正弦函数值表

正弦函数值表
正弦函数值表

0.0{0.0000} 0.1{0.0017} 0.2{0.0035} 0.3{0.0052} 0.4{0.0070} 0.5{0.0087} 0.6{0.0105} 0.7{0.0122} 0.8{0.0140}

0.9{0.0157}

1.0{0.0175} 1.1{0.0192} 1.2{0.0209} 1.3{0.0227} 1.4{0.0244} 1.5{0.0262} 1.6{0.0279} 1.7{0.0297} 1.8{0.0314}

1.9{0.0332}

2.0{0.0349} 2.1{0.0366} 2.2{0.0384} 2.3{0.0401} 2.4{0.0419} 2.5{0.0436} 2.6{0.0454} 2.7{0.0471} 2.8{0.0488}

2.9{0.0506}

3.0{0.0523} 3.1{0.0541} 3.2{0.0558} 3.3{0.0576} 3.4{0.0593} 3.5{0.0610} 3.6{0.0628} 3.7{0.0645} 3.8{0.0663}

3.9{0.0680}

4.0{0.0698} 4.1{0.0715} 4.2{0.0732} 4.3{0.0750} 4.4{0.0767}

4.5{0.0785}

4.6{0.0802}

4.7{0.0819}

4.8{0.0837}

4.9{0.0854}

5.0{0.0872}

5.1{0.0889}

5.2{0.0906}

5.3{0.0924}

5.4{0.0941}

5.5{0.0958}

5.6{0.0976}

5.7{0.0993}

5.8{0.1011}

5.9{0.1028}

6.0{0.1045}

6.1{0.1063}

6.2{0.1080}

6.3{0.1097}

6.4{0.1115}

6.5{0.1132}

6.6{0.1149}

6.7{0.1167}

6.8{0.1184}

6.9{0.1201}

7.0{0.1219}

7.1{0.1236}

7.2{0.1253}

7.3{0.1271}

7.4{0.1288}

7.5{0.1305}

7.6{0.1323}

7.7{0.1340}

7.8{0.1357}

7.9{0.1374}

8.0{0.1392}

8.1{0.1409}

8.2{0.1426}

8.3{0.1444}

8.4{0.1461}

8.5{0.1478}

8.6{0.1495}

8.7{0.1513}

8.8{0.1530}

8.9{0.1547}

9.0{0.1564}

9.1{0.1582}

9.2{0.1599}

9.3{0.1616}

9.4{0.1633}

9.5{0.1650}

9.6{0.1668}

9.7{0.1685}

9.8{0.1702}

9.9{0.1719}

10.0{0.1736}

10.1{0.1754}

10.2{0.1771}

10.3{0.1788}

10.4{0.1805}

10.5{0.1822}

10.6{0.1840}

10.7{0.1857}

10.8{0.1874}

10.9{0.1891}

11.0{0.1908}

11.1{0.1925}

11.2{0.1942}

11.3{0.1959}

11.4{0.1977}

11.5{0.1994}

11.6{0.2011}

11.7{0.2028}

11.8{0.2045}

11.9{0.2062}

12.0{0.2079}

12.1{0.2096}

12.2{0.2113}

12.3{0.2130}

12.4{0.2147}

12.5{0.2164}

12.6{0.2181}

12.7{0.2198}

12.8{0.2215}

12.9{0.2233}

13.0{0.2250}

13.1{0.2267}

13.2{0.2284}

13.3{0.2300}

13.4{0.2317}

13.5{0.2334}

13.6{0.2351}

13.7{0.2368}

13.8{0.2385}

13.9{0.2402}

14.0{0.2419}

14.1{0.2436}

14.2{0.2453}

14.3{0.2470}

14.4{0.2487}

14.5{0.2504}

14.6{0.2521}

14.7{0.2538}

14.8{0.2554}

14.9{0.2571}

15.0{0.2588}

15.1{0.2605}

15.2{0.2622}

15.3{0.2639}

15.4{0.2656}

15.5{0.2672}

15.6{0.2689}

15.7{0.2706}

15.8{0.2723}

15.9{0.2740}

16.0{0.2756}

16.1{0.2773}

16.2{0.2790}

16.3{0.2807}

16.4{0.2823}

16.5{0.2840}

16.6{0.2857}

16.7{0.2874}

16.8{0.2890}

16.9{0.2907}

17.0{0.2924}

17.1{0.2940}

17.2{0.2957}

17.3{0.2974}

17.4{0.2990}

17.5{0.3007}

17.6{0.3024}

17.7{0.3040}

17.8{0.3057}

17.9{0.3074}

18.0{0.3090}

18.1{0.3107}

18.2{0.3123}

18.3{0.3140}

18.4{0.3156}

18.5{0.3173}

18.6{0.3190}

18.7{0.3206}

18.8{0.3223}

18.9{0.3239}

19.0{0.3256}

19.1{0.3272}

19.2{0.3289}

19.3{0.3305}

19.4{0.3322}

19.5{0.3338}

19.6{0.3355}

19.7{0.3371}

19.8{0.3387}

19.9{0.3404}

20.0{0.3420}

20.1{0.3437}

20.2{0.3453}

20.3{0.3469}

20.4{0.3486}

20.5{0.3502}

20.6{0.3518}

20.7{0.3535}

20.8{0.3551}

20.9{0.3567}

21.0{0.3584}

21.1{0.3600}

21.2{0.3616}

21.3{0.3633}

21.4{0.3649}

21.5{0.3665}

21.6{0.3681}

21.7{0.3697}

21.8{0.3714}

21.9{0.3730}

22.0{0.3746}

22.1{0.3762}

22.2{0.3778}

22.3{0.3795}

22.4{0.3811}

22.5{0.3827}

22.6{0.3843}

22.7{0.3859}

22.8{0.3875}

22.9{0.3891}

23.0{0.3907}

23.1{0.3923}

23.2{0.3939}

23.3{0.3955}

23.4{0.3971}

23.5{0.3987}

23.6{0.4003}

23.7{0.4019}

23.8{0.4035}

23.9{0.4051}

24.0{0.4067}

24.1{0.4083}

24.2{0.4099}

24.3{0.4115}

24.4{0.4131}

24.5{0.4147}

24.6{0.4163}

24.7{0.4179}

24.8{0.4195}

24.9{0.4210}

25.0{0.4226}

25.1{0.4242}

25.2{0.4258}

25.3{0.4274}

25.4{0.4289}

25.5{0.4305}

25.6{0.4321}

25.7{0.4337}

25.8{0.4352}

25.9{0.4368}

26.0{0.4384}

26.1{0.4399}

26.2{0.4415}

26.3{0.4431}

26.4{0.4446} 26.5{0.4462} 26.6{0.4478} 26.7{0.4493} 26.8{0.4509}

26.9{0.4524}

27.0{0.4540} 27.1{0.4555} 27.2{0.4571} 27.3{0.4586} 27.4{0.4602} 27.5{0.4617} 27.6{0.4633} 27.7{0.4648} 27.8{0.4664}

