流化床反应器的设计概论

流化床反应器的设计概论
流化床反应器的设计概论

焦作大学

毕业论文(设计)题目:流化床反应器的设计概论

姓名:常青雪

年级: 1205062

院系:化工与环境工程学院

专业:化学工程

指导老师:付金峰

完成时间: 2015年5月19日

目录

第一章概述 (2)

1.1 流态化基本概念 (2)

1.1.1 概念 (2)

(4)

(5)

(7)

第二章流化床反应器的结构、参数及其工艺计算 (8)

2.1 理想流体的流化床的流化速度 (8)

(9)

(9)

(11)

2.2 流化床反应器的床型 (13)

3.1 传质概率与传质微分方程 (16)

3.1.1 混合物组成的表示方法 (16)

3.1.2 传质的通量 (17)

3.2质量传递的基本方式 (18)

3.2.1 分子传质 (18)

3.2流化床的传热 (21)

第四章数据处理及结论 (22)

4.1数据处理 (22)

4.1.1 质量衡算 (22)

(23)

(25)

致谢 (29)

参考文献........................................... 错误!未定义书签。

第一章概述

流化床反应器比较适用于强烈放热、催化剂易于失活的有机反应过程。在流化床反应器中工业催化剂除具有良好的活性、产品选择性和稳定性外,还必须满足一定的粒度分布要求并具有良好的硫化性能和耐磨性。流化床反应器的传质、传热效果好,升温降温时温度分布稳定,催化剂可以连续再生,反应器单位产量大,单位投资抵等优点。

1.1 流态化基本概念

1.1.1 概念

一般指固体流态化,又称假液化,简称流化,它是利用流动流体的作用,将固体颗粒群悬浮起来,从而使固体颗粒具有某些流体表观特征,利用这种流体与固体间的接触方式实现生产过程的操作,称为流态化技术,属于粉体工程的研究范畴。

流态化技术是一种强化流体(气体或液体)与固体颗粒间相互作用的操作,如在直立的容器内间歇地或连续地加入颗粒状固体物料,控制流体以一定速度由底部通入,使其压力降等于或略大于单位截面上固体颗粒的重量,固体颗粒即呈悬浮状运动而不致被流体带走。

优点:

(1)传热效能高,而且床内温度易于维持均匀——这对于热效应大而对温度又很敏感的过程是很重要的,因此特别被应用与氧化,裂解、焙烧以及干燥等各种过程。

(2)大量固体粒子可方便地往来输送——这对于催化剂迅速失活而需随时再生的过程(如催化裂化)来说,正是能否实现大规模连续生产的关键。此外,单纯作为粒子的输送手段,在各行业中也得到广泛应用。

(3)由于粒子细,可以消除内扩散阻力,能充分发挥催化剂的效能。

但流化床也有一些缺点,如:

(1)气流状态不均,不少气体以气泡状态经过床层,气—固两相接触不够有效,在要求达到到转化率时,这种状况更为不利。

(2)粒子运动基本上是全混式,因此停留时间不一。在以粒子为加工对象时,可影响产品质量的均一性,且转化率不高;另外粒子的全混也造成气体的部分返混,影响反应速度和造成副反应的增加。

(3)粒子的磨损和带出造成催化剂的损失,并要求设置旋风分离器等粒子回收系统。

因此是否选用流态化,确定怎样的操作条件,都应当是在考虑了上述这些缺点,并结合反应的动力学特征加以斟酌后才能正确决定。

1.1.2流态化现象

流化是一种利用流动流体的作用使固体颗粒群悬浮,从而使固体颗粒床层具有流体的某些表观特征的过程。当流体自容器下部经多孔分布板进入堆放固体颗粒的床层时,由于流体的流动及其与颗粒表面的摩擦,造成了流体通过床层的压降。随颗粒的性质、床层几何尺寸及流体速度不同,压降的大小也不相同,因而形成了不同类型的床层。这种现象称为流态化现象。

①流化床阶段

流体流速较低时,流体从静止颗粒间的空隙流动,固体颗粒之间不发生相对运动,犹如前述流体由上而下通过的固定床,所以这时的床层称为固定床,当流速逐步增大,床层变松,少量颗粒在一定区间内振动或游动,床层高度稍有膨胀,这时的床层为膨胀床。固定床阶段的床层压降随流体的流速增加而增大。

②流化床阶段

流体流速继续增大,床层继续膨胀、增高、颗粒间空隙增大。当流体通过床层的压降大致等于单位面积上床层颗粒的重量,且压降保持不变时,固定颗粒悬浮在向上流动的流体中,床层开始流华,此时流体的流速称为临街流

化流速。流化床具有流体的性质,悬浮的颗粒仍具有一个明显上界面。

③传送阶段

再将流体流速增大到一定值时,流化床的上界面消失,颗粒被流体夹带流出,这时变为颗粒的输送阶段(可实现气力输送或液力输送),相应的流速称为带出速度,其值等于颗粒在流体中的沉降速度。输送阶段的压降也随流速的增加而增大。

1.1.3散式流态化和聚式流态化

1.1.3.1散式流态化

定义:若流化床中固体颗粒均匀地分散在流体中,床层各处空隙率大致相等,床层有稳定的上界面,这种流化称为散式流化。在流体与固体之间密度差别较小的情况下的情况可发生散式流化,这种流态化现象多发生在液、固系统中。散式流化是生产中最为理想的流化状态。

特点:

●颗粒均匀分布在流体中,并在各方向上作随机运动;

●床层表面平稳且清晰;

●床层随流体表观流速的增加而均匀膨胀;

●床内孔隙率均匀增加;

●床层上界面平稳压降稳定波动。

1.1.3.2聚式流态化

聚式流态化出现在流—固密度差较大的体系

床层内出现组成不同的两个相,即含颗粒甚少的不连续气泡相,以及含颗粒较多的连续乳化相。乳化相的气固运动状况和空隙率,与起始流化状态相近。通过床层的流体,部分从乳化相的颗粒间通过,其余以气泡形式通过床层。增加流体流量时,通过乳化相的气量基本不变,而气泡量相应增加。气泡在分布板上生成,在上升过程中长大;小气泡会合并成大气泡;大气泡也会破裂成小气泡。气泡上升至床面时破裂,使床面频繁地波动起伏,同时将一部分固体颗粒抛撒到界面以上,形成一个含固体颗粒较少的稀相区;与此相对应,床面以下的床层称为浓相区。气泡的运动即使床层中的颗粒剧烈运动,也影响到气固间的均匀接触。美国学者R.H.威海姆和中国学者郭慕孙提出用下式计算的弗劳德数作为流态化类型的判据:

流态化

式中umf为起始流化速度;dP为粒径;g为重力加速度。Fr>1时为聚式流态化,Fr<1时为散式流态化。一般情况下,液固系统为散式流态化,气固系统为聚式流态化。

床层中出现气泡是聚式流态化的基本特征:

较小的气泡呈球形,较大的气泡呈帽形;

●气泡的中心是基本上不含颗粒的空穴;

●气泡的外层称为晕,这是渗透着气泡气流的乳化相;

