基于自激推挽式小型化二次电源的设计

基于自激推挽式小型化二次电源的设计
基于自激推挽式小型化二次电源的设计

基于自激推挽式小型化二次电源的设计

2009-07-02 15:50:11 来源:EDN

关键字:自激推挽变压器开关电源

0 引言

在数模混合电路系统中,需要多个电源供电,为了减小外界供电电源的数量,实现系统供电电路的小型化。本文基于电流反馈型自激推挽电路设计出了+10V,200mA和-10V,100mA 输出的电源,+10V除了给电路系统的模拟芯片供电外还要给单片及供电的电压调节芯片供电,-10V给模拟芯片供电,实现了供电系统的小型化和低成本。

1 自激推挽式直流变换器的基本原理

自激推挽式直流变换器的基本电路如图1所示。参照图1,当接通输入直流电源Ui后,就会在分压电阻R2上产生一个电压,该电压通过功率开关变压器的Nb1和Nb2两个绕组分别加到两个功率开关V1和V1的基极上。由于电路的不完全对称性使其中的一个功率开关首先导通。假设是功率开关Np1首先导通,那么功率开关Nb2集电极的电流流过功率开关变压器初级绕组的二分之一V2,使功率开关变压器的磁芯磁化,同时使其他的绕组产生感应电动势。在基极绕组Nb2上产生的感应电动势使功率开关V2的基极处于负电位的反向偏置而维持截至状态。在另一个基极绕组Nb1上产生的感应电动势则使功率开关V1的集电极电流进一步增加,这是正反馈的过程。其最后的结果使功率开关V1很快就达到饱和导通状态,此时几乎全部的电源电压Ui都加到了功率开关变压器初级绕组的二分之一Np1上。绕组Np1中的电流以及由此引起的磁通也会线性的增加。当功率开关变压器磁芯的磁通量接近或达到磁饱和值+φS时,集电极的电流就会急剧地增加,形成一个尖峰,而磁通量的变化率接近于零,因此功率开关变压器的所有绕组上的感应电动势也接近于零。由于绕组Nb1两端的感应电动势接近于零,于是功率开关V1的基极电流减小,集电极电流开始下降,从而使所有绕组上的感应电动势反向。紧接着磁芯的磁通脱离饱和状态,促使功率开关V1很快进入截至状态,功率开关V2很快进入饱和导通状态。这时几乎全部的输入直流电压Ui又被加到功率开关变压器的另一半绕组Np2上,使功率开关变压器磁芯的磁通直线下降,很快就达到了反向的磁饱和值-φS。上述过程周而复始,就会在两个功率开关V1和V2的集电极形成方波电压。

2 实际工作电路的设计及主要元器件的选择

实际设计的电源电路如图2所示,电阻R1、Rb1、Rb2,稳压二极管Dz,开关管V1、V2和变压器的辅助绕组Nb1、Nb2构成了启动电路;整流二极管VD1、VD2、VD3、VD4和电容C1、C2构成了整流滤波电路;RL1、RL2为负载。各参数的选择介绍如下:

2.1 输入电感L的选择

在Royer变压器的初级绕组中间抽头上串联一个电感就构成了电流反馈型电路。串联电感后当铁心饱和时,开关管上出现一个幅值很大的电流尖峰,电流变化率di/dt很大,但由于电感电流不能突变,变压器中心抽头处的电压将下降到地电位,因此可以消除开关管导通和关断时出现的电流尖峰。实验中从场效应管D端观察到的波形如图3.1、3.2所示。

通过实验可以看到:串入电感时晶体管的电流尖峰问题得到了很好地解决,降低开关管的损耗,效率得到了极大地提高,在没有电感时效率大约仅有50%,而输入端串入470uH电感后效率可以达到80%以上。

2.2 MOSFET代替晶体管避免磁通不平衡的影响

磁通不平衡是自激推挽式电路存在的一大缺点,主要是因为一个开关管导通的伏秒数略大于另一个,是磁芯略偏离平衡点而趋向饱和。饱和区的磁芯不能承受典雅,当相应的开关管再次导通时,开关管将承受很大的电压和电流,导致开关管损坏。在推挽拓扑中使用MOSFET 管,可以大大减少变压器的磁通不平衡问题。首先,MOSFET管没有存储时间,在交替的半周期内,对于相等的栅极导通次数,漏极电压导通次数总是相等。因此在交替的半周期中施加到变压器上的伏秒数相等。第二,对于MOSFET管,Rds(on)的正温度系数形成的负反馈阻止了磁通不平衡问题的产生。如果存在一定的不平衡磁通,磁芯就会沿着磁化曲线向上移动,从而产生了磁化电流。因此半周期内的总电流比另一个半周期内的总电流要大。但MOSFET管在更大的尖峰电流作用下,发热会增加,它的Rds(on)增大,导通压降也随之增大。如果一个初级半绕组承受较大的电流,则其开关管管温就会高一些,导通压降增加,使绕组上的电压下降,降低这一边的伏秒数,磁芯又向磁化曲线的中心复位,恢复平衡。若在功率低于100W,且磁芯加气隙的情况下使用MOSFET功率开关管,则一定不会出现磁通不平衡现象。为了增加电路的对称性,设计时最好选择双MOSFET的芯片。

