自发磁化排列成多个磁畴,每个磁畴都有特定的磁化方向,用偏振光照射材料表面,就会发生不同程度的磁光克尔效应,处理后就能观察到不同亮度的磁畴。

磁光克尔成像系统主要有两种 [7],如图4

4磁光克尔成像系统示意图

(a )具有较宽视场,适合观测大块磁畴;(b )具有显微光路,能在高分辨率下观察磁

畴的显微结构。根据样品的实际情况选择适当的成像系统,可以方便而准确地观察到 理想的磁畴结构。

电光-磁光互补电传感器

电光效应指各向同性材料置于电场中时变为各向异性,

其光学性质随之改变, 产生 线性双折射;磁光效应在这里指法拉第效应。

某些晶体同时具有电光效应和磁光效应,如闪烁锗酸铋(日bGeW 詁)、闪烁硅酸铋

(EiaSi?%)、锗酸铋(Bi 也陽0曲)、硅酸铋()和石英(Si Q?)等[8]。

将螺线管通电流,就产生了与电流成正比的磁场; 在极板两极加电压, 就产生了与

电压成正比的电场。 将螺线管、极板和上述晶体组合起来, 晶体同时受电场和磁场的作

用,同时且独立地发生电光效应和磁光效应, 经过晶体的偏振光在经过检偏器,

呈现出 一定的强度,研究光强、磁场和电场的关系, 发现其图像是一个三维曲面,

自由度为2, 也就是说,确定光强、磁场和电场之中任意两个量,就可以求得第三个量。 由于磁场与 电流、电场与电压是一一对应关系,而光强需要严格处理和控制,不适宜作为待测量, 所以一般选用电压补偿控制光强恒定来测定电流,或电流补偿控制光强恒定来测定电

压。实验装置如图 5。

ecu

=3=:

勒氏

fiL

钕铁硼磁铁介绍及性能表(Word)

钕铁硼磁铁介绍及性能表 第三代稀土永磁钕铁硼是当代磁铁中性能最强的永磁铁。它的BHmax值是铁氧体磁铁的5-12倍,是铝镍钴磁铁的3-10倍;它的矫顽力相当于铁氧体磁铁的5-10倍,铝镍钴磁铁的5-15倍,其潜在的磁性能极高,能吸起相当于自身重量640倍的重物。 由于钕铁硼磁铁的主要原料铁非常便宜,稀土钕的储藏量较钐多10-16倍,故其价格也较钐钴磁铁低很多。 钕铁硼磁铁的机械性能比钐钴磁铁和铝镍钴磁铁都好,更易于切割和钻孔及复杂形状加工。 钕铁硼磁铁的不足之处是其温度性能不佳,在高温下使用磁损失较大,最高工作温度较低。一般为80摄氏度左右,在经过特殊处理的磁铁,其最高工作温度可达200摄氏度。由于材料中含有大量的钕和铁,故容易锈蚀也是它的一大弱点。所以钕铁硼磁铁必须进行表面涂层处理。可电镀镍(Ni), 锌(Zn), 金(Au), 铬(Cr), 环氧树脂(Epoxy)等。 钕铁硼磁铁目前广泛应用于工业航空航天,电子,机电,仪器仪表,医疗等领域。而且非技术领域使用也越来越广泛,如吸附磁铁,玩具,首饰等。 生产流程: 配料---->熔炼---->制粉---->成型---->烧结---->测试---->机械加工---->电镀---->磁化---->检验---->包装 钕铁硼磁铁磁性能 Magnetic Properties of NdFeB Magnets

注:工作温度是指该温度下的开路磁通不可逆损失小于或等于5%,测试温度为20°C±2°C Note: Working temperature is tested under 20°C±2°C, the inevitable loss of magnetic force is no more than 5%.