27.9{0.4679}

28.0{0.4695} 28.1{0.4710} 28.2{0.4726} 28.3{0.4741} 28.4{0.4756} 28.5{0.4772} 28.6{0.4787} 28.7{0.4802} 28.8{0.4818}

28.9{0.4833}

29.0{0.4848} 29.1{0.4863} 29.2{0.4879} 29.3{0.4894} 29.4{0.4909} 29.5{0.4924} 29.6{0.4939} 29.7{0.4955} 29.8{0.4970}

29.9{0.4985}

30.0{0.5000} 30.1{0.5015} 30.2{0.5030} 30.3{0.5045} 30.4{0.5060} 30.5{0.5075} 30.6{0.5090} 30.7{0.5105} 30.8{0.5120}

30.9{0.5135}

31.0{0.5150}

31.1{0.5165}

31.2{0.5180}

31.3{0.5195}

31.4{0.5210}

31.5{0.5225}

31.6{0.5240}

31.7{0.5255}

31.8{0.5270}

31.9{0.5284}

32.0{0.5299}

32.1{0.5314}

32.2{0.5329}

32.3{0.5344}

32.4{0.5358}

32.5{0.5373}

32.6{0.5388}

32.7{0.5402}

32.8{0.5417}

32.9{0.5432}

33.0{0.5446}

33.1{0.5461}

33.2{0.5476}

33.3{0.5490}

33.4{0.5505}

33.5{0.5519}

33.6{0.5534}

33.7{0.5548}

33.8{0.5563}

33.9{0.5577}

34.0{0.5592}

34.1{0.5606}

34.2{0.5621}

34.3{0.5635}

34.4{0.5650}

34.5{0.5664}

34.6{0.5678}

34.7{0.5693}

34.8{0.5707}

34.9{0.5721}

35.0{0.5736}

35.1{0.5750}

35.2{0.5764}

35.3{0.5779}

35.4{0.5793}

35.5{0.5807}

35.6{0.5821}

35.7{0.5835}

35.8{0.5850}

35.9{0.5864}

36.0{0.5878}

36.1{0.5892}

36.2{0.5906}

36.3{0.5920}

36.4{0.5934}

36.5{0.5948}

36.6{0.5962}

36.7{0.5976}

36.8{0.5990}

36.9{0.6004}

37.0{0.6018}

37.1{0.6032}

37.2{0.6046}

37.3{0.6060}

37.4{0.6074}

37.5{0.6088}

37.6{0.6101}

37.7{0.6115}

37.8{0.6129}

37.9{0.6143}

38.0{0.6157}

38.1{0.6170}

38.2{0.6184}

38.3{0.6198}

38.4{0.6211}

38.5{0.6225}

38.6{0.6239}

38.7{0.6252}

38.8{0.6266}

38.9{0.6280}

39.0{0.6293}

39.1{0.6307}

39.2{0.6320}

39.3{0.6334}

39.4{0.6347}

39.5{0.6361}

39.6{0.6374}

39.7{0.6388}

39.8{0.6401}

39.9{0.6414}

40.0{0.6428}

40.1{0.6441}

40.2{0.6455}

40.3{0.6468}

40.4{0.6481}

40.5{0.6494}

40.6{0.6508}

40.7{0.6521}

40.8{0.6534}

40.9{0.6547}

41.0{0.6561}

41.1{0.6574}

41.2{0.6587}

41.3{0.6600}

41.4{0.6613}

41.5{0.6626}

41.6{0.6639}

41.7{0.6652}

41.8{0.6665}

41.9{0.6678}

42.0{0.6691}

42.1{0.6704}

42.2{0.6717}

42.3{0.6730}

42.4{0.6743}

42.5{0.6756}

42.6{0.6769}

42.7{0.6782}

42.8{0.6794}

42.9{0.6807}

43.0{0.6820}

43.1{0.6833}

43.2{0.6845}

43.3{0.6858}

43.4{0.6871}

43.5{0.6884}

43.6{0.6896}

43.7{0.6909}

43.8{0.6921}

43.9{0.6934}

44.0{0.6947}

44.1{0.6959}

44.2{0.6972}

44.3{0.6984}

44.4{0.6997}

44.5{0.7009}

44.6{0.7022}

44.7{0.7034}

44.8{0.7046}

44.9{0.7059}

45.0{0.7071}

45.1{0.7083}

45.2{0.7096}

45.3{0.7108}

45.4{0.7120}

45.5{0.7133}

45.6{0.7145}

45.7{0.7157}

45.8{0.7169}

45.9{0.7181}

46.0{0.7193}

46.1{0.7206}

46.2{0.7218}

46.3{0.7230}

46.4{0.7242}

46.5{0.7254}

46.6{0.7266}

46.7{0.7278}

46.8{0.7290}

46.9{0.7302}

47.0{0.7314}

47.1{0.7325}

47.2{0.7337}

47.3{0.7349}

47.4{0.7361}

47.5{0.7373}

47.6{0.7385}

47.7{0.7396}

47.8{0.7408}

47.9{0.7420}

48.0{0.7431}

48.1{0.7443}

48.2{0.7455}

48.3{0.7466}

48.4{0.7478}

48.5{0.7490}

48.6{0.7501}

48.7{0.7513}

48.8{0.7524}

48.9{0.7536}

49.0{0.7547}

49.1{0.7559}

49.2{0.7570}

49.3{0.7581}

49.4{0.7593}

49.5{0.7604}

49.6{0.7615}

49.7{0.7627}

49.8{0.7638}

49.9{0.7649}

50.0{0.7660}

50.1{0.7672}

50.2{0.7683}

50.3{0.7694}

50.4{0.7705}

50.5{0.7716}

50.6{0.7727}

50.7{0.7738}

50.8{0.7749}

50.9{0.7760}

51.0{0.7771}

51.1{0.7782}

51.2{0.7793}

51.3{0.7804}

51.4{0.7815}

51.5{0.7826}

51.6{0.7837}

51.7{0.7848}

51.8{0.7859}

51.9{0.7869}

52.0{0.7880}

52.1{0.7891}

52.2{0.7902}

52.3{0.7912}

52.4{0.7923}

52.5{0.7934}

52.6{0.7944}

52.7{0.7955}

52.8{0.7965}

52.9{0.7976}

53.0{0.7986} 53.1{0.7997} 53.2{0.8007} 53.3{0.8018} 53.4{0.8028} 53.5{0.8039} 53.6{0.8049} 53.7{0.8059} 53.8{0.8070}

53.9{0.8080}

54.0{0.8090} 54.1{0.8100} 54.2{0.8111} 54.3{0.8121} 54.4{0.8131} 54.5{0.8141} 54.6{0.8151} 54.7{0.8161} 54.8{0.8171}