2.3 变压器的设计

变压器的设计是开关电源设计的重点和难点。为满足开关电源提高效率、减小尺寸和重量的要求,需要一种高磁通密度、高频低损耗的变压器磁芯。本设计中选用TDK公司PC44材料的磁芯。按照输出V o1=10V,Io1=200mA,V o2=-10v,Io2=100mA以及高频变压器的余量6%,则输出功率Po=(10×0.2+10×0.1)×1.06=3.18W,根据绕线的要求,选择了EPC13的磁芯,该磁芯的有效截面积Ae=12.5mm2。

2.3.1 变压器线圈匝数的计算

初级绕组匝数可以由下式决定(假设Np1=Np2=Np):

式中,U为施加在绕阻上的电压幅值U=15(V),Np为绕组匝数;Ae为磁芯面积0.125(cm2);考虑到磁通饱和因素的影响,工作磁通密度B只取饱和磁通的0.6倍,即B=0.6×Bm ≈2000Gs;f工作频率可由MOSFET的开启时间和关断时间求出,本文设计的开关电源的频率为95kHz,根据以上参数可以计算出原线圈匝数:

Np1=Np2=16(匝)

辅助绕组Nb1、Nb2的计算:

计算功率开关变压器两个辅助绕组匝数时,应该考虑在输入电压最低时,输出应大于MOSFET的开启电压;同时还要能够保证在输入直流电源电压最高时,MOSFET的漏极峰值电流和电压不能超过它的最大额定输出电流和所能承受的最高漏一源击穿电压。为了减小两个MOSFET在Ugs上的不一致所造成的影响,必须分别再串联一个补偿电阻Rb1和Rb2。为保证电路的对称性Nb1=Nb2,这样一来,功率开关变压器基极绕组的匝数Nb1和Nb2可表示为:

式中Ub1为栅极绕组上的感应电动势,约等于启动点的电压,Dz取3V的稳压二极管,可以计算出:

Nb1=Nb2≈5(匝)

次级匝数Ns1和Ns2可由下式确定:

Vo为输出电压,Vmin为最小输入电压取14V,VD为整流二极管的导通压降,取VD=1V,代入上式可得输出为±10V时:

Ns1=Ns2≈13 (匝)

经公式计算出的变压器匝数只能作为参考值,必须经过反复实践变压器匝数才能确定,经过反复实验,本设计的电源Np1=Np2=20(匝),Nb1=Nb2=7(匝),Ns1=Ns2=16(匝)时,电源效率较高,因此变压器绕制时原线圈40匝中心抽头,辅助绕组14匝中心抽头,次级线圈32匝中心抽头。

2.4 输出整流滤波电路

本设计选用了全波整流电路,全波整流变压器输出功率的利用率为100%,输出直流电压中的纹波较低。选择输出整流二极管时不仅要考虑耐压值要合适,还要满足开关特性好、反向恢复时间短的快恢复二极管;电容的选取不仅参考其电容值,还要考虑其耐压值要高。

3 电源工作状态测试结果及结论

对所研制的电源进行了测试,两开关管G和D端的波形分别如图4.1和4.2所示。

自激推挽式二次电源完全靠Royer电路工作,自振荡频率会自动调节到最佳效率,可以避免磁芯的深度饱和,减少EMI辐射,电源效率可达到80%以上。而且通过合理选择功率开关和整流二极管,电路总的输出阻抗就可以足够小,在输入电压稳定的条件下,输出就足够稳定,而没有必要再进一步稳压。因此电路结构简单,电子元器件较少,是电源电路小型化的首选方案。

该电源已获得了应用,在实际工作中,性能稳定,可靠性高,抗干扰能力强。

利用推挽正激技术设计DC_DC开关电源_孟赟

孟 赟(1983—),女,硕士研究生,研究方向为DC /DC 电源及太阳能光伏发电系统。 利用推挽正激技术设计DC /D C 开关电源 孟 赟1 , 王 凯2 , 潘俊民 1 (1.上海交通大学电气工程系,上海 200240; 2.华北电网有限公司,北京 100053) 摘 要:利用推挽正激变换技术设计了DC /DC 开关电源。提出了基于推挽正激变换技术的电源电路拓扑和结构,阐述了该开关电源的工作及控制原理,并利用PSp ice 软件对该电路拓扑进行了仿真。实验结果表明,该开关电源输出稳定、波形理想。 关键词:推挽正激;高频链;开关电源 中图分类号:T M 46 文献标识码:B 文章编号:1001-5531(2007)17-0057-04 A DC /D C S w itch i ng Po w er Suppl y Based on Push -Pull For ward Conversi on T echni que MENG Yun 1 , WA NG Ka i 2 , PA N J un m in 1 (1.Depa rt m ent of E lectrical Eng i n ee ring ,Shanghai Jiaotong University ,Shanghai 200240,China ; 2.No rth of China E lectric Po w er G rid Co .,Ltd .,Beijing 100053,China ) Ab stract :A DC /DC s w itch i ng powe r supp l y was de signed by using pus h -pu ll for w ard conversion t echn i que .The t opology and structure o f s w itching powe r s upp l y based on push -pull for w ard conve rsion techni que w as presen -ted .T he opera tion and con tro l principle o f the s w itch i ng powe r supply w as expounded ,and the c ircuit topo l ogy was si m ulated by PSpice so ft wa re .The expe ri m en t re s u lt show s tha t t he s w itchi ng po w er supp l y 's output is stab l e w ith ideal wave . K ey w ord s :pu sh -pull forward ;h i gh frequency li nk (H FL );s w itch i ng po w er supp ly 王 凯(1976—),男,工程师,硕士,从事继电保护工作。 潘俊民(1947—),男,教授,博士生导师,研究方向为电力传动及自动化、智能控制系统。 0 引 言 开关电源被誉为高效节能电源,它代表着稳压电源的发展方向,现已成为稳压电源的主流产品。由于开关电源内部调整管工作在高频开关状态时,其等效电阻很小,当流过大的电流时,消耗在调整管上的能量很小,故电源效率可达70%~90%,比普通的线性稳压电源提高了近1倍。同时,利用了高频链技术的开关电源体积小、重量轻、可靠性高,该技术是实现高功率密度、高变换效率、优良综合性能DC /D C 变换的合理方案。图1为带高频变压器的DC /D C 变换的结构框图。 目前,有变压器隔离的DC /D C 变换技术在传 图1 DC /D C 变换器结构框图 统的拓扑结构中较为常用的是推挽变换器和正激变换器 [6] (见图2)。 传统正激变换器和推挽变换器两种电路拓扑 各有各自的优缺点,但都具有一定的局限性:单端正激变换器为了防止变压器磁芯饱和,存在去磁复位的问题,故对占空比有一定的限制条件;推挽变换器功率开关管承受的电压应力高,只适用于低输入电压的场合,而且开关管关断时漏感能量

