微带线定向耦合器的设计word文档

微带线定向耦合器的设计word文档
微带线定向耦合器的设计word文档

微带线定向耦合器的设计

一、数学模型

1、耦合度和传输系数

图12所示,是平行耦合微带线定向耦合器的示意图。当①端口信号激励时,③端口为隔离端无输出、而耦合端口②及直通端口④有输出。根据奇、偶模分析方法可知,耦合端口②及直通端口④的输出电压分别为,

θ

θ

θθθ

θθ

θsin )(cos 2sin cos sin )(cos 2sin cos 2020000002

0000002020000200002Z Z j Z Z jZ Z Z Z Z j Z Z jZ Z Z U e e e e +++-+++=

θ

θθ

θsin )(cos 2sin )(cos 22020000000

0020200000

02Z Z j Z Z Z Z Z Z j Z Z Z Z U e e e ++-++=

式中:e Z 0和00Z 分别为耦合微带线的偶模和奇模特性阻抗,e θ和0θ分别是耦合微带线的

偶模和奇模的电长度,0Z 是端口的端接阻抗。

根据(1)式可知定向耦合器的耦合度为,

)dB (|

|lg 202U C ='

而根据(2)式可得传输系数为,

)dB (|

|lg 204U T =

但需要满足以下条件,即:

)

1()

2()

3()

4(

e

O e e e e Z Z Z Z Z Z Z θθθθsin sin sin sin 0000

00000020

++==

如果假设耦合微带线中传输的是TEM 波(而不是准TEM 波),则可忽略奇、偶模相速的差别而认为:θθθ==0e

,此时(1)~(4)式可以改写成以下形式,即:

θ

θθsin cos 1sin 2002j C jC U +-=

θ

θsin cos 11202

04j C C U +--=

式中:

00

000

00Z Z Z Z C e e +-=

2f f ?

=πθ

但需要满足以下条件,即:

00020Z Z Z e =

根据(5)~(9)式可知,此时的耦合度和传输系数分别变为,

)dB ()cos 1sin lg(102

20220θ

θ

C C C -=' )dB ()cos 11lg(102

202

C C T --=

而中心频率的耦合度为,

)

dB ()

lg(20lg 2000

000

00Z Z Z Z C C e e +-==')

5()

6()

7()8()

9()

10()11()

12()

13(

2、耦合区的长度

根据(11)式可知,当耦合区的电长度090=θ

时,耦合度C '最大,耦合器获得最大

的耦合输出。因此图12中“耦合区”的几何长度应取中心工作频率的四分之一波长, 即:

4

gm

l λ=

对于工作在准TEM 波的耦合微带线的奇、偶模的相速不相等,应取:

)(2

1

0g ge gm

λλλ+= 式中:

ee

ge ελλ0

=

0e g ελλ=

分别为“奇模”和“偶模”波导波长,而ee ε和0e ε分别是“奇模”和“偶模”的有效介

电常数。

注意:当工作频率较高时“耦合区”的几何长度将非常短、制作困难,此时可取:

????=-=,3,2,14

)

12(n n l gm

λ

即可以将“耦合区”的几何长度设计成中心工作频率的四分之一波长的奇数倍,具体取多少倍应视具体情况而定。

3、平行耦合微带线定向耦合器结构尺寸的近似计算 (1)TEM 波平行微带线定向耦合器的情况

对于TEM 波情况耦合微带线的“偶模”和“奇模”的特性阻抗可用下式计算,即:

20

/20

/0

000101101C C e Z Z ''-+=

)

14()

15()

16()

17()

18()

19(

e

Z Z Z 02

000=

(2)微带线定向耦合器的近似求解

严格耦合微带线中传输的是准TEM

波,则不可忽略“奇、偶模相速”的差别。因此,此时必须要根据(5)式和(13)式来求出e Z 0和00Z ,但是(5)式和(13)式中的e θ和0θ在耦合器的结构尺寸还没有未确定以前是未知的,这表明耦合微带线定向耦合器的严格设计必然是一个反复试算的过程。不过在许多情况下、特别是在10dB 耦合度和更松耦合的情况下,由(19)式和(20)式给出的e Z 0和00Z 近似值具有足够的精度而值得注意。对于紧密耦合的情况作为一级近似,在要求具有一定值的定向耦合器的耦合度C '和平行耦合微带线定向耦合器的介质材料(即知介质基片的厚度h )的条件下,可以首先根据式(19)和式(20)计算e Z 0和00Z 以确定平行耦合微带线定向耦合器的结构尺寸W 和S (可查类似于表1获得),

然后根据(5)式计算e θ、0θ和特性阻抗0Z 。如果上述计算所获得0Z 值与你所希望获得的0

Z 值(通常为50)出入较大时,则微带线定向耦合器的结构尺寸W 和S 必需稍微做一些变动、以修正计算所获得的0Z 值使之逼近所希望获得的0Z 值。

二、微带线定向耦合器的计算机辅助设计

#include #include void main() {

int Z0=50,H=1,K=4; //端接阻抗Z0,微带导体的数目K

float F0=6.5,C0=3.0,ER=9.6; //中心频率F0,耦合分贝数C0,介质基片的相对介电常数ER

float C,C1,C2,C3,Q,S1,S2,S3,S4,ZOO,ZOE; C=1/pow(10, C0/20); C1=C*C; C2=K-1;