垂直磁记录技术的新进展

垂直磁记录技术的新进展 【摘要】介绍了磁记录的几种工作方式和原理,总结了垂直磁记录对记录介质和写磁头材料性能的要求,给出了垂直磁记录材料近几年的发展状况,由分析可知:热辅助垂直磁记录技术将会使磁记录技术推向海量存储的领域。 【关键词】磁记录;垂直磁记录;介质;磁头;进展 1.引言 随着社会的发展和人们对信息存储需求的急剧增加,以硬盘为代表的磁性信息存储技术以其存储密度高、容量大及价格低廉等优势在信息存储领域占据着举足轻重的位置。自IBM于1957年发明了第一代计算机硬盘(RAMAC 350、记录密度约2kBits/in2)以来[1],在众多科学工作者的辛勤努力之下,经历了许多革命性的理论和技术上的突破,使记录密度得到了成千上万倍的发展,2012年10月希捷宣布,正在研发的HAMR热辅助垂直磁记录的面密度已达到了1TBits/in2的水平,这比现在620GBits/in2的记录密度又提升了将近55%,现如今,利用1TBits/in2的记录密度,可以制造出6TB的台式机硬盘以及2TB的笔记本硬盘,未来随着技术的成熟,还可以进一步推出10~20TB的笔记本硬盘及30~60TB的台式机硬盘[2]。图1给出了近20年硬盘面密度的发展曲线[3],可以看出磁记录的发展速度是令人震惊的。 2.磁记录模式的介绍 磁记录的记录模式主要有以下四种:水平磁记录、垂直磁记录、倾斜磁记录、热辅助磁记录;下面对这四种记录模式进行逐一的简单介绍。 2.1 水平磁记录 水平磁记录模式中介质的磁化方向与盘面平行,且沿着磁道,在高密度记录中,水平磁记录方式碰到了困难,即可能出现圆形磁化模式,从而显著地减小重放电压,人们普遍认为,水平磁记录的记录面密度将停留在150~200GBits/in2。 2.2 垂直磁记录 为了解决水平磁记录在高密度记录时所遇到的困难,日本东北大学的岩崎俊一(Iwasaki)教授于1977年提出了垂直磁记录的概念,在垂直磁记录模式中介质的磁化方向垂直于盘面(图2)。通过和水平记录模式的对比我们可知:在记录状态下,由于静磁相互作用的存在,水平记录模式在低记录密度时是稳定的,而垂直记录模式则在高记录密度时是稳定的,二者的这个本质区别就决定了磁记录模式从水平记录向垂直记录过渡的必然趋势。 2.3 倾斜磁记录

磁性材料的基本特性

一.磁性材料的基本特性 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 ?饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; ?剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; ?矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); ?磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关; ?初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp; ?居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度; ?损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r; ?在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3.软磁材料的磁性参数与器件的电气参数之间的转换

磁性材料分类

磁性材料 主要是指由过度元素铁,钴,镍及其合金等能够直接或间接产生磁性的物质. 磁性材料从材质和结构上讲,分为“金属及合金磁性材料”和“铁氧体磁性材料”两大类,铁氧体磁性材料又分为多晶结构和单晶结构材料。 从应用功能上讲,磁性材料分为:软磁材料、永磁材料、磁记录-矩磁材料、旋磁材料等等种类。软磁材料、永磁材料、磁记录-矩磁材料中既有金属材料又有铁氧体材料;而旋磁材料和高频软磁材料就只能是铁氧体材料了,因为金属在高频和微波频率下将产生巨大的涡流效应,导致金属磁性材料无法使用,而铁氧体的电阻率非常高,将有效的克服这一问题、得到广泛应用。 磁性材料从形态上讲。包括粉体材料、液体材料、块体材料、薄膜材料等。 磁性材料的应用很广泛,可用于电声、电信、电表、电机中,还可作记忆元件、微波元件等。可用于记录语言、音乐、图像信息的磁带、计算机的磁性存储设备、乘客乘车的凭证和票价结算的磁性卡等。 顺磁性 paramagnetism 顺磁性物质的磁化率为正值,比反磁性大1~3个数量级,X约10-5~10-3,遵守Curie定律或Curie-Weiss定律。物质中具有不成对电子的离子、原子或分子时,存在电子的自旋角动量和轨道角动量,也就存在自旋磁矩和轨道磁矩。在外磁场作用下,原来取向杂乱的磁矩将定向,从而表现出顺磁性。 顺磁性是一种弱磁性。顺磁(性)物质的主要特点是原子或分子中含有没有完全抵消的电子磁矩,因而具有原子或分子磁矩。但是原子(或分子)磁矩之间并无强的相互作用(一般为交换作用),因此原子磁矩在热骚动的影响下处于无规(混乱)排列状态,原子磁矩互相抵消而无合磁矩。但是当受到外加磁场作用时,这些原来在热骚动下混乱排列的原子磁矩便同时受到磁场作用使其趋向磁场排列和热骚动作用使其趋向混乱排列,因此总的效果是在外加磁场方向有一定的磁矩分量。这样便使磁化率(磁化强度与磁场强度之比)成为正值,但数值也是很小,一般顺磁物质的磁化率约为十万分之一(10-5),并且随温度的降低而增大。 抗磁性 diamagnetism 抗磁性是一些物质的原子中电子磁矩互相抵消,合磁矩为零。但是当受到外加磁场作用时,电子轨道运动会发生变化,而且在与外加磁场的相反方向产生很小的合磁矩。这样表示物质磁性的磁化率便成为很小的负数(量)。磁化率是物质在外加磁场作用下的合磁矩(称为磁化强度)与磁场强度之比值,符号为κ。一般抗磁(性)物

磁性材料基本特性

1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或 B~H曲线上的某一点,该点常称为工作点。 饱和磁感应强度 Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; 剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; 矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp 居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度 损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r 在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 设计软磁器件通常包括三个步骤:正确选用磁性材料;