54.9{0.8181}

55.0{0.8192} 55.1{0.8202} 55.2{0.8211} 55.3{0.8221} 55.4{0.8231} 55.5{0.8241} 55.6{0.8251} 55.7{0.8261} 55.8{0.8271}

55.9{0.8281}

56.0{0.8290} 56.1{0.8300} 56.2{0.8310} 56.3{0.8320} 56.4{0.8329} 56.5{0.8339} 56.6{0.8348} 56.7{0.8358} 56.8{0.8368}

56.9{0.8377}

57.0{0.8387} 57.1{0.8396} 57.2{0.8406}

57.3{0.8415}

57.4{0.8425}

57.5{0.8434}

57.6{0.8443}

57.7{0.8453}

57.8{0.8462}

57.9{0.8471}

58.0{0.8480}

58.1{0.8490}

58.2{0.8499}

58.3{0.8508}

58.4{0.8517}

58.5{0.8526}

58.6{0.8536}

58.7{0.8545}

58.8{0.8554}

58.9{0.8563}

59.0{0.8572}

59.1{0.8581}

59.2{0.8590}

59.3{0.8599}

59.4{0.8607}

59.5{0.8616}

59.6{0.8625}

59.7{0.8634}

59.8{0.8643}

59.9{0.8652}

60.0{0.8660}

60.1{0.8669}

60.2{0.8678}

60.3{0.8686}

60.4{0.8695}

60.5{0.8704}

60.6{0.8712}

60.7{0.8721}

60.8{0.8729}

60.9{0.8738}

61.0{0.8746}

61.1{0.8755}

61.2{0.8763}

61.3{0.8771}

61.4{0.8780}

61.5{0.8788}

61.6{0.8796}

61.7{0.8805}

61.8{0.8813}

61.9{0.8821}

62.0{0.8829}

62.1{0.8838}

62.2{0.8846}

62.3{0.8854}

62.4{0.8862}

62.5{0.8870}

62.6{0.8878}

62.7{0.8886}

62.8{0.8894}

62.9{0.8902}

63.0{0.8910}

63.1{0.8918}

63.2{0.8926}

63.3{0.8934}

63.4{0.8942}

63.5{0.8949}

63.6{0.8957}

63.7{0.8965}

63.8{0.8973}

63.9{0.8980}

64.0{0.8988}

64.1{0.8996}

64.2{0.9003}

64.3{0.9011}

64.4{0.9018}

64.5{0.9026}

64.6{0.9033}

64.7{0.9041}

64.8{0.9048}

64.9{0.9056}

65.0{0.9063}

65.1{0.9070}

65.2{0.9078}

65.3{0.9085}

65.4{0.9092}

65.5{0.9100}

65.6{0.9107}

65.7{0.9114}

65.8{0.9121}

65.9{0.9128}

66.0{0.9135}

66.1{0.9143}

66.2{0.9150}

66.3{0.9157}

66.4{0.9164}

66.5{0.9171}

66.6{0.9178}

66.7{0.9184}

66.8{0.9191}

66.9{0.9198}

67.0{0.9205}

67.1{0.9212}

67.2{0.9219}

67.3{0.9225}

67.4{0.9232}

67.5{0.9239}

67.6{0.9245}

67.7{0.9252}

67.8{0.9259}

67.9{0.9265}

68.0{0.9272}

68.1{0.9278}

68.2{0.9285}

68.3{0.9291}

68.4{0.9298}

68.5{0.9304}

68.6{0.9311}

68.7{0.9317}

68.8{0.9323}

68.9{0.9330}

69.0{0.9336}

69.1{0.9342}

69.2{0.9348}

69.3{0.9354}

69.4{0.9361}

69.5{0.9367}

69.6{0.9373}

69.7{0.9379}

69.8{0.9385}

69.9{0.9391}

70.0{0.9397}

70.1{0.9403}

70.2{0.9409}

70.3{0.9415}

70.4{0.9421}

70.5{0.9426}

70.6{0.9432}

70.7{0.9438}

70.8{0.9444}

70.9{0.9449}

71.0{0.9455}

71.1{0.9461}

71.2{0.9466}

71.3{0.9472}

71.4{0.9478}

71.5{0.9483}

71.6{0.9489}

71.7{0.9494}

71.8{0.9500}

71.9{0.9505}

72.0{0.9511}

72.1{0.9516}

72.2{0.9521}

72.3{0.9527}

72.4{0.9532}

72.5{0.9537}

72.6{0.9542}

72.7{0.9548}

72.8{0.9553}

72.9{0.9558}

73.0{0.9563}

73.1{0.9568}

73.2{0.9573}

73.3{0.9578}

73.4{0.9583}

73.5{0.9588}

73.6{0.9593}

73.7{0.9598}

73.8{0.9603}

73.9{0.9608}

74.0{0.9613}

74.1{0.9617}

74.2{0.9622}

74.3{0.9627}

74.4{0.9632}

74.5{0.9636}

74.6{0.9641}

74.7{0.9646}

74.8{0.9650}

74.9{0.9655}

75.0{0.9659}

75.1{0.9664}

75.2{0.9668}

75.3{0.9673}

75.4{0.9677}

75.5{0.9681}

75.6{0.9686}

75.7{0.9690}

75.8{0.9694}

75.9{0.9699}

76.0{0.9703}

76.1{0.9707}

76.2{0.9711}

76.3{0.9715}

76.4{0.9720}

76.5{0.9724}

76.6{0.9728}

76.7{0.9732}

76.8{0.9736}

76.9{0.9740}

77.0{0.9744}

77.1{0.9748}

77.2{0.9751}

77.3{0.9755}

77.4{0.9759}

77.5{0.9763}

77.6{0.9767}

77.7{0.9770}

77.8{0.9774}

77.9{0.9778}

78.0{0.9781}

78.1{0.9785}

78.2{0.9789}

78.3{0.9792}

78.4{0.9796}

78.5{0.9799}

78.6{0.9803}

78.7{0.9806}

78.8{0.9810}

78.9{0.9813}

79.0{0.9816}

79.1{0.9820}

79.2{0.9823} 79.3{0.9826} 79.4{0.9829} 79.5{0.9833} 79.6{0.9836} 79.7{0.9839} 79.8{0.9842}

79.9{0.9845}

80.0{0.9848} 80.1{0.9851} 80.2{0.9854} 80.3{0.9857} 80.4{0.9860} 80.5{0.9863} 80.6{0.9866} 80.7{0.9869} 80.8{0.9871}

80.9{0.9874}

81.0{0.9877} 81.1{0.9880} 81.2{0.9882} 81.3{0.9885} 81.4{0.9888} 81.5{0.9890} 81.6{0.9893} 81.7{0.9895} 81.8{0.9898}

81.9{0.9900}

82.0{0.9903} 82.1{0.9905} 82.2{0.9907} 82.3{0.9910} 82.4{0.9912} 82.5{0.9914} 82.6{0.9917} 82.7{0.9919} 82.8{0.9921}

