二重积分的几种计算方法

二重积分的几种计算方法
二重积分的几种计算方法

二重积分的几种计算方法

二重积分是数学分析的重要组成部分,二重积分是定积分的推广,是二元函数在一个平面的一个区域的积分。计算二重积分的一般原则是将二重积分化为二次积分(即累次积分)加以计算。求积的困难主要来自两个方面:一是被积函数的复杂性,二是积分区域的多样寻。不同顺序二次积分计算的难易程度往往是不同的,又是错选积分顺序导致积分无法计算,有的二重积分必须通过换元才能求出。计算二重积分的一般步骤如下:

1) 画出积分区域D 的草图; 2) 求交点;

3) 选择直角坐标系下计算,或极坐标系下计算; 4) 选择积分次序;

5) 化二重积分为二次积分; 6) 计算。

一.二重积分的直接计算方法

所谓连续函数(,)f x y 展步在有限封闭可求积二位域Ω内的二重积分乃是指数

max 0

max 0

(,)lim

(,)i

j

i j x i

j

y f x y dxdy f x y

x y ?→Ω

?→=

??∑∑??

其中11,i i i j j j x x x y y y --?=-?=-,而其和为对所有j i ,,使Ω∈),(j i y x 的那些值来求的。

若域Ω有下面的不等式所给出

,b x a ≤≤ )()(21x y y x y ≤≤

其中)(1x y 和)(2x y 为闭区间[]b a ,上的连续函数,则对应的二重积分可按下面的公式计算

????

Ω

=b

a

x y x y j i dy y x f dx dxdy y x f )

()

(21),(),(

例1. 计算??D

xydxdy

,其中区域D 是由直线x y =与抛物线2x y =所围成的区域。

解: 积分区域D 如图1所示,有定义D 是简单区域,边界x y =与2x y =得交点为)0,0(和)1,1(。

若选择先对y 积分,则过x 轴上)1,0(内的任一点p 作y 轴的平行线,该线的与D 下边界交点在2x y =上,与D 上边界交点在x y =上,所求积分为

221

1

002x

x

x x D

y xydxdy dx xydy x dx ??

==??????????

24

1

)(211053=

-=?dx x x 若选择先对x 积分,同理可得

??

??????

???==1

0210

21y

y

y

y

D

y x xydx dy xydxdy

24

1

)(211053=-=?dx y y

图1

若求二重积分时,遇到复杂区域,应将复杂区域化成若干个简单区域,

然后根据)(,),(),(),(212

1

D D D y x f y x f dxdy y x f D D D

+=+=??????,来计算。

例2. 计算??D

xydxdy ,其中D 是由2a xy =,22a xy =,y x =及x y 2=所围成

)0,0,0(>>>a y x 。

解: 积分区域如图2所示,有定义可知D 为复杂区域,D 边界线的交点分别为)2,2(),,(),,(

),2,(a a D a a C a a

a

B a a A 。 若先对x 积分则连接BD ,BD 将D 分成两个简单区域1D ,。BD 的方程为

a y 2=,所求积分为

??????+=2

1

D D D

xydxdy xydxdy xydxdy

?

?

??

+=y a y a a

a y

a a

a

xydy dy xydx dy 2

222

2222

??

-+-=a a a

a

dy y y a dy y a y 223

4

243)8

2()22(

224444228232a a

a a

y a y Iny a Iny y ????

=-

+-???????

?

24

3

4In a =

图2 图3

若先对y 积分,则连接AC ,AC 把区域D 分成两个简单区域1D ,2D 。AC 的方程为a x =,如图3所示,所求积分应为

??????+=2

1

D D D

xydxdy xydxdy xydxdy

dx x x a xydy dx a

a

a x

a a a )2

12(3

2422

2-+=?

?? a

a a

a x I n x

a I n x a x 2442

4482221???

??

?-+??????-= 24

3

4In a =

在化二重积分为累次积分时还应注意:若先对x 积分,则第一次积分是x 是积分变量,积分上下限应含有y 的表达式或常数;若先对y 积分,则第一次积分时y 时积分变量,积分上下限应该含有x 的表达式或常数。 二.二重积分中的变量代换

若可微分的连续函数

),(),,(v u y y v u x x ==

把平面Oxy 上的有限域Ω单值惟一地映射为平面Ouv 上的域1Ω雅哥比式

0)

,()

,(≠=

v u D y x D I

则下之公式正确:

[]????ΩΩ

=1

),(),,(),(dudv I v u y v u x f dxdy y x f

特别是,根据公式??sin ,cos r y r x ==,变换为极坐标r 和?得情形有

????ΩΩ

=1

)sin ,cos (),(???rdrd r r f dxdy y x f

例2

dxdy b

y a x D

??