磁材介绍

? Spang & Co 公司分部 开关电源使用的 磁芯

简介 开关电源(SPS)的优点大家都很清 楚。这些装置中所用的各种电路也在文献中 说明得非常清楚。磁芯在开关电源电路中起 重要作用。磁芯可由多种原料经一系列工序 制成,可以有各种形状和大小,如图1所 示。 每种材料都有自己的特性。因此,必须 参考材料特性考察具体情况下对电源磁芯的 要求,从而选择适当磁芯。 本文介绍开关电源磁芯所用的各种磁 性材料、制造方法以及和电源主要部分相 关的有效磁特性。 磁芯可分为以下三种基本类型:(1) 绕帶磁芯,(2)磁粉芯,(3)铁氧体。 图1:各种磁芯。 以下 MAGNETICS 资料详细讲述另外一些磁芯资料,包括材料说明和特性,以及尺寸和特别设计资料: 铁氧体磁芯……………….…………………………….…技术公报FC-601 钼坡莫合金和高磁通磁粉芯.…………………………….技术公报MPP-400 铁硅铝磁粉芯…………….…………………………….…技术公报KMC-2.0 高磁通磁粉芯…………….…………………………….…技术公报HFPC-01 绕帶磁芯…………….…………………………….………技术公报TWC-500 切割型磁芯…………….…………………………….……技术公报MCC-100 电感器磁粉芯设计软件https://www.360docs.net/doc/174474438.html, 共模电感器设计软件https://www.360docs.net/doc/174474438.html, 目錄 绕帶磁芯 (1) 磁粉芯 (3) 铁氧体磁芯 (5)

图 2:TWC 剖视图。 绕帶磁芯 图 2 是典型绕帶磁芯的剖视图。这个磁芯由磁合金窄带制成,厚度为 1/2 密尔到 14 密尔。宽度为 1/8” 到若干英寸。金属带首先切成所需宽度,并覆盖上薄的绝缘材料涂层,然后绕制在芯棒上,一圈包着一圈,一直绕到预定厚度。最后一圈通过点焊焊接在前一圈上,防止松开。 绕制时磁芯材料受压,所以会丧失部分磁性。为了恢复这些失去的磁特性,磁芯必须在氢气炉中退火,退火温度接近 1000°C 。 *频率极限是根据处于磁通饱和或接近饱和状态下的材料获得的。频率越高越好,这样磁感应强度就越低-参见正文。 1 MAGNESIL ? 16.5 750 0.012 (3% SiFe ) 0.006 0.004 0.002 100 Hz 250 Hz 1 kHz 2 kHz SUPERMENDUR (铁钴钒合金材料铁钴钒合金材料)) ORTHONOL ? (50% Ni ) 21 940 0.004 0.002 15 500 0.004 0.002 0.001 750 Hz 1.5 kHz 1.5 kHz 4 kHz 8kHZ 坡莫合金 (80% Ni ) 非晶 2605SC (铁基) 7.4 460 15.5 370 0.004 0.002 0.001 0.0005 0.001 4 kHz 10 kHz 20 kHz 40 kHz 20 kHz 非晶 2605-S3 (铁基铁基)) 14 370 0.001 100 kHz 非晶 2714A (钴基钴基)) 5.75 205 0.001 300 kHz kHz 磁材料 饱和饱和磁感应磁感应 强度千高斯 (B m ) 表 1:绕帶磁芯材料的磁特性 居里温度 °C (T C ) 使用使用频率上限频率上限* 带厚带厚((英寸英寸)) 频率

磁性材料基本特性的研究

实验报告 姓名:什么情况班级:F10 学号:51 实验成绩: 同组姓名:实验日期:2011- 指导老师:助教批阅日期: 磁性材料基本特性的研究 【实验目的】 1.了解磁性材料的磁滞回线和磁化曲线概念,加深对铁磁材料的主要物理量矫顽磁力、剩磁和磁导率的理解; 2.利用示波器观察并测量磁化曲线与磁滞回线; 3.测定所给定的铁磁材料的居里温度. 【实验原理】 1.磁化性质 一切可被磁化的物质叫作磁介质。磁介质的磁化规律可用磁感应强度B、磁化强度M、磁场强度H来描述,它们满足一定的关系 μr的不同一般可分为三类,顺磁质、抗磁质、铁磁质。 对非铁磁性的各向同性的磁介质,H和B之间满足线性关系,B =μH,而铁磁性介质的m 、B 与H 之间有着复杂的非线性关系。一般情况下,铁磁质内部存在自发的磁化强度,当温度越低自发磁化强度越大。如图一所示。 图一B~ H曲线图二μ~ T曲线 它反映了铁磁质的共同磁化特点:在刚开始时随着H的增加,B缓慢的增加,此时μ较小;而后便随H的增加B急剧增大,μ也迅速增加;最后随H增加,B趋向于饱和,而此时的μ值在到达最大值后又急剧减小。图一表明了磁导率μ是磁场H的函数。B-H曲线表示铁磁材料从没有磁性开始磁化,B随H的增加而增加,称为磁化曲线。从图二中可看到,磁导率μ还是温度的函数,当温度升高到某个值时,铁磁质由铁磁状态转变成顺磁状态,在曲线上变化率最大的点所对应的温度就是居里温度T C。 2.磁滞性质 铁磁材料除了具有高的磁导率外,另一重要的特性是磁滞现象.当铁磁材料磁化时,磁