●泡底有尾涡区,称为尾迹。

尾迹的体积约为气泡体积的20%~30%。在气泡上升过程中,尾迹中的颗粒不断脱落,并不断引入新的颗粒。气泡上升到床面时发生破裂,尾迹中的颗粒撒于床面,返回乳化相中。

1.1.4流化态过程中的不正常现象

1.1.3.1奔涌

腾涌是当气泡直径增大到接近于床层直径时的流态化现象。腾涌有两种形式:

①直径接近于床径的气泡沿床上升,颗粒从气泡边缘下降;

②气泡呈柱塞状,一段段床层由气泡推动着上升,当气泡到达床界面时,气泡破裂,床层塌落,颗粒成团或分散下落。

腾涌严重影响流体与颗粒的相互接触,并加速颗粒和设备的磨损。颗粒粗及高径比大的床层,容易发生腾涌。

1.1.3.2沟流

沟流是指床层中出现通道,大量流体经此短路流过,使床层其余部分仍处于固定床状态(死床),严重地影响到流体与固体间的均匀接触。导致沟流的原因有:

●分布板的设计不当;

●颗粒细而密度大,形状不规则;颗粒有粘附性或含湿量较大。

1.1.4流态化技术的进展

流态化技术在工业上的应用,首推1926年在德国工业化的煤气化温克勒炉。1942年在美国建成第一套石油馏分流化床催化裂化反应装置,这是流态化技术应用的巨大成功。随后流态化技术进入许多领域。中国于50年代中期,在南京永利宁厂,成功地应用流化床作为硫铁矿的焙烧炉。目前,流化床在化工、石油、冶金、轻工和环保等部门得到了广泛应用。随着流态化技术的发展,人们对流态化现象的认识逐步深入。从40年代末对流化床总体性状的研究,发展到应用两相流体力学、流变学、统计学和计算机技术等对床层内部性状作深入研究。近来的研究发现,当粒径为20~100μm的颗粒在比它的沉降速度大5~10倍的气速下流态化,并且在旋风分离器和床层间作大量循环时,所形成的流化床称为高速流化床。与一般流化床相比,高速流化床中气固接触大为改善,受到广泛重视。

第二章流化床反应器的结构、参数及其工艺计算

2.1 理想流体的流化床的流化速度

2.1.1临界硫化速度

临界流态化速度Umf时流态化操作的最低流速,也是流态化数学模型的基本参数之一。确定临界流态化速度的最好办法莫过于实验测定。小型流态化床可以用金属或玻璃制造。为了测定数据可靠,此流态化床的分布需保证流体均匀分布,测定时的状态宜尽量模拟实际生产条件。用降低流速法使床层自流态化床缓慢复原至固定床,同时记下相应的气体流速和床层压降,在双对数坐标纸上标绘得到曲线。如果通过固定床区和流态化床区的点各自划线,这两条直线的交点既是临界流态化点,其横坐标的值即临界流态化速度Umf。

2.1.2操作流化速度

关于操作速度Uf的选定,没有一个严格的、统一的标准。经典流态化的速度范围是在临界流态化速度与自由沉降速度之间,即Umf

对于大颗粒,或Ar>106 ,Ui/Umf=7-8

对于小颗粒,或Ar<1, Ui/Umf=64-92

式中:Ar—流体和颗粒的特性常数;

Umf—临界硫化速度,m/s;

Uf—操作速度,m/s;

Ui—自由沉降速度,m/s;

Ar处于中间的物系,Uf/Umf随Ar的变化较大。因此,物系不同,操作速度Uf亦有所不同,即应采用不同的流化数n,一般按下列关系确定:

对于大颗粒,n=2—6;对于小颗粒,n=6—30.

操作速度选取的原则为:

1)对于Ar>1000的物料,n值应取小,一般取n=2—6;对于Ar<1000的物料,n值可取大,一般取年=6—10。

2)当粒度分布较宽时,采用的操作速度既要尽可能保证大粒度的流态化,同时又要使吹出量尽可能减少,适宜用较低的气速。

3)反应速度慢,空间速度小的过程,可用较低的气泡。

4)反应的热效应不大时,可采用较低气速。

5)粒度易自磨碎,用较低的气速比较适合。反之,可用较高的气速。

6)颗粒流化性能好,需要的床层高度比较时,采用较低的气速比较合适。

应当指出,上述讨论是属于一般性的,实际情况要复杂得多,对操作速度的要求往往存在着矛盾,这就要求设计得权衡利弊,合理抉择。

2.1.2流化床反应器结构

流化床一般是由壳体、气体分布装置、内部构件、换热器、气固分离装置和固体颗粒的加卸装置所组成。现对各部分的结构和作用作简要介绍。

2.1.2.1壳体

壳体由顶盖、筒体和底盖组成,筒体多为圆筒形,顶盖多为椭圆形,底盖可为圆锥形。壳体的上部为气固分离空间,它的直径往往比筒体的直径大,内部装有气固分离装置。壳体的中间部分是流化和反应的基本空间,在此空间设置有内部构件和换热装置。壳体最下部是气体分布空间,安置着气体分布装置。

2.1.2.1气体分布装置

气体分布装置的作用是使进入床层的气体均匀分布,以造成良好的起始流化条件,同时要具有一定的强度以支撑床层中的固体颗粒。气体分布装置包括预分布器和分布板两部分。预分布器设置的目的是使进床气体不产生偏流现象,如反应气进口可做成向下弯曲的形式,使气体首先冲向圆锥形的底盖,然后再折回流向分布板。分布板是均匀分布气体的关键部件,制造分布板的基本要求是要使气体均匀分布,阻力小,不漏不堵,制造和操作方便,具有良好的热稳定性和耐磨性等。分布板大致有筛板型,侧流

型(锥帽侧缝型)、密孔型和填料型,目前有的较多的是锥帽侧缝型。

2.1.2.3内部构件

流化床的内部构件的作用是改善床层中气固两相的接触、减少轴向返混,改善流化质量以提高反应效率。其形式主要有挡网、挡板、垂直管束或充填物等。挡网一般用金属丝网;挡板一般用大孔筛板或百叶窗式挡板,目前常用的是百叶窗式挡板;垂直管束挡板是将管束垂直插入床层内,它可起到改善硫化质量的作用,也可起到传热构件的作用。

2.1.2.4换热器

其作用是供给或移走热量,使流化床反应维持在所要求的温度范围内。一般可在床层的外壳设夹套或在床层内设换热器。在流化床层内设置换热器时,除考虑反应器的换热要求以外,还要考虑对床层流化的影响。换热器有管式和箱式两种,常用的管式换热器是垂直管,均匀布置垂直管相当于纵向分割床层,可限制大尺寸的空穴,破坏气泡的成长;箱式换热器是由蛇管组合而成,换热面积大,便于拆装。

2.1.2.5气固分离装置

由于颗粒之间、颗粒与器壁和内部构件间的碰撞与磨损,使固体颗粒被粉化。当气体离开流化床后夹带有不少

的细粒和粉尘,若带出反应器外即造成损失,又会污损后工序或是产品的质量,有时候还会堵塞管路或后续设备。故要求气体在离开反应器之前要分离反应器之前和回收这部分细粒,常用的气固分离装置有两种。

