线性二次型最优控制应用举例与仿真

线性二次型最优控制应用举例与仿真
线性二次型最优控制应用举例与仿真

线性二次型最优控制

一、最优控制概述

最优控制,又称无穷维最优化或动态最优化,是现代控制理论的最基本,最核心的部分。它所研究的中心问题是:如何根据受控系统的动态特性,去选择控制规律,才能使得系统按照一定的技术要求进行运转,并使得描述系统性能或品质的某个“指标”在一定的意义下达到最优值。最优控制问题有四个关键点:受控对象为动态系统;初始与终端条件(时间和状态);性能指标以及容许控制。

一个典型的最优控制问题描述如下:被控系统的状态方程和初始条件给定,同时给定目标函数。然后寻找一个可行的控制方法使系统从输出状态过渡到目标状态,并达到最优的性能指标。系统最优性能指标和品质在特定条件下的最优值是以泛函极值的形式来表示。因此求解最优控制问题归结为求具有约束条件的泛函极值问题,属于变分学范畴。变分法、最大值原理(最小值原理)和动态规划是最优控制理论的基本内容和常用方法。庞特里亚金极大值原理、贝尔曼动态规划以及卡尔曼线性二次型最优控制是在约束条件下获得最优解的三个强有力的工具,应用于大部分最优控制问题。尤其是线性二次型最优控制,因为其在数学上和工程上实现简单,故其有很大的工程实用价值。

二、线性二次型最优控制

2.1 线性二次型问题概述

线性二次型最优控制问题,也叫LQ 问题。它是指线性系统具有二次型性能指标的最优控制问题。线性二次型问题所得到的最优控制规律是状态变量的反馈形式,便于计算和工程实现。它能兼顾系统性能指标的多方面因素。例如快速性、能量消耗、终端准确性、灵敏度和稳定性等。线性二次型最优控制目标是使性能指标J 取得极小值, 其实质是用不大的控制来保持比较小的误差,从而达到所用能量和误差综合最优的目的。

2.2 线性二次型问题的提法

给定线性时变系统的状态方程和输出方程如下:

()()()()()()()()

X

t A t X t B t U t Y t C t X t ?=+?

=? (2.1)

)(t X 是n 维状态变量,)(t U 是m 维控制变量,)(t Y 是l 维输出变量,)(t A 是

n n ?时变矩阵,)(t B 是m n ?时变矩阵。假设n m l ≤≤≤1,)(t U 不受约束。若)(t Y r 表示预期输出变量,它是l 维向量,则有 )()()(t Y t Y t e r -=称为误差向量。

现在的问题是,选择最优控制)(t U 使下列二次型性能指标

11()()[()()()()()()]2

2

f t T

T T

f f t J e t Se t e t Q t e t U t R t U t dt =

+

+?

(2.2)

为最小,这就是线性二次型最优控制问题。(其中S 是l l ?半正定对称常数矩阵,

)

(t Q 是l l ?半正定对称时变矩阵,)(t R 是m m ?正定对称时变矩阵,终端时间f

t 是固定的,终端状态)(f t X 自由。

2.3 二次型性能指标及其涵义

11()()[()()()()()()]2

2

f t T

T T

f f t J e t Se t e t Q t e t U t R t U t dt =

+

+?

(1)终端代价(限制终端误差):

1()()2

T

f f e t Se t

(2)过程代价(限制控制过程误差):01

()()()

2f

t T

e t L e t Q t e t =

?

(3)控制代价(限制控制U (t )的幅值及平滑性):

1()()()2

f t T

u t L U t R t U t =

?

三、基于MATLAB 的线性二次型最优控制举例

无限时间跟踪问题的最优控制及MATLAB 仿真

1)内容描述

??

?==)()(2

21t u x t x x

?

?==20

210

1)0()0(x x x x )()(1t x t y =

性能指标为:

[]{}

dt t U t Y t Y r

?∞+-0

2

2

)()()(2

1

2)结果及分析:

(1)结果:

依题意可得矩阵错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,首先检查一下系统的可观性和可控性。运行程序可得:n = 2

system is controlled

system is no observable

系统可控但是不可观。

知道了系统可控之后我们就可以放心的作下一步工作了,即解Riccati方程。运行

A=[0 1;0 0];B=[0;1];

C=[1 0];D=0;

Q=[1 0;0 1]R=1;

[K,P,E]=lqr(A,B,Q,R)

得到K =

1.0 1.7321

把矩阵Q改为错误!未找到引用源。同样的可以得到

K =

10.0000 4.5826

仿真图形如下

图3.1

图3.2

结果分析:

A.图3.1表示的是保持R不变,改变Q值。上图的Q值较小,其响应时间更慢。所以可以看出——权值越大对系统的控制作用就越强。

B. 图3.2表示的是保持Q值不变,改变R值。上图的R值较大。可以得出结论:R较大时,系统响应比较慢,而且超调量大,这是因为R对控制律U 的作用是限制作用,当它越大时,输出受限制也就多,输出响应就比较慢。

小结

本文介绍了线性二次型最优控制的基本原理,并给定了一个具体的控制系统,利用MATLAB软件对其最优控制进行了求解,并对所求解的系统进行了仿真。通过仿真实验,设计所得到的线性二次型最优控制效果比较好,达到了设计的目的。

A=[0 1;0 0];B=[0;1];

C=[1 0];D=0;

Q=[1 0;0 1];R=1;

K=[1.0000 1.7321];

sys=ss(A-B*K,eye(2),eye(2),eye(2));

t=0:0.01:8;

x=initial(sys,[1;0],t);

x1=[1 0 ]*x';

x2=[0 1 ]*x';

subplot(2,1,1);plot(t,x1)

grid

xlabel('t(sec)');ylabel('x1') subplot(2,1,2);plot(t,x2)

grid

xlabel('t(sec)');ylabel('x2') >>

第五章运筹学线性规划在管理中的应用案例

第五章线性规划在管理中的应用 某企业停止了生产一些已经不再获利的产品,这样就产生了一部分剩余生产力。管理层考虑将这些剩余生产力用于新产品Ⅰ、Ⅱ、Ⅲ的生产。可用的机器设备是限制新产品产量的主要因素,具体数据如下表: 司的利润最大化。 1、判别问题的线性规划数学模型类型。 2、描述该问题要作出决策的目标、决策的限制条件以及决策的总绩效测度。 3、建立该问题的线性规划数学模型。 4、用线性规划求解模型进行求解。 5、对求得的结果进行灵敏度分析(分别对最优解、最优值、相差值、松驰/剩余量、对偶价格、目标函数变量系数和常数项的变化范围进行详细分析)。 6、若销售部门表示,新产品Ⅰ、Ⅱ生产多少就能销售多少,而产品Ⅲ最少销售18件,请重新完成本题的1-5。 解: 1、本问题是资源分配型的线性规划数学模型。 2、该问题的决策目标是公司总的利润最大化,总利润为: + + 决策的限制条件: 8x1+ 4x2+ 6x3≤500 铣床限制条件 4x1+ 3x2≤350 车床限制条件 3x1+ x3≤150 磨床限制条件 即总绩效测试(目标函数)为: max z= + + 3、本问题的线性规划数学模型 max z= + + S.T.8x1+ 4x2+ 6x3≤500 4x1+ 3x2≤350 3x1+ x3≤150 x1≥0、x2≥0、x3≥0 4、用Excel线性规划求解模板求解结果:最优解(50,25,0),最优值:30元。 5、灵敏度分析

目标函数最优值为: 30 变量最优解相差值 x1 50 0 x2 25 0 x3 0 .083 约束松弛/剩余变量对偶价格 1 0 .05 2 75 0 3 0 .033 目标函数系数范围: 变量下限当前值上限 x1 .4 .5 无上限 x2 .1 .2 .25 x3 无下限.25 .333 常数项数范围: 约束下限当前值上限 1 400 500 600 2 275 350 无上限 3 150 (1)最优生产方案: 新产品Ⅰ生产50件、新产品Ⅱ生产25件、新产品Ⅲ不安排。最大利润值为30元。 (2)x3 的相差值是意味着,目前新产品Ⅲ不安排生产,是因为新产品Ⅲ的利润太低,若要使新产品Ⅲ值得生产,需要将当前新产品Ⅲ利润元/件,提高到元/件。 (3)三个约束的松弛/剩余变量0,75,0,表明铣床和磨床的可用工时已经用完,而车床的可用工时还剩余75个工时; 三个对偶价格,0,表明三种机床每增加一个工时可使公司增加的总利润额。 (4)目标函数系数范围 表明新产品Ⅰ的利润在元/件以上,新产品Ⅱ的利润在到之间,新产品Ⅲ的利润在以下,上述的最佳方案不变。 (5)常数项范围 表明铣床的可用条件在400到600工时之间、车铣床的可用条件在275工时以上、磨铣床的可用条件在到工时之间。各自每增加一个工时对总利润的贡献元,0元,元不变。 6、若产品Ⅲ最少销售18件,修改后的的数学模型是: max z= + + S.T.8x1+ 4x2+ 6x3≤500 4x1+ 3x2≤350 3x1+ x3≤150 x3≥18 x1≥0、x2≥0、x3≥0 这是一个混合型的线性规划问题。 代入求解模板得结果如下: 最优解(44,10,18),最优值:元。 灵敏度报告: 目标函数最优值为: 变量最优解相差值 x1 44 0 x2 10 0 x3 18 0 约束松弛/剩余变量对偶价格