ST公司基于MOSFET的自激式(RCC)开关电源设计(整合)

ST公司自激式开关电源设计 1 Power Transformer Design Calculations l The specifications: –V AC= 85~265V l Line frequency: 50~65Hz –V O= 5V –I O= 0.4A Taking transient load into account, the maximum output current is set as I O(m a x)= 1.2I O= 4.8 A 1.1Switching Frequency The system is a variable switching frequency system (the RCC switching frequency varies with the input voltage and output load), so there is some degree of freedom in switching frequency selection. However, the frequency must be at least 25kHz to minimize audible noise. Higher switching frequencies will decrease the transformer noise, but will also increase the level of switching power dissipated by the power devices. The minimum switching frequency and maximum duty cycle at full load is expressed as f S(m i n)= 50 kHz D m a x= 0.5 where the minimum input voltage is 50kHz and 0.5, respectively. 1.2 STD1LNK60Z MOSFET Turn Ratio The maximum MOSFET drain voltage must be below its breakdown voltage. The maximum drain voltage is the sum of: l input bus voltage, l secondary reflected voltage, and voltage spike (caused by the primary parasitic inductance at maximum input voltage). The maximum input bus voltage is 375V and the STD1LNK60Z MOSFET breakdown voltage is 600V. Assuming that the voltage drop of output diode is 0.7V, the voltage spike is 95V, and the margin is at least 50V, the reflected voltage is given as: V fl= V(B R)DS S–V m arg i n–V D C(ma x)–V s p k= 600 –50 –375 –95 = 80 V The Turn Ratio is given as where, V fl= Secondary reflected voltage V(BR)DSS= MOSFET breakdown voltage V margin= Voltage margin

推挽式DC-DC开关恒压源的设计)

闽江学院 本科毕业论文(设计) 题目推挽式DC-DC开关恒压源的设计 学生姓名 学号120061007081 系别物理学与电子信息工程系 专业电子信息工程(2)班 指导老师 职称讲师 完成日期2010年4月

闽江学院毕业论文(设计)诚信声明书 本人郑重声明: 兹提交的毕业论文(设计)《推挽式DC-DC开关恒压源的设计》,是本人在指导老师沈耀国的指导下独立研究、撰写的成果;论文(设计)未剽窃、抄袭他人的学术观点、思想和成果,未篡改研究数据,论文(设计)中所引用的文字、研究成果均已在论文(设计)中以明确的方式标明;在毕业论文(设计)工作过程中,本人恪守学术规范,遵守学校有关规定,依法享有和承担由此论文(设计)产生的权利和责任。 声明人(签名): 年月日

摘要 开关电源作为一种新式的电源,具有体积小、质量轻和节约能源等特点,逐渐在计算机,通信等方面得到广泛的应用。本文中介绍了开关电源的组成、分类和控制等方面,随着电力电子技术的发展,特别是大功率器件的迅速发展,将开关电源的工作频率提高到相当高的水平,使其具有高稳定性和高性价比等特性。 在本设计中,开关电源是一种采用推挽式的高频电源变换电路,主要组成有: PWM电路,这部分电路采用KA3525芯片,并通过输出电压的采样电压加在误差放大器的反相输入端桑实现稳压;推挽式变换器,实现DC-DC变换;整流滤波电路,通过整流滤波得到最终的稳定无干扰的电压;反馈补偿电路,通过反馈电压,以改变KA3525的输出,从而使输出电压保持稳定。 关键词:推挽式;PWM;电源