C3=C1+(1-C1)*C2*C2;

)

20(

Q=sqrt(C3); S1=1-C; S2=1+C; S3=1+Q; S4=C+Q;

ZOO=Z0*sqrt(S1/S2)*C2*S3/(S4+C2*S1); ZOE=ZOO*S4/C2/S1; cout<

}

程序往下写:(给定Ω=500Z )

根据下式两式[材料中的(3-1-57)式]

e

e Z Z 00

0ε=

和00

00εZ Z =

求00ε和e 0ε再利用(16)~(18)式求“耦合区”的几何长度l ,即:

????=-=,3,2,14

)

12(n n l gm

λ (18)

(注:素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注!)

常见的光电耦合电路及其应用分析

常见的光电耦合电路及其应用分析 光电耦合电路是设计中常用的将信号进行隔离和转换并再次利用的一种应用,它主要是将输入的电信号通过介质转换成光信号,再根据介质和电路的特性转换成电信号输出,实现“电-光-电”之间的转换。同时将由于电路之间由于电容/电感等元器件或电磁感应等造成的干扰基本上排除。可见光电耦合电路在各位的设计应用中发挥着重要的作用。 光电耦合器是将光电耦合电路进行了集成和封装后得到的ic产品,它把红外光发射器件和红外光接受器件以及信号处理电路等封装在同一管座内的器件。最常用的发光器件就是LED发光二极管了,当输入电信号加到输入端会导致LED发光,光接受器件接受LED的发光的光信号后将其转换成电信号并输出。 光电耦合电路结构独特,可有效抑噪声消除干扰、开关速度快、体积小、可替代变压器隔离等,并可以组成和应用到开光电路、逻辑电路、隔离耦合电路、高压稳压电路、继电器替代电路等,故小编整理和总结了几种常见的光电耦合电路图,并对他们的应用需要和范围进行分析,希望能给大家的学习、掌握和应用这种电路有一定的指导作用。 (1)组成的多谐振荡器电路图 工作流程为接通电源后: A、电容C两端电压不能突变,电阻R数值大于Rl,电源电压Ec主要加在R上,F点电位很低,LED处于截止状态; B、电容充电电压增加导致F点电位逐渐增高,到达一定程度使LED导通发光,光敏三极管导通饱和,输出电压发生跃变使之接近电源电压;(即U0约=Ec) C、电容上存留电荷通过三极管、LED通路快速放电,并对其反向充电到达一定程度后导致LED截止及三极管截止???; D、电容再次通过电阻R和RL放电进行反向充电,LED发光光敏三极管再次饱和,如此循环形成振荡。 作用:多谐振荡器也叫自激多谐振荡器,它的作用是产生交流信号。将直流电变为交流

PC817A光电耦合器

PC817A/B/C--- 电光耦合器 光耦特性与应用 1.概述 光耦合器亦称光电隔离器,简称光耦。光耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。 光耦的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。 十几年来,新型光耦合器不断涌现,满足了各种光控制的要求。其应用范围已扩展到计测仪器,精密仪器,工业用电子仪器,计算机及其外部设备、通信机、信号机和道路情报系统,电力机械等领域。这里侧重介绍该器件的工作特性,驱动和输出电路及部分实际应用电路。 近年来问世的线性光耦合器能够传输连续变化的模拟电压或模拟电流信号,使其应用领域大为拓宽。下面分别介绍光耦合器的工作原理及检测方法。 2. 光耦的性能及类型 用于传递模拟信号的光耦合器的发光器件为二极管、光接收器为光敏三极管。当有电流通过发光二极管时,便形成一个光源,该光源照射到光敏三极管表面上,使光敏三极管产生集电极电流,该电流的大小与光照的强弱,亦即流过二极管的正向电流的大小成正比。由于光耦合器的输入端和输出端之间通过光信号来传输,因而两部分之间在电气上完全隔离,没有电信号的反馈和干扰,故性能稳定,抗干扰能力强。发光管和光敏管之间的耦合电容小(2pf左右)、耐压高(2.5KV左右),故共模抑制比很高。输入和输出间的电隔离度取决于两部分供电电源间的绝缘电阻。此外,因其输入电阻小(约10Ω),对高内阻源的噪声相当于被短接。因此,由光耦合器构成的模拟信号隔离电路具有优良的电气性能。 事实上,光耦合器是一种由光电流控制的电流转移器件,其输出特性与普通双极型晶体管的输出特性相似,因而可以将其作为普通放大器直接构成模拟放大电路,并且输入与输出间可实现电隔离。然而,这类放大电路的工作稳定性较差,