(1)设置沉降分离段。在流化层的上方留有较大的分离空间,并且直径要比流化层处直径大。由于分离段直径较大而使气速降低,因此在床层中被抛散和气流夹带的颗粒可借助重力而降落至流化床。

(2)设置收尘器。在筒体的上部安装收尘器,常用收尘器的结构形式有旋风分离器和过滤器。其中,旋风分离器是流化床中常用的主要设备之一,利用离心力的作用,能将颗粒收集并返回床层,从而可使床层在细颗粒和高气速下操作时,不至于有太多的夹带损失。过滤器常是在若干根多孔管外包商丝网或玻璃布而制成,当含尘气体通过时,粉尘即被过滤掉。过滤管的分离效率高,但阻力大,网孔易堵塞,检修不方便。

2.2 流化床反应器的床型

为了适应生产的发展和不同化学反应的需要,因而有各种不同类型的流化床催化反应器,常用的床型有以下几种。

1.圆筒形流化床

这种床型无内部构件,结构简单,制作方便,设备利用率高,床层内混合均匀,是应用较广的床型之一。它适用于热效应不大,接触时间长,副反应少的反应过程。

2.锥形流化床

床层的横截面积由下而上逐渐增大,二气体的流速则逐渐减小。锥形流华床宜于气体体积增大的反应,适用于固体颗粒大小不一(或粒度分布较宽,或催化剂易破碎)的物料,大颗粒在床层的下部,因气速不会停落至分布板上成死床,小颗粒在流速不大的床层上部,减少细颗粒的带出。

3.设有内部部件的流化床

是生产上广泛应用的一种床型,床层内设有挡板或换热器,或两者兼而有之,既可限制气泡的增大和减少物料返混,又可通过换热来控制一定的温度。这种床型适用于热效应大,又需控制温度在一定范围内,物料返混较轻的反应过程。

4.双体式流化床

它是由反应器和再生器两部分组成。反应器内进行流化床催化床催化反应,再生器内使催化剂恢复活性,这样催化剂不断地在反应器与再生器之间循环运动,故这种床型特别适用于催化剂活性降低快,而再生又较容易的反应过程。在流化过程中,用空气将反应器内结炭的催化剂(失

去活性)经提升管引入再生器,在再生器中烧掉催化剂表面的炭,使催化剂被加热而且恢复活性。再生后的催化剂被油气经另一提升管回送到反应器内进行裂解反应。在反应器和再生器内气固相处于流化状态,在提升管内则是气力输送。在这一流态化过程中催化剂不仅起到了加速反应的作用,还起到了传热介质的作用。

第三章反应器中的传质及传热过程

3.1 传质概率与传质微分方程

3.1.1 混合物组成的表示方法

1)质量浓度ρ:单位体积混合物中某组分的质量。

组分A:ρ=mA/v

混合物:ρ=(ρ1+ρ2+……+ρn)

2)物质的量浓度c:单位体积混合物中某组分的物质的量。

组分A:cA=mA/V

混合物:C=(C1+C2+……+Cn)

3)质量分数a:混合物中某组分的质量与混合物总质量之比

组分A:aA=mA/m

混合物:(a1+a2+……+an)=1

4)摩尔分数x:混合物中某组分的物质的量和混合物中总物质的量之比。

组分A:xA=nA/n

混合物:x1+x2+……+xn=1

5)质量比X:混合物总某组分质量与惰性组分质量的比值。

组分A:X=mA/(m-mA)

质量比与质量分数的关系:xA=aA/(1-aA) 6)摩尔比X:混合物中某组分质量与惰性组分质量的比值。

组分A:xA=nA/(n-nA)

摩尔比与摩尔分数的关系:xA= xA/(1- xA) 3.1.2 传质的通量

传质通量:单位时间通过垂直于传质反向上单位面积的物质量。

传质通量等于传质速度与浓度的乘积。传质通量常用质量通量、摩尔通量表示。

3.1.2.1 以绝对速度表示的传质通量

质量通量:nA=ρAuA nB=ρBuB

混合物的总质量通量:n=nA+nB=ρAuA+ρBuB=ρu

u=(ρAuA+ρBuB)/ρ质量平均速度的定义式

摩尔通量:nA=cAuA nB=cBuB

混合物的总摩尔通量:n=nA+nB=cAuA+cBuB=cu

uM=(cAuA+cBuB)/c

3.1.2.2 以扩散速度表示的传质通量

质量通量:jA=ρA(uA-u)

jB=ρB(uB-u)

摩尔通量:Ja=cA(uA-uM)

Jb=cB(uB-uM)

混合物:j=jA+jB J=Ja+Jb

3.1.2.3以主体流动速度表示的传质通量

质量通量:A组分:ρAu=(ρAuA+ρBuB)ρA/ρ=aA (nA+nB)

B组分:ρBu=aB(nA+nB)

摩尔通量:A组分:cAuM=(cAuA+cBuB)

cA/c=xA(nA+nB)

B组分:cBuM=xB(nA+nB)

3.2质量传递的基本方式

分为分子传质和对流传质

3.2.1 分子传质

3.2.1.1 分子扩散现象

如图所示。A分子向右运动,B分子向左运动。左右两室交换的分子数虽相等,但因左室A浓度高,故在同一时间内A分子进入右室较多而返回左室较少,

其净结果是物质A自左向右传递。同理,物质B自右向左传递。两种物质各自沿其浓度降低的方向传递。

上述扩散过程将一直进行到整个容器中A、B两种物质的浓度完全均匀为止,此时通过任一截面物质A、B的净的

扩散通量为零,但扩散仍在进行,只是左右两方向物质的扩散通量相等,系统处于扩散的动态平衡中。

当流体内部存在某一组分的浓度(或分压)差时,凭借分子的无规则热运动使该组分由高浓处向低浓处迁移的过程,称为分子扩散或分子传质,简称扩散。

3.2.1.2 费克(Fick)定律

描述分子扩散的通量或速率的方程。

jA=-DABdρA/dz; jB=DBAdρB/dz

JA=-DABdcA/dz; JB=DBAdcB/dz

式中:jA――组分A的质量通量,kg/(m2s)

dρA/dz――组分在传质方向上的质量浓度梯度,(kg/m3)/m

DAB――组分A在B中的扩散系数,m2/s

JA――组分A的摩尔通量,kmol/(m2s)

dcA/dz――组分在传质方向上的摩尔浓度梯度,(kmol/m3)/m

3.2.1.3 等分子反向扩散

因两容器中气体总压相同,所以A、B两组分相互扩散的量nA和nB必然相等,故称为等摩尔反方向扩散。即:JA = JB

5万吨每年甲醛固定床反应器课程设计参考

目录 5.0×104t/y甲醛生产用固定床反应器设计 (1) Fixed-bed Reactor Design of 5.0×104t/y Formaldehyde (1) 1. 概述 (2) 1.1银法制甲醛生产工艺 (2) 1.2铁钼催化氧化法 (2) 2. 原料、辅助原料、产品的主要技术规格 (4) 2.1银法和铁钼法生产甲醛的技术经济指标 (4) 2.2原辅料规格及消耗配比 (4) 2.3产品质量标准 (5) 3. 反应工段工艺简介 (6) 4. 反应工段工艺计算 (7) 4.1催化反应过程的物料衡算 (7) 4.1.1 计算用原始数据 (7) 4.1.2 化学反应 (7) 4.2合成甲醛过程的热量衡算 (9) 4.2.1 各物质比热容的计算 (9) 4.2.2 各物质焓值的计算 (10) 5.反应器工艺尺寸计算 (12) 5.1反应器型式的确定 (12) 5.2合成甲醛反应器几何尺寸的确定 (12) 5.2.1 设计依据 (12) 5.2.3 列管根数的确定 (15) 5.2.4 列管式固定床反应器壳体内径的确定 (15) 6. 设计体会 (18) 参考文献 (19)