运用Matlab进行线性规划求解(实例)

线性规划 线性规划是处理线性目标函数和线性约束的一种较为成熟的方法,目前已经广泛应用于军事、经济、工业、农业、教育、商业和社会科学等许多方面。 8.2.1 基本数学原理 线性规划问题的标准形式是: ????? ??????≥=+++=+++=++++++=0,,,min 21221122222121112 121112211n m n mn m m n n n n n n x x x b x a x a x a b x a x a x a b x a x a x a x c x c x c z 或 ???? ?????=≥===∑∑==n j x m i b x a x c z j n j i j ij n j j j ,,2,1,0,,2,1,min 1 1 写成矩阵形式为: ?? ???≥==O X b AX CX z min 线性规划的标准形式要求使目标函数最小化,约束条件取等式,变量b 非负。不符合这几个条件的线性模型可以转化成标准形式。 MATLAB 采用投影法求解线性规划问题,该方法是单纯形法的变种。 8.2.2 有关函数介绍 在MATLAB 工具箱中,可用linprog 函数求解线性规划问题。 linprog 函数的调用格式如下: ●x=linprog(f,A,b):求解问题minf'*x ,约束条件为A*x<=b 。 ●x=linprog(f,A,b,Aeq,beq):求解上面的问题,但增加等式约束,即Aeq*x=beq 。若没有不等式约束,则令A=[ ],b=[ ]。 ●x=linprog(f,A,b,Aeq,beq,lb,ub):定义设计x 的下界lb 和上界ub ,使得x 始终在该范围内。若没有等式约束,令Aeq=[ ],beq=[ ]。 ●x=linprog(f,A,b,Aeq,beq,lb,ub,x0):设置初值为x0。该选项只适用于中型问题,默认时大型算法将忽略初值。 ●x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options):用options 指定的优化参数进行最小化。 ●[x,fval]=linprog(…):返回解x 处的目标函数值fval 。 ●[x,lambda,exitflag]=linprog(…):返回exitflag 值,描述函数计算的退出条件。 ●[x,lambda,exitflag,output]=linprog(…):返回包含优化信息的输出参数output 。 ●[x,fval,exitflag,output,lambda]=linprog(…):将解x 处的拉格朗日乘子返回到lambda 参数中。

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

第五章运筹学 线性规划在管理中的应用案例

第五章线性规划在管理中的应用 5.1 某企业停止了生产一些已经不再获利的产品,这样就产生了一部分剩余生产力。管理层考虑将这些剩余生产力用于新产品Ⅰ、Ⅱ、Ⅲ的生产。可用的机器设备是限制新产品产量的主要因素,具体数据如下表: 量,使得公司的利润最大化。 1、判别问题的线性规划数学模型类型。 2、描述该问题要作出决策的目标、决策的限制条件以及决策的总绩效测度。 3、建立该问题的线性规划数学模型。 4、用线性规划求解模型进行求解。 5、对求得的结果进行灵敏度分析(分别对最优解、最优值、相差值、松驰/剩余量、对偶价格、目标函数变量系数和常数项的变化范围进行详细分析)。 6、若销售部门表示,新产品Ⅰ、Ⅱ生产多少就能销售多少,而产品Ⅲ最少销售18件,请重新完成本题的1-5。 解: 1、本问题是资源分配型的线性规划数学模型。 2、该问题的决策目标是公司总的利润最大化,总利润为: 0.5x1+ 0.2x2+ 0.25x3 决策的限制条件: 8x1+ 4x2+ 6x3≤500 铣床限制条件 4x1+ 3x2≤350 车床限制条件 3x1+ x3≤150 磨床限制条件 即总绩效测试(目标函数)为: max z= 0.5x1+ 0.2x2+ 0.25x3 3、本问题的线性规划数学模型 max z= 0.5x1+ 0.2x2+ 0.25x3 S.T.8x1+ 4x2+ 6x3≤500 4x1+ 3x2≤350 3x1+ x3≤150 x1≥0、x2≥0、x3≥0 4、用Excel线性规划求解模板求解结果:最优解(50,25,0),最优值:30元。 5、灵敏度分析