有关EMI设计的通用要求

有关EMI设计的通用要求 1.1电子线路设计准则 电子线路设计者往往只考虑产品的功能,而没有将功能和电磁兼容性综合考虑,因此产品在完成其功能的同时,也产生了大量的功能性骚扰及其它骚扰。而且不能满足敏感度要求。电子线路的电磁兼容性设计应从以下几方面考虑: 1.1.1元件选择 在大多数情况下,电路的基本元件满足电磁特性的程度将决定着功能单元和最后的设备满足电磁兼容性的程度。选择合适的电磁元件的主要准则包括带外特性和电路装配技术。因为是否能实现电磁兼容性往往是由远离基频的元件响应特性来决定的。而在许多情况下,电路装配又决定着带外响应(例如引线长度)和不同电路元件之间互相耦合的程度。具体规则是: ⑴在高频时,和引线型电容器相比,应优先进用引线电感小的穿心电容器或支座电容器来滤波。 ⑵在必须使用引线式电容时,应考虑引线电感对滤波效率的影响。 ⑶铝电解电容器可能发生几微秒的暂时性介质击穿,因而在纹波很大或有瞬变电压的电路里,应该使用固体电容器。 ⑷使用寄生电感和电容量小的电阻器。片状电阻器可用于超高频段。 ⑸大电感寄生电容大,为了提高低频部分的插损,不要使用单节滤波器,而应该使用若干小电感组成的多节滤波器。 ⑹使用磁芯电感要注意饱和特性,特别要注意高电平脉冲会降低磁芯电感的电感量和在滤波器电路中的插损。 ⑺尽量使用屏蔽的继电器并使屏蔽壳体接地。 ⑻选用有效地屏蔽、隔离的输入变压器。 ⑼用于敏感电路的电源变压器应该有静电屏蔽,屏蔽壳体和变压器壳体都应接地。 ⑽设备内部的互连信号线必须使用屏蔽线,以防它们之间的骚扰耦合。 ⑾为使每个屏蔽体都与各自的插针相连,应选用插针足够多的插头座。 1.1.2电设计 每种单元都可以描述为接收一个输入信号、并对输入信号进行加工,然后在输出端输出加工过的信号。必须考虑在输入端可能存在的不希望有的信号,也要考虑经过输入端之外的其它通路进入的无用信号。最好在输入点上处理这些无用信号。 1.1. 2.1电源

光电耦合器的发展及应用(精)

光电耦合器的发展及应用 摘要:半导体光电耦合器现已发展成为一类特殊的半导体隔离器件。它体积小、寿命长、无触点、抗干扰、能隔离,并具有单向信号传输和容量连接等功能。文中介绍了光电耦合器的典型结构和特点以及国内外的发展现状,最后给出了半导体电隔离耦合器件的多种应用电路实例。 关键词:发光器件光接收器件输入输出光电耦合器 随着半导体技术和光 电子学的发展,一种 能有效地隔离噪音和 抑制干扰的新型半导 体器件——光电耦合 器于1966年问世了。 光电耦合器的优点是 体积小、寿命长、无 触点、抗干扰能力 强、能隔离噪音、工 作温度宽,输入输出之间电绝缘,单向传输信号及逻辑电路易连接等。光电耦合器按光接收器件可分为有硅光敏器件(光敏二极管、雪崩型光敏二极管、PIN 光敏二极管、光敏三极管等)、光敏可控硅和光敏集成电路。把不同的发光器件和各种光接收器组合起来,就可构成几百个品种系列的光电耦合器,因而,该器件已成为一类独特的半导体器件。其中光敏二极管加放大器类的光电耦合器随着近年来信息处理的数字化、高速化以及仪器的系统化和网络化的发展,其需求量不断增加。 1 光电耦合器的结构特点 光电耦合器的主要结构是把发光器件和光接收器件组装在一个密闭的管壳内,然后利用发光器件的管脚作输入端,而把光接收器的管脚作为输出端。当在输入端加电信号时,发光器件发光。这样,光接收器件由于光敏效应而在光照后产生光电流并由输出端输出。从而实现了以“光”为媒介的电信号传输,而器件的输入和输出两端在电气上是绝缘的。这样就构成了一种中间通过光传输信号的新型半导体电子器件。光电耦合器的封装形式一般有管形、双列直插式和光导纤维连接三种。图1是三种系列的光电耦合器电路图。 光电耦合的主要特点如下: ●输入和输出端之间绝缘,其绝缘电阻一般都大于10 10Ω,耐压一般可超过1kV,有的甚至可以达到10kV以上。

光电耦合器及其应用

光电耦合器及其应用 [作者:佚名转贴自:未知点击数:933 更新时间:2006-3-31 【字体:A 】 光电耦合器,是近几年发展起来的一种半导体光电器件,由于它具有体积小、 寿命长、抗干扰能力强、工作温度宽及无触点输入与输出在电气上完全隔离等 特点,被广泛地应用在电子技术领域及工业自动控制领域中,它可以代替继电 器、变压器、斩波器等,而用于隔离电路、开关电路、数模转换、逻辑电路、 过流保护、长线传输、高压控制及电平匹配等。 为使读者了解与应用光电耦合器,今介绍几种光电耦合器件及应用电路,供大 家参考与开拓。 1.器件选择 (1)三极管输出型光电耦合器 三极管输出型光电耦合器电路如图46—1中(a)所示,它是由两部分组成的。其中,1、2端为输入端,通常由发光器件构成; 4、5、6端接一只光敏三极管构成输出端,当接收到发射端发出的红外光后,在三极管集电极中便有电流输出。 图46-1 三极管输出型光电耦合器的特点,是具有很高的输入输出绝缘性能,频率响应可达300kHz,开关时间数微秒。 (2)可控硅输出型光耦合器 可控硅输出型光耦合器的电路如图46?中(b)所示。该器件为六脚双列式封装。当1、2端加入输入信号后,发射管发出的红

