直流电机控制

直流电机控制
直流电机控制

(1)直流电机选择

由于本次毕业设计采用的是飞思卡尔公司提供的伺服电机,伺服电机内部的转子是永磁铁,驱动器控制的U/V/W 三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数),而且伺服电机一般是功率小,运行精确,能高速制动,惯量小,适合闭环控制,也就是能检测到实际位置和理论位置的误差,并消除。

(2)直流电机的控制

PWM控制

脉宽调制的全称为:Pulse Width Modulator,简称PWM。由于它的特殊性能,常被用作直流回路中灯具调光或直流电动机调速。这里将要介绍的就是利用脉宽调制(PWM)原理制作的马达控制器。该装置可用于12v或24v直流电路中,两者间只需稍做变动。它主要是通过改变输出方波的占空比,使得负载上的平均接通时间从0-100%变化,以达到调整负载亮度/速度的目的。PWM信号一般可有微控制器产生。如图1

图1 微控制器产生的PWM控制信号

(3)直流电机的反馈与控制

旋转编码器

旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。编码器若以信号原理来分,有增量型编码器,绝对型编码器。增量型编码器(旋转型)由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z

相脉冲以代表零位参考位。由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。绝对型编码器(旋转型)光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。

(4)微控制器的PID调速控制

在工程实际中,应用最为广泛的调节器控制规律为比例、积

分、微分控制,简称PID控制,又称PID调节。它结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统

控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例控制(P)是一种最简单的控制方式。其控制器的

输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

在积分(I)控制中,控制器的输出与输入误差信号的

积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称

有差系统(System with Steady-state Error)。为了消除

稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳

态误差。

在微分(D)控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态性。

图2 PID调速控制方框图

如图2所示为直流电机伺服驱动系统控制方块图,由微控制器作为运动控制元件,输出PWM信号驱动H桥作为PWM功放,编码器采集到的信号传回微控制器,用于PID控制。

(5)控制电路选择

对于电机控制,我们采用的是直接连接的普通的那种两片BTS7960B控制一个电机的电路,通常称作是BTS7960B组成的H桥电机驱动控制电路。将两片BTS7960B的INH连接在一起,IS连接在一起,通过一个锁存器再分别由单片机控制,INH端口是使能端,由单片机控制输出,输出高电平使能BTS7960B,使BTS7960B正常工作;通过两片BTS7960B的IN端口输出来控制电机正传和反转;通过编码器来反馈小车的实际速度,并控制电机使小车达到接近设定速度。

(6)芯片介绍

智能功率芯片BTS7960是应用于电机驱动的大电流半桥高集成芯片,它带有一个P沟道的高边MOSFET、一个N沟道的低边 MOSFET和一个驱动 Ic。集成的驱动Ic具有逻辑电平输入、电流诊断、斜率调节、死区时间产生和过温、过压、欠压、过流及短路保护的功能。BTS7960通态电阻典型值为16mQ,驱动电流可达 43A

(7)芯片引脚结构

(8)引脚定义和功能

(9)硬件电路图的选择(见下图)

直流电动机控制课程设计总结报告

微机原理及应用B 课程设计任务书 2010-2011学年第 2学期第 19 周- 19 周 题目直流电机控制 内容及要求 内容:设计一直流电机控制系统,实现对电机的正转,反转和速度控制 要求:1、用proteus画出原理图; 2、用c语言或汇编编写程序; 3、实现对电机的正转,反转和速度控制 进度安排 1、方案论证 0.5天 2、分析、设计、调试、运行 4天 3、检查、整理、写设计报告、小结 0.5天 学生姓名:5组(组长:25盛夏;组员:23彭亚彬,24阮水盛,26陶志鹏)指导时间2011年6月27日至2011年7月1日指导地点:F 楼 613室任务下达2011年6月 27日任务完成2011 年7 月 1日 考核方式 1.评阅 2.答辩 3. 实际操作□ 4.其它□ 指导教师郭亮系(部)主任 注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。 2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。