--22

221,其积分区域D 是由椭圆12222=+b y a x 所围的区域。

解: 作变化??sin ,cos br y ar x ==,则域D 变为域}20,10{1π?≤≤≤≤=r D ,且abr I =。于是,

???

-=--π?20222

2211rdr r ab d dxdy b

y a x D

r d r r ab ?-=1

212π

3

2ab

π=

例3 设0>a 是常数,计算积分

??≤+ax

y x dxdy xy 222。

解: 设cos ,

2

sin ,

{

a

x r y r θθ=+=则ax y x ≤+22,变成πθ20,2

0≤≤≤

≤a

r ??

??≤≤≤

≤≤+?+=

πθθθθ2020222sin )cos 2

(2

2

a

r ax

y x rdrd r r a

dxdy xy πθθθθπθ128

)sin cos sin 2(520202

423a drd r r a a r =+=

??

≤≤≤

≤ 三.小结

计算二重积分必须注意:能否快算,用何坐标,是否分区域,如何定限。计算二重积分的主要方法有:几何意义化简,利用直角坐标或极坐标化为二次积分,利用分域法,交换积分次序等。 参考文献:

[1] 吉米多维奇.数学分析习题集精选精解 [M]山东:山东科技出版社,2007

[2] 钱吉林.数学分析题解精粹 [M]湖北:湖北长江出版集团 2009

[3] 同济大学应用数学系.微积分(下册) [M]北京:高等教育出版社 2003

浅谈几种综合国力测算方法

.
研究生课程(论文类)试卷
2 0 1 6 /2 0 1 7 学年第一学期
课程名称:
国民经济统计学
课程代码:
论文题目: 浅谈几种综合国力测算方法
学生姓名:
专业﹑学号:
统计学
学院:
理学院
课程(论文)成绩: 课程(论文)评分依据(必填):
任课教师签字: 日期: 年 月 日
.

.
浅谈几种综合国力测算方法
摘要:综合国力,是国家实力和权力的综合体现。国家实力是指一国自己做事的 能力,是一个绝对概念。有学者把实力定义为“逾越障碍和影响结果的能力”[1] 。 权力则指一国促使别国做事的能力,是一个相对概念。有学者将权力定义为“促 使其他行为体做其原本不会去做的事情”[2] 。在国际竞争中,国家实力与权力这 两个概念的最根本区别在于:实力不以国家关系为前提,或无须以他国为参照系, 而权力则是以国家关系为前提。
一、中西方对综合国力观点的差异
对于综合国力的定义,中西方学者的观点存在若干差异,西方学者侧重于强 调国家权力的比较,其代表思想是以强权治为中心。20 世纪 80 年代美国中央情 报局前副局长克莱因说:“国家在国际舞台的实力是该国政府影响他国政府主动 或者被动去做某件事的能力,不论是通过说服、威胁甚至是通过武力。”而在今 天变化多端的国际环境下,西方学者认为,国家实力并不只是国家之间相互影响 的能力。而是利用经济、军事、外交或其他软实力相结合的方法来影响他国的能 力。
但中国学者则更偏向于国家实力的比较,认为综合国力更多的是强调国家的 和平与发展,即再保护本国国家利益的基础上,与他国互惠互利、和平共处。学 者黄硕风在其 2001 年出版的《综合国力新论》中说道:“综合国力是国家生存 与发展所拥有的全部实力,包括物质力、精神力及国际影响力”,学者王诵芬在 其 1996 年出版的《世界主要国家综合国力研究》中写道:“综合国力是国家拥 有的各种力量的有机总和,是国家赖以生存和发展的基础,也是强国确立国际地 位、发挥国际影响作用的基础。”
.