外光被接在4、5、6脚的光敏可控硅接收,使其导通。它可应用在低电压电子电路控制高压交流回路的开启。 (3)光耦合的可控硅开关驱动器 图46—2中(a)为光敏双向开关器件;图46?中(b)为过零控制电路及光敏双向开关器件组合体。它们的工作原理是:利用输入端红外光控制输出端的光敏双向开关导通,进而触发外接双向可控硅导通,达到控制负载接入交流220V回路的目的。图中(a)为非过零控制,图中(b)为过零控制。本驱动器有非常好的输入与输出绝缘性,可构成固态继电器的控制电路,其输 出的控制功率由可控允许功率决定。 图46-2 (4)达林顿管输出的光检测器 达林顿管输出的光检测器如图46?中(a)所示。它是由两只管子组成复合管,具有很高的电流放大能力,形成下一级或负载的 驱动电流,有较强的光检测灵敏度。 (5)数字电路光耦合器 数字电路光耦合器电路如图46?中(b)所示。光耦合器输出为施密特触发电路形式,其特点是响应速度快、数字逻辑可靠,应 用于计算机接口、数控电源及电动机控制中。 (6)双向开关触发器输出的光检测器 图46—3中的(c)为双向开关触发器输出的光检测器电路。该图为三端器件,内部是光敏双向开关器件,收到红外光线后,双向开关器件导通,触发外接可控硅导通,使负载接入220V回路中。

光电耦合器工作原理

光电耦合器工作原理 光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装 图二光电耦合器之内部结构图三极管接收型 6脚封装

图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之内部结构图可控硅接收型 6脚封装

图五光电耦合器之内部结构图双二极管接收型 6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在

光电耦合器

光电耦合器说明书 广州市亿毫安电子有限公司 技术工程部

光电耦合器简介 概述 光电耦合器是一种把红外光发射器件和红外光接受器件以及信号处理电路等封装在同一管座内的器件。当输入电信号加到输入端发光器件LED上,LED发光,光接受器件接受光信号并转换成电信号,然后将电信号直接输出,或者将电信号放大处理成标准数字电平输出,这样就实现了“电-光-电”的转换及传输,光是传输的媒介,因而输入端与输出端在电气上是绝缘的,也称为电隔离。特点 光电耦合器因为其独特的结构特点,因此在实际使用过程中,具有以下明显的优点: (1)能够有效抑制接地回路的噪声,消除地干扰,使信号现场与主控制端在电气上完全 隔离,避免了主控制系统受到意外损坏。 (2)可以在不同电位和不同阻抗之间传输电信号,且对信号具有放大和整形等功能,使 得实际电路设计大为简化。 (3)开关速度快,高速光电耦合器的响应速度到达ns数量级,极大的拓展了光电耦合器 在数字信号处理中的应用。 (4)体积小,器件多采用双列直插封装,具有单通道、双通道以及多达八通道等多种结 构,使用十分方便。 (5)可替代变压器隔离,不会因触点跳动而产生尖峰噪声,且抗震动和抗冲击能力强。 (6)高线性型光电耦合器除了用于电源监测等,还被用于医用设备,能有效地保护病人 的人生安全。 分类 由于光电耦合器的品种和类型非常多,通常可以按以下方法进行分类: (1)按光路径分,可分为外光路光电耦合器(又称光电断续检测器)和内光路光电耦合

器。外光路光电耦合器又分为透过型和反射型光电耦合器。 (2)按输出形式分,可分为: a、光敏器件输出型,其中包括光敏二极管输出型,光敏三极管输出型,光电池输出型, 光可控硅输出型等。 b、NPN三极管输出型,其中包括交流输入型,直流输入型,互补输出型等。 c、达林顿三极管输出型,其中包括交流输入型,直流输入型。 d、逻辑门电路输出型,其中包括门电路输出型,施密特触发输出型,三态门电路输出型 等。 e、低导通输出型(输出低电平毫伏数量级)。 f、光开关输出型(导通电阻小余10Ω)。 g、功率输出型(IGBT/MOSFET等输出)。 (3)按封装形式分,可分为同轴型,双列直插型,TO封装型,扁平封装型,贴片封装型, 以及光纤传输型等。 (4)按传输信号分,可分为数字型光电耦合器(OC门输出型,图腾柱输出型及三态门电 路输出型等)和线性光电耦合器(可分为低漂移型,高线性型,宽带型,单电源型,双电源型等)。 (5)按速度分,可分为低速光电耦合器(光敏三极管、光电池等输出型)和高速光电耦 合器(光敏二极管带信号处理电路或者光敏集成电路输出型)。 (6)按通道分,可分为单通道,双通道和多通道光电耦合器。 (7)按隔离特性分,可分为普通隔离光电耦合器(一般光学胶灌封低于5000V,空封低于2000V)和高压隔离光电耦合器(可分为10kV,20kV,30kV等)。 (8)按工作电压分,可分为低电源电压型光电耦合器(一般5~15V)和高电源电压型光 电耦合器(一般大于30V)。 应用