目录 摘要 (3) Abstract (4) 一、概述 (5) 二、直流电机硬件电路设计及描述 (6) 2.1直流电机的结构 (6) 2.2直流电机的工作原理 (6) 2.3电磁关系 (7) 2.4直流电机主要技术参数 (7) 2.5直流电机的类型 (8) 2.6直流电机的特点 (8) 三、直流电机硬件电路设计及描述 (8) 3.1 总体方案设计 (8) 3.1.1 设计思路 (8) 3.1.2设计原理图 (10) 3.2设计原理及其实现方法 (10) 3.2.1速度调节的实现 (10) 3.2.2 转向的控制 (11) 四、流程图 (12) 五、.程序代码(C语言) (13) 六、程序代码(汇编语言) (18) 七、收获、体会和建议 (24) 附录 (25) 1. 本设计所需要芯片以及作用 (25) 2.主要参考文献 (26)

根据8086的直流电机的控制

目录 一、直流电机控制的设计思路: (2) 二、直流电机控制的硬件框图: (2) 2.1并行I\O口输入、输出 (2) 2.2输出锁存 (3) 2.3电机驱动模块 (4) 2.4仿真模拟图 (5) 三、软件设计 (6) 3.1程序流程图 (6) 3.2程序代码 (7) 四、项目体会 (9)

一、直流电机控制的设计思路: 1)通过按键改变电动机的启动与停止,当启动后再由按键选择工作方式。 2)通过改变pwm的极性从而改变电机的转向,实现正反转。 3)可实现顺、逆旋转的直接切换,不用按下停止后再启动反向运转。 二、直流电机控制的硬件框图: 通过按钮来控制电机的顺、逆时针转,并且可以实现顺、逆旋转直接切换,无需中间停顿。 2.1并行I\O口输入、输出 采用8255A作为信号的输入与输出接口,使用前需设置芯片的控制

字来确定其工作方式,以及端口的使用。本次采用的控制字为90H,即A组工作在方式0,作为输入接口,连接按钮,B组工作在方式0,作为输出接口连接电机驱动模块。 8255AI\O接口使用 2.2输出锁存 使用常见的74HC373芯片来实现输出锁存,由于按钮具有复位功能,当按钮按下后的一瞬间才产生输入,所以需要输出锁存来保持电机的连续运转,本次采用两块74HC373,一块与8255A的A0、A1口连接作为电机运行信号的控制,另一块与3-8译码器74H138相连,接入8255A的片选信号输入端,选中8255A运行。

74H373接口使用 2.3电机驱动模块 通过对IN1、IN2的状态改变来控制L293D芯片的输出,从而实现电机的顺、逆时针转动 电机驱动模块

直流电机控制系统

直流电机控制系统

摘要:本文利用MCS-51系列单片机产生PWM信号,采用了自己设计的电机驱动电路,实现对直流电机的转速和控制方向的控制,并着重对电机驱动电路的设计进行叙述。主要模块包括单片机控制模块、电机驱动模块、电机接口模块、电源模块、键盘控制模块。 关键词:PWM信号,直流电机,电机驱动,单片机

引言 随着科学技术的迅猛发展,电气设备发展日新月异.尤其以计算机,信息技术为代表的高新技术的发展,使制造技术的内涵和外延发生了革命性的变化,传统的电气设备设计,制造技术不断吸收信息控制,材料,能量及管理等领域的现代成果,综合应用于产品设计,制造,检测,生产管理和售后服务.在生产技术和生产模式等方面,许多新的思想和概念不断涌现,而且,不同科学之间相互渗透,交叉融合,迅速改变着传统电气设备制造业的面貌,从而使得产品频繁的更新换代,这就使得电机成为社会生产和生活中必不可少的工具.随着科学技术的不断发展,人类社会的不断进步,人们对生活产品的需求要不断趋向多样化,这就要求生产设备必须具有良好的动态性能,在不同的时候进行不同的操作,完成不同的任务.为了使系统具有良好的动态性能必须对系统进行设计.特别是大型的钢铁行业和材料生产行业,为达到很高的控制精度,速度的稳定性,调速范围等国产直流电机简介为了满足各行业按不同运行条件对电动机提出的要求,将直流电机制造成不同型号的系列.所谓系列就是指结构形状基本相似,而容量按一定比例递增的一系列电机.它们的电压,转速,机座型号和铁心长度都是一定的等级.现将我国目前生产的几个主要系列直流电机简要的介绍如下。Z2系列为普通用途的中,小型电机.它的容量从400W到200KW,电动机的额定电压有200V和110V两种,额定转速有3000,1500,1000,750及600r/min五个等级.Z2系列普通用