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

几种定积分的数值计算方法

几种定积分的数值计算方法 摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计 算思想,结合实例,对其优劣性作了简要说明. 关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形 Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods. Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数 )(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况: (1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1 02 , ? 1 sin dx x x 等,从而无法用牛顿-莱布尼茨公式计算出积分。 (2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较. 2.几何意义上的数值算法 s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计 算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间 ,x 1-i h x i +=b x a x n ==,0,其中n a b h -= 表示小区间的长度. 2.1矩形法

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

几种常用数值积分方法的比较汇总

学科分类号110.3420 州 GUIZHOU NORMAL COLLEGE 本科毕业论文 题目—几种常用数值积分方法的比较_____________ 姓名潘晓祥学号1006020540200 院(系)数学与计算机科学学院 __________________ 专业数学与应用数学年级_____________2010级 指导教师雍进军职称______________________讲师 二O—四年五月

贵州师范学院本科毕业论文(设计)诚信声明本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本科毕业论文作者签名: 年月曰

贵州师范学院本科毕业论文(设计)任务书

研究方法: 本论文主要通过对相关文献和书籍的参考,合自己的见解,复化求积公式,Newton —Cotes求积公式,Romberg求积公式,高斯型求积公式进行讨论并进行上机实验,从代数精度,求积公式误差等角度对这些方法进行分析比较完成期限和采取的主要措施: 本论文计划用6个月的时间完成,阶段的任务如下: (1) 7月份查阅相关书籍和文献; (2) 8月份完成开题报告并交老师批阅; (3) 9月份完成论文初稿并交老师批阅; (4) 10月份完成论文二搞并交老师批阅; (5) 11月份完成论文三搞; (6) 12月份定稿. 主要措施:考相关书籍和文献,合自己的见解,老师的指导下和同学的帮助下完成 主要参考文献及资料名称: [1] 关治?陆金甫?数学分析基础(第二版) [M].北京:等教育出版社.2010.7 [2] 胡祖炽.林源渠.数值分析[M]北京:等教育出版社.1986.3 [3] 薛毅.数学分析与实验[M] 北京:业大学出版社2005.3 [4] 徐士良.数值分析与算法[M].北京:械工业出版社2007.1 [5] 王开荣.杨大地.应用数值分析[M]北京:等教育出版社2010.7 [6] 杨一都.数值计算方法[M].北京:等教育出版社.2008.4 [7] 韩明.王家宝.李林.数学实验(MATLAB版[M].上海:济大学出版社2012.1 [8] 圣宝建.关于数值积分若干问题的研究[J].南京信息工程大学.2009.05.01. : 42 [9] 刘绪军.几种求积公式计算精确度的比较[J].南京职业技术学院.2009. [10] 史万明.吴裕树.孙新.数值分析[M].北京理工大学出版社.2010.4. 指导教师意见: 签名: 年月日

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

二重积分的计算方法(1)

1 利用直角坐标系计算 1.1 积分区域为X 型或Y 型区域时二重积分的计算 对于一些简单区域上的二重积分,可以直接化成二次积分来解决.在直角坐标系下,被积分函数(,)f x y 在积分区域D 上连续时,若D 为x 型区域(如图1),即 {}12(,)()(),D x y x x x a x b ??=≤≤≤≤,其中12(),()x x ??在[,]a b 上连续,则有 21() () (,)(,)b x a x D f x y d dx f x y dy ??σ=?? ?? ; (1) 若D 为y 型区域(如图2),即{}12(,)()(),D x y y y y c y d ψψ=≤≤≤≤,其中12(),()y y ψψ在[,]c d 上连续,则有 21() () (,)(,)d y c y D f x y d dy f x y dx ψψσ=?? ?? .[1] (2) 例1 计算2 2D y dxdy x ?? ,其中D 是由2x =,y x =,及1xy =所围成. 分析 积分区域如图3所示,为x 型区域()1D=,12,x y x y x x ?? ≤≤≤≤????.确定了积分区域然后可以 利用公式(1)进行求解. 解 积分区域为x 型区域 ()1D=,12,x y x y x x ?? ≤≤≤≤???? 则 2 2 21221x x D y y dxdy dx dy x x =???? y y=x xy=1 D2 D1 x O 2 1 1 2 图3 图1

32 121 3x x y dx x ??= ???? 2 51 133x dx x ?? =- ???? 221412761264x x ??=+= ??? 1.2 积分区域非X 型或Y 型区域二重积分的计算 当被积函数的原函数比较容易求出,但积分区域并 不是简单的x 型或y 型区域,不能直接使用公式(1)或者(2)进行计 算,这是可以将复 杂的积分区域划分为若干x 型或y 型区域,然后利用公式 1 2 3 (,)(,)(,)(,)D D D D f x y d f x y d f x y d f x y d σσσσ=++???????? (3) 进行计算, 例2 计算二重积分D d σ??,其中D 为直线2,2y x x y ==及3x y +=所围成的区域. 分析:积分区域D 如图5所示,区域D 既不是x 型区域也不 是y 型区域,但是将可D 划分为 ()(){}12,01,22,13,23x D x y x y x D x y x y y x ??=≤≤≤≤?? ??=≤≤≤≤-均为x 型区 域,进而通过公式 (3)和(1)可进行计算. 解 D 划分为 ()1,01,22x D x y x y x ??=≤≤≤≤???? , (){}2,13,23D x y x y y x =≤≤≤≤- 则 1 2 D D D d d d σσσ=+??????12230 12 2 x x x x dx dy dx dy -=+?? ?? 1 20112322x x dx x dx ? ???=-+-- ? ???? ??? 1 2 22013333442x x x ??? ?=+-=??????? ? 1.3 被积函数较为复杂时二重积分的计算 3D o x y 1 D 2D 图 4 y x O x=2y y=2x x+y=3 图5