光电耦合器件简介

光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。 图一最常用的光电耦合器之部结构图三极管接收型 4脚封装

图二光电耦合器之部结构图三极管接收型 6脚封装 图三光电耦合器之部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之部结构图可控硅接收型 6脚封装 图五光电耦合器之部结构图双二极管接收型 6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因:

(1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在“A/D转换器”的数位信号输出,及由CPU发出的对前向通道的控制信号与类比电路的介面处,从而实现在不同系统间信号通路相联的同时,在电气通路上相互隔离,并在此基础上实现将类比电路和数位电路相互隔离,起到抑制交叉串扰的作用。 图六光电耦合器接线原理 对于线性类比电路通道,要求光电耦合器必须具有能够进行线性变换和传输的特性,或选择对管,采用互补电路以提高线性度,或用V/F变换后再用数位光耦进行隔离。 功率驱动电路中的光电隔离 在微机控制系统中,大量应用的是开关量的控制,这些开关量一般经过微机的I/O输出,而I/O的驱动能力有限,一般不足以驱动一些点磁执行器件,需加接驱动介面电路,为避免微机受到干扰,须采取隔离措施。如可控硅所在的主电路一般是交流强电回路,电压较高,电流较大,不易与微机直接相连,可应用光耦合器将微机控制信号与可控硅触发电路进行隔离。电路实例如图7所示。

光纤光学练习题

一、选择题(下列各题四个备选答案中只有一个正确答案,请将其代号写在题干前面的括号内。每小题分,共30分) 1 有关光纤中传输的模式,下列哪一个命题是错误的? A、对于结构参数给定的光纤,其中传输的模式是唯一确定的; B、TE01、TM01和HE21模具有相同的截止频率; C、一个模式都有自己对应的截止频率; D、HE11模是唯一不能截止的模式。 2 光纤中能够支持的模式由光纤波导本身决定,但光纤中能够激励出的模式与很多因素有关,问光纤中实际能够激励出的模式与下列哪些因素无关: A、入射光源的光功率; B、入射介质的折射率; C、光的入射角; D、入射点的位置。 3 主模式号为14的模群中所含的精确模式总数为: A、14; B、26; C、28; D、7 4 通常将光纤通信划分为三个传输窗口,其主要原因是: A、光纤的弯曲损耗; B、OH—吸收损耗; C、过渡金属离子吸收; D、瑞利散射损耗。 5 线偏振模的模斑为: A、径向亮斑数为,角向亮斑数为,而且中心为暗; B、径向亮斑数为,角向亮斑数为,而且中心为暗; C、径向亮斑数为,角向亮斑数为,而且中心为亮; D、径向亮斑数为,角向亮斑数为,而且中心为亮。 6光纤的损耗是由许多不同因素造成的,其中不可能消除的因素是: A、弯曲损耗; B、OH吸收; C、过度金属离子吸收; D、瑞利散射 7 一光信号在光纤中传播了5000m,功率损耗了15%,该光纤的损耗是 A、km; B、km; C、km; D、km。 8 对于1330nm的单模光纤,当入射光中心波长为1550nm,光谱宽度为10nm时,不可能存在的色散是哪一个? A、模间色散; B、材料色散; C、波导色散; D、偏振模色散。 9 数值孔径NA是光纤的一个重要参数,下列哪些命题是错误的? A、NA越大,光纤的收光能力越大; B、NA越大,光纤的收光角越大; C、NA越大,光源与光纤的耦合效率越高; D、NA越大,多模光纤的模式色散越小。 10 下列光纤的色散,由小到大的排列次序为: A、多模的GIOF、多模SIOF、单模光纤; B、多模SIOF、多模的GIOF、单模光纤; C、单模光纤、多模的GIOF、多模SIOF; D、多模SIOF、单模光纤、多模的GIOF 11 以下那一种是非零色散位移光纤: A、G.655光纤; B、G.653光纤; C、G.652光纤; D、G.651光纤。 12 有关光纤中的色散论述错误的是: A、色散的存在使光纤通信系统的传输速率降低、传输容量变小; B、色散位移的目的是使零色散波长与最低损耗波长一致; C、正色散的光纤使光脉冲展宽,而负色散的光纤使光脉冲压缩,所以,负色散的光纤也成为色散补偿光纤; D、通过适当调整光纤波导的结构参量可使波导色散和材料色散互相抵消。