Abstract As a new power source ,the switching power supply ,taking on such features as small volume、light weigh and economical energy, is used gradually and widely in computer and communication ,etc. The paper introduces the consistence, the classification and the control of the switching power supply ,with the development of power electronic technology, especially the rapid development of the high power compoments , the operating frequency of the switching power supply is enhanced to a realitive high level, owning such features as high stability and high performance-to-price. In this design, the switching power supply is one kind of push-pull the high frequency power source transfer network, the main composition includes: The PWM electric circuit, this part of electric circuits use the KA3525 chip, and adds through output voltage's sampling voltage in the erroneous amplifier's opposition input end mulberry realizes the constant voltage; The push-pull converter, realizes the DC-DC transformation; The rectification filter circuit, obtains the final stable non-disturbance voltage through the rectification filter; Feedback compensation circuit. Changing the output KA3525 through to feedback voltage , thus output voltage is stability. Key words:push-pull; pulse width modulation; power supply

逆变电源设计报告a.(DOC)

逆变电源设计与总结报告 2013年5月6日星期一

目录 一、方案论证与比较 (1) 1、总体方案的比较 (1) 2、隔离型DC-DC电路方案 (2) 3、高频变压器后级整流方案 (3) 4、SPWM波产生方案 (3) 二、理论分析与计算 (3) 1.高频变压器参数设计 (3) 2.LC低通滤波参数设计 (4) 三、电路与程序设计 (5) 1.推挽式隔离型直流变换电路 (5) 2.逆变电路 (7) 3.保护电路 (7) 4.辅助电源 (8) 5.SPWM产生程序 (8) 四、测试结果及分析 (9) 1.测试方法与测试条件 (9) 2.主要测试结果 (9) 元件参数根据计算可知,L=4.7UH,C=2.2UF.仿真波形如图11所示。 (10) 五、设计总结 (10)

摘要 本设计实现了一种基于的高频链逆变电源。系统由输入欠压保护、推挽升压、全桥逆变、SPWM波产生、低通滤波、输出过流保护、辅助电源等电路组成。12V 的直流电通过推挽式变换逆变为高频方波,经高频变压器升压,再整流滤波得到一个稳定的约320V直流电压。前级DC-DC变换采用SG3525驱动MOSFET得到高压直流电,然后通过产生的SPWM驱动全桥电路,再经低通滤波得到220V的工频正弦交流电。采用反激式开关电源升压再经稳压芯片稳压供电很好的实现隔离,并且具有输入欠压保护和输出过流保护,输出功率可达100W。该电源体积小、效率高、输出电压稳定,非常适用于车载逆变器。 关键词:推挽升压全桥逆变滤波反激式

Abstract This design implements a Cortex M3 based on the high-frequency link inverter power supply.System consists of input undervoltage protection, push-pull boost, full-bridge inverter, SPWM wave generator, low pass filtering, output over-current protection, auxiliary power and other circuit.12V direct current through the push-pull inverter is a high frequency square wave transform, the high-frequency step-up transformer, then rectified and filtered to get a stable DC voltage of about 320V.Former level DC-DC conversion by using SG3525 drive MOSFET high voltage DC and then generate the SPWM drive M3 full bridge circuit, and then low-pass filter obtained by the frequency sinusoidal AC 220V.With a flyback switching power supply step-up regulator chip re-powering through the realization of good isolation, and with input voltage protection and output over-current protection, output power up to 100W.The power, small size, high efficiency, output voltage stability, ideal for automotive inverter. Key words: push-pull boost full-bridge inverter flyback M3 概述 逆变器也称逆变电源,是将直流电能转变成交流电能的变流装置,是太阳能、风力发电中一个重要部件。随着微电子技术与电力电子技术的迅速发展,逆变技术也从通过直流电动机——交流发电机的旋转方式逆变技术,发展到二十世纪六、七十年代的晶闸管逆变技术,而二十一世纪的逆变技术多数采用了MOSFET、IGBT、GTO、IGCT、MCT 等多种先进且易于控制的功率器件,控制电路也从模拟集成电路发展到单片机控制甚至采用数字信号处理器(DSP)控制。各种现代控制理论如自适应控制、自学习控制、模糊逻辑控制、神经网络控制等先进控制理论和算法也大量应用于逆变领域。其应用领域也达到了前所未有的广阔,从毫瓦级的液晶背光板逆变电路到百兆瓦级的高压直流输电换流站;从日常生活的变频空调、变频冰箱到航空领域的机载设备;从使用常规化石能源的火力发电设备到使用可再生能源发电的太阳能风力发电设备,都少不了逆变电源。毋须怀疑,随着计算机技术和各种新型功率器件的发展,逆变装置也将向着体积更小、效率更高、性能指标更优越的方向发展。 一、方案论证与比较 1、总体方案的比较 方案一:如图1所示,12V的直流电经过DC-AC逆变成10V/50HZ交流电,再经工频变压器升压到220V.