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

二重积分的计算方法

重庆三峡学院数学分析课程论文 二重积分的计算方法 院系数学与统计学院 专业数学与应用数学(师范) 姓名 年级 2010级 学号 指导教师刘学飞 2014年5月

二重积分的计算方法 (重庆三峡学院数学与统计学院10级数本1班) 摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 引言 二重积分的概念和计算是多元函数微积分学的重要部分,在几何、物理、力学等方面有着重 要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被 积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求 二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧. 1. 预备知识 1.1二重积分的定义 设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数 ε,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和都有 ()1 ,n i i i i f J ξησ ε=?-<∑, 则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作(),D J f x y d σ= ??, 其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域. 1.2二重积分的若干性质 1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D kf x y d σ??(),D k f x y d σ=??. 1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且 ()()[,,]D f x y g x y d σ±??()(),,D D f x y d g x y d σσ=±????.

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

二重积分的计算方法

第二节 二重积分的计算法 教学目的:熟练掌握二重积分的计算方法 教学重点:利用直角坐标和极坐标计算二重积分 教学难点:化二重积分为二次积分的定限问题 教学内容: 利用二重积分的定义来计算二重积分显然是不实际的,二重积分的计算是通过两个定积分的计算(即二次积分)来实现的. 一、利用直角坐标计算二重积分 我们用几何观点来讨论二重积分的计算问题. 讨论中,我们假定 ; 假定积分区域可用不等式 表示, 其中, 在上连续. 据二重积分的几何意义可知,的值等于以为底,以曲面为顶的曲顶柱体的体积. 在区间上任意取定一个点,作平行于面的平面,这平面截曲顶柱体所得截面是一个以区间为底,曲线为曲边的曲边梯形,其面积为

一般地,过区间上任一点且平行于面的平面截曲顶柱体所得截面的面积为 利用计算平行截面面积为已知的立体之体积的方法,该曲顶柱体的体积为 从而有 (1) 上述积分叫做先对Y,后对X的二次积分,即先把看作常数,只看作的函数,对 计算从到的定积分,然后把所得的结果( 它是的函数 )再对从到计算定积分. 这个先对, 后对的二次积分也常记作 在上述讨论中,假定了,利用二重积分的几何意义,导出了二重积分的计算公式(1).但实际上,公式(1)并不受此条件限制,对一般的(在上连续),公式(1)总是成立的. 例如:计算 解: 类似地,如果积分区域可以用下述不等式 表示,且函数,在上连续,在上连续,则 (2)

显然,(2)式是先对,后对的二次积分. 二重积分化二次积分时应注意的问题 1、积分区域的形状 前面所画的两类积分区域的形状具有一个共同点: 对于I型(或II型)区域, 用平行于轴(轴 )的直线穿过区域内部,直线与区域的边界相交不多于两点. 如果积分区域不满足这一条件时,可对区域进行剖分,化归为I型(或II型)区域的并集. 2、积分限的确定 二重积分化二次积分, 确定两个定积分的限是关键.这里,我们介绍配置二 次积分限的方法 -- 几何法.画出积分区域的图形(假设的图形如下 ) 在上任取一点,过作平行于轴的直线,该直线穿过区域,与区域的边界有两个交 点与,这里的、就是将,看作常数而对积分时的下限和上限; 又因是在区间上任意取的,所以再将看作变量而对积分时,积分的下限为、上限为 . 例1计算,其中是由轴,轴和抛物线在第一象限内所围成的区域.