直流电机报告

《电机与电力拖动》 课程设计报告 设计题目:直流电动机制动设计 学生姓名:尤鹏达 专业班级: 14本科电气(1)班 学号: 1412406502029 指导教师:胡林林 课程设计时间: 2017.3.13-2017.3.17

目录 一、设计目的 (1) 二、系统设计要求 (1) 三、正文 (2) (一)、直流电动机的基本结构和工作原理 (2) (二)、反接制动 (3) (三)、回馈制动 (5) (四)、能耗制动 (6) (五)、参数设定和计算 (11) 四、总结 (12) 五、参考文献 (13)

《直流电动机制动设计》课程设计报告 摘要:直流电动机是将直流电能转换为机械能的电动机。因其优良的起动、调速和制动性能而在电力拖动中得到广泛应用。直流电动机按励磁方式分为他励、并励、串励和复励四种。直流电动机有三种制动状态:能耗制动、反接制动(电压反向反接和电动势反向反接)和回馈制动。本文在直流电动机的结构与工作原理的基础上,给出了电机制动的定义,对电机制动的方法进行了简单介绍,并着重分析了他励直流电动机制动的三种制动状态,通过一系列实验重点介绍能耗制动。 关键词:直流电动机;能耗制动;反接制动;回馈制动 一、设计目的 1、通过课程设计,对所学的直流电机的工作原理及其制动方式进行的复习与总结,巩固所学的理论知识。 2、通过本次课程设计提高学生分析问题和解决问题的能力。 3、学会使用网络资源进行相关文献和资料的查找。 4、培养团队合作的精神。 二、系统设计要求 能耗制动是一种制动形式。又分为直流电机的能耗制动和交流电机的能耗制动。他励直流电机的能耗制动:电动机在电动状态运行时若把外施电枢电压U突然降为零,而将电枢串接一个附加电阻R,即将电枢两端从电网断开,并迅速接到一个适当的电阻上。电动机处于发电机运行状态,将转动部分的动能转换成电能消耗在电阻上。随着动能的消耗,转速下降,制动转矩也越来越小,因此这种制动方法在转速还比较高时制动作用比较大,随着转速的下降,制动作用也随着减小。 能耗制动又分两种,分别用于不同场合:迅速停机和下放重物。若电动机拖动的是反抗性恒转矩负载,则通过迅速停机的方法进行能耗制动,若拖动位能性恒转矩负载,则通过下放重物进行能耗制动。 能耗制动是一种常见的制动方法,广泛应用在工业生产中,有优点同时也存在着缺点,在这份课程设计中,我们将会仔细分析能耗制动是怎么实现的,使得我们更好的了解和利用它,同时尽最大努力提出改进。

直流电机转速控制

直流电机转速控制公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

直流电机转速控制 课程设计 姓名: 学号: 班级:

目录 1.直流电机转速控制方案设计 (2) 设计要求 (2) 设计框图 (2) 2.直流电机转速控制硬件设计 (3) 主要器件功能 (3) 硬件原理图 (6) 3.直流电机转速控制软件设计 (7) 4.调试 (8) 硬件测试 (8) 软件调试……………………………………………………………(11

1.直流电机转速控制方案设计 设计要求 通过设计了解如何运用电子技术来实现直流电机转速控制,完成直流电机转向和转速的控制,提高分析电路设计、调试方面问题和解决问题的能力。 1、用按键1控制旋转方向,实现正转和反转。 2、电机的设定转速与电机的实际转速在数码管上显示。 3、旋转速度可实时改变。 设计框图 本课题中测量控制电路组成框图如下所示:

图1 2.直流电机转速控制硬件设计 主要器件功能 1、L298N 是专用驱动集成电路,属于H 桥集成电路,与L293D 的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。此外可能通过使能端的高低电平的变换,从而使电机通断,来控制电机的转速。 图2 板上的EN1 与EN2 为高电平时有效,这里的电平指的是TTL 电平。EN1 为IN1 和IN2 的使能端,EN2为IN3 和IN4 的使能端。POWER 接直流电源,注意正负,电源正端为VCC,电源地为GND。 2、ZLG7290的核心是一块ZLG7290B芯片,它采用I2C接口,能直接驱动8位共阴式数码管,同时可扫描管理多达64只按键,实现人机对话的功能资源十分丰富。除具有自动消除抖动功能外,它还具有段闪烁、段点亮、段熄灭、功

直流电机PWM调速与控制设计报告

综合设计报告 单位:自动化学院 学生姓名: 专业:测控技术与仪器 班级:0820801 学号: 指导老师: 成绩: 设计时间:2011 年12 月 重庆邮电大学自动化学院制

一、题目 直流电机调速与控制系统设计。 二、技术要求 设计直流电机调速与控制系统,要求如下: 1、学习直流电机调速与控制的基本原理; 2、了解直流电机速度脉冲检测原理; 3、利用51单片机和合适的电机驱动芯片设计控制器及速度检测电路; 4、使用C语言编写控制程序,通过实时串口能够完成和上位机的通信; 5、选择合适控制平台,绘制系统的组建结构图,给出完整的设计流程图。 6、要求电机能实现正反转控制; 7、系统具有实时显示电机速度功能; 8、电机的设定速度由电位器输入; 9、电机的速度调节误差应在允许的误差范围内。 三、给定条件 1、《直流电机驱动原理》,《单片机原理及接口技术》等参考资料; 2、电阻、电容等各种分离元件、IC、直流电机、电源等; 3、STC12C5A60S2单片机、LM298以及PC机; 四、设计 1. 确定总体方案; 2. 画出系统结构图; 3. 选择以电机控制芯片和单片机及速度检测电路,设计硬件电路; 4. 设计串口及通信程序,完成和上位机的通信; 5. 画出程序流程图并编写调试代码,完成报告;

直流电机调速与控制 摘要:当今社会,电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法、PID控制等,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,制动,正反转控制和顺序控制。这类控制可通过继电器,光耦、可编程控制器和开关元件来实现。还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。 本电机控制系统基于51内核的单片机设计,采用LM298直流电机驱动器,利用PWM 脉宽调制控制电机,并通过光耦管测速,经单片机I/O口定时采样,最后通过闭环反馈控制系统实现电机转速的精确控制,其中电机的设定速度由电位器经A/D通过输入,系统的状显示与控制由上位机实现。经过设计和调试,本控制系统能实现电机转速较小误差的控制,系统具有上位机显示转速和控制电机开启、停止和正反转等功能。具有一定的实际应用意义。关键字:直流电机、反馈控制、51内核、PWM脉宽调制、LM298 一、系统原理及功能概述 1、系统设计原理 本电机控制系统采用基于51内核的单片机设计,主要用于电机的测速与转速控制,硬件方面设计有可调电源模块,串口电路模块、电机测速模块、速度脉冲信号调理电路模块、直流电机驱动模块等电路;软件方面采用基于C语言的编程语言,能实现系统与上位机的通信,并实时显示电机的转速和控制电机的运行状态,如开启、停止、正反转等。 单片机选用了51升级系列的STC12c5a60s2作为主控制器,该芯片完全兼容之前较低版本的所有51指令,同时它还自带2路PWM控制器、2个定时器、2个串行口支持独立的波特率发生器、3路可编程时钟输出、8路10位AD转换器、一个SPI接口等,

直流电机控制

编号: 单片机 实训 (论文)说明书 题目:直流电机控制 院(系): 专业: 学生姓名: 学号: 指导教师: 2012 年12月27 日

目录 0.前言 (3) 1.用单片机控制直流电机转速的基本理论 (3) 1.1 直流电机调速原理 (3) 1.2 PWM基本原理及设计方案 (4) 2.硬件电路的设计 (5) 2.1 系统分析与硬件设计模块 (5) 2.2 设计该系统所需部分器件 (7) 2.3 直流电机的功能简介 (7) 2.4 直流电机调速控制系统模块 (7) 2.5 显示设计模块 (8) 2.6电机驱动设计模块 3.系统软件的设计 (11) 4.系统调试和结果分析 (13) 4.1仿真图形 (13) 5.结论和总结 (15) 参考文献 (15) 附录........................................... 错误!未定义书签。