自激振荡开关电源

自激振荡(RCC)开关电源 中山市技师学院 一、概述 目前市场上销售的手机充电器,从电路结构和充电方式上可分为两大类:第一类是“机充式”充电器,另一类是“直充式”充电器(也叫座充)。所谓“机充式”充电器,就是电源进入手机后由充电管理IC 控制预充电、恒流充电、恒压充电、电池状态检测、温度监控、充电结束低泄漏、充电状态指示等(比SL1051、BQ241010/2/3等),输出电压一般在5.5~6.5V;而“直充式”充电器也叫万能充电器,直接对电池充电,由于锂电池(充)满电压为4.2V,所以这类充电器输出电压一定要稍小或等于4.2V。 手机充电器输出功率都比较小,一般在5W以下,国内厂商生产的充电器1更是小到2-3W。为了节约成本,国内许多厂商都采用RCC(Ringing Chock Converter)开关电源设计方案。RCC设计方案理论技术成熟、电路结构简单、元器件常见、成本低廉,所以深受国内厂商青睐。然而,读者可能耳闻目睹许多充电器质量事故频频发生,原因不是产品原理有问题,而是制造厂家为了追求利润使用了质量较差元件或二次回收元件造成的;更有甚者部分厂商为了能在激烈的市场竞争环境下生存,不得不使出最下策——只要能输出电压,尽其所能地节省元件! 另外,国内厂商生产的充电器初、次级通常没有设计光藕(反馈),因此输出电压很难控制,负载能力较差,空载时输出电压偏高,带上负载后电压才正常。从目前市场上流通的充电器来看,成本基本在2-3元之间。国外知名公司出于市场定位和维护自身品牌形象考量,一般采用集成电路设计方案,电路结构完善、生产用料考究、产品可靠性高,成本通常是国内厂商的3-5倍,质量当然要好。 由于手机充电器输出功率较小(对电网干扰小)、产品受体积所限(消费者审美要求和拼比心理把厂家“逼上梁山”),无论国内厂商还是国外知名公司出品的手机充电器,输入侧电源滤波器(与EMC测试有关的元器件)都一概省去,部分国内厂商更是把“热地”与“冷地”之间的安规电容(Y电容)也节省掉了,所以,几乎没有任何一个厂家的手机充电器能通过EMC测试。既然通不过EMC测试,依照中国法律就不能销售,因此厂家就打“擦边球”,把充电器定位为赠品,国家对电器赠品并没有强制安规要求。再则,质量认证部门考虑到手机充电器输出功率小、对电网干扰小,在对手机作认证时对充电器“睁一只眼、闭一只眼”,于是,不符合国家标准的手机充电器就堂而皇之地进入市场了。当然,对于用户来说这些元器件的存在与否与充电的电性能几无关系,并不会影响消费者正常使用,只是与国家标准要求不符而已! RCC充电器电路结构简单,工作频率由输入电压与输出电流(自适应)改变,控制方式为频率调制(PFM),工作频率较高,如图1是RCC充电器原理框图。 1由于许多国外知名公司的手机充电几乎都由国内厂商代工,所以该处应理解为国内厂商生产的自主品牌的内销充电器,下同。

基于自激推挽式小型化二次电源的设计

基于自激推挽式小型化二次电源的设计 2009-07-02 15:50:11 来源:EDN 关键字:自激推挽变压器开关电源 0 引言 在数模混合电路系统中,需要多个电源供电,为了减小外界供电电源的数量,实现系统供电电路的小型化。本文基于电流反馈型自激推挽电路设计出了+10V,200mA和-10V,100mA 输出的电源,+10V除了给电路系统的模拟芯片供电外还要给单片及供电的电压调节芯片供电,-10V给模拟芯片供电,实现了供电系统的小型化和低成本。 1 自激推挽式直流变换器的基本原理 自激推挽式直流变换器的基本电路如图1所示。参照图1,当接通输入直流电源Ui后,就会在分压电阻R2上产生一个电压,该电压通过功率开关变压器的Nb1和Nb2两个绕组分别加到两个功率开关V1和V1的基极上。由于电路的不完全对称性使其中的一个功率开关首先导通。假设是功率开关Np1首先导通,那么功率开关Nb2集电极的电流流过功率开关变压器初级绕组的二分之一V2,使功率开关变压器的磁芯磁化,同时使其他的绕组产生感应电动势。在基极绕组Nb2上产生的感应电动势使功率开关V2的基极处于负电位的反向偏置而维持截至状态。在另一个基极绕组Nb1上产生的感应电动势则使功率开关V1的集电极电流进一步增加,这是正反馈的过程。其最后的结果使功率开关V1很快就达到饱和导通状态,此时几乎全部的电源电压Ui都加到了功率开关变压器初级绕组的二分之一Np1上。绕组Np1中的电流以及由此引起的磁通也会线性的增加。当功率开关变压器磁芯的磁通量接近或达到磁饱和值+φS时,集电极的电流就会急剧地增加,形成一个尖峰,而磁通量的变化率接近于零,因此功率开关变压器的所有绕组上的感应电动势也接近于零。由于绕组Nb1两端的感应电动势接近于零,于是功率开关V1的基极电流减小,集电极电流开始下降,从而使所有绕组上的感应电动势反向。紧接着磁芯的磁通脱离饱和状态,促使功率开关V1很快进入截至状态,功率开关V2很快进入饱和导通状态。这时几乎全部的输入直流电压Ui又被加到功率开关变压器的另一半绕组Np2上,使功率开关变压器磁芯的磁通直线下降,很快就达到了反向的磁饱和值-φS。上述过程周而复始,就会在两个功率开关V1和V2的集电极形成方波电压。