感应强度B不仅与当时的磁场强度H有关,而且与 磁化的历史有关,如图3所示.曲线OA表示铁磁材 料从没有磁性开始磁化,B随H的增加而增加,称 为磁化曲线.当H值到达某一个值H S时,B值几乎 不再增加,磁化趋于饱和.如使得H减少,B将不 再沿着原路返回,而是沿另一条曲线AC'A'下降,当 H从-H S增加时,B将沿着A'CA曲线到达A形成一 闭合曲线.其中当H = 0时,|B| = Br,Br称为剩余 磁感应强度.要使得Br为零,就必须加一反向磁场, 当反向磁场强度增加到H = -H C时,磁感应强度B为零,达到退磁,HC称为矫顽力.各种铁磁材料有不同的磁滞回线,主要区别在于矫顽力的大小,矫顽力大的称为硬磁材料,矫顽力小的称为软磁材料. 3.用交流电桥测量居里温度 铁磁材料的居里温度可用任何一种交流电桥测量。本实验采用如图所示的RL交流电桥, 图三RL交流电桥 在电桥中输入电源由信号发生器提供,在实验中应适当选择不同的输出频率ω为信号发生器的角频率。选择合适的电子元件相匹配,在未放入铁氧体时,可直接使电桥平衡,但当其中一个电感放入铁氧体后,电感大小发生了变化,引起电桥不平衡。但随着温度的上升到某一个值时,铁氧体的铁磁性转变为顺磁性,CD两点间的电位差发生突变并趋于零,电桥又趋向于平衡,这个突变的点对应的温度就是居里温度。实验中可通过桥路电压与温度的关系曲线,求其曲线突变处的温度,并分析研究在升温与降温时的速率对实验结果的影响。4.用示波器测量动态磁化曲线和磁滞回线

磁性材料的基本特性及分类参数

一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2)

磁性材料特性

磁性材料 一.磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H 曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度T c:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗P h及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe f2 t2 / ∝,ρ降低, 磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳

第三章 磁性材料

第三章磁性材料 物质磁性的研究是近代物理学的重要领域之一。磁性现象的范围很广泛。从微观粒子到宏观物体,以至于宇宙天体,都具有某种程度的磁性。 磁性现象很早就被发现,我国人民在3000多年前就发现了磁石(Fe3O4)能相互吸引及磁石吸引铁的现象。我国古代的四大发明之一指南针即是例证。 随着近代科学技术的发展,由于金属和合金磁性材料的电阻率低,损耗大,已不能满足应用的需要,尤其在高频范围。 磁性无机材料科学技术除了有高电阻、低损耗的优点以外,还具备各种不同的磁学性能,因此他们在无线电电子学、自动控制、电子计算机、信息存储,激光调制等方面,都有广泛的应用。 磁性无机材料一般是含铁及其他元素的复杂氧化物,通常称为铁氧体(ferrite),它的电阻率为10—106Ω·m,属于半导体范围。目前,铁氧体已发展成为一门独立科学。 第一节磁性的广泛 物质的磁性来源于原子的磁性。

原子的磁性包括三个部分:电子的自旋磁矩、电子的轨道磁矩(由电子绕原子核的运动产生)和原子核的磁矩。 原子核的磁矩一般比电子的磁矩小的多(相差三个数量级),可以忽略不计。所以原子的总磁矩是电子的自旋磁矩和轨道磁矩的总和。 电子绕原子核运动产生的轨道磁矩和角动量的比值r为: 电子的自旋磁矩和角动量的比值为: 这表明,电子自旋运动的磁矩比轨道运动的磁矩大一倍。 实验证明,原子组成分子或宏观物体后,其平均磁矩往往不等于孤立原子的磁矩,因为原子之间的相互作用会引起磁矩的变化。 很多磁性材料的电子自旋磁矩要比电子轨道磁矩大。这是因为在晶体中,电子的轨道磁矩受晶体(格)场的作用,或者说轨道磁矩被“猝灭”或“冻结”了,