82.9{0.9923}

83.0{0.9925} 83.1{0.9928} 83.2{0.9930} 83.3{0.9932} 83.4{0.9934} 83.5{0.9936} 83.6{0.9938}

83.7{0.9940}

83.8{0.9942}

83.9{0.9943}

84.0{0.9945}

84.1{0.9947}

84.2{0.9949}

84.3{0.9951}

84.4{0.9952}

84.5{0.9954}

84.6{0.9956}

84.7{0.9957}

84.8{0.9959}

84.9{0.9960}

85.0{0.9962}

85.1{0.9963}

85.2{0.9965}

85.3{0.9966}

85.4{0.9968}

85.5{0.9969}

85.6{0.9971}

85.7{0.9972}

85.8{0.9973}

85.9{0.9974}

86.0{0.9976}

86.1{0.9977}

86.2{0.9978}

86.3{0.9979}

86.4{0.9980}

86.5{0.9981}

86.6{0.9982}

86.7{0.9983}

86.8{0.9984}

86.9{0.9985}

87.0{0.9986}

87.1{0.9987}

87.2{0.9988}

87.3{0.9989}

87.4{0.9990}

87.5{0.9990}

87.6{0.9991}

87.7{0.9992}

87.8{0.9993}

87.9{0.9993}

88.0{0.9994}

88.1{0.9995}

88.2{0.9995}

88.3{0.9996}

88.4{0.9996}

88.5{0.9997}

88.6{0.9997}

88.7{0.9997}

88.8{0.9998}

88.9{0.9998}

89.0{0.9998}

89.1{0.9999}

89.2{0.9999}

89.3{0.9999}

89.4{0.9999}

89.5{1.0000}

89.6{1.0000}

89.7{1.0000}

89.8{1.0000}

89.9{1.0000}

90.0{1.0000}

教案正弦型函数的图像和性质

教案 正弦型函数的图像和性质 1.,,A ω?的物理意义 当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时,A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振动一次需要的时间2T π ω = 称为这个振动的周期,单位时间内往复振动的次数12f T ω π = = ,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。 2.图象的变换 例 : 画出函数3sin(2)3 y x π =+的简图。 解:函数的周期为22 T π π= =,先画出它在长度为一个周期内的闭区间上的简图,再 函数3sin(2)3 y x π =+ 的图象可看作由下面的方法得到的: ①sin y x =图象上所有点向左平移 3 π 个单位,得到sin()3y x π=+的图象上;②再把 图象上所点的横坐标缩短到原来的12,得到sin(2)3 y x π =+的图象;③再把图象上所有点 的纵坐标伸长到原来的3倍,得到3sin(2)3 y x π =+的图象。 x y O π 3 π- 6 π- 53 π 2π sin(3 y x π =+ sin(2)3 y x π =+ sin y x = 3sin(23 y x π =+

一般地,函数sin()y A x ω?=+,x R ∈的图象(其中0A >,0ω>)的图象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0?>时)或向右(当0?<时)平行移动||?个单位长度; ②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的 1 ω 倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。 即先作相位变换,再作周期变换,再作振幅变换。 问题:以上步骤能否变换次序? ∵3sin(2)3sin 2()36y x x π π=+ =+,所以,函数3sin(2)3 y x π =+的图象还可看作 由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的 1 2 ,得到函数sin 2y x =的图象; ②再把函数sin 2y x =图象上所有点向左平移6 π 个单位,得到函数sin 2()6y x π=+的 图象; ③再把函数sin2()6y x π =+的图象上所有点的纵坐标伸长到原来的3倍,得到3sin 2() 6 y x π=+的图象。 3.实际应用 例1:已知函数sin()y A x ω?=+(0A >,0ω>)一个周期内的函数图象,如下图 所示,求函数的一个解析式。 又∵0A > ,∴A = 由图知 52632 T πππ=-= ∴2T π πω ==,∴2ω=, 又∵157()23612 πππ+=, ∴图象上最高点为7( 12 π , ∴7)12π?=?+,即7sin()16π?+=,可取23 π?=-, 所以,函数的一个解析式为2)3 y x π =-. 2.由已知条件求解析式 例2: 已知函数cos()y A x ω?=+(0A >,0ω>,0?π<<) 的最小值是5-, 图x 3 3 π 56 π 3 O

正弦三角函数查询表(0°-90°)

正弦三角函数查询表(0°-90°)

0.0{0.0000} 0.1{0.0017} 0.2{0.0035} 0.3{0.0052} 0.4{0.0070} 0.5{0.0087} 0.6{0.0105} 0.7{0.0122} 0.8{0.0140} 0.9{0.0157} 1.0{0.0175} 1.1{0.0192} 1.2{0.0209} 1.3{0.0227} 1.4{0.0244} 1.5{0.0262} 1.6{0.0279} 1.7{0.0297} 1.8{0.0314} 1.9{0.0332} 2.0{0.0349} 2.1{0.0366} 2.2{0.0384} 2.3{0.0401} 2.4{0.0419} 2.5{0.0436} 2.6{0.0454} 2.7{0.0471} 2.8{0.0488} 2.9{0.0506} 3.0{0.0523} 3.1{0.0541} 3.2{0.0558} 3.3{0.0576} 3.4{0.0593} 3.5{0.0610} 3.6{0.0628} 3.7{0.0645} 3.8{0.0663} 3.9{0.0680} 4.0{0.0698} 4.1{0.0715} 4.2{0.0732} 4.3{0.0750} 4.4{0.0767} 4.5{0.0785} 4.6{0.0802} 4.7{0.0819} 4.8{0.0837} 4.9{0.0854} 5.0{0.0872} 5.1{0.0889} 5.2{0.0906} 5.3{0.0924} 5.4{0.0941} 5.5{0.0958} 5.6{0.0976} 5.7{0.0993} 5.8{0.1011} 5.9{0.1028} 6.0{0.1045} 6.1{0.1063} 6.2{0.1080} 6.3{0.1097} 6.4{0.1115} 6.5{0.1132} 6.6{0.1149} 6.7{0.1167} 6.8{0.1184} 6.9{0.1201} 7.0{0.1219} 7.1{0.1236} 7.2{0.1253} 7.3{0.1271} 7.4{0.1288} 7.5{0.1305} 7.6{0.1323} 7.7{0.1340} 7.8{0.1357} 7.9{0.1374} 8.0{0.1392} 8.1{0.1409} 8.2{0.1426} 8.3{0.1444} 8.4{0.1461} 8.5{0.1478} 8.6{0.1495} 8.7{0.1513} 8.8{0.1530} 8.9{0.1547} 9.0{0.1564} 9.1{0.1582} 9.2{0.1599} 9.3{0.1616} 9.4{0.1633} 9.5{0.1650} 9.6{0.1668} 9.7{0.1685} 9.8{0.1702} 9.9{0.1719} 10.0{0.1736} 10.1{0.1754} 10.2{0.1771} 10.3{0.1788} 10.4{0.1805} 10.5{0.1822} 10.6{0.1840} 10.7{0.1857} 10.8{0.1874} 10.9{0.1891} 11.0{0.1908} 11.1{0.1925} 11.2{0.1942} 11.3{0.1959} 11.4{0.1977} 11.5{0.1994} 11.6{0.2011} 11.7{0.2028} 11.8{0.2045} 11.9{0.2062} 12.0{0.2079} 12.1{0.2096} 12.2{0.2113} 12.3{0.2130} 12.4{0.2147} 12.5{0.2164} 12.6{0.2181} 12.7{0.2198} 12.8{0.2215} 12.9{0.2233} 13.0{0.2250} 13.1{0.2267} 13.2{0.2284} 13.3{0.2300} 13.4{0.2317} 13.5{0.2334} 13.6{0.2351} 13.7{0.2368} 13.8{0.2385} 13.9{0.2402} 14.0{0.2419} 14.1{0.2436} 14.2{0.2453} 14.3{0.2470} 14.4{0.2487} 14.5{0.2504} 14.6{0.2521} 14.7{0.2538} 14.8{0.2554} 14.9{0.2571} 15.0{0.2588} 15.1{0.2605} 15.2{0.2622} 15.3{0.2639} 15.4{0.2656} 15.5{0.2672}