自激式开关电源有关问题的探讨

3-3 自激式开关电源有关问题的探讨 1.如何通过电压波形的数据,粗略计算出变压器的匝数比? 自激式开关电源的功率管“从开到关”或“从关到开”转换都要经一段过度时间,因此功率管完全导通的时间小于ON t ,完全截止时间的小于OFF t ,如图1所示,这是HP1018打印机开关管漏极和次级绕组的电压波形(此时“热地”与“冷地”连在一起,测量之后断开)。 图1 测量次级绕组(CH 2)电压波形 当功率管导通时,初级绕组因有电流流过而发生自感,自感电动势等于输入电源整流滤电压。根据变压器的工作原理,次级绕组会因互感作用产生负脉冲电压。这期间,初级绕组是主动绕组,次级绕组是被动绕组。 启用数字示波器“幅度”功能,测量的次级绕组负脉冲电压为23.2V (此时,整流二极管反偏截止)。若忽略初级绕组因由有电流流过引起的电动势的损耗,则初、次级绕组的匝数之比等于它们的电压之比,即 21N N =) (21-U U (3-1) 式中,1N 、2N 分别是初、次级绕组匝数。1U 是输入电源为AC110V 时整流滤电压,实测值为165V ,把1U =165V ,)(2-U =23.2V 代入上式,得 功率管完 全截止区 功率管完 全导通区 t ON t OFF 26V 23.2V

21N N =)(21-U U =2 .23165≈7.11 设N =2 1N N ,取整数N ≈7。 2.如何计算功率管截止时初级绕组感应电动势? 当功率管截止时,次级绕组因有电流流过而发生自感,自感电动势等于整流元件导通压降与输出直流电压的叠加。根据变压器的工作原理,初级绕组会因互感作用产生正脉冲电压。这期间,初级绕组是被动绕组,次级绕组是主动绕组。 当功率管截止时初、次级绕组的感应电动势之比仍然等于它们匝数之比,即 )(2'1+U U =2 1N N (3-2) 启用数字示波器“幅度”功能,测量的次级绕组正脉冲电压为26V ,即)(2+U =26V ,代入上式,得 '1U =N ?)(2+U =7?26≈182V 即,功率管截止时初级绕组感应正脉冲电压等于182V 。 考虑到当前电源电压为165V ,则当功率管截止时,漏极电压是电源电压与初级绕组自感电动势的叠加,即 '11U U U D S += (3-3) 把1U =165V ,' 1U =182V 代入上式,得 DS U =165+182≈347(V ) 注:该电压不含漏感尖峰电压。 需要指出的是,'1U (=182V )这个数据是基于当前电源电压110V 和输出24.5V 稳定电压的状况而得出的,该电压与负载基本无关;若负载加重、输出电流增大,功率管会自动延长导通时间,从电源吸收更大的功率,维持输出电压稳定,反之亦反。 3.如何根据输入、输出电压计算占空比?

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算 1-8-1-3.推挽式变压器开关电源储能滤波电感、电容参数的计算 图1-33中,储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法很相似。 根据图1-33和图1-34,我们把整流输出电压uo和LC滤波电路的电压uc、电流iL画出如图1-35,以便用来计算推挽式变压器开关电源储能滤波电感、电容的参数。 图1-35-a)是整流输出电压uo的波形图。实线表示控制开关K1接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形;虚线表示控制开关K2接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形。Up表示整流输出峰值电压(正激输出电压),Up-表示整流输出最低电压(反激输出电压),Ua表示整流输出电压的平均值。 图1-35-b)是滤波电容器两端电压的波形图,或滤波电路输出电压的波形图。Uo表示输出电压,或滤波电容器两端电压的平均值;ΔUc表示电容充电电压增量,2ΔUc等于输出电压纹波。

1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算 在图1-33中,当控制开关K1接通时,输入电压Ui通过控制开关K1加到开关变压器线圈N1绕组的两端,在控制开关K1接通Ton期间,开关变压器线圈N3绕组输出一个幅度为Up(半波平均值)的正激电压uo,然后加到储能滤波电感L 和储能滤波电容C组成的滤波电路上,在此期间储能滤波电感L两端的电压eL 为: 式中:Ui为输入电压,Uo为直流输出电压,即:Uo为滤波电容两端电压uc的平均值。 在此顺便说明:由于电容两端的电压变化增量ΔU相对于输出电压Uo来说非常小,为了简单,我们这里把Uo当成常量来处理。 对(1-136)式进行积分得:

推挽式变压器设计

推挽式变压器设计 前言 推挽式变压器的设计分为AP法和KG法两种设计方法,这两种设计方法都是以几何参数进行设计,主要区别在于,KG 法是AP的基础上考虑了电压调整率,即加入电压调整率参数。下面是两种方法设计流程: 第一:计算视在功率: PT=Po(1+1/G)1.414 式中的PT 是视在功率,Po是输出功率,G是变压器的能量传递效率, 第二:计算KE: KE=0.145Kf^2Fs^2Bw^2 x 10^-4 式中Kf是波形因素,方波为4,正弦波为4.44,Fs是开关频率,Bw磁通密度。 第三:计算KG: KG=PT/2aKe 式中a 是电压调整率 磁环KG用以下公式进行计算: KG=Ae^2AwKo/MLT 式中的Ae是芯的有限面积,Aw 是芯环的有限面积,MLT