磁铁的材质及性能

磁铁的材质及性能 一、磁铁的种类 磁铁的种类很多,一般分为永磁和软磁两大类,我们所说的磁铁,一般都是指永磁磁铁,永磁磁铁又分二大分类: 第一大类是:金属合金磁铁包括钕铁硼磁铁(Nd2Fe14B)、钐钴磁铁(SmCo)、铝镍钴磁铁(ALNiCO) 第二大类是:铁氧体永磁材料(Ferrite) 1、钕铁硼磁铁:它是目前发现商品化性能最高的磁铁,被人们称为磁王,拥有极高的磁性能,其最大磁能积(BHmax)高过铁氧体(Ferrite)10倍以上。其本身的机械加工性能亦相当之好,工作温度最高可达200摄氏度。而且其质地坚硬,性能稳定,有很好的性价比,故其应用极其广泛。但因为其化学活性很强,所以必须对其表面凃层处理。(如镀Zn,Ni,电泳、钝化等)。 2. 铁氧体磁铁:它主要原料包括BaFe12O19和SrFe12O19。通过陶瓷工艺法制造而成,质地比较硬,属脆性材料,由于铁氧体磁铁有很好的耐温性、价格低廉、性能适中,已成为应用最为广泛的永磁体。 3. 铝镍钴磁铁:是由铝、镍、钴、铁和其它微量金属元素构成的一种合金。铸造工艺可以加工生产成不同的尺寸和形状,可加工性很好。铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达600摄氏度以上。铝镍钴永磁产品广泛应用于各种仪器仪表和其他应用领域。 4、钐钴磁铁(SmCo):依据成份的不同分为SmCo5和 Sm2Co17。由于其材料价格昂贵而使其发展受到限制。钐钴(SmCo)作为稀土永磁铁,不但有着较高的磁能积(14-28MGOe)、可靠的矫顽力和良好的温度特性。与钕铁硼磁铁相比,钐钴磁铁更适合工作在高温环境中。 二、磁铁使用注意事项 下面是关于磁铁的使用注意事项,在使用磁铁产品之前请您务必先行阅读。 1.磁铁在使用过程中应确保工作场所洁净,以免铁屑等细小杂质吸附在磁铁表面影响产品的正常使用。 2.钕铁硼磁铁适宜存放在通风干燥的室内,酸性、碱性、有机溶剂、水中、高温潮湿的环境容易使磁体产生锈蚀,镀层脱落磁体粉化退

磁记录材料

磁记录材料 来源:世界化工网(https://www.360docs.net/doc/174474438.html,) 随着电子信息技术的迅速发展,对信息记忆、存贮、记录的技术及其材料的要求相应提高。单从计算机配套的信息存贮问题看.计算机的内存贮和外存健系统,以及用于档案、文献资料、图书管理、办公事务等各项情报管理工作中的存贮,都需要性能越来越高的新器件和新材料。从目前看仍以磁记录为主,这是因为磁记录器件能实现记录与重放,能多次重复使用,所以得到广泛应用。 一、基本概念 磁记录材料是指那些通过磁的作用可以直接理集、记录、存贮、传递信息的材料。通常又把这种材料叫做磁记录载体、介质或媒体。因此,凡是能转换成磁能的一切信号源,不管是机械的、电的,还是化学的、光学的都可以记录在这种材料上。所以,就其本质意义上,又可以说,凡是能对磁的作用发生变化,能够直接形成各种形式信息的材料均称为磁记录材料。 随着工业发展和科学技术的进步,磁记录材料也日趋完善达到了如此完美的程度。由最初单纯记录声音的本能作用逐步延伸到能记录和重现各种信息,并广泛地应用于通讯、J“播、电影、电视、文教卫生、电子计算机、地质勘探、资源卫星、数据处理以及军事科学领域。为丰富人们的精神与物质文明、促进科学技术和国民经济现代化发展,起着越来越重要的作用。 二、磁记录材料的特点与性能 1.磁记录的材料的特点

(1)产品特点 ①记录简便,快速准确磁纪律材料的应用不需要很多的设备和严 格的磁记录加工条件,投资少,,成本低,经济和社会效益高,而且对所记录的材料,能够全面而真实地记录上并立刻显示出来。 ②反复使用,便于复制磁记录材料具有反磁化进行退磁的特性,可 以通过消磁来消除原有的讯号和记录新的讯号。这样的过程可以反复进行多次,林外,通过高速和热磁及其他复制凡是,使已经获得的音像,图像,数据等各种信息,可以再短短的几分钟内进行成倍的翻版复制。 ③信息贮量大,记录密度高不仅单声迹可以记录很高的密度,而且 通过改变记录方式和介质运行速度,就可以在同样长度和宽度上,同时记录多条磁迹,其记录密度和容量就可大为提高。 ④结构小巧,重量轻随着磁记录材料制造技术的日趋成熟。其结 构越来越趋向集成化,盒式化,微型化,体积越发变小,用料省,比长大,使用时间和记录密度成几倍的提高,可以用于任何肤质和要求极为特殊的场合和环境。 ⑤记录频率范围宽所记录的讯号频率包括全声频(0.2~20kHz) 在内并扩展到15MHz以上,而仍能保持很高的清晰度和分辨率以及很小的畸变。 ⑥记录动态范围大可以高达40dB以上,而且失真很小。可以从满 负载到0.3%的整个范围内的讯号,都能给出精确,呈线性的记录。 ⑦易进行时标(频率)变换可以允许用一种速度记录信息,而

磁性材料及巨磁电阻效应简介.