正弦型函数(教师版)

正弦型函数(教师版) https://www.360docs.net/doc/184883487.html,work Information Technology Company.2020YEAR

正弦型函数y=A sin(ωx+φ)的图象及应用 【2015年高考会这样考】 1.考查正弦型函数y=A sin(ωx+φ)的图象变换. 2.结合三角恒等变换考查y=A sin(ωx+φ)的性质及简单应用. 3.考查y=sin x到y=A sin(ωx+φ)的图象的两种变换途径. 【复习指导】 本讲复习时,重点掌握正弦型函数y=A sin(ωx+φ)的图象的“五点”作图法,图象的三种变换方法,以及利用三角函数的性质解决有关问题. 基础梳理 1.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点 如下表所示 x 0-φ ω π 2-φ ω π-φ ω 3π 2-φ ω 2π-φ ω ωx+φ0π 2 π 3π 2 2π y=A sin(ωx+φ)0 A 0-A 0 3.当函数y=A sin(ωx+φ)(A>0,ω>0,x∈[0,+∞))表示一个振动时,A叫 做振幅,T=2π ω叫做周期,f= 1 T叫做频率,ωx+φ叫做相位,φ叫做初相. 4.图象的对称性 函数y=A sin(ωx+φ)(A>0,ω>0)的图象是轴对称也是中心对称图形,具体如下:

(1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中 ωx k +φ=k π+π 2,k ∈Z )成轴对称图形. (2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z )成中心对称图形. 一种方法 在由图象求三角函数解析式时,若最大值为M ,最小值为m ,则A =M -m 2,k =M +m 2,ω由周期T 确定,即由2π ω=T 求出,φ由特殊点确定. 一个区别 由y =sin x 的图象变换到y =A sin (ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ| ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 两个注意 作正弦型函数y =A sin(ωx +φ)的图象时应注意: (1)首先要确定函数的定义域; (2)对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象. 双基自测 1.(人教A 版教材习题改编)y =2sin ? ? ???2x -π4 的振幅、频率和初相分别为( ). A .2,1π,-π 4 B .2,12π,-π 4 C .2,1π,-π 8 D .2,12π,-π 8 答案 A 2.已知简谐运动f (x )=A sin(ωx +φ)? ? ???|φ|<π2的部分图象如图所示,则该简谐运动 的最小正周期T 和初相φ分别为( ).

正弦三角函数查询表(0°-90°)之令狐文艳创作

正弦三角函数查询表(0°-90°) 0.0{0.0000} 0.1{0.0017} 0.2{0.0035} 0.3{0.0052} 0.4{0.0070} 0.5{0.0087} 0.6{0.0105} 0.7{0.0122} 0.8{0.0140} 0.9{0.0157} 1.0{0.0175} 1.1{0.0192} 1.2{0.0209} 1.3{0.0227} 1.4{0.0244} 1.5{0.0262} 1.6{0.0279} 1.7{0.0297} 1.8{0.0314} 1.9{0.0332} 2.0{0.0349} 2.1{0.0366} 2.2{0.0384} 2.3{0.0401} 2.4{0.0419} 2.5{0.0436} 2.6{0.0454} 2.7{0.0471} 2.8{0.0488} 2.9{0.0506} 3.0{0.0523} 3.1{0.0541} 3.2{0.0558} 3.3{0.0576} 3.4{0.0593} 3.5{0.0610} 3.6{0.0628} 3.7{0.0645} 3.8{0.0663} 3.9{0.0680} 4.0{0.0698} 4.1{0.0715} 4.2{0.0732} 4.3{0.0750} 4.4{0.0767} 4.5{0.0785} 4.6{0.0802} 4.7{0.0819} 4.8{0.0837} 4.9{0.0854} 5.0{0.0872} 5.1{0.0889} 5.2{0.0906} 5.3{0.0924} 5.4{0.0941} 5.5{0.0958} 5.6{0.0976} 5.7{0.0993} 5.8{0.1011} 5.9{0.1028} 6.0{0.1045} 6.1{0.1063} 6.2{0.1080} 6.3{0.1097} 6.4{0.1115} 6.5{0.1132} 6.6{0.1149} 6.7{0.1167} 6.8{0.1184} 6.9{0.1201} 7.0{0.1219} 7.1{0.1236} 7.2{0.1253} 7.3{0.1271} 7.4{0.1288} 7.5{0.1305} 7.6{0.1323} 7.7{0.1340} 7.8{0.1357} 7.9{0.1374} 8.0{0.1392} 8.1{0.1409} 8.2{0.1426} 8.3{0.1444} 8.4{0.1461} 8.5{0.1478} 8.6{0.1495} 8.7{0.1513} 8.8{0.1530} 8.9{0.1547} 9.0{0.1564} 9.1{0.1582} 9.2{0.1599} 9.3{0.1616} 9.4{0.1633} 9.5{0.1650} 9.6{0.1668} 9.7{0.1685} 9.8{0.1702} 9.9{0.1719} 10.0{0.1736} 10.1{0.1754} 10.2{0.1771} 10.3{0.1788} 10.4{0.1805} 10.5{0.1822} 10.6{0.1840} 10.7{0.1857} 10.8{0.1874} 10.9{0.1891} 11.0{0.1908} 11.1{0.1925} 11.2{0.1942} 11.3{0.1959} 11.4{0.1977} 11.5{0.1994} 11.6{0.2011} 11.7{0.2028} 11.8{0.2045} 11.9{0.2062} 12.0{0.2079} 12.1{0.2096} 12.2{0.2113} 12.3{0.2130} 12.4{0.2147} 12.5{0.2164} 12.6{0.2181} 12.7{0.2198} 12.8{0.2215} 12.9{0.2233} 13.0{0.2250} 13.1{0.2267} 13.2{0.2284} 13.3{0.2300} 13.4{0.2317} 13.5{0.2334} 13.6{0.2351} 13.7{0.2368} 13.8{0.2385} 13.9{0.2402} 14.0{0.2419} 14.1{0.2436} 14.2{0.2453} 14.3{0.2470} 14.4{0.2487} 14.5{0.2504} 14.6{0.2521} 14.7{0.2538} 令狐文艳