是每匝线圈的长度。 第四:根据KG值选择磁环的大小。 第五:计算AP:如果是KG法设计变压器,不用这一步。 AP=(PT x 10^4/KoKfFsBWKj)^1/1+x 式中Ko是变压器窗口使用系数。Kj是电流密度比例系数,X 是磁芯类型常数 第六:根据AP值选技磁环的大小,如果是使用KG法,不用这一步。 第七:计算原边线圈数: NP=Vs x 10^4/KfFsBWAe 式中的NP为原边线圈数,Vs是最小输入电压。 第八:计算原边峰值电流 Ip=Po/VsG 第九:计算电流密度: J=PT x 10 ^4/KoKfFsBwAp 第十:计算原边线圈的线经: Axp=Ip/J 如果是全波整流Ip需要按0.707进行折算。公式如下: Axp=0.707Ip/J 第十一:根据Axp值选择导线规格: 第十二:计算原边线圈阻值:

推挽式开关电源优缺点

推挽式开关电源优缺点 1、推挽式开关电源变压器的漏感以及铜阻损耗都比单极性磁化极变压器小很多,开关电源的工作效率跟高。 推挽式开关电源的变压器属于双极性磁化极,磁感应变压范围是单极性磁化极的两倍多,并且变压器铁芯不需要气隙,因此,推挽式开关电源变压器铁芯的磁导率比单极性磁化极的正激或反激开关电源的变压器铁芯的磁导率高很多倍,这样推挽式开关电源变压器的初级、次级的线圈的匝数可比单极性磁化极变压器初级、次级的线圈的匝数少一倍以上。所以,推挽式开关电源变压器的漏感以及铜阻损耗都比单极性磁化极变压器小很多,所以开关电源的工作效率跟高。 2、推挽式、半桥式、全桥式转换器属于直流-交流-直流转换器。由于直流-交流转换器提高了工作频率,所以,变压器和输出滤波器的体积和重量都可以减小。 3、推挽式开关电源的变压器有两组初级线圈,对于小功率输出的推挽式开关电源是个缺点,对于大功率输出的推挽式开关电源是个优点。因为大功率变压器的线圈一般都是多股线来绕制的,因此,推挽式开关电源的变压器的两组初级线圈与用多股线绕制根本没有区别,并且两个线圈与单个线圈相比可以减低一半电流密度。 4、推挽式开关电源输出电流瞬态响应速度很高,电压输出特性很好。推挽式开关电源是所有开关电源中电压利用率最高的开关电源。 由于推挽式开关电源中的两个控制开关轮流交替工作,其输出电压波形非常对称,并且开关电源在整个周期之内都向负载提供功率的输出,因此,其输出电流瞬态响应速度很高,电压输出特性很好。推挽式开关电源是所有开关电源中电压利用率最高的开关电源。它在输入电压很低的情况下,仍然能维持很大的输出功率,所以推挽式开关电源被广泛的应用于低输入电压的DC/AC逆变器,活DC/DC转换器电路中。 5、推挽式开关电源的驱动电路简单。 推挽式开关电源的两个开关器件有一个公共接地端,相对于半桥式或全桥式开关电源来说,驱动电路简单的多。

推挽式开关电源设计

洛阳理工学院毕业设计(论文) 题目_推挽式开关电源的设计 2013年5月30 日

推挽式直流电源开关的设计 摘要 电源是实现电能变换和功率传递的主要设备。在信息时代,农业、能源、交通运输、信息、国防、教育等领域的迅猛发展,对电源产业提出了更多、更高的要求、如节能、节电、节材、缩体、减重、环保、可靠、安全等。这就迫使电源工作者在电源研发过程中不断探索,寻求各种相关技术,做出最好的电源产品,以满足各行各业的要求。开关电源是一种新型电源设备,较之于传统的线性电源,其技术含量高,耗能低,使用方便,并取得了较好的经济效益。开关电源具有功耗小、效率高、稳压范围宽、体积小、等突出优点,在通信设备、数控装置、仪器仪表、影音设备、家用电器等电子电路中得到了广泛应用。本文首先介绍开关电源的基本原理,而后介绍广泛应用于开关电源的双端输出驱动器UC3524,并以驱动器UC3524为基础,通过打印机电源电路,讲述推挽式开关电源工作原理。 关键词:电能变换,开关电源,UC3524,推挽式开关电源

Design of a push-pull DC switching power supply ABSTRACT Power is to achieve power conversion and power transmission major equipment. In the information age, the rapid development of agriculture, energy, transportation, information, national defense, education and other fields, for the power industry made more, higher requirements, such as energy saving, energy saving, material saving, reduced body weight loss, environmental protection, reliable, safety etc.. This has forced the power workers continue to explore in the power development process, to seek a variety of related technology, the power to make the best products, to meet the requirements of all walks of life. Switching power supply is a new type of power supply equipment, compared to traditional linear power supply, high technological content, low energy consumption, easy to use, and has achieved good economic benefit. Switching power supply with low power consumption, high efficiency, wide voltage range, small size, and other advantages, is widely used in communication equipment, numerical control equipment, instrumentation, audio and video equipment, household appliances and other electronic circuits. This paper first introduces the basic principle of switching power supply, then introduce dual output driver UC3524 is widely used in switching power supply, and to drive UC3524 as the foundation, through the printer power supply circuit, on the working principle of push-pull switching power supply. KEY WORDS: transformation of electrical energy,transformation of electrical energy,UC3524, transformation of electrical energy