浙大光电耦合应用电路设计实验报告

实验报告 课程名称:电路与电子技术实验II 指导老师:成绩:实验名称:光电耦合应用电路设计实验类型:电子技术设计性实验 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得 一、实验目的和要求 1.了解光电耦合器件和光电耦合隔离放大器的工作原理。 2.学会常用(典型)光电耦合器件的使用。 3.掌握光电耦合器件常用电路的设计、分析和调试方法。 4.认识并区分名字概念:隔离放大、不共地。 二、实验内容和原理 1.实验内容 (1)光电耦合器件原理(数据手册)。 (2)光电耦合器件的基本特性。 (3)光电耦合器件的开关电路。 (4)光电耦合器件的线性电路。 2.实验原理 (1)隔离放大器 (i)定义:输入、输出之间没有直接电气关联的放大器。 (ii)结构框图: (iii)电路符号: (iv)特点/优势: ①减少噪声,共模抑制能力高。 ②采用两套独立的供电系统,信号在传输过程中没有公共的接地端。 ③有效保护后续电路不受前端高共模电压的损坏。 (v)应用:

①电力电子电路中用于主回路与控制回路的隔离(如电机控制系统中)。 ②测量环境中含有较多干扰和噪声的场合。 ③生物医学中与人体测量有关的设备(如生物电信号,保证人体安全)。 (vi)耦合方式: ①变压器耦合方式: 利用变压器不能直接传输低频(包括缓变或直流)信号这一特性,实现对低频信号的隔离;又称电磁耦合。 ②光电耦合方式: 利用光电耦合器件或光纤传递信号。 (2)光电耦合 (i)常见内部结构:(以PN结为基础) (ii)工作原理: ①输入端输入信号,发光管发光(发光强度与输入电流大小有关)。 ②发光管与光敏器件之间采用透明绝缘材料隔离。 ③光敏器件依据光电效应产生输出电流(大小与受光强度有关)。 (iii)典型应用: V I为低时,发光二极管导通发光,光敏三极管受光导通,V O为低;V I为高时,发光二极管不导通,光敏三极管不导通,V O为高。(数字信号的同相传输功能) (iv)优势: 体积小、成本低、带宽高、能与TTL电路兼容(直接驱动TTL电路或被TTL 电路直接驱动)、接口电路简单、使用方便等,在数字电路的隔离中得到了广泛的应用,并具有广阔的发展前景。 (v)非线性: 光电耦合器件中的发光管、光敏管都是非线性器件,线性区范围很小;一般难以用于模拟(线性)电路应用;光耦:非线性光耦。 (vi)补偿式线性放大电路:

光电耦合器工作原理详细解说

光电耦合器工作原理详细解说光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。 图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装

图二光电耦合器之内部结构图三极管接收型 6脚封装 图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之内部结构图可控硅接收型 6脚封装

图五光电耦合器之内部结构图双二极管接收型 6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在“A/D转换器”的数位信号输出,

光电耦合器原理及使用

光电耦合器,又称光耦,万联芯城销售原装现货光耦元件,品牌囊括TOSHIBA,LITEON,EVERLIGHT,VISHAY等。型号种类繁多,万联芯城为终端生产企业提供电子元器件一站式配套服务,节省了客户的采购成本。点击进入万联芯城 点击进入万联芯城

光耦使用技巧 光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器,其内部结构如图1a所示。 光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在 电气上完全隔离,具有抗干扰性能强的特点。对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。但是,使用光耦隔离需要考虑以下几个问题: ①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题; ②光耦隔离传输数字量时,要考虑光耦的响应速度问题; ③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。 1 光电耦合器非线性的克服 光电耦合器的输入端是发光二极管,因此,它的输入特性可用发 光二极管的伏安特性来表示,如图1b所示;输出端是光敏三极管, 因此光敏三极管的伏安特性就是它的输出特性,如图1c所示。由图 可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精

度较差。 图1 光电耦合器结构及输入、输出特性 解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成,如图2所示。如果T 1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输 特性是完全一致的,即K1(I1)=K2(I1),则放大器的电压增益G=Uo/ U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R2。由此可见,利用T1 和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。 图2 光电耦合线性电路 另一种模拟量传输的解决方法,就是采用VFC(电压频率转换)方式,如图3所示。现场变送器输出模拟量信号(假设电压信号),电压频率转换器将变送器送来的电压信号转换成脉冲序列,通过光耦隔离后送

各种光电耦合器参数

常用参数 正向压降VF:二极管通过的正向电流为规定值时,正负极之间所产生的电压降。 正向电流IF:在被测管两端加一定的正向电压时二极管中流过的电流。 反向电流IR:在被测管两端加规定反向工作电压VR时,二极管中流过的电流。 反向击穿电压VBR::被测管通过的反向电流IR为规定值时,在两极间所产生的电压降。结电容CJ:在规定偏压下,被测管两端的电容值。 反向击穿电压V(BR)CEO:发光二极管开路,集电极电流IC为规定值,集电极与发射集间的电压降。 输出饱和压降VCE(sat):发光二极管工作电流IF和集电极电流IC为规定值时,并保持 IC/IF≤CTRmin时(CTRmin在被测管技术条件中规定)集电极与发射极之间的电压降。 反向截止电流ICEO:发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。 电流传输比CTR:输出管的工作电压为规定值时,输出电流和发光二极管正向电流之比为电流传输比CTR。 脉冲上升时间tr、下降时间tf:光耦合器在规定工作条件下,发光二极管输入规定电流IFP 的脉冲波,输出端管则输出相应的脉冲波,从输出脉冲前沿幅度的10%到90%,所需时间为脉冲上升时间tr。从输出脉冲后沿幅度的90%到10%,所需时间为脉冲下降时间tf。 传输延迟时间tPHL、tPLH:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输入脉冲前沿幅度的50%到输出脉冲电平下降到1.5V时所需时间为传输延迟时间tPHL。从输入脉冲后沿幅度的50%到输出脉冲电平上升到1.5V时所需时间为传输延迟时间tPLH。 入出间隔离电容CIO:光耦合器件输入端和输出端之间的电容值。 入出间隔离电阻RIO:半导体光耦合器输入端和输出端之间的绝缘电阻值。 入出间隔离电压VIO:光耦合器输入端和输出端之间绝缘耐压值。 最大额定值 参数名称 符号 最大额定值 单位 V 反向电压 5 V R I 正向电流 50 mA