正弦型函数的周期

正弦型函数()? ω+ ) (的周期 f sin A =x x 一、教学目标 1.通过学习,让学生掌握正弦型函数周期的推导过程,进而会求解正弦型函数的周期. 2.通过学习,让学生体会到整体代换的方法在数学中的重要性,使学生能够熟练并灵活运用它. 3.通过正弦函数周期公式的推导过程,让学生感受到数学的美,从而加强学习数学的兴趣. 二、教学重难点 重点:1.正弦型函数周期的推导过程. 2.正弦型函数周期的计算公式. 3.整体代换的数学方法. 难点:正弦型函数周期的推导过程. 三、教学过程 1.复习旧知,引入新课 师:通过前面的学习我们知道,如果一个函数)(x f的周期为a =a T,则它应该满足怎么样的关系呢? (≠ )0 生:满足) x =. f f+ (a ( ) x

(设计意图:通过复习,使学生在后面的式子)2()(ω π+=x f x f 清楚的里得出周期) 师:学习三角函数时,我们首先学习了正弦函数x x f sin )(=和余弦型函数x x f cos )(=,通过描画它们的图像得知,它们的周期都是π2=T ,根据上面的周期公式式子,它们应该满足什么关系呢? 生:满足()π2sin sin +=x x 、()π2cos cos +=x x . (设计意图:为后面推导正弦型函数的周期奠基基础) 师:上一节课我们学习了正弦型函数 ()?ω+=x A x f sin )( )且为常数(其中R x A A ∈,0,0≠,,,>ω?ω,通过学习我们知道,它与正弦函数x x f sin )(=有着密切的联系,那么正弦型函数有没有周期呢?,如果有,它该怎么样求解呢?所以本节课我们在正弦函数x x f sin )(=基础上来讨论一下它的周期. (设计意图:让学生知道这两个函数之间的联系,为后面整体代换方法的应用提供依据) 2.教师讲解,学习主题 首先我们写出正弦型函数 ()?ω+=x A x f sin )(,R x ∈. 师:我们如何把它转化为我们熟悉的正弦函数了?大家还记得我

做模具-三角函数计算方法及快速查询表

例题:已知斜边C=20, 角度θ=35度求对边A及邻边B 对边A =斜边C * Sinθ= 20 * Sin (35) = 20 * = 这里为你提供了sin,cos,tan不同角度的表值,精确度也很高了,相信对你有用sin1= sin2= sin3= sin4= sin5= sin6= sin7= sin8= sin9= sin10= sin11= sin12= sin13= sin14= sin15= sin16= sin17= sin18= sin19=0. sin20=0. sin21= sin22= sin23= sin24= sin25= sin26= sin27= sin28= sin29= sin30= sin31= sin32= sin33= sin34= sin35= sin36=0. sin37= sin38= sin39=0.

sin40=0. sin41=0. sin42= sin43= sin44= sin45= sin46= sin47= sin48= sin49= sin50= sin51= sin52= sin53= sin54= sin55= sin56=0. sin57=0. sin58= sin59= sin60=0. sin61= sin62=0. sin63= sin64= sin65=0. sin66= sin67=0. sin68= sin69=0. sin70= sin71= sin72= sin73=0. sin74= sin75=0. sin76=0. sin77=0. sin78= sin79= sin80= sin81= sin82=0. sin83= sin84= sin85= sin86= sin87=0. sin88=0. sin89=0. sin90=1 cos1=0. cos2=0. cos3=0. cos4= cos5= cos6= cos7= cos8=0. cos9= cos10= cos11= cos12= cos13=0. cos14=0. cos15=0. cos16= cos17=0. cos18= cos19= cos20= cos21=0. cos22= cos23=0. cos24= cos25=0. cos26= cos27= cos28= cos29= cos30=0. cos31= cos32= cos33= cos34=0. cos35= cos36= cos37= cos38= cos39= cos40= cos41= cos42= cos43= cos44= cos45= cos46= cos47= cos48= cos49=0. cos50=0. cos51=0.

三角函数公式表(全)

三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα ·cotα=1 sinα ·cscα=1 sinα/cosα=tanα sin2α+cos2α=1 1+tan2α=sec2α (六边形记忆法:图形结构“上弦中切下割,左 正右余中间1”;记忆方法“对角线上两个函数的 积为1;阴影三角形上两顶点的三角函数值的平方 和等于下顶点的三角函数值的平方;任意一顶点 的三角函数值等于相邻两个顶点的三角函数值的 乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=———----——— 1-tanα ·tanβ tanα-tanβ tan(α-β)=—————-------— 1+tanα ·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2)

根据正弦型函数的图象求解析式

根据正弦型函数的图象求其解析式(一)课前系统部分 1、设计思想 建构主义强调,学生并不是空着脑袋走进教室的。在日常生活中,在以往的学习中,他们已经形成了丰富的经验,小到身边的衣食住行,大到宇宙、星体的运行,从自然现象到社会生活,他们几乎都有一些自己的看法。而且,有些问题即使他们还没有接触过,没有现成的经验,但当问题一旦呈现在面前时,他们往往也可以基于相关的经验,依靠他们的认知能力,形成对问题的某种解释。而且,这种解释并不都是胡乱猜测,而是从他们的经验背景出发而推出的合乎逻辑的假设。所以,教学不能无视学生的这些经验,另起炉灶,从外部装进新知识,而是要把学生现有的知识经验作为新知识的生长点,引导学生从原有的知识经验中“生长”出新的知识经验。 为此我们根据“用已知知识去探讨新知识”的教学方式,沿着“复习已知知识--提出由简单到复杂的问题--解决问题--反思解决过程”这条主线,把从情境中探索和提出数学问题作为教学的出发点,以“问题”为红线组织教学,形成以提出问题与解决问题相互引发携手并进的“情境--问题”学习链,使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。根据上述精神,做出了如下设计: 创设一个现实问题情境作为提出问题的背景,并且用示波器演示电压的图形,让学生对数学的学习产生形象直观的感觉,逐步将现实问题转化、抽象成过渡性数学问题,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质。 2、课标及教材分析 “根据正弦型函数的图象求其解析式”是职高教科书数学第一册第七章第三节的延展内容,它是在学习好正弦函数,正弦型函数后的一个升华内容,是三角函数图象知识的高层次运用,也是解决生活实际问题的一个重要思想方法,因此具有一定的应用价值。布鲁纳指出,学生不是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者。教师的作用是创设学生能够独立探究的情境,引导学生去思考,参与知识获得的过程。因此,做好“根据正弦型函数的图象求解析式”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。