摘要:本文介绍了基于单片机的直流电机PWM 调速的基本方法,直流电机调速的相关知识以及PWM 调速的基本原理和实现方法。重点介绍了基于MCS-51单片机的用软件生产PWM 信号以及信号占空比调节的方法。对于直流电机速度控制系统的实现提供了一个有效的途径。 本次实训设计主要任务是以四位共阳数码管显示电机速度,它能间接直观的观察到电机速度的变化,用独立键盘来手动控制电机的转速,其中控制核心部分是单片机,单片机输出微弱的电流信号经过L298N 驱动芯片放大从而使电机满足转速的要求。 关键字:四位共阳数码管;STC89C52单片机;PWM ;直流电机调速 0.前言 随着社会的发展,各种智能化的产品日益走入寻常百姓家。为了实现产品的便携性、低成品以及对电源的限制,小型直流电机应用相当广泛。对直流电机的速度调节,我们可以采用多种办法,本文在给出直流电机调整和PWM 实现方法的基础上,提供一种用单片机软件实现PWM 调速的方法。对基于MCS-51系列单片机实现直流电机调速系统进行研究和设计,能够在不同的按钮作用下分别实现直流电机的停止、加速、减速、正转、反转控制;能够实现基于MCS-51系列单片机的直流电机PWM 的调速设计。 本文研究的是基于MCS-51系列单片机的直流电机PWM 调速系统属于微机控制领域,通过对单片机的学习和研究对自己以后从事硬件产品的开发有一定的实际指导意义。 1.用单片机控制直流电机转速的基本理论 1.1 直流电机调速原理 根据励磁方式不同,直流电机分为自励和他励两种类型。不同励磁方式的直流电机机械特性曲线有所不同。对于直流电机来说,人为机械特性方程式为: 2 N ad a e N e t N U R R n T n n K K K φφ+= -=-? ( 1-1) 式中N U ,N φ—— 额定电枢电压、额定磁通量; e K ,t K --与电机有关的常数;

直流电机控制电路集锦

直流电机控制电路集锦 直流电机的类型 按:直流电机在家用电器、电子仪器设备、电子玩具、录相机及各种自动控制中都有广泛的应用。但对它的使用和控制,很多读者还不熟悉,而且其技术资料亦难于查找。直流电机控制电路集锦,将使读者“得来全不费功夫”! 在现代电子产品中,自动控制系统,电子仪器设备、家用电器、电子玩具等等方面,直流电机都得到了广泛的应用。大家熟悉的录音机、电唱机、录相机、电子计算机等,都不能缺少直流电机。所以直流电机的控制是一门很实用的技术。本文将详细介绍各种直流电机的控制技术。 站长的几句说明:本文内容比较详实完整,但遗憾的是原稿的印刷质量和绘图的确很差,尽管采取了很多措施,有些图仍可能看不太清楚。 直流电机,大体上可分为四类: 第一类为有几相绕组的步进电机。这些步进电机,外加适当的序列脉冲,可使主轴转动一个精密的角度(通常在1.8°--7.5°之间)。只要施加合适的脉冲序列,电机可以按照人们的预定的速度或方向进行连续的转动。 步进电机用微处理器或专用步进电机驱动集成电路,很容易实现控制。例如常用的SAAl027或SAAl024专用步进电机控制电路。 步进电机广泛用于需要角度转动精确计量的地方。例如:机器人手臂的运动,高级字轮的字符选择,计算机驱动器的磁头控制,打印机的字头控制等,都要用到步进电机。 第二类为永磁式换流器直流电机,它的设计很简单,但使用极为广泛。当外加额定直流电压时,转速几乎相等。这类电机用于录音机、录相机、唱机或激光唱机等固定转速的机器或设备中。也用于变速范围很宽的驱动装置,例如:小型电钻、模型火车、电子玩具等。在这些应用中,它借助于电子控制电路的作用,使电机功能大大加强。 第三类是所谓的伺服电机,伺服电机是自动装置中的执行元件,它的最大特点是可控。在有控制信号时,伺服电机就转动,且转速大小正比于控制电压的大小,除去控制信号电压后,伺服电机就立即停止转动。伺服电机应用甚广,几乎所有的自动控制系统中都需要用到。例如测速电机,它的输出正比于电机的速度;或者齿轮盒驱动电位器机构,它的输出正比于电位器移动的位置.当这类电机与适当的功率控制反馈环配合时,它的速度可以与外部振荡器频率精确锁定,或与外部位移控制旋钮进行锁定。 唱机或激光唱机的转盘常用伺服电机。天线转动系统,遥控模型飞机和舰船也都要用到伺服电机。 最后一类为两相低电压交流电机。这类电机通常是直流电源供给一个低频振荡器,然后再用低频低压的交流去驱动电机。这类电机偶尔也用在转盘驱动机构中。 步进电机的基本工作原理