磁性材料及巨磁电阻效应简介 物理系隋淞印学号SC11002094 引言 磁性材料是应用广泛、品类繁多、与时俱进的一类功能材料, 人们对物质磁性的认识源远流长。 磁性材料的进展大致上分几个历史阶段:当人类进入铁器时代, 除表征生产力的进步外,还意味着金属磁性材料的开端,直到18世纪金属镍、钻相继被提炼成功, 这一漫长的历史时期是3d 过渡族金属磁性材料生产与原始应用的阶段; 20世纪初期(1900-1932, FeSi、FeNi 、FeCoNi 磁性合金人工制备成功,并广泛地应用于电力工业、电机工业等行业, 成为3d 过渡族金属磁性材料的鼎盛时期, 从此以后, 电与磁开始了不解之缘; 20世纪后期, 从50年代开始, 3d 过渡族的磁性氧化物(铁氧体 逐步进入生产旺期, 由于铁氧体具有高电阻率, 高频损耗低, 从而为当时兴起的无线电、雷达等工业的发展提供了所必需的磁性材料, 标志着磁性材料进入到铁氧体的历史阶段; 1967年, SmCo 合金问世, 这是磁性材料进入稀土—3d 过渡族化合物领域的历史性开端。1983年,高磁能积的钕铁硼(Nd—FeB 稀土永磁材料研制成功。现已誉为当代永磁王。TbFe 巨磁致收缩材料与稀土磁光材料的问世更丰富了稀土一3d 过渡族化合物磁性材料的内涵。1972年的非晶磁性材料与1988年的纳米微晶材料的呈现, 更添磁性材料新风采。1988年, 磁电阻效应的发现揭开了自旋电子学的序幕。因此从20世纪后期延续至今, 磁性材料进入了前所未有的兴旺发达时期, 并融入到信息行业, 成为信息时代重要的基础性材料之一。 磁性材料的分类 磁性材料应用十分广泛, 品种繁多, 存在以下多种分类方式。按物理性质分类:(1按静磁特性:即根据静态磁滞回线上的参量,如矫顽力、剩磁等来确定 磁性材料的类型。例如:永磁属高矫顽力一类磁性材料; 软磁属低矫顽力的一类 磁性材料; 矩磁属高剩磁、低矫顽力的一类磁性材料; 磁记录介质属于中等矫顽

国家标准磁性材料

国家标准《磁性材料分类》编制说明 一、任务来源 根据国家标准化管理委员会下达的标准制修订计划(标准项目编号为20051325-T-604),从2006年开始制定国家标准《磁性材料分类》,经过半年多的努力,已完成标准征求意见稿的编制。 二、标准制定的背景 磁性材料有不同的分类方法,按材料组分可分为金属(如电工钢、坡莫合金、铝镍钴永磁、稀土钴永磁、钕铁硼永磁等)和非金属(铁氧体等)两类;按材料的性质可分为软磁材料(如电工钢、坡莫合金、软磁铁氧体等)、硬(永)磁材料(如铝镍钴永磁、稀土钴永磁、钕铁硼永磁、永磁铁氧体等)和功能磁性材料(如磁致伸缩材料、磁记录材料、磁电阻材料、磁泡材料、磁光性薄膜材料等);按生产工艺可分为热轧、冷轧、铸造、烧结、粘结等材料。国际电工委员会(IEC)从事磁性材料的分类工作多年,最终确定磁性材料分类以公认的以下两类主要产品为基础: ——软磁材料(矫顽力≤1kA/m); ——永(硬)材料(矫顽力>1kA/m)。 在此基础上于2000年发布了IEC 60404-1:2000《磁性材料分类》。 我国是磁性材料的生产和使用大国,近几年产量占到全世界总产量的一半以上,并且产量及占世界总产量的份额还在逐渐增长,但没有磁性材料的分类方法标准,为统一我国磁性材料的分类方法,全国电工合金标准化技术委员会于2004年申报了国家标准《磁性材料分类》制定计划并获得批准,标准制定工作由桂林电器科学研究所负责。 三、标准的编辑过程 制定《磁性材料分类》国家标准的任务下达后,起草人员认真研究了国内外相关文件,尤其是IEC 60404-1:2000《磁性材料分类》。研究分析认为:IEC 60404-1采用的分类方法合理,适合我国国情,可采用为我国国家标准。 本标准征求意见稿按GB/T 20000.2-2001《标准化工作指南第2部分:采用国际标准的规则》的规定等同采用IEC 60404-1:2000《磁性材料分类》。分类方法如下:

磁性材料的基本特性

磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H 足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 磁性材料是一种重要的电子材料。早期的磁性材料主要采用金属及合金系统,随着生产的发展,在电力工业、电讯工程及高频无线电技术等方面,迫切要求提供一种具有很高电阻率的高效能磁性材料。在重新研究磁铁矿及其他具有磁性的氧化物的基础上,研制出了一种新型磁性材料——铁氧体。铁氧体属于氧化物系统的磁性材料,是以氧化铁和其他铁族元素或稀土元素氧化物为主要成分的复合氧化物,可用于制造能量转换、传输和信息存储的各种功能器件。