3.6×104t/y甲醛生产用固定床反应器设计 根据自己的产量确定题目 摘要:本文选用铁钼法,以甲醇、空气和水蒸气为原料,经预热、反应、换热后得甲醛产品。设计规模为3.6万吨/年的工业级甲醛。根据反应特征,采用等温固定床列管式反应器,通过物料衡算,确定了反应器的工艺参数、类型及特征尺寸,容器内径1500 mm、列管根数为1805根、三角形排列、管长6000mm。 关键词:甲醛;甲醇;设计;固定床反应器(根据自己的设计选用的路线确定关键词) Fixed-bed Reactor Design of 5.0×104t/y Formaldehyde Abstract:Industrial grade formaldehyde of 50, 000 ton per year was designed via iron molybdenum process, methanol, air, and water vapor as raw material by preheating, the reaction, and heat transfer. According to the reaction characteristics, isothermal packed-bed reactor tube was chose, and at same time according to material balance, process parameters, type and feature size determine. The reactor diameter is 1, 500 mm, the number of tubes is 1805, equilateral triangle arranged and the length of tube is 6000mm. Key words: Formaldehyde; Methanol; Design; Fixed-bed reactor 请根据自己的设计进行润色修改完善!

流化床反应器的设计定稿版

流化床反应器的设计 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

丙烯腈流化床反应器的设计 学院:化工与药学院 班级: 2012化学工程与工艺1、2班 学生姓名:翟鹏飞肖畅裴一歌 徐嘉星廖鹏飞田仪长 指导教师: 张丽丽 完成日期: 2015年12月10日 指导教师评语: _______________________________________________ ________________________________________________ ________________________________________________ 成绩: 教师签名:

目录 1 设计生产能力及操作条件 (1) 2 操作气速的选择 (1) 3 流化床床径的确定 (1) 3.1 密相段直径的确定 (1) 3.2 稀相段直径的确定 (2) 3.3 扩大段直径的确定 (2) 4 流化床床高 (2) 4.1 流化床的基本结构 (2) 4.2 催化剂用量及床高 (3) 5 床层的压降 (4) 6 选材及筒体的设计 (4) 7 封头的设计 (5) 8 裙座的选取 (5) 9 水压试验及其强度校核 (5) 10 旋风分离器的计算 (5)

11 主反应器设计结果 (6)

丙烯腈流化床反应器的设计 1 设计生产能力及操作条件 反应温度为:440℃ 反应压力为:1atm 丙烯腈氨氧化法催化剂选用:sac-2000 催化剂粒径范围为:44~88μm 催化剂平均粒径为:50μm 催化剂平均密度为:1200kg/m3 催化剂装填密度为:640kg/m3 催化性能:丙烯腈单收>78.0%;乙腈单收<4.0%;氢氰酸单收<7.0% 耐磨强度<4.0wt% 接触时间:10s 流化床反应器设计处理能力:420.5kmol/h 2 操作气速的选择 流化床的操作气速U =0.6m/s,为防止副反应的进行,本流化床反应器设计 密相和稀相两段,现在分别对其直径进行核算。

某小区中水处理工艺设计毕业论文

某小区中水处理工艺设计毕业论文 目录 1 概述 (1) 2设计依据及任务 (1) 2.1设计依据 (1) 2.2设计任务 (1) 3设计工艺 (2) 3.1工艺流程图 (2) 3.2流程说明 (4) 3.3污水中各项指标处理情况表 (4) 4处理构筑物设计说明 (5) 4.1粗格栅 (5) 4.2提升泵房 (8) 4.3细格栅 (8) 4.4平流沉砂池 (11) 4.5初沉池(普通辐流式沉淀池) (14) 4.6SBR反应器 (17) 4.7曝气生物滤池 (21) 4.8微絮凝过滤池 (25) 4.9鼓风机房 (27) 4.10污泥浓缩池(辐流浓缩池) (28) 4.11加药间 (30) 5各构筑物高程 (32) 6中水处理厂工程投资概算 (32) 6.1主要设备清单列表 (32) 6.2土建投资一览表 (34) 6.3工程总投资一览表 (35) 7综合效益分析 (35) 7.1节省城市引水、净水的边际费用 (35) 7.2节水可增加国家财政收入 (35) 7.3消除污染减少的社会损失 (36) 7.4节省城市排水设施的建设和运行费 (36) 8总结 (36) 致谢 (37) 参考文献 (38) 附图:

图1小区中水处理工艺高程图图2小区中水处理工艺平面图图3平流沉砂池平剖面图 图4辐流沉淀池平剖面图 图5SBR反应池平剖面图 图6生物曝气滤池平剖面图

1 概述 建筑小区是具有一种功能或多种功能的相对独立的区域,其排水系统通常不在城市市政管网覆盖围之[2]。根据当地的环保标准,必须设置独立的污水处理设施,这就是我们所指的小区污水处理。小区污水不同于城市污水(常包括部分工业废水),属于生活污水畴。其水质水量特征可概括为:水质水量变化较大,污染物浓度偏低,即比城市污水低,污水可生化性好,处理难度小。 2设计依据及任务 2.1设计依据 (1)一般来说,不同小区对出水的要求差异较大,应根据我国《地面环境质量标准》(GB3838-88)和《污水综合排放标准》(GB8978-96)的有关规定和当地环保部门的要求确定处理程度,以确保出水水质[3]。 (2)污水处理设施的设计和建设必须结合小区的整体规划和建筑特点,即外观设计上要与小区建筑环境相协调,以求美观。 (3)污水处理厂位置应尽可能位于小区下风向,与其它建筑物有一定的距离,以减少对环境的影响。 (4)在污水处理工艺上力求简单实用,以方便管理。 2.2设计任务 2.2.1设计题目 某小区中水处理工艺。 2.2.2设计基础资料 ①设计规模: 根据建设方提供的资料,废水处理工程的处理规模为3000m3/d。

管式反应器课程设计

化学化工学院 化工专业课程设计 设计题目:管式反应器设计 化工系

化工专业课程设计——设计文档质量评分表(100分) 评委签名: 日期:

目录 绪论 .........................................................错误!未定义书签。1设计内容与方法介绍..........................................错误!未定义书签。 反应器设计概述............................................错误!未定义书签。 设计内容..................................................错误!未定义书签。 生产方法介绍..............................................错误!未定义书签。 反应器类型特点............................................错误!未定义书签。 反应器选择及操作条件说明..................................错误!未定义书签。2工艺计算....................................................错误!未定义书签。 主要物性数据..............................................错误!未定义书签。 计算,确定管长,主副反应收率.............................错误!未定义书签。 管数计算..................................................错误!未定义书签。3压降计算公式................................................错误!未定义书签。4催化剂用量计算..............................................错误!未定义书签。5换热面积计算................................................错误!未定义书签。6反应器外径计算..............................................错误!未定义书签。7壁厚计算....................................................错误!未定义书签。 8 筒体封头计算................................................错误!未定义书签。9管板厚度计算................................................错误!未定义书签。10设计结果汇总...............................................错误!未定义书签。11设计小结...................................................错误!未定义书签。

流化床反应器的设计

mf U R = 1000 p d ep ρ μ > 年产3.5 万吨烯烃流化床反应器设计 1 操 作工艺参数 反应温度为:450℃ 反应压力为:0.12MPa(绝压) 操作空速为:1~5h -1 MTO 成型催化剂选用Sr-SAPO-34 催化剂粒径范围为:30~80μm 催化剂平均粒径为60μm 催化剂颗粒密度为1500kg/m 3 催化剂装填密度为 750kg/m 3 催化性能:乙烯收率,67.1wt%;丙烯收率,22.4wt%;总收率,89.5wt%。 水醇质量比为0.2 甲醇在450℃下的粘度根据常压下气体粘度共线图查得为24.3μPa.s 甲醇450℃下的密度根据理想气体状态方程估算为0.54kg/m 3 甲醇处理量:根据催化剂的催化性能总受率为89.5wt%,甲醇的用量=烯烃质量×(32/14)/0.895 烯烃的生产要求是35000t/a ,甲醇的量为89385/a 。 2 操作气速 2.1 最小流化速度计算 当流体流过颗粒床层的阻力等于床层颗粒重量时,床层中的颗粒开始流动起来,此时流体的流速称为起始流化速度,记作U mf 起始流化速度仅与流体和颗粒的物性有关,

mf U R =20p d ep ρμ<其计算公式如下式所示: 对于的小颗粒 ()2 U 1650p p mf d g ρρμ -= (1) 对于的大颗粒 ()1/2 d U 24.5p p mf g ρρρ??-=?? ???? (2) 式中:d p 为颗粒的平均粒径;ρp ,ρ分别为颗粒和气体的密度;μ为气体的粘度假设颗粒的雷诺数R ep <20,将已知数据代入公式(1), 校核雷诺数: 将U mf 带入弗鲁德准数公式作为判断流化形式的依据散式流化, F rmf <0.13;聚式流化,F rmf >0.13。 代入已知数据求得 根据判别式可知流化形式为散式流化。 2.2 颗粒的带出速度Ut 床内流体的速度等于颗粒在流体中的自由沉降速度(即颗粒的重力等于流体对颗粒的曳力)时,颗粒开始从床内带出,此时流体的速度成为颗粒的带出速度U t 其最大气速不能超过床层最小颗粒的带出速度U t ,其计算公式如下式所示: 当U R = 0.4 d p t ep ρ μ <时, 2U 18d g p p t ρρμ??- ???= (3) 当 U 0.4

污水深度处理工程设计毕业论文

污水深度处理工程设计毕业论文 目录 摘要 (1) 第一篇设计说明书 第一章概述 (2) 1.1企业概况 (3) 1.2生产工艺……………………………………………………… 1.3工程简介……………………………………………………… 第二章工程设计依据、原则和围…………………………… 2.1设计依据……………………………………………………… 2.2设计原则……………………………………………………… 2.3设计围……………………………………………………… 第三章工程设计参数……………………………………………… 3.1 废水来源及特点……………………………………………… 3.2 处理规模………………………………………………… 3.3 进水水质…………………………………………………… 3.4 出水水质…………………………………………………… 3.5排放标准…………………………………………………… 第四章工艺流程………………………………………………………

4.1 工艺流程确定原则……………………………………………… 4.2废水性质分析…………………………………………………… 4.3 工艺流程处理方法比较………………………………………… 4.4工艺流程选择确定……………………………………………… 4.5去除率预测………………………………………………… 第五章主要处理构筑物设计及设备型………………………… 5.1 格栅池………………………………………………………… 5.1.1 构筑物…………………………………………………… 5.1.2 主要设备…………………………………………………… 5.2 集水池……………………………………………………… 5.2.1 构筑物…………………………………………………… 5.2.2 主要设备…………………………………………………… 5.3 酸化调节池…………………………………………………… 5.3.1 构筑物……………………………………………… 5.3.2 主要设备……………………………………………… 5.4 UASB反应器……………………………………………………… 5.5 CASS池……………………………………………………… 5.5.1 构筑物……………………………………………………… 5.5.2 主要设备…………………………………………………… 5.6 集泥井…………………………………………………… 5.6.1 构筑物……………………………………………………… 5.6.2主要设备……………………………………………………

固定床流化床设计计算讲义

炔烃液相选择加氢固定床床反应器设计计算 由于固定床反应器具有结构简单、操作方便、 操作弹性大、建设投资低等优点,而广泛应用于各类油品催化加氢裂化及精制、低碳烃类选择加氢精制等领域。将碳四馏分液相加氢新工艺就是采用单台固定床绝热反应器进行催化选择加氢脱除碳四馏分中的乙基乙炔和乙烯基乙炔等。在工业装置中,由于实际所采用的流速足够高,流体与催化剂颗粒间的温差和浓差,除少数强放热反应外,都可忽略。对于固定床反应器来讲最重要的是处理好床层中的传热和催化剂粒子内扩散传质的影响。 一、固定床反应器设计 碳四馏分选择性加氢反应器一般采用绝热固定床反应器。在工程上要确定反应 器的几何尺寸,首先得确定出一定生产能力下所需的催化剂容积,再根据高径比确定反 应器几何尺寸。 反应器的设计主要依据试验结果和技术要求确定的参数,对反应器的大小及高径比、催化剂床层和液体分布板等进行计算和设计。 1. 设计参数 反应器进口温度: 20℃ 进口压力:0.1MPa 进料量(含氢气进料组分) 体积流量:197.8m 3/h 质量流量:3951kg/h 液相体积空速:400h -1 2. 催化剂床层设计计算 正常状态下反应器总进料量为2040m 3/h 液体体积空速400h -1 则催化剂用量3R V V V /S 2040/400 5.1m ===总 催化剂堆密度3850/B kg m ρ= 催化剂质量850 5.14335B B R m V kg kg ρ=?=?= 求取最适宜的反应器直径D: 设不同D 时,其中高径比一般取2-10,设计反应器时,为了尽可能避免径向的影响, 取反应器的长径比5,则算出反应器的直径和高度为:按正常进料量3 2040m h /及液体 空速400h -1,计算反应器的诸参数: 取床层高度L=5m ,则截面积2R S V /L 5.1/51.02m === 床层直径 1.140D m == 因此,圆整可得反应器内径可以选择1200mm