直流电机控制报告

一、设计题目 硬件35——直流电动机控制设计 要求:1)可控制启动、停止;2)根据给定转速和检测的转速,采用PWM 脉宽调制控制转速,产生不同的占空比的脉冲控制电机转速;3)实现由慢到快,再由快到慢的变速控制;4)数码管显示运行状态。扩展功能:实现定时启动,定时停止 二、开发目的 通过本项课程设计,对计算机硬件课程中涉及的芯片结构、控制原理、硬件编程等方面有一定的感性认识和实践操作能力,更好的理解计算机硬件课程中讲述的基本原理和概念。 通过使用proteus的汇编程序,来实现占空比可调的方波发生器。学习并掌握了8086/8088汇编语言编程方法,掌握了8255、8253、ADC0808、74LS154译码器、74LS273锁存器等芯片的基本结构和工作原理,掌握了芯片编程控制的方法。 三、小组成员分工及成果 蒲艺文:编写程序,流程图绘制。 陈兴睿:构思草图,后期调试。 肖钦翔:绘制PROTEUS电路图,资料收集。 成果:绘制完成电路图,灌入程序,调试,完成直流电动机控制设计。 四、设计方案以及论证 原理:8086与两个74273和一个74154组成地址锁存及译码电路。 8255和8253作为译码选择端IO1和IO2,地址分别为0200h和0400h(由译码电路可得到) A1,A2是作为8253的三个计数器和控制器的地址(01对应计数器1,11对应控制器)。 A1,A2也作为8255的A,B,C三组端口和其控制器的地址(00对应A,11对应控制器) 一,选择8255(使能端IO1)控制器,写入控制字10011000b 二,通过C口依次输出00000000b,00001000b,00000000b来启动ADC0808。三,等待ADC0808转换,并通过C口测试EOC端口是否为高电平。 四,eoc为高电平,则通过A口接受转换后的电压数据AL(范围从0-ffh)。五,选择8253(使能端IO2)控制器,写入控制字01010010b 六,选择8253计数器1,写入初始值为电压数据AL。 七,选择8253控制器,写入控制字00010100b。 八,选择8253计数器0,写入初值255,计数器0即开始工作,到0时输出负脉冲,经过反相器变为正脉冲,作为计数器1的GATE门控信号输入,来控制