三角函数特殊角值表

1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°=2 1 ,sin45°=cos45°=22,tan30°=cot60°=33,tan45°=cot45°=1 正弦函数sinθ=y/r 余弦函数cosθ=x/r 正切函数tanθ=y/x 余切函数cotθ=x/y 正割函数secθ=r/x 余割函数cscθ=r/y 2、列表法: 说明:正弦值随角度变化,即0?30?45?60?90?变化;值从0 21222 3 1变化,其余类似记忆. 3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1;0<cos α<1;tan α>0;cot α>0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ;cos A >cos B ;cot A >cot B ;特别地:若0°< α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A . 4、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为 2m 形式,正切、余切值可表示为3 m 形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七. 函数名正弦余弦正切余切正割余割 符号sincostancotseccsc 正弦函数sin (A )=a/c 余弦函数cos (A )=b/c 正切函数tan (A )=a/b 余切函数cot (A )=b/a 其中a 为对边,b 为邻边,c 为斜边 三角函数对照表 30? 1 2 1 45? 1 1 2 60?

正弦型函数图像变换

1.5正弦型函数y=Asin(ψx+φ)的图象变换教学设计 贺力光 2008212004 教学目标: 知识与技能目标: 能借助计算机课件,通过探索、观察参数A、ω、φ对函数图象的影响,并能概括出三角函数图象各种变换的实质和内在规律;会用图象变换画出函数y=Asin(ωx+φ)的图象。 过程与方法目标: 通过对探索过程的体验,培养学生的观察能力和探索问题的能力,数形结合的思想;领会从特殊到一般,从具体到抽象的思维方法,从而达到从感性认识到理性认识的飞跃。 情感、态度价值观目标: 通过学习过程培养学生探索与协作的精神,提高合作学习的意识。 教学重点:考察参数ω、φ、A对函数图象的影响,理解由y=sinx的图象到y=Asin(ωx+φ)的图象变化过程。这个内容是三角函数的基本知识进行综合和应用问题接轨的一个重要模型。学生学习了函数y=Asin(ωx+φ)的图象,为后面高中物理研究《单摆运动》、《简谐运动》、《机械波》等知识提供了数学模型。所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁。 教学难点:对y=Asin(ωx+φ)的图象的影响规律的发现与概括是本节课的难点。因为相对来说,、A对图象的影响较直观,ω的变化引起图象伸缩变化,学生第一次接触这种 图象变化,不会观察,造成认知的难点,在教学中,抓住“对图象的影响”的教学,使 学生学会观察图象,经历研究方法,理解图象变化的实质,是克服这一难点的关键。 教学环境: 普通多媒体教室,电脑上需要装有几何画板软件,以及Flash播放器。 学情分析: 本节课在高一第二学期,学生进入高中学习已经有一学期了,对于高中常用的数学思想方法和研究问题的方法已经有初步的了解,并且逐步适应高中的学习方式和教师的教学方式,喜欢小组探究学习,喜欢独立思考,探究未知内容,学习欲望迫切。关于函数图象的变换,学生在学习第一模块时,接触过函数图象的平移,有“左加右减”,“上加下减”这样一些粗略的关于图象平移的认识,但对于本节内容学生要理解并掌握三个参数对函数图象的影

正弦三角函数查询表(0°-90°)

正弦三角函数查询表(0°-90°) {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}

{} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}

{} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}

正弦型函数

正弦型函数)sin(?+=wx A y 徐丹 湖北省鄂南高级中学 教材:普通高中课程标准实验教科书(人教B 版)必修4 第一章第3节,P44—P50 教学对象:普通中学高中一年级普通班学生 时间:1课时(45分钟) 一、教学目标 1、知识与技能 (1)结合具体实例,了解)sin(?+=wx A y 的实际意义以及振幅、周期、频率、初相、相位的定义; (2)借助计算机课件,观察探索参数A 、ω、φ对函数图象的影响,并能概括出正弦 型函数各种图象变换的实质和内在规律; (3)会用“五点法”和图象变换得到函数)sin(?+=wx A y 的图象。 2、过程与方法 (1)通过对探索过程的体验,培养学生发现问题、研究问题的能力,以及探究、创 新的能力; (2)领会从特殊到一般,从具体到抽象的思维方法,从而达到从感性认识到理性认 识的飞跃。 3、情感、态度价值观 (1)让学生感受数学来源于生活以及事物间普遍联系、运动变化的关系。 (2)渗透数形结合的思想; 二、教学重点、难点 1、重点 (1)理解振幅变换、周期变换和相位变换的规律; (2)熟练地对函数x y sin =进行振幅变换、周期变换和相位变换 2、难点 (1)理解振幅变换、周期变换和相位变换的规律; (2)发现与概括)sin(?+=wx A y 的图象的规律 三、教学用具 多媒体(PPT 和几何画板)、板书 四、教学方法 引导学生结合作图过程理解振幅变换、周期变换和相位变换的规律(启发诱导 式)。本节课采用讲授、学生参与、启发探究、归纳总结相结合的教学方法,运用现代化多媒体教学手段进行教学活动。首先按照由特殊到一般的认知规律,由形及数、数形结合,通过设置问题引导学生观察、分析、归纳,形成规律,使学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对正弦型函数图像变换的全面的体验和理解。

最全三角函数公式表

三角函数公式表特殊角的三角函数值

三角函数的图像与性质 1.)sin(?ω+=x A y 图像变换:=T 2.例: 1)6 2sin(3++ = x y 变换一:(先平移再伸缩)1)6 2sin(2++ =π x y x y sin = sin(+ =x y )6 2sin(π + =x y )6 2sin(3π + =x y 1)6 2sin(3++ =π x y 变换二:(先伸缩再平移)1)6 2sin(2++ =π x y x y sin = x y 2sin = )6 2sin(π + =x y )6 2sin(3π + =x y 1)6 2sin(3++ =π x y

正弦定理与余弦定理 1、正弦定理:2sin a R B === , (R 为外接圆的半径); 2、余弦定理:2222cos a b c bc A =+-?;2b =________________;2c =__________________ 变式:=A cos ______________ =B cos ______________ =C cos ______________ 3、三角形面积公式:1 sin 2 S a b C = ??=__________________=__________________ 4.在以下横线处填上正负号 △ABC 中,=A sin )sin(C B +; =B sin )sin(C A +; =C sin )sin(B A +; =A cos )cos(C B +; =B cos )cos(C A +; =C cos )cos(B A +;