数字信号光耦合器应用电路设计

2008年10月第10期电子测试 EL ECTRONIC TEST Oct.2008No.10 数字信号光耦合器应用电路设计 田德恒 (莱芜职业技术学院信息工程系 莱芜 271100) 摘 要:较强的输入信号可直接驱动光耦的发光二极管,较弱的则需放大后才能驱动光耦。在光耦光敏三极管的集电极或发射极直接接负载电阻即可满足较小的负载要求;在光耦光敏三极管的发射极加三极管放大驱动,通过两只光电耦合器构成的推挽式电路以及通过增加光敏三极管基极正反馈,既达到较强的负载能力,提高了功率接口的抗干扰能力,克服了光耦的输出功率不足的缺点,又提高光耦的开关速度,克服了由于光耦自身存在的分布电容,对传输速度造成影响。最后给出了光耦合器在数字电路中应用示例。关键词:数字信号;光电耦合器;输入电路;输出电路中图分类号:TP211 文献标识码:B Applied circuit design of optoelect ronic coupler to t he digital signal Tian Deheng (Dept of Information Engineering ,Lai Wu Vocational College ,Laiwu 271100,China ) Abstract :The light 2emitting diode of optocoupler can be directly drived by stro nger inp ut sig 2nals ,t he weaker t he inp ut signal can be enlarged before driving optocoupler.Connecting direct 2ly load resistance wit h t he collector or emitter of p hotot ransistor to meet smaller load require 2ment s ;drover by t he amplifier triode on t he emitter of p hotot ransistor ,p ush 2p ull circuit s con 2sisting of two optocoupler as well as positive feedback added to base of t he p hotot ransistor not o nly achieve st rong load capacity and enhance t he power of t he interface anti 2jamming capabili 2ty ,but also overcome t he shortcomings of t he scant outp ut power ,increase t he switching speed ,overcome effect on t he speed of t he t ransmission due to t he distribution of capacitance.Finally ,t he application example of t he optocoupler in t he digital circuit is given.K eyw ords :digital signal ;optoelect ronic coupler ;inp ut circuit ;outp ut circuit 0 引 言 光电耦合器是一种把发光元件和光敏元件封 装在同一壳体内,中间通过“电2光2电”转换来传输 电信号的半导体光电子器件。光耦合器的主要优点是单向传输信号,输入端与输出端完全实现了电气隔离,抗干扰能力强,使用寿命长,传输效率高。它广泛用于电平转换、信号隔离、级间隔离、开关电

实验二 平行线耦合器

实验二平行线型方向耦合器 姓名:吕秀品 专业:通信工程 学号:2011117051

一、实验要求 设计一个使用于750MHz的10dB的平行线型耦合器(Zo=50Ω) 二、实验参数 1.选用FR4基板,Er=4.5,h=1.6mm,TAND=0.015,Metal=Cu,1mil,Hu=10mm; 2.耦合线宽度W=2.38mm,间距S=0.31mm及长度P=57.16mm,且50Ω微带线宽度W=2.92mm; 三、实验原理 然这种 ,市场上各种商业化微波仿真软件都比较成熟。本实验主要利用Ansoft软件进行原理图设计、仿真及PCB板的生成。定向耦合器可被看作为四端口网络,其特性可用散射矩阵【s】表示, ,其中各端口的反射系数sii(i=1、2、3、4)的值很小(理想值为零),表示各端口的匹配情况;衰减系数s13=s31=s24=s42的值也很小(理想值为零),表示隔离情况;s14=s41=s23=s32是耦合系数,其值根据需要而设计。定向耦合的主要技术指标是耦合度C(分贝)、定向性D(分贝)和工作频带,其中C=-20lg|s14| (dB)D=20lg|s14/s13| (dB)。 四、实验步骤 1.根据书上给的参数在Ansoft环境下设计原理图; 2.完成相关配置后进行原理图仿真; 3.画PCB原理图; 4.整理PCB原理图;

5.生成3D效果图; 五、实验结果 1.原理图 2.原理仿真图 3.PCB原理图

4.PCB整理图 5.3D效果图 六、实验小结 1.能熟练地使用Ansoft软件; 2.对平行线型方向耦合器的内容有了深刻的掌握;