直流电机控制

直流电机控制电路 永磁式换向器直流电机,是应用很广泛的一种。只要在它上面加适当电压。电机就转动。图9是这种电机的符号和简化等效电路。 工作原理 这种电机由定子、转子、换向器(又称整流子)、电刷等组成,定子用作产生磁场。转于是在定子磁场作用下,得到转矩而旋转起来。换向器及时改变了电流方向,使转子能连续旋转下去。也就是说,直流电压加在电刷上,经换向器加到转子线圈,流过电流而产生磁场,这磁场与定子的固定磁场作用,转子被强迫转动起来。当它转动时,由于磁场的相互作用,也将产生反电动势,它的大小正比于转子的速度,方向和所加的直流电压相反。图9(b)给出了等效电路。Rw代表转子绕组的总电阻,E代表与速度相关的反电动势。 永磁式换流器电机的特点 ·当电机负载固定时,电机转速正比于所加的电源电压。 ·当电机直流电源固定时,电机的工作电流正比于转予负载的大小。 ·加于电机的有效电压,等于外加直流电压减去反电动势。因此当用固定电压驱动电机时,电机的速度趋向于自稳定。因为负载增加时,转子有慢下来的倾向,于是反电动势减少,而使有效电压增加,反过来又将使转子有快起来的倾向,所以总的效果使速度稳定。 ·当转子静止时,反电动势为零,电机电流最大。其最大值等于V/Rw(这儿V是电源电压)。最大·电流出现在刚起动的条件。 ·转子转动的方向,可由电机上所加电压的极性来控制。 ·体积小,重量轻。起动转矩大。 由于具备上述的那些特点,所以在医疗器械、小型机床、电子仪器、计算机、气象探空仪、探矿测井、电动工具、家用电器及电子玩具等各个方面,都得到广泛的应用。 对这种永磁式电机的控制,主要有电机的起停控制、方向控制、可变速度控制和速度的稳定控制。 1、电机的起/停控制 电机的起/停控制,最简单最原始的方法是在电机与电源之间,加一机械开关。或者用继电器的触点控制。大家都比较熟悉,故不举例。 现在比较流行的方法,是用开关晶体管来代替机械开关,无触点、无火花干扰,速度快。电路如图10(a)所示。当输入端为低电平时,开关晶体管Q1截止,电机无电流而处于停止状态。如果输入端为高电平时,Q1饱和导通,电机中有电流,因此电机起动运转。图中二极管D1和D2是保护二极管,防止反电动势损

直流电机原理与控制方法

专业资料 电机简要学习手册 2015-2-3

一、直流电机原理与控制方法 1直流电机简介 直流电机(DM)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能 (直流发电机)的旋转电机。 它是能实现直流电能和机械 能互相转换的电机。当它作电 动机运行时是直流电动机,将 电能转换为机械能;作发电机 运行时是直流发电机,将机械 能转换为电能。 直流电机由转子(电枢)、定子(励磁绕组或者永磁体)、换向器、电刷等部分构成,以其良好的调速性能以至于在矢量控制出现以前基本占据了电机控制领域的整座江山。但随着交流电机控制技术的发展,直流电机的弊端也逐渐显现,在很多领域都逐渐被交流电机所取代。但如今直流电机仍然占据着不可忽视的地位,广泛用于对调速要求较高的生产机械上,如轧钢机、电力牵引、挖掘机械、纺织机械,龙门刨床等等,所以对直流电机的了解和研究仍然意义重大。 2 直流电动机基本结构与工作原理 2.1 直流电机结构

如下图,是直流电机结构图,电枢绕组通过换向器流过直流电流与定子绕组磁场发生作用,产生转矩。定子按照励磁可分为直励,他励,复励。电枢产生的磁场会叠加在定子磁场上使得气隙主磁通产生一个偏角,称为电枢反应,通常加补偿绕组使磁通畸变得以修正。 2.2 直流电机工作原理 如图所示给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷 A 流入,经过线圈abcd,从电刷 B 流出,根据电磁力定律,载流导体ab和 cd收到电磁力的作用, 其方向可由左手定则判 定,两段导体受到的力 形成了一个转矩,使得 转子逆时针转动。如果 转子转到如上图(b)所 示的位置,电刷 A 和换向片2接触,电刷 B 和换向片1接触,直流电流从电刷 A 流入,在线圈中的流动方向是dcba,从电刷 B 流出。 此时载流导体ab和cd受到电磁力的作用方向同样可由左手定

单片机直流电机控制实训报告

单片机直流电机控制实训报告

基于AT89C51单片机的直流电动机控制器设计 实训报告 专业:弹药工程与爆炸技术 班级:弹药二班 学生姓名:杨宁 指导教师:佟慧艳 能源与水利学院

1 实训目的 通过单片机实训使学生能够掌握利用Keil软件编写单片机程序,学会设计完整的单片机应用系统;依托Protues仿真平台进行单片机电子应用系统设计与仿真,使学生掌握单片机应用系统的设计技能;培养学生运用所学知识分析和解决实际问题的能力以及实际动手能力和查阅资料能力。