目标函数最优值为 : 30 变量最优解相差值 x1 50 0 x2 25 0 x3 0 .083 约束松弛/剩余变量对偶价格 1 0 .05 2 75 0 3 0 .033 目标函数系数范围 : 变量下限当前值上限 x1 .4 .5 无上限 x2 .1 .2 .25 x3 无下限 .25 .333 常数项数范围 : 约束下限当前值上限 1 400 500 600 2 275 350 无上限 3 37.5 150 187.5 (1)最优生产方案: 新产品Ⅰ生产50件、新产品Ⅱ生产25件、新产品Ⅲ不安排。最大利润值为30元。 (2)x3 的相差值是0.083意味着,目前新产品Ⅲ不安排生产,是因为新产品Ⅲ的利润太低,若要使新产品Ⅲ值得生产,需要将当前新产品Ⅲ利润0.25元/件,提高到0.333元/件。 (3)三个约束的松弛/剩余变量0,75,0,表明铣床和磨床的可用工时已经用完,而车床的可用工时还剩余75个工时; 三个对偶价格0.05,0,0.033表明三种机床每增加一个工时可使公司增加的总利润额。 (4)目标函数系数范围 表明新产品Ⅰ的利润在0.4元/件以上,新产品Ⅱ的利润在0.1到0.25之间,新产品Ⅲ的利润在0.333以下,上述的最佳方案不变。 (5)常数项范围 表明铣床的可用条件在400到600工时之间、车铣床的可用条件在275工时以上、磨铣床的可用条件在37.5到187.5工时之间。各自每增加一个工时对总利润的贡献0.05元,0元,0.033元不变。 6、若产品Ⅲ最少销售18件,修改后的的数学模型是: max z= 0.5x1+ 0.2x2+ 0.25x3 S.T.8x1+ 4x2+ 6x3≤500 4x1+ 3x2≤350 3x1+ x3≤150 x3≥18 x1≥0、x2≥0、x3≥0 这是一个混合型的线性规划问题。 代入求解模板得结果如下: 最优解(44,10,18),最优值:28.5元。 灵敏度报告: 目标函数最优值为 : 28.5 变量最优解相差值 x1 44 0 x2 10 0

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

线性二次型最优控制

一、主动控制简介 概念:结构主动控制需要实时测量结构反应或环境干扰,采用现代控制理论的主动控制算法在精确的结构模型基础上运算和决策最优控制力,最后作动器在很大的外部能量输入下实现最优控制力。 特点:主动控制需要实时测量结构反应或环境干扰,是一种需要额外能量的控制技术,它与被动控制的根本区别是有无额外能量的消耗。 优缺点:主动控制具有提高建筑物的抵抗不确定性地面运动,减少输入的干扰力,以及在地震时候自动地调整结构动力特征等能力,特别是在处理结构的风振反应具有良好的控制效果,与被动控制相比,主动控制具有更好的控制效果。但是,主动控制实际应用价格昂贵,在实际应用过程中也会存与其它控制理论相同的问题,控制技术复杂、造价昂贵、维护要求高。 组成:传感器、控制器、作动器 工作方式:开环、闭环、开闭环。 二、简单回顾主动控制的应用与MATLAB应用 1.主动变刚度A VS控制装置 工作原理:首先将结构的反应反馈至控制器,控制器按照事先设定好的控制算法并结合结构的响应,判断装置的刚度状态,然后将控制信号发送至电液伺服阀以操纵其开关状态,实现不同的变刚度状态。 锁定状态(ON):电液伺服阀阀门关闭,双出杆活塞与液压缸之间没有相对位移,斜撑的相对变形与结构层变形相同,此时结构附加一个刚度; 打开状态(OFF):电液伺服阀阀门打开,双出杆活塞与液压缸之间有相对位移,液压缸的压力差使得液体发生流动,此过程中产生粘滞阻尼,此时结构附加一个阻尼。 示意图如下: 2. 主动变阻尼A VD控制装置 工作原理:变孔径阻尼器以传统的液压流体阻尼器为基础,利用控制阀的开孔率调整粘性油对活塞的运动阻力,并将这种阻力通过活塞传递给结构,从而实现为结构提供阻尼的目的。 关闭状态(ON):开孔率一定,液体的流动速度受限,流动速度越小,产生的粘滞阻尼力越大,开孔率最小时,提供最大阻尼力,此时成为ON状态; 打开状态(OFF):控制阀完全打开,由于液体的粘滞性可提供最小阻尼力。 示意图如下:

线性规划应用案例

线性规划应用案例

市场营销应用 案例一:媒体选择 在媒体选择中应用线性规划的目的在于帮助市场营销经理将固定的广告预算分配到各种广告媒体上,可能的媒体包括报纸、杂志、电台、电视和直接邮件。在这些媒体中应用线性规划,目的是要使宣传范围、频率和质量最大化。对于应用中的约束条件通常源于对公司政策、合同要求及媒体的可用性。在下面的应用中,我们将介绍如何应用线性规划这一工具来建立模型进而解决媒体选择问题。 REL发展公司正在私人湖边开发一个环湖社区。湖边地带和住宅的主要市场是距离开发区100英里以内的所有中上收入的家庭。REL公司已经聘请BP&J 来设计宣传活动。 考虑到可能的广告媒体和要覆盖的市场,BP&J建议将第一个月的广告局限于5种媒体。在第一个月末,BP&J将依据本月的结果再次评估它的广告策略。BP&J已经收集到了关于受众数量、广告单价、各种媒体一定周期内可用的最大次数以及评定5种媒体各自宣传质量的数据。质量评定是通过宣传质量单位来衡量的。宣传质量单位是一种用于衡量在各个媒体中一次广告的相对价值的标准,它建立于BP&J在广告业中的经验,将众多因素考虑在内,如受众层次(年龄、收入和受众受教育的程度)、呈现的形象和广告的质量。表4-1列出了收集到的这些信息。 表4-1 REL发展公司可选的广告媒体

REL发展公司提供给BP&J第一个月广告活动的预算是30000美元。而且,REL公司对BP&J如何分配这些资金设置了如下限制:至少要使用10次电视广告,达到的受众至少要有50000人,并且电视广告的费用不得超过18000美元。应当推荐何种广告媒体选择计划呢? 案例二:市场调查 公司开展市场营销调查以了解消费者个性特点、态度以及偏好。专门提供此种信息的市场营销调查公司,经常为客户机构开展实际调查。市场营销调查公司提供的典型服务包括涉及计划、开展市场调查、分析收集数据、提供总结报告和对客户提出意见。在调查设计阶段,应当对调查对象的数量和类型设定目标或限额。市场营销调查公司的目标是以最小的成本满足客户要求。 市场调查公司(MSI)专门评定消费者对新的产品、服务和广告活动的反映。一个客户公司要求MSI帮助确定消费者对一种近期推出的家具产品的反应。在与客户会面的过程中,MSI统一开展个人入户调查,以从有儿童的家庭和无儿童的家庭获得回答。而且MSI还同意同时开展日间和晚间调查。尤其是,客户的合同要求依据以下限制条款进行1000个访问: ●至少访问400个有儿童的家庭; ●至少访问400个无儿童的家庭; ●晚间访问的家庭数量必须不少于日间访问的家庭数量; ●至少40%有儿童的家庭必须在晚间访问; ●至少60%无儿童的家庭必须在晚间访问。 因为访问有儿童的家庭需要额外的访问时间,而且晚间访问者要比日间访问者获得更多收入,所以成本因访问的类型不同而不同。基于以往的调查研究,预计的访问费用如下表所示: 以最小总访问成本满足合同要求的家庭——时间访问计划是什么样的

线性规划的实际应用举例

线性规划的实际应用举例 即两为了便于同学们掌握线性规划的一般理论和方法,本文拟就简单的线性规划( 的实际应用举例加以说明。个变量的线性规划) 1 物资调运中的线性规划问题 万个40万个和30万个,由于抗洪抢险的需要,现需调运1 A,B两仓库各有编织袋50例/元万个、180/万个到乙地。已知从A仓库调运到甲、乙两地的运费分别为120元到甲地,20元/万个。问如何调运,能150/万个、万个;从B仓库调运到甲、乙两地的运费分别为100元? ?总运费的最小值是多少使总运费最小仓库调Bz元。那么需从x万个到甲地,y万个到乙地,总运费记为解:设从A仓库调运40-x万个到甲 地,调运运万个到乙地。20-y 从而有 。z=120x+180y+100(40-x)+150·(20-y)=20x+30y+7000 1)(图,即可行域。作出以上不等式组所表示的平面区域 z'=z-7000=20x+30y. 令 :20x+30y=0,作直线l 且与原点距离最小,0),,l的位置时,直线经过可行域上的点M(30l把直线向右上方平移至l y=0时,即x=30,亦取得最小值,取得最小值,从而z=z'+7000=20x+30y+7000z'=20x+30y 元)。30+30×z=20× 0+7000=7600(min 万个到乙地,可使总万个到甲地,20B30万个到甲地,从仓库调运10A答:从仓库调运元。运费最小,且总运费的最小值为7600 2 产品安排中的线性规划问题 吨,麦麸0.4吨需耗玉米某饲料厂生产甲、乙两种品牌的饲料,已知生产甲种饲料2例1O.4