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻

简单的推挽式开关电源

[南京理工大学 现代开关器件 结课论文 [推挽式开关电源分析] 姓名: [王佳琪] 学号: [0810190140] 指导教师: [吕广强] 2011.11

目录 作业要求 (2) 电路原理图 (2) 电路原理分析 (3) 控制方法分析 (4) 基本电路的仿真 (4) 多路直流输出电路仿真 (7) 工频输入直流输出实现 (11) 总结与体会 (14) 参考文献 (15)

作业要求: 1)画出电路图,分析原理和控制方法 2)工频220V电源输入,能够输出3路直流电源(24V30W,12V20W,5V5W),考虑交流侧谐波和直流侧文波 电路基本原理图: 推挽电路的理想化波形

推挽电路的工作原理: 整流输出推挽式变压器开关电源,由于两个开关管轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。因此,推挽式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,仅需要很小的滤波电感和电容,其输出电压纹波就可以达到非常小。推挽电路中两个开关S1和S2交替导通,在绕组N1和N’1两端分别形成相位相反的交流电压,改变占空比就可以改变输出电压。S1导通时,二极管VD1处于通态,电感L 的电流逐渐上升。S2导通时,二极管VD2处于通态,电感L 的电流也逐渐上升。当两个开关都关断时,VD1和VD2都处于通态,各分担一半的电流。S1和S2断态时承受的峰值电压均为2倍Ui 。S1和S2同时导通,相当于变压器一次侧绕组短路,因此应避免两个开关同时导通。每个开关的占空比不能超过50%,还要留有死区。 输出电压: 滤波电感L 电流连续时: T t N N U U on i 2120= 输出电感电流不连续时,输出电压Uo 将高于上式的计算值,并随负载减小而升高,在负载为零的极限情况下,i o U N N U 1 2=. 由于推挽式变压器开关电源中的两个控制开关K1和K2轮流交替工作,其输出电压波形非常对称,并且开关电源在整个工作周期之内都向负载提供功率输出,因此,其输出电流瞬间响应速度很高,电压输出特性很好。推挽式变压器开关电源是所有开关电源中电压利用率最高的开关电源,它在输入电压很低的情况下,仍能维持很大的功率输出,所以推挽式变压器开关电源被广泛应用于低输入电压的DC/AC 逆变器,或DC/DC 转换器电路中。 推挽式开关电源经桥式整流或全波整流后,其输出电压的电压脉动系数Sv 和电流脉动系数Si 都很小,因此只需要一个很小值的储能滤波电容或储能滤波电感,就可以得到一个电压纹波和电流纹波都很小的输出电压。因此,推挽式开关电源是一个输出电压特性非常好的开关电源。 另外,推挽式开关电源的变压器属于双极性磁极化,磁感应变化范围是单极性磁极化的两倍多,并且变压器铁心不需要留气隙,因此,推挽式开关电源变压器铁心的导磁率比单极性磁极化的正激或反式开关电源变压器铁心的导磁率高很多倍;这样,推挽式开关电源变压器初、次级的线圈匝数可比单极性磁极化变压器初、次级的线圈匝数少一倍以上。所以,推挽式开关电源变压器的漏感以及铜阻损耗都比单极性磁极化变压器小很多,开关电源的工作效率很高。 推挽式开关电源的两个开关器件有一个公共接地端,相对于半桥式或全桥式开关电源来说,驱动电路要简单很多,这也是推挽式开关电源的一个优点。 半桥式以及全桥式开关电源都有一个共同缺点,就是当两个控制开关K1和K2处于交替转换工作状态的时候,两个开关器件会同时出现一个半导通区,即两个控制开关同时处于接通状态;这是因为开关器件在开始导通的时候,相当于对电容充电,它从截止状态到完全导通状态需要一个过渡过程;而开关器件从导通状态转换到截止状态的时候,相当于对电容放电,它从导通状态到完全截止状态也需要一个过渡过程;当两个开关器件分别处于导通和截止的过渡期间,就会同时出现半导通状态,此时,相当于两个控制开关同时接通,会对电源电压产生短路,在两个控制开关的串联回路中将出现很大的电流,而这个电流并没有通过变压器负载。因此,在两个控制开关K1和K2分别处于导通和截止的过渡期间,两个开关器件

W推挽变压器设计

150W推挽变压器的设计(Bm

Kwin=0.3,为变压器的窗口填充系数 J=300A/cm2 可得:AP=0.98cm4 , AP=Aw X Ae。Aw为磁芯窗口面积;Ae为磁芯有效截面积。考虑EE32型号的磁芯,该磁芯的AP=1.254 cm4,故选取EE32型号的磁芯。 Step2.原副边绕组匝数的确定 a.原边绕组匝数: T 1=T TTTTT TT TTT ΔB?10?4?2T T?10?4 = 1.91 选取N1=2.式中:U inmin =12V,T=20*10-6s,Dmax=0.45,△B=2*1700Gs, Ae=0.83cm2 b.匝比 设变压器原边两绕组匝数均为N1,变压器副边总匝数为N2,则定义匝比为n=N2/N1。考虑副边整流二极管的导通压降及输出滤波电感的电阻,有 n= T T +T T+T TT T TTTTT?T TTT ?1 2 =350+3+0.5 12?0.45 ?1 2 =32.73 (原边两个绕组)

相关文档
最新文档