2 实训任务及要求 2.1 任务描述 一单片机为控制核心设计一款直流电机电机控制系统,可以实现直流电机的加速、正转、反转等控制方式。 2.2 任务要求 1)用AT89C51单片机实现上述任务要求; 2)在Keil IDE中完成应用程序设计与编译; 3)在Proteus环境中完成电路设计、调试与仿真。

3 系统硬件组成与工作原理 3.1单片机的控制器与最小系统 单片机的最小系统是指有单片机和一些基本的外围电路所组成的一个可以使单片机工作的系统,一般来说,它包括单片机、晶振电路和复位电路(如图一)。 图1 最小系统设计截图 (一)控制器部分分析 AT89C51(如图2)是一种带4K字节FLASH存 储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微 处理器,俗称单片机。 AT89C51提供以下标准功能:4k 字节Flash 闪 速存储器,128字节内部RAM,32 个I/O 口线,两 个16位定时/计数器,一个5向量两级中断结构, 一个全双工串行通信口,片内振荡器及时钟电路。 同时,AT89C51可降至0Hz的静态逻辑操作,并支 持两种软件可选的节电工作模式。空闲方式停止CPU 的工作,但允许RAM,定时/计数器,串行通信口及 中断系统继续工作。掉电方式保存RAM中的内容,

基于51单片机控制直流电机的设计

可以实现的功能是: 按下左转键则开始向左转动 按下右转键则向右转动 按下停止键则开始逐渐停止转动 按下调速键一次则会加速一档 按下调速键二次则会加速二档 按下调速键三次则会加速三档 按下调速键四次则会加速四档 按下调速键五次则会回到最初速度重新记档位 设计思路: 直流电机只要能提供一定的直流就可以转动,改变电压极性可以改变转动方向,可以通过给直流电机提供脉冲信号来驱动它,脉冲信号的占空比可以影响到直流电机的平均速度,因此可以通过调整占空比从而能实现调速的目的。直流电机的驱动电路要有过流保护作用,图中的二极管就直到这个作用,另外电机的驱动电流是比较大的所以需要用三极管来放大电流。程序的关键就是如何实现占空比的调整,这个可以通过对51单片机定时器重装初值进行改变,从而改变时间。用51实现PWM信号的输出,相对麻烦点,要是AVR就可以方便地实现PWM信号,由见51单片机的局限性与AVR单片机的优势。 原理图

详细程序: #include #define uchar unsigned char #define uint unsigned int sbit PW1=P2^0 ; sbit PW2=P2^1 ; //控制电机的两个输入 sbit accelerate=P2^2 ; //调速按键 sbit stop=P2^3 ; //停止按键 sbit left=P2^4 ; //左转按键 sbit right=P2^5 ; //右转按键 #define right_turn PW1=0;PW2=1 //顺时针转动 #define left_turn PW1=1;PW2=0 //逆向转动 #define end_turn PW1=1;PW2=1 //停转 uint t0=25000,t1=25000; //初始时占空比为50% uint a=25000; // 设置定时器装载初值 25ms 设定频率为20Hz uchar flag=1; //此标志用于选择不同的装载初值 uchar dflag; //左右转标志 uchar count; //用来标志速度档位 void keyscan(); //键盘扫描 void delay(uchar z); void time_init(); //定时器的初始化 void adjust_speed(); //通过调整占空比来调整速度 void main()

直流电机原理与控制方法

电机简要学习手册 2015-2-3

一、直流电机原理与控制方法 1直流电机简介 直流电机(DM)是指能将 直流电能转换成机械能(直流 电动机)或将机械能转换成直 流电能(直流发电机)的旋转 电机。它是能实现直流电能和机械能互相转换的电机。当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。 直流电机由转子(电枢)、定子(励磁绕组或者永磁体)、换向器、电刷等部分构成,以其良好的调速性能以至于在矢量控制出现以前基本占据了电机控制领域的整座江山。但随着交流电机控制技术的发展,直流电机的弊端也逐渐显现,在很多领域都逐渐被交流电机所取代。但如今直流电机仍然占据着不可忽视的地位,广泛用于对调速要