关于磁性材料的发展研究综述

关于磁性材料的发展研究综述 关键词:磁性材料、钕铁硼永磁材料、纳米磁性材料、磁电共存、应用及前景 摘要:磁性材料,是古老而用途十分广泛的功能材料,与信息化、自动化、机电一体化、国防、国民经济的方方面面紧密相关。人们对钕铁硼永磁材料的研究和优化,是磁性材料进一步发展,并逐渐深入到纳米磁性材料的研发和研究…… 关于磁性材料的研究发展综述 一、磁性材料简介 实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同。根据物质在外磁场中表现出的特性,物质可分为五类:顺磁性物质,抗磁性物质,铁磁性物质,亚磁性物质,反磁性物质。根据分子电流假说,物质在磁场中应该表现出大体相似的特性,但在此告诉我们物质在外磁场中的特性差别很大.这反映了分子电流假说的局限性。实际上,各种物质的微观结构是有差异的,这种物质结构的差异性是物质磁性差异的原因。我们把顺磁性物质和抗磁性物质称为弱磁性物质,把铁磁性物质称为强磁性物质。通常所说的磁性材料是指强磁性物质。磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性材料。磁化后容易去掉磁性的物质叫软磁性材料,不容易去磁的物质叫硬磁性材料。一般来讲软磁性材料剩磁较小,硬磁性材料剩磁较大。 二、磁性材料分类 磁性是物质的一种基本属性。实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同。物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。铁磁性和亚铁磁性物质为强磁性物质,抗磁性和顺磁性物质为弱磁性物质。磁性材料按性质分为金

属和非金属两类,前者主要有电工钢、镍基合金和稀土合金等,后者主要是铁氧体材料。按使用又分为软磁材料、硬磁材料和功能磁性材料。功能磁性材料主要有磁致伸缩材料、磁记录材料、磁电阻材料、磁泡材料、磁光材料,旋磁材料以及磁性薄膜材料等,反映磁性材料基本磁性能的有磁化曲线、磁滞回线和磁损耗等。 1、软磁材料软磁材料亦称高磁导率材料、磁芯材料,对磁场反应敏感,易于 磁化。大体上可分为四类:①合金薄带或薄片:FeNi(Mo)、FeSi、FeAl等。 ②非晶态合金薄带:Fe基、Co基、FeNi基或FeNiCo基等配以适当的Si、 B、P和其他掺杂元素,又称磁性玻璃。。磁介质(铁粉芯):FeNi(Mo)、FeSiAl、 羰基铁和铁氧体等粉料,经电绝缘介质包覆和粘合后按要求压制成形。④铁氧体:包括尖晶石型──M O·Fe2O3 (M代表NiZn、MnZn、MgZn、Li1/2Fe1/2Zn、CaZn等),磁铅石型──Ba3Me2Fe24O41(Me代表Co、Ni、Mg、Zn、Cu及其复合组分)。 2、硬磁材料硬磁材料,又称永磁材料,不易被磁化,一旦磁化,则磁性不易消 失。目前使用的永磁材料答题分为四类:①阿尔尼科磁铁:其构成元素Al、Ni、Co(其余为Fe),是强磁性相α1在非磁性相α2中以微晶析出而呈现高矫顽力的材料,对其进行适当处理,可增大磁积能。②铁氧体永磁材料:以Fe2O3为主要成分的复合氧化物,并加入钡的碳酸盐。③稀土类钴系磁铁:含有稀土金属的钴系合金,具有非常强的单轴磁性各向异性。④钕铁硼系稀土永磁合金:该合金采用粉末冶金方法制造,是由④Nd2Fe14B、 Nd2Fe7B6和富Nd相(Nd-Fe,Nd-Fe-O)三相构成,其磁积能是目前永磁材料中的最高纪录。 三、磁性材料的应用 由于磁体具有磁性,所以在功能材料中备受重视。磁体能够进行电能转换(变压器)、机械能转换(磁铁、磁致伸缩振子)和信息储存(磁带)等。 磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。由于铁磁