流化床反应器的设计

流化床反应器的设计 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

丙烯腈流化床反应器的设计学院:化工与药学院 班级: 2012化学工程与工艺1、2班 学生姓名:翟鹏飞肖畅裴一歌 徐嘉星廖鹏飞田仪长 指导教师: 张丽丽 完成日期: 2015年12月10日 指导教师评语: _______________________________________________ ________________________________________________ ________________________________________________ 成绩: 教师签名:

目录

丙烯腈流化床反应器的设计 1 设计生产能力及操作条件 反应温度为:440℃ 反应压力为:1atm 丙烯腈氨氧化法催化剂选用:sac-2000 催化剂粒径范围为:44~88μm 催化剂平均粒径为:50μm 催化剂平均密度为:1200kg/m3 催化剂装填密度为:640kg/m3 催化性能:丙烯腈单收>%;乙腈单收<%;氢氰酸单收<% 耐磨强度<% 接触时间:10s 流化床反应器设计处理能力:h 2 操作气速的选择 流化床的操作气速U0=s,为防止副反应的进行,本流化床反应器设计密相和稀相两段,现在分别对其直径进行核算。

3 流化床床径的确定 密相段直径的确定 本流化床反应器设计处理能力为h原料气体,根据公式: V-气体体积流量,m3/s U0-流化床操作气速,m/s 即流化床反应器浓相段的公称直径为DN= 稀相段直径的确定 稀相段直径和密相段直径一样,即D T1= 即流化床反应器稀相段的公称直径为DN= 扩大段直径的确定 在该段反应器中,扩大反应器的体积,可以减缓催化剂结焦,以及抑制副 反 应的生产,可采用经验把此段操作气速取为稀相段操作气速的一半。即: 将流速带入公式中: 即流化床反应器扩大段的公称直径为DN= 4 流化床床高 流化床的基本结构 床高分为三个部分,即反应段,扩大段以及锥形段高度。

SCR反应器设计毕业设计

毕业设计(论文)说明书 题目中石化南阳煤粉炉烟气脱硫脱硝除尘改造工程 ——SCR反应器设计,

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

流化床反应器的设计

流化床反应器的设计 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

丙烯腈流化床反应器的设计学院:化工与药学院 班级: 2012化学工程与工艺1、2班 学生姓名:翟鹏飞肖畅裴一歌 徐嘉星廖鹏飞田仪长 指导教师: 张丽丽 完成日期: 2015年12月10日 指导教师评语: _______________________________________________ ________________________________________________ ________________________________________________ 成绩: 教师签名:

目录

丙烯腈流化床反应器的设计 1 设计生产能力及操作条件 反应温度为:440℃ 反应压力为:1atm 丙烯腈氨氧化法催化剂选用:sac-2000 催化剂粒径范围为:44~88μm 催化剂平均粒径为:50μm 催化剂平均密度为:1200kg/m3 催化剂装填密度为:640kg/m3 催化性能:丙烯腈单收>%;乙腈单收<%;氢氰酸单收<% 耐磨强度<% 接触时间:10s 流化床反应器设计处理能力:h 2 操作气速的选择 流化床的操作气速U0=s,为防止副反应的进行,本流化床反应器设计密相和稀相两段,现在分别对其直径进行核算。 3 流化床床径的确定 密相段直径的确定 本流化床反应器设计处理能力为h原料气体,根据公式: V-气体体积流量,m3/s U0-流化床操作气速,m/s

即流化床反应器浓相段的公称直径为DN= 稀相段直径的确定 稀相段直径和密相段直径一样,即D T1= 即流化床反应器稀相段的公称直径为DN= 扩大段直径的确定 在该段反应器中,扩大反应器的体积,可以减缓催化剂结焦,以及抑制副 反 应的生产,可采用经验把此段操作气速取为稀相段操作气速的一半。即: 将流速带入公式中: 即流化床反应器扩大段的公称直径为DN= 4 流化床床高 流化床的基本结构 床高分为三个部分,即反应段,扩大段以及锥形段高度。 催化剂用量及床高 催化剂的总体积V R (m 3)是决定反应器主要尺寸的基本依据。原料气体处理 量为V=s 。其中静床高度计算式为: 催化剂堆体积为:33.681083.6m t V V r =?=?=接触气体 催化剂质量为:kg V m r 437123.68640=?=?=堆催化剂ρ 故静床高度为: 密相段的高度:m H H mf 4.117.5221=?== 稀相段的高度:m D H T 8.79.32212=?==

机械设计制造及其自动化毕业论文题目

机械设计制造及其自动化毕业论文 基于纳米TiO<,2>碳热还原氮化制备Ti(C,N)的相关应用基础研究 客观性问题——量子力学对机械物质观的挑战 传动机械仓库管理系统设计及开发 机械搅拌UASB反应器的研究 高性能丁苯胶乳的研究与开发 面向CAD设计模型的计算多体动力学虚拟原型 基于XML的机械图形标记语言的研究与开发 集装箱码头机械状态无线监控系统的研究 重型商用车机械自动变速器控制软件开发及试验研究 A港务公司机械操作部培训系统研究 特种橡胶/有机蒙脱土纳米复合材料的结构与性能研究 激光陀螺捷联惯组减振系统设计及其动力学特性研究 机械精度对中心偏测量精度的影响 农业拖拉机液压机械无级变速传动变速规律研究 林分密度对华北落叶松人工林林木生长及林下植物多样性影响的研究——以塞罕坝机械林场为例 并联机器人及其协调操作的运动学和动力学研究 质子交换膜退化机理研究 机动喷射式地下施药机的研制 生物可降解气管内支架的基础研究 领域汉语理解知识库的研究与实现及在机械产品设计中的应用 机械制造过程非核心业务外包战略决策与管理研究 SWFP66X60A型锤式粉碎机锤片尺寸及排列方式优化研究 振荡轮与热沥青混合料相互作用动力学过程的研究 印刷机滚筒疲劳强度分析和寿命估算研究 博山区机械电子工业园区发展战略研究 油田关键往复机械智能诊断方法和技术研究 硅片软磨料砂轮的磨削性能研究

预制桩打桩过程的非线性有限元分析 低振动的滚筒洗衣机驱动系统控制研究 平面柔性机械设计方法 堆垛机位置控制若干问题研究 基于旋量和李群李代数的SCARA工业机器人研究 机械制造企业信息化中订单变更及生产计划技术研究 云杉CTMP纤维漆酶介体体系改性工艺及其机理研究 阻燃镁合金的制备及半固态研究 机械构件动态参数电磁检测技术与系统研究 基于自然进风机械排风的住宅通风换气技术的研究 运煤车防冻液喷洒装置液流及机械系统设计 机械自动化控制系统中RS485-光-CAN通信模块设计与开发 华泰重工基于供应链的项目成本控制研究 机械成孔混凝土灌注桩竖向承载力研究 基于虚拟仪器的机械量测试系统 模拟毫针机械刺激诱导成纤维细胞压力信号生物转化作用与针刺效应的研究 熊猫型保偏光纤机械强度分析的理论和方法研究 轿车车身冲压线机器人物流机械系统及关键设备的研制 市场经济下烟草机械企业技术标准体系研究 环模制粒机高效制粒机理与性能分析 用于大型旋转机械转子故障监测的电感测量仪的研制 成年大鼠心房肌细胞牵张激活钾通道的门控机制 基于流形学习的机械故障诊断理论与方法研究 基于长周期光纤光栅的理论及应用研究 人工机械心脏瓣膜置换术后华法林抗凝治疗的监测 中低端产品用全棉秆化机浆生产工艺及机理研究 基于通用化思想的透平机械热力性能在线评估系统研究 Al-Zn-Mg合金的表面纳米晶化及其性能研究