吨,其余添加剂0.2. 吨甲种1吨,其余添加剂0.2吨。每吨;生产乙种饲料1吨需耗玉米0.5吨,麦麸0.3元。可供饲料厂生产的玉米供应500元,每1吨乙种饲料的利润是饲料的利润是400吨。问甲、乙300吨,麦麸供应量不超过500吨,添加剂供应量不超过量不超过600 ? ?最大利润是多少两种饲料应各生产多少吨(取整数),能使利润总额达到最大 1。分析:将已知数据列成下表 2表1例表 元,那么吨、y吨,利润总额为z解:设生产甲、乙两种饲料分别为x z=400x+500y。 即可行域。(图2)作出以上不等式组所表示的平面区域 平行,所以线段l4x+5y=6000与。并把400x+500y=0l向右上方平移,由于l:作直线l:1。,N(0,1200)M(250MN上所有坐标都是整数的点(整点)都是最优解。易求得,1000) ,y=1000时,1000)取整点M(250,,即x=250 。元1000=600000()=60(万元)=400×z250+500×max 吨,能使利润总额达到最大。最大利润为1000可安排生产甲种饲料250吨,乙种饲料答:万元。60 使我们认识到最优解的个数还例2课本题中出现的线性规划问题大都有唯一的最优解。注:有其他可能,这里不再深入探究。

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

线性二次型最优控制应用举例与仿真

线性二次型最优控制 一、最优控制概述 最优控制,又称无穷维最优化或动态最优化,是现代控制理论的最基本,最核心的部分。它所研究的中心问题是:如何根据受控系统的动态特性,去选择控制规律,才能使得系统按照一定的技术要求进行运转,并使得描述系统性能或品质的某个“指标”在一定的意义下达到最优值。最优控制问题有四个关键点:受控对象为动态系统;初始与终端条件(时间和状态);性能指标以及容许控制。 一个典型的最优控制问题描述如下:被控系统的状态方程和初始条件给定,同时给定目标函数。然后寻找一个可行的控制方法使系统从输出状态过渡到目标状态,并达到最优的性能指标。系统最优性能指标和品质在特定条件下的最优值是以泛函极值的形式来表示。因此求解最优控制问题归结为求具有约束条件的泛函极值问题,属于变分学范畴。变分法、最大值原理(最小值原理)和动态规划是最优控制理论的基本内容和常用方法。庞特里亚金极大值原理、贝尔曼动态规划以及卡尔曼线性二次型最优控制是在约束条件下获得最优解的三个强有力的工具,应用于大部分最优控制问题。尤其是线性二次型最优控制,因为其在数学上和工程上实现简单,故其有很大的工程实用价值。 二、线性二次型最优控制 2.1 线性二次型问题概述 线性二次型最优控制问题,也叫LQ 问题。它是指线性系统具有二次型性能指标的最优控制问题。线性二次型问题所得到的最优控制规律是状态变量的反馈形式,便于计算和工程实现。它能兼顾系统性能指标的多方面因素。例如快速性、能量消耗、终端准确性、灵敏度和稳定性等。线性二次型最优控制目标是使性能指标J 取得极小值, 其实质是用不大的控制来保持比较小的误差,从而达到所用能量和误差综合最优的目的。 2.2 线性二次型问题的提法 给定线性时变系统的状态方程和输出方程如下: ()()()()()()()() X t A t X t B t U t Y t C t X t ?=+? =? (2.1)

线性规划模型在生活中的实际应用

线性规划模型在生活中的实际应用 一、线性规划的基本概念 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变量、约束条件、目标函数是线性规划的三要素. 二、线性规划模型在实际问题中的应用 (1)线性规划在企业管理中的应用范围 线性规划在企业管理中的应用广泛,主要有以下八种形式: 1.产品生产计划:合理利用人力、物力、财力等,是获利最大. 2.劳动力安排:用最少的劳动力来满足工作的需要. 3.运输问题:如何制定运输方案,使总运费最少. 4.合理利用线材问题:如何下料,使用料最少. 5.配料问题:在原料供应的限制下如何获得最大利润. 6.投资问题:从投资项目中选取方案,是投资回报最大. 7.库存问题:在市场需求和生产实际之间,如何控制库存量从而获得更高利益. 8.最有经济计划问题:在投资和生产计划中如何是风险最小 . (2)如何实现线性规划在企业管理中的应用 在线性规划应用前要建立经济与金融体系的评价标准及企业的计量体系,摸清企业的资

源.首先通过建网、建库、查询、数据采集、文件转换等,把整个系统的各有关部分的特征进行量化,建立数学模型,即把组成系统的有关因素与系统目标的关系,用数学关系和逻辑关系描述出来,然后白较好的数学模型编制成计算机语言,输入数据,进行计算,不同参数获取的不同结果与实际进行分析对比,进行定量,定性分析,最终作出决策.