正切三角函数值表

正切函数值表 角度正弦sin 余弦cos 正切tan 0 0 1 1 0.017452406 0.999847695 0.017455065 2 0.034899497 0.999390827 0.034921 3 0.052335956 0.998629535 0.052407779 4 0.069756474 0.9975640 5 0.069926812 5 0.087155743 0.996194698 0.087488664 6 0.104528463 0.994521895 0.105104235 7 0.121869343 0.992546152 0.122784561 8 0.139173101 0.990268069 0.140540835 9 0.156434465 0.987688341 0.15838444 10 0.173648178 0.984807753 0.176326981 11 0.190808995 0.981627183 0.194380309 12 0.207911691 0.978147601 0.212556562 13 0.224951054 0.974370065 0.230868191 14 0.241921896 0.970295726 0.249328003 15 0.258819045 0.965925826 0.267949192 16 0.275637356 0.961261696 0.286745386 17 0.292371705 0.956304756 0.305730681 18 0.309016994 0.951056516 0.324919696 19 0.325568154 0.945518576 0.344327613 20 0.342020143 0.939692621 0.363970234 21 0.35836795 0.933580426 0.383864035 22 0.374606593 0.927183855 0.404026226 23 0.390731128 0.920504853 0.424474816 24 0.406736643 0.913545458 0.445228685 25 0.422618262 0.906307787 0.466307658 26 0.438371147 0.898794046 0.487732589 27 0.4539905 0.891006524 0.509525449 28 0.469471563 0.882947593 0.531709432 29 0.48480962 0.874619707 0.554309051 30 0.5 0.866025404 0.577350269 31 0.515038075 0.857167301 0.600860619 32 0.529919264 0.848048096 0.624869352 33 0.544639035 0.838670568 0.649407593 34 0.559192903 0.829037573 0.674508517 35 0.573576436 0.819152044 0.700207538 36 0.587785252 0.809016994 0.726542528 37 0.601815023 0.79863551 0.75355405 38 0.615661475 0.788010754 0.781285627

三角函数正弦值表

三角函数正弦值表 0.0{0.0000} 0.1{0.0017} 0.2{0.0035} 0.3{0.0052} 0.4{0.0070} 0.5{0.0087} 0.6{0.0105} 0.7{0.0122} 0.8{0.0140} 0.9{0.0157} 1.0{0.0175} 1.1{0.0192} 1.2{0.0209} 1.3{0.0227} 1.4{0.0244} 1.5{0.0262} 1.6{0.0279} 1.7{0.0297} 1.8{0.0314} 1.9{0.0332} 2.0{0.0349} 2.1{0.0366} 2.2{0.0384} 2.3{0.0401} 2.4{0.0419} 2.5{0.0436} 2.6{0.0454} 2.7{0.0471} 2.8{0.0488} 2.9{0.0506} 3.0{0.0523} 3.1{0.0541} 3.2{0.0558} 3.3{0.0576} 3.4{0.0593} 3.5{0.0610} 3.6{0.0628} 3.7{0.0645} 3.8{0.0663} 3.9{0.0680} 4.0{0.0698} 4.1{0.0715} 4.2{0.0732} 4.3{0.0750} 4.4{0.0767} 4.5{0.0785} 4.6{0.0802} 4.7{0.0819} 4.8{0.0837} 4.9{0.0854} 5.0{0.0872} 5.1{0.0889} 5.2{0.0906} 5.3{0.0924} 5.4{0.0941} 5.5{0.0958} 5.6{0.0976} 5.7{0.0993} 5.8{0.1011} 5.9{0.1028} 6.0{0.1045} 6.1{0.1063} 6.2{0.1080} 6.3{0.1097} 6.4{0.1115} 6.5{0.1132} 6.6{0.1149} 6.7{0.1167} 6.8{0.1184} 6.9{0.1201} 7.0{0.1219} 7.1{0.1236} 7.2{0.1253} 7.3{0.1271} 7.4{0.1288} 7.5{0.1305} 7.6{0.1323} 7.7{0.1340} 7.8{0.1357} 7.9{0.1374} 8.0{0.1392} 8.1{0.1409} 8.2{0.1426} 8.3{0.1444} 8.4{0.1461} 8.5{0.1478} 8.6{0.1495} 8.7{0.1513} 8.8{0.1530} 8.9{0.1547} 9.0{0.1564} 9.1{0.1582} 9.2{0.1599} 9.3{0.1616} 9.4{0.1633} 9.5{0.1650} 9.6{0.1668} 9.7{0.1685} 9.8{0.1702} 9.9{0.1719} 10.0{0.1736} 10.1{0.1754} 10.2{0.1771} 10.3{0.1788} 10.4{0.1805} 10.5{0.1822} 10.6{0.1840} 10.7{0.1857} 10.8{0.1874} 10.9{0.1891} 11.0{0.1908} 11.1{0.1925} 11.2{0.1942} 11.3{0.1959} 11.4{0.1977} 11.5{0.1994} 11.6{0.2011} 11.7{0.2028} 11.8{0.2045} 11.9{0.2062} 12.0{0.2079} 12.1{0.2096} 12.2{0.2113} 12.3{0.2130} 12.4{0.2147} 12.5{0.2164} 12.6{0.2181} 12.7{0.2198} 12.8{0.2215} 12.9{0.2233} 13.0{0.2250} 13.1{0.2267} 13.2{0.2284} 13.3{0.2300} 13.4{0.2317} 13.5{0.2334} 13.6{0.2351} 13.7{0.2368} 13.8{0.2385} 13.9{0.2402} 14.0{0.2419} 14.1{0.2436} 14.2{0.2453} 14.3{0.2470} 14.4{0.2487} 14.5{0.2504} 14.6{0.2521} 14.7{0.2538} 14.8{0.2554} 14.9{0.2571} 15.0{0.2588} 15.1{0.2605} 15.2{0.2622} 15.3{0.2639} 15.4{0.2656} 15.5{0.2672} 15.6{0.2689} 15.7{0.2706} 15.8{0.2723} 15.9{0.2740} 16.0{0.2756} 16.1{0.2773} 16.2{0.2790} 16.3{0.2807} 16.4{0.2823} 16.5{0.2840} 16.6{0.2857} 16.7{0.2874} 16.8{0.2890} 16.9{0.2907} 17.0{0.2924} 17.1{0.2940} 17.2{0.2957} 17.3{0.2974} 17.4{0.2990} 17.5{0.3007} 17.6{0.3024} 17.7{0.3040} 17.8{0.3057} 17.9{0.3074} 18.0{0.3090} 18.1{0.3107} 18.2{0.3123} 18.3{0.3140} 18.4{0.3156} 18.5{0.3173} 18.6{0.3190} 18.7{0.3206} 18.8{0.3223} 18.9{0.3239} 19.0{0.3256} 19.1{0.3272} 19.2{0.3289} 19.3{0.3305} 19.4{0.3322} 19.5{0.3338} 19.6{0.3355} 19.7{0.3371} 19.8{0.3387} 19.9{0.3404}

相关文档
最新文档