浅谈复积分的计算方法

山东财经大学学士学位论文原创性声明 本人郑重声明:所呈交的学位论文,是本人在导师的指导下进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出重要贡献的个人和集体,均已在论文中作了明确的说明并表示了谢意。本声明的法律结果由本人承担。 学位论文作者签名: 年月日 山东财经大学关于论文使用授权的说明 本人完全了解山东财经大学有关保留、使用学士学位论文的规定,即:学校有权保留、送交论文的复印件,允许论文被查阅,学校可以公布论文的全部或部分内容,可以采用影印或其他复制手段保存论文。 指导教师签名:论文作者签名: 年月日年月日 浅谈复积分的计算方法

摘要 复积分即是指复变函数积分.在复变函数的分析理论中,复积分是研究解析函数的重要工具.解析函数中的许多重要性质都要利用复变函数积分来证明.柯西积分定理在复积分的计算中理论上处于关键地位, 因此,对复积分及其计算的研究显得尤为重要.复变函数中的积分不仅是研究解析函数的重要工具,也是它的后继课程积分变换的基础,所以就复变函数的积分计算方法进行总结和探讨是十分必要的.柯西积分公式、柯西高阶导数公式和留数定理对复积分的计算起到很大的作用.留数定理不仅可以用来计算复积分,而且可以用来计算实积分,它把实积分和复积分的相关知识有机的结合起来. 本文讨论了留数定理与复变函数积分之间的内在联系,并举例说明了留数定理、柯西积分定理、柯西积分公式和柯西高阶导数公式之间的密切关系.本文将利用复变函数积分基本原理,利用几种复积分的基本求法,针对每一种计算方法给出例子,并通过柯西积分定理、柯西积分公式、柯西高阶导数公式、留数定理等来计算复积分,从中揭示诸多方法的内在联系,对复积分的计算方法作出较系统的归纳总结,从中概括出求复变函数积分的解题方法和技巧.复变函数中积分分闭曲线和非闭曲线两类.本文就这两种积分的计算方法进行总结和探讨. 关键词:复积分;柯西积分定理;柯西积分公式;留数定理 Discussion on the computational methods of complex integration

大学微积分1方法总结

第一章 函数、极限、连续 注 “★”表示方法常用重要. 一、求函数极限的方法 ★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等. ★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法 运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。 三、无穷小量阶的比较的方法 利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开 四、函数的连续与间断点的讨论的方法 如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。

五、求数列极限的方法 ★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理; 4. )()(lim )()(lim ∞=?∞=∞ →+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞ =1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量 仍是无穷小量;9.等价量替换等. 【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算, 2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理 3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则. 4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞ →∞→与是特殊与一般的关系,由归结原则知 ★5. 有lim 1011()()n n i i f f x dx n n →∞ ==?∑或1lim 1001()()n n i i f f x dx n n -→∞==?∑ 第二章 一元函数微分学 ★一、求一点导数或给处在一点可导推导某个结论的方法: 利用导数定义,经常用第三种形式 二、研究导函数的连续性的方法:

归纳二重积分的计算方法

归纳二重积分的计算方法 摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 前言 二重积分的概念和计算是多元函数微积分学的重要部分,在几何\物理\力学等方面有着重要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧. 1. 预备知识 1.1二重积分的定义]1[ 设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数 ε ,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和 都有 ()1 ,n i i i i f J ξησ ε=?-<∑, 则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作 (),D J f x y d σ=??, 其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域. 1.2二重积分的若干性质 1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D kf x y d σ??(),D k f x y d σ=??.

1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且 ()()[,,]D f x y g x y d σ±??()(),,D D f x y d g x y d σσ=±????. 1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在12D D 上也可积,且 ()12 ,D D f x y d σ?? ()()1 2 ,,D D f x y d f x y d σσ=±???? 1.3在矩形区域上二重积分的计算定理 设(),f x y 在矩形区域D [][],,a b c d =?上可积,且对每个[],x a b ∈,积分(),d c f x y dy ?存 在,则累次积分(),b d a c dx f x y dy ??也存在,且 (),D f x y d σ?? (),b d a c dx f x y dy =??. 同理若对每个[],y c d ∈,积分(),b a f x y dx ?存在,在上述条件上可得 (),D f x y d σ?? (),d b c a dy f x y dx =?? 2.求的二重积分的几类理论依据 二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型\Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法. 2.1在直角坐标系下,对一般区域二重积分的计算 X -型区域: ()()(){}12 ,,D x y y x y y x a x b =≤≤≤≤ Y -型区域: ()()(){}1 2 ,,D x y x y x x y c y d = ≤≤≤≤ 定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则 (),D f x y d σ??()()() 21,b y x a y x dx f x y dy =?? 即二重积分可化为先对y ,后对x 的累次积分. 同理在上述条件下,若区域为Y -型,有

不定积分解题方法及技巧总结剖析

? 不定积分解题方法总结 摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1 111)'ln )1(ln(+- =-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(??

相关文档
最新文档