光电耦合器工作原理详细解说

光电耦合器工作原理详细解说 光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。 图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装

图二光电耦合器之内部结构图三极管接收型 6脚封装 图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之内部结构图可控硅接收型 6脚封装

图五光电耦合器之内部结构图双二极管接收型 6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在“A/D转换器”的数位信号输出,及由

光电耦合器组成的脉冲电路(精)

https://www.360docs.net/doc/1911992052.html, 光电耦合器组成的脉冲电路https://www.360docs.net/doc/1911992052.html, 这里介绍的光电耦合器是由发光二极管和光敏三极管组合起来的器件,发光二极管是把输入边的电信号变换成相同规律变化的光,而光脉敏三极管是把光又重新变换成变化规律相同的电信号,因此,光起着媒介的作用。由于光电耦合器抗干扰能力强,容易完成电平匹配和转移,又不受信号源是否接地的限制。所以应用日益广泛。 一、用光电耦合器组成的多谐振荡电路 用光电耦合器组成的多谐振荡电路见图1。 当图1(a)刚接通电源Ec时,由于UF随C充电而增加,直到UF≈1伏时,发光二极管达到饱和,接着三极管也饱和,输出Uo≈Ec。 三极管饱和后,C放电(由C→F→E1→Er和由C→RF→+Ec→Re两条路径放电),uo减小,二极管在C放电到一定程度后就截止,而三极管把储存电荷全部移走后,接着也截止,uo为零。三极管截止后,电源Ec又对C充电,重复上述过程,得出图示的尖峰输出波形,其周期,为(当RF》Re时): T=C(RF+Re)In2 图1(b)是原理相同的另一种形式电路。 图1、用光电耦合的多谐振荡器 二、用光电耦合器组成的双稳态电路 用光电耦合器组砀双稳态电路如图2所示。 电路接通电源后的稳态是BG截止,输出高电位。在触发正脉冲作用下,ib 增加使BG进入放大状态,形成ib↑→if↑→ib↑↑,结果BG截止,这种电路比普通的触发顺具有更高的抗干扰能力。若设BG的极限电流Ic=6毫安,则R2=取为: R2≥(13-1)/(6×10)=24欧 限流电阻R1可按下式计算 R1≥(E-IbmRce2min)/Ibm 式中:Ibm是晶体管的最大基极电流,Rce2min是光敏三极管集射间的最小电阻值。

高速开关光耦隔离电路设计.(DOC)

设计任务描述 1.1设计题目:高速开关光耦隔离电路 1.2 设计要求 1.2.1设计目的: (1)掌握非线性光耦隔离电路的构成、原理与设计方法; (2)熟悉模拟元件的选择、使用方法。 1.2.2基本要求: (1)输入信号为方波,幅度3V,频率500Hz~40kHz; (2)采用高速光耦,信号延迟时间<100us; (3)输出信号上升及下降时间占有方波周期的5%以下; (4)输出信号幅度0~6V,电流驱动力不低于1mA。 1.2.3发挥部分: (1)信号带宽升至10Mb/s; (2)幅度可调; (3)其他。 2 时间进度安排 顺序阶段日期计划完成内容备注 1 讲解主要设计内容,学生根据任务书做出原始框图打分 2 检查框图及初步原理图完成情况,讲解及纠正错误打分 3 检查逻辑图并指出错误及纠正;讲解接线图绘制及报告书写打分 4 继续修正逻辑图,指导接线图绘制方法,布置答辩打分 5 答辩、写报告打分

一设计任务描述 1.1 设计题目:高速开关光耦隔离电路 1.2 设计要求 1.2.1设计目的: (1)掌握非线性光耦隔离电路的构成、原理与设计方法;(2)熟悉模拟元件的选择、使用方法。 1.2.2基本要求: (1)输入信号为方波,幅度3V,频率500Hz~40kHz;(2)采用高速光耦,信号延迟时间<100us; (3)输出信号上升及下降时间占有方波周期的5%以下;(4)输出信号幅度0~6V,电流驱动力不低于1mA。1.2.3发挥部分: (1)信号带宽升至10Mb/s; (2)幅度可调; (3)其他

二设计思路 输入幅度为3V频率为500Hz的方波信号,首先通过电压跟随器起缓冲、隔离、提高带载能力的作用,然后通过光耦起隔离反相放大的作用,再经过仪用放大器起反相放大的作用,最后经过同相放大器起同相放大的作用并输出幅度为6V频率为500Hz的方波信号。 第一个部分为电压跟随器。电压跟随器在电路中起缓冲、隔离、提高带载能力的作用。 第二部分为光耦隔离电路。光电耦合器是一种将电信号转换成为光信号并进行传导,然后又将光信号转换为电信号进行输出。它属于一种电—光—电转换元件。这就完成了电—光—电的转换,从而起到将输入、输出隔离的作用。由于光耦的输入、输出互相隔离,电信号传输具有单向性等特点,因而具有良好抗干扰能力且工作稳定、传输效率高。光耦在电路中起隔离反向放大的作用。

相关文档
最新文档