流化床反应器

流化床反应器 流化床反应器 流化床反应器是一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态,并进行气固相反应过程或液固相反应过程的反应器。在用于气固系统时,又称沸腾床 反应器。流化床反应器在现代工业中的早期应用为20世纪20年代出现的粉煤气化的温克 勒炉(见煤气化炉);但现代流化反应技术的开拓,是以40年代石油催化裂化为代表的。目前,流化床反应器已在化工、石油、冶金、核工业等部门得到广泛应用。 1产品分类 按流化床反应器的应用可分为两类:一类的加工对象主要是固体,如矿石的焙烧,称为 固相加工过程;另一类的加工对象主要是流体,如石油催化裂化、酶反应过程等催化反应 过程,称为流体相加工过程。 2结构形式 流化床反应器的结构有两种形式:①有固体物料连续进料和出料装置,用于固相加工 过程或催化剂迅速失活的流体相加工过程。例如催化裂化过程,催化剂在几分钟内即显著 失活,须用上述装置不断予以分离后进行再生。②无固体物料连续进料和出料装置,用于 固体颗粒性状在相当长时间(如半年或一年)内,不发生明显变化的反应过程。 3产品优缺点 与固定床反应器相比,流化床反应器的优点是:①可以实现固体物料的连续输入和输出;②流体和颗粒的运动使床层具有良好的传热性能,床层内部温度均匀,而且易于控制,特别适用于强放热反应;③便于进行催化剂的连续再生和循环操作,适于催化剂失活速率 高的过程的进行,石油馏分催化流化床裂化的迅速发展就是这一方面的典型例子。然而, 由于流态化技术的固有特性以及流化过程影响因素的多样性,对于反应器来说,流化床又 存在很明显的局限性:①由于固体颗粒和气泡在连续流动过程中的剧烈循环和搅动,无论 气相或固相都存在着相当广的停留时间分布,导致不适当的产品分布,阵低了目的产物的 收率;②反应物以气泡形式通过床层,减少了气-固相之间的接触机会,降低了反应转化率;③由于固体催化剂在流动过程中的剧烈撞击和摩擦,使催化剂加速粉化,加上床层顶 部气泡的爆裂和高速运动、大量细粒催化剂的带出,造成明显的催化剂流失;④床层内的 复杂流体力学、传递现象,使过程处于非定常条件下,难以揭示其统一的规律,也难以脱 离经验放大、经验操作。近年来,细颗粒和高气速的湍流流化床及高速流化床均已有工 业应用。在气速高于颗粒夹带速度的条件下,通过固体的循环以维持床层,由于强化了气 固两相间的接触,特别有利于相际传质阻力居重要地位的情况。但另一方面由于大量的固 体颗粒被气体夹带而出,需要进行分离并再循环返回床层,因此,对气固分离的要求也就 很高了。(见流态化、流态化设备)

固定床反应器的设计计算

周波主编.反应过程与技术.高等教育出版社,2006年6月. 四、固定床反应器的设计计算 固定床反应器的设计方法主要有两种:经验法和数学模型法。 经验法的设计依据主要来自于实验室、中间试验装置或工厂实际生产装置的数据。对中间试验和实验室研究阶段提供的主要工艺参数如温度、压力、转化率、选择性、催化剂空时收率、催化剂负荷和催化剂用量等进行分析,找出其变化规律,从而可预测出工业化生产装置工艺参数和催化剂用量等。 固定床反应器的主要计算任务包括催化剂用量、床层高度和直径、床层压降和传热面积等。(一)催化剂用量的计算 经验法比较简单,常取实验或实际生产中催化剂或床层的重要操作参数作为设计依据直接计算得到。1.空间速度 空间速度Sv指单位时间内通过单位体积催化剂的原料处理量,单位为s-1。它是衡量固定床反应器生产能力的一个重要指标。 (2-36) 式中: 2.停留时间 停留时间r指在规定的反应条件下,气体反应物在反应器内停留的时间,单位为s。 式中:; 停留时间与空间速度的关系为

。(二)反应器床层高度及直径的计算 催化剂的用量确定后,催化剂床层的有效体积也就确定。很明显,床层高度增高,床层截面积将变小,操作气速、流体阻力(动力)将增大;反之,床层高度降低必然引起截面积(直径)增大,对传热不利或易产生短路等现象。因此,床层高度与直径应通过操作流速、压降(即动力消耗)、传热、床层均匀性等影响因素作综合评价来确定。 通常,床层高度或直径的计算是根据固定床反应器某一重要操作参数范围或经验选取,然后校验其他操作参数是否合理,如床层压降不超过总压力的15%。床层高度与直径的计算步骤如下。

制药厂污水处理设计毕业论文

制药厂污水处理设计毕业论文 目录 前言·1第一部分:设计说明书·2 1 项目说明·2 1.1 设计任务及工程概况·2 1.2 设计原始资料·2 1.3 自然概况·3 1.4 设计依据·4 2 设计方案及其工艺流程确定·4 2.1 工艺选择的原则·4 2.2 工艺的确定·4 3 工艺设计说明·6 3.1 水处理单体构筑物设计说明·6 3.2 中水回用深度处理装置的设计说明·8 3.3 污泥处理设计说明·9 3.4 主要附属构筑物设计说明·9 4 污水厂总体布置·9 4.1 污水厂平面布置·9 4.2 污水厂高程布置·10 5 补充说明·10 第二部分:设计计算书·11 1 水处理构筑物设计计算·11 1.1 中格栅设计计算·11 1.2 细格栅设计计算·12 1.3 集水池设计计算·13 1.4 铁炭电解池设计计算·14 1.5 沉淀池设计计算·15 1.6 均质缓冲池设计计算·17 1.7 UASB反应器设计计算·18 1.8 一级水解酸化池设计计算·28 1.9 CASS反应池设计计算·30 1.10 二级水解酸化池设计计算·36 1.11 曝气生物滤池设计计算·37 1.12 清水池设计计算·44 2 中水回用深度处理装置设计计算·44 2.1 高效过滤器设计计算·45 2.2 吸附塔设计计算·45 2.3 反渗透装置设计计算·45