磁性材料原理及应用

磁性的起源和常见磁性材料应用 陈阳,王皓,徐航,信跃龙 磁性,在很久以前就引起了人们的兴趣。早在3000多年前,中国人就发现了自然界中存在一种磁石,它们可以相互吸引或吸引铁石。人们以丰富地想象力将此现象比喻为母亲慈爱地对待幼儿,《吕氏春秋·季秋记》中就有“慈石召铁,或引之也”的记述。现今汉语中的“磁”字就来源于当时的“慈”。中国古代的四大发明之一的指南针就是中国古代人民很早就开始利用磁性的实例。我们知道,所谓磁石其实也就是铁矿石(一般为磁铁矿Fe3O4)。我们也知道,铁会被磁铁吸引而且会被磁铁磁化。那么,它们为什么会有磁性或会被磁化?磁性到底是怎样产生的呢?为了解释物质的宏观磁性的性质,我们从原子着手来考察一下磁性的来源。 一、磁性的起源 “结构决定性质”。磁性当然也是由物质原子内部结构决定的。原子结构与磁性的关系可以归纳为: (1) 原子的磁性来源于电子的自旋和轨道运动; (2) 原子内具有未被填满的电子是材料具有磁性的必要条件; (3) 电子的“交换作用”是原子具有磁性的根本原因。 1.电子磁矩的产生 原子磁性是磁性材料的基础,而原子磁性来源于电子磁矩。电子

的运动是产生电子磁矩的根源,电子有绕原子核旋转的运动和自身旋转的运动,因此电子磁矩也是由电子的轨道磁矩和电子的自旋磁矩两部分组成的。按照波尔的原子轨道理论,原子内的电子是围绕着原子核在一定轨道上运动的。电子沿轨道的运动,相当于一个圆电流,相应得就会产生轨道磁矩。原子中的电子轨道磁矩平面可以取不同方向,但是在定向的磁场中,电子轨道只能去一定的几个方向,也就是说轨道的方向是量子化的。 由电子电荷的自旋所产生的磁矩就称为电子自旋磁矩。在外磁场作用下,自旋磁矩只可能与轨道磁矩平行或反平行。 很多磁性材料中,电子自旋磁矩要比电子轨道磁矩大。这是因为在晶体中,电子的轨道磁矩要受晶格场的作用,它的方向是改变的,不能形成一个联合磁矩,对外没有磁矩。这也即一般所谓的轨道动量矩和轨道磁矩的“猝灭”或“冻结”。所以很多固态物质的磁性主要不是由电子轨道磁矩引起的,而来源于电子自旋磁矩。当然这里还会有原子核的自旋磁矩,但一般都比电子自旋磁矩小得多(相差三个数量级),因此可以忽略不计了。 2.原子的磁矩 在原子中,由泡利不相容原理,原子中不可能有两个电子处于同一状态。又一个轨道中最多容纳两个电子,所以当一个轨道被电子填满,其中的电子对必然自旋相反,那么它们的电子自旋磁矩会互相抵消。要想让原子对外形成磁矩,则必须有未被填满的电子轨道。当然从实例中我们很容易可以看出,这只是一个必要条件。像Cu、Cr、V

磁性材料的基本特性及分类参数

磁性材料的基本特性及分类参数 https://www.360docs.net/doc/174474438.html,/来源:日期:2006年04月25日 一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类

磁记录与磁头材料简述

磁记录与磁头材料简述 摘要:简述了磁记录材料的发展、磁记录原理以及磁记录的过程,包括磁头材料的基本要求及其数字式记录方式;对几种具有代表性的磁头材料做了介绍,并对磁头材料的发展做了展望。 关键词:磁记录;原理;磁头材料;种类 The review of Magnetic recording and materials of Magnetic Head Abstract: The development history, principle and process of materials of magnetic recording were summmarized, including the basic enquirements and recording mode of mat erials of Magnetic Head . The represental of the materials of Magnetic Head was discribled and the development of materials of Magnetic Head was discussed. Key words: magnetic recording; principle; materials of Magnetic Head;discription 引言 当今世界已经进入了信息化时代。信息量的爆炸式增长对信息存储技术提出了越来越高的要求。信息存储作为处理信息必不可少的环节,已渗透到国民经济的诸多环节。一直以来电子存储产品都占据着电子类产品最大的市场份额。对高存储容量,高数据存取速度,高性能价格比存储设备不断增长的需求进一步推进了存储记录技术的发展,传统存储记录技术的性能越来越高,新型存储记录技术不断涌现。在所有的信息存储方式中,磁存储因其具有优异的记录性能、应用灵活、价格便宜,而且在技术上仍具有相当大的发展潜力,所以仍被作为当代信息存储的一项主要技术[1]。 1 磁记录材料的发展 磁记录技术的起源可以追溯到1857年使用钢带的录音机雏形。1898年,丹麦人Valdemar Poulson使用直径为1 mm的碳钢丝制作了世界上第一台可供实用的磁录音机。1928年,德国人Fritz Pfleumer与AEG(伊莱克斯)合作制作了第一台磁带录音机,被称为是磁带录音机的鼻祖,从此磁带录音机进入实用化。1947年,γ-Fe2O3的发明标志着磁带记录技术与当代的接轨。 磁记录当初只用于录音,但从上世纪五十年代后半期一来也广泛地应用于磁带录像机、计算机的存储系统(磁滞装置、磁盘装置)等,同时记录密度也迅速地增大。近几年来,对磁记录材料的性能要求越来越高[2]。 2 磁记录过程与原理 2.1 磁记录过程

相关文档
最新文档