《经济数学》线性代数学习辅导与典型例题解析

《经济数学》线性代数学习辅导及典型例题解析 第1-2章行列式和矩阵 ⒈了解矩阵的概念,熟练掌握矩阵的运算。 矩阵的运算满足以下性质 ⒉了解矩阵行列式的递归定义,掌握计算行列式(三、四阶)的方法;掌握方阵乘积行列式定理。 是同阶方阵,则有: 若是阶行列式,为常数,则有: ⒊了解零矩阵,单位矩阵,数量矩阵,对角矩阵,上(下)三角矩阵,对称矩阵,初等矩阵的定义及性质。

⒋理解可逆矩阵和逆矩阵的概念及性质,掌握矩阵可逆的充分必要条件。 若为阶方阵,则下列结论等价 可逆满秩存在阶方阵使得 ⒌熟练掌握求逆矩阵的初等行变换法,会用伴随矩阵法求逆矩阵,会解简单的矩阵方程。 用初等行变换法求逆矩阵: 用伴随矩阵法求逆矩阵:(其中是的伴随矩阵) 可逆矩阵具有以下性质: ⒍了解矩阵秩的概念,会求矩阵的秩。 将矩阵用初等行变换化为阶梯形后,所含有的非零行的个数称为矩阵的秩。 典型例题解析 例1 设均为3阶矩阵,且,则。 解:答案:72 因为,且

所以 例2设为矩阵,为矩阵,则矩阵运算()有意义。 解:答案:A 因为,所以A可进行。 关于B,因为矩阵的列数不等于矩阵的行数,所以错误。 关于C,因为矩阵与矩阵不是同形矩阵,所以错误。 关于D,因为矩阵与矩阵不是同形矩阵,所以错误。 例3 已知 求。 分析:利用矩阵相乘和矩阵相等求解。 解:因为 得。

例4 设矩阵 求。 解:方法一:伴随矩阵法 可逆。 且由 得伴随矩阵 则=

方法二:初等行变换法 注意:矩阵的逆矩阵是唯一的,若两种结果不相同,则必有一个结果是错误的或两个都是错误的。 例4 设矩阵 求的秩。 分析:利用矩阵初等行变换求矩阵的秩。 解: 。

连续线性二次型最优控制的MATLAB实现

连续线性二次型最优控制的MATLAB 实现 1.绪 论 最优控制问题就是在一切可能的控制方案中寻找一个控制系统的最优控制方案或最优控制规律,使系统能最优地达到预期的目标。随着航海、航天、导航和控制技术不断深入研究,系统的最优化问题已成为一个重要的问题。 本文介绍了最优控制的基本原理,并给定了一个具体的连续线性二次型控制系统,利用MATLAB 软件对其最优控制矩阵进行了求解,通过仿真实验,设计得到最优控制效果比较好,达到了设计的目的。 2.最优控制理论介绍 2.1最优控制问题 设系统状态方程为: ]00)(,),(),()(x t x t t u t x f t x ==? (2—1) 式中,x(t)是n 维状态向量;u(t)是r 维控制向量;n 维向量函数[]t t u t x f ),(),(是x(t)、u(t)和t 的连续函数,且对x(t)与t 连续可微;u(t)在[]f t t ,0上分段连续。所谓最优控制问题,就是要寻求最优控制函数,使得系统状态x(t)从已知初态0 x 转移到要求的终态)(f t x ,在满足如下约束条件下: (1)控制与状态的不等式约束 []0),(),(≥t t u t x g (2—2) (2)终端状态的等式约束 []0),(=f f t t x M (2—3) 使性能指标 [][]?+Θ=f f t t t t t u t x F t t x J f 0 d ),(),(),( (2—4) 达到极值。式中[]t t u t x g ),(),(是m 维连续可微的向量函数,r m ≤;[]f f t t x M ),(是s 维连续可微的向量函数,n s ≤;[]f t t x f ),(Θ和[]t t u t x F ),(),(都是x(t)与t 的连续可

线性二次型最优控制的MATLAB实现

线性二次型最优控制的MATLAB实现 一理论依据 应用经典控制理论设计控制系统,能够解决很多简单、确定系统的实际设计问题。但对于多输入多输出系统与阶次较高的系统,往往得不到满意的结果,这时就需要有在状态空间模型下建立的最优控制策略。 最优控制是现代控制理论的核心。最优控制理论的实现,离不开一系列的最优化方法,主要包括两个方面就是如何将最优化问题表示为数学模型,如何根据数学模型尽快求出其最优解。线性二次型最优控制设计是基于状态空间技术来设计一个优化的动态控制器,其目标函数是状态和控制输入的二次型函数。二次型问题就是在线性系统约束条件下选择控制输入使二次型目标函数达到最小。由于线性二次型最优控制问题的性能指标具有鲜明的物理意义,其最优解具有统一的解析表达式,且可导致一个简单的线性状态反馈控制律,易于构成闭环最优反馈控制,便于工程实现,因而在实际工程问题中得到了广泛的应用。 二MATLAB程序 >> clear >> syms x1 x2 x3; >> x=[x1;x2;x3]; >> A=[0 1 0;0 0 1;0 -2 -3]; >> B=[0;0;1]; >> R=1; >> Q=[1000 0 0;0 1 0;0 0 1]; >> N=0; >> [K,P,E]=lqr(A,B,Q,R) >> u=-inv(R)*B'*P*x