2.4 接触池设计计算·46 3 泥处理构筑物设计计算·46 3.1 贮泥池池设计计算·46 3.2 污泥浓缩池池设计计算·47 3.3 污泥脱水间设计计算·49 4 附属构筑物设计计算·50 4.1 污水提升泵房的设计计算·50 4.2 鼓风机房的设计计算·50 5 高程设计计算·50 5.1 污水高程设计计算·50 5.2 污泥高程设计计算·50 6 工程概算·51 6.1 编制依据·51 6.2 处理厂费用的计算·51 6.3 工程效益分析·53 6.4 节能措施·53 6.5 结论·54 参考文献·55 致谢·56附录一·57 附录二·59 附录三·60

环氧乙烷固定床反应器课程设计

化工与制药学院 课程设计说明书 课题名称:年产?1、5万吨环氧乙烷固定床反应器设计专业班级:2011 级有机与石油化工1 班 学生学号:1106170104 学生姓名:陈正飞 学生成绩: 指导教师:杨昌炎 设计时间:2015、1、6—2015、01、20

武汉工程大学课程设计任务书 系别化工与制药学院班级有机一班?学生陈正飞 一、设计名称 年产吨环氧乙烷固定床反应器设计 二、任务 根据设计条件,通过物料衡算、热量衡算、反应器得选型及尺寸得确定,计算压降、催化剂得用量等,设计出符合设计要求得反应器,并画出设备得装配图。 三、内容 1、概述 2、环氧乙烷物化性质 3、设计方案 4、设计条件 5、工艺计算 6、设计总结 7、参考文献 四、计划进度 1、发题2015年1月6日 2、第一阶段:2015年1月6日~1月12日?工艺计算与设备计算 3、第二阶段:1月13日~1月18日画图、撰写设计报告、答辩 4、第三阶段:1月19-日~1月20日?设计答辩 指导老师?杨昌炎?教研室主任?刘生鹏

目录 摘要?I Abstract?II 第一章概述1? 第二章环氧乙烷物化性质 ------------------------------------------------------------------------------- 3 2、1 物理性质3? 2、2 化学性质------------------------------------------------------------------------------------------ 4 3、1 环氧乙烷生产艺------------------------------------------------------------------------------- 7 3、2 环氧乙烷生产得设计方案?8 3、3、2 工艺参数 ------------------------------------------------------------------------------------ 8 3、3、3环氧乙烷生产工艺流程 ------------------------------------------------------------- 10第四章工艺计算-------------------------------------------------------------------------------------------- 13 4、1设计条件1?3 4、1、1 反应原理1?3 4、1、2原料组成1?4 4、1、3反应器设计条件 --------------------------------------------------------------- 14 4、2物料衡算14? 4、3 热量衡算17? 第五章反应器得工艺参数优化-------------------------------------------------------------------------- 215、1催化剂得用量------------------------------------------------------------------------------ 215、2 确定氧化反应器得基本尺寸 ------------------------------------------------------------- 25 5、3 床层压力降得计算--------------------------------------------------------------------------- 26 5、4 传热面积得核算27? 5、4、1 床层对壁面得给热系数27? 5、4、2总传热系数得计算28? 5、4、3 传热面积得核算?28 5、5 反应器塔径得确定29? 第六章设计参数总结 ------------------------------------------------------------------------------------- 31第七章安全生产 ----------------------------------------------------------------------------------------- 33第八章三废治理与环境保护---------------------------------------------------------------------------- 37第九章资金核算 ------------------------------------------------------------------------------------------- 39第十章设计体会-------------------------------------------------------------------------------------------- 41

第七章 流化床反应器

第七章 流化床反应器 1.所谓流态化就是固体粒子像_______一样进行流动的现象。(流体) 2.对于流化床反应器,当流速达到某一限值,床层刚刚能被托动时,床内粒子就开始流化起来了,这时的流体空线速称为_______。(起始流化速度) 3.对于液—固系统的流化床,流体与粒子的密度相差不大,故起始流化速度一般很小,流速进一步提高时,床层膨胀均匀且波动很小,粒子在床内的分布也比较均匀,故称作_______。(散式流化床) 4.对于气—固系统的流化床反应器,只有细颗粒床,才有明显的膨胀,待气速达到_______后才出现气泡;而对粗颗粒系统,则一旦气速超过起始流化速度后,就出现气泡,这些通称为_______。(起始鼓泡速度、鼓泡床) 5.对于气—固系统的流化床反应器的粗颗粒系统,气速超过起始流化速度后,就出现气泡,气速愈高,气泡的聚并及造成的扰动亦愈剧烈,使床层波动频繁,这种流化床称为_______。(聚式流化床) 6.对于气—固系统的流化床反应器,气泡在上升过程中聚并并增大占据整个床层,将固体粒子一节节向上推动,直到某一位置崩落为止,这种情况叫_______。(节涌) 7.对于流化床反应器,当气速增大到某一定值时,流体对粒子的曳力与粒子的重力相等,则粒子会被气流带出,这一速度称为_______。(带出速度或终端速度) 8.对于流化床反应器,当气速增大到某一定值时,流体对粒子的_______与粒子的_______相等,则粒子会被气流带出,这一速度称为带出速度。(曳力、重力) 9.流化床反应器的mf t u u /的范围大致在10~90之间,粒子愈细,比值_______,即表示从能够流化起来到被带出为止的这一范围就愈广。(愈大) 10.流化床反应器中的操作气速0U 是根据具体情况定的,一般取流化数mf U U 0在_______范围内。(1.5~10) 11.对于气—固相流化床,部分气体是以起始流化速度流经粒子之间的空隙外,多余的气体都以气泡状态通过床层,因此人们把气泡与气泡以外的密相床部分分别称为_______与_______。(泡相、乳相) 12.气—固相反应系统的流化床中的气泡,在其尾部区域,由于压力比近傍稍低,颗粒被卷了进来,形成了局部涡流,这一区域称为_______。(尾涡) 13.气—固相反应系统的流化床中的气泡在上升过程中,当气泡大到其上升速度超过乳相气速时,就有部分气体穿过气泡形成环流,在泡外形成一层所谓的_______。(气泡云) 14.气—固相反应系统的流化床反应器中的气泡,_______和_______总称为气泡晕。(尾涡、气泡云) 15.气—固相反应系统的流化床中,气泡尾涡的体积W V 约为气泡体积b V 的_______。(1/3) 16.气—固相反应系统的流化床,全部气泡所占床层的体积分率b δ可根据流化床高f L 和起 始流化床高mf L 来进行计算,计算式为=b δ_______。(f mf f L L L -) 17.在气—固相反应系统的流化床中设置分布板,其宗旨是使气体_______、_______、_______和_______为宜。(分布均匀、防止积料、结构简单、材料节省) 18.在流化床中设计筛孔分布板时,可根据空床气速0u 定出分布板单位截面的开孔数 or N =_______。(or or u d u 20 4) 19.在流化床中设计筛孔分布板时,通常分布板开孔率应取约_______,以保证一定的压降。(1%) 20.在流化床中为了传热或控制气—固相间的接触,常在床内设置内部构件,以垂直管最为常用,它同时具有_______,_______并甚至_______的作用。(传热、控制气泡聚、减少颗粒

相关文档
最新文档