K = 31.6228 19.0661 3.9377 P = 666.1690 219.3906 31.6228 219.3906 108.5284 19.0661 31.6228 19.0661 3.9377 u = -(5366634056803559*x2)/281474976710656 - (4433500461210591*x3)/1125899906842624 - 10*10^(1/2)*x1 三Simulink仿真图及其响应曲线 利用simulink仿真,画出系统反馈前后的仿真图、输出图像和性能指标图。分析分析反馈前后关系曲线。 图1 反馈前系统的仿真图

线性规划的应用(简介和案例)

线性规划的应用 线性规划是运筹学中一个重要分支,它是研究线性约束条件下线性目标函数的极值问题的数学理论和方法。广泛应用于军事作战、经济分析、经营管理和工程技术等方面。如:经济管理、交通运输、工农业生为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。 线性规划作为运筹学的一个研究较早、发展较快、应用广泛、方法较成熟的重要分支,它在日常生活中的典型应用主要有:1合理利用线材问题:如何下料使用材最少 2配料问题:在原料供应量的限制下如何获取最大利润 3投资问题:从投资项目中选取方案,使投资回报最大 4产品生产计划:合理利用人力、物力、财力等,使获利最大 5劳动力安排:用最少的劳动力来满足工作的需要 6运输问题:如何制定调动方案,使总运费最小 其实,也就是说,线性规划在运筹学中的研究对象主要是在有一定的人力、财力、资源条件下,如何合理安排使用,效益最高和在某项任务确定后,如何安排人、财、物,使之最省。 例如: 某公司现有三条生产线来生产两种新产品,其主要数据如表1.1所示。请问如何生产可以让公司每周利润最大?

表1 产品组合问题的数据表 此问题是在生产线可利用时间受到限制的情形下寻求每周利润最大化的产品组合问题。 在建立产品组合模型的过程中,以下问题需要得到回答: (1)要做出什么决策? (2)做出的决策会有哪些条件限制? (3)这些决策的全部评价标准是什么? (1)变量的确定 要做出的决策是两种新产品的生产水平,记x1为每周生产产品甲的产量,x2为每周生产产品乙的产量。一般情况下,在实际问题中常常称为变量(决策变量)。 (2)约束条件 求目标函数极值时的某些限制称为约束条件。如两种产品在相应生产线上每周生产时间不能超过每条生产线的可得时间,对于生产线一,有x1≤4,类似地,其它生产线也有不等式约束。 (3)目标函数 对这些决策的评价标准是这两种产品的总利润,即目标函数是要求每周的生产利润(可记为z,以百元为计量单位)为最大 这样,可以把产品组合问题抽象地归结为一个数学模型: max z = 3x1+5x2 s.t. x1 ≤4 2x2 ≤12 3x1+ 2x2 ≤18 x1≥0,x2 ≥0

线性规划的实际应用

密封线 线性规划的实际应用 摘要线性规划模型是科学与工程领域广泛应用的数学模型。本文应用线性规划模型,以 某水库输水管的选择为研究对象,以实现输水管的选择既能保证供水,又能使造价最低为 目标,根据水库的特点和实际运行情况,分析了其输水管选择过程中线性规划模型的建立 方法,并分别通过单纯形法和MATLAB软件进行求解。 关键词线性规划模型单纯形法 MATLAB 一、专著背景简介 《最优化方法》介绍最优化模型的理论与计算方法,其中理论包括对偶理论、非线性规划的最优性理论、非线性半定规划的最优性理论、非线性二阶锥优化的最优性理论;计算方法包括无约束优化的线搜索方法、线性规划的单纯形方法和内点方法、非线性规划的序列二次规划方法、非线性规划的增广Lagrange方法、非线性半定规划的增广Lagrange方法、非线性二阶锥优化的增广Lagrange方法以及整数规划的Lagrange松弛方法。《最优化方法》注重知识的准确性、系统性和算法论述的完整性,是学习最优化方法的一本入门书。 最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。本章将介绍最优化方法的研究对象、特点,以及最优化方法模型的建立和模型的分析、求解、应用。主要是线性规划问题的模型、求解(线性规划问题的单纯形解法)及其应用-运输问题;以及动态规划的模型、求解、应用-资源分配问题。 二、专著的主要结构内容 《最优化方法》是一本着重实际应用又有一定理论深度的最优化方法教材,内容包括线

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

考研线性代数重点内容和典型题型

考研线性代数重点内容和典型题型 线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《xx 年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、

伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx 年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、

相关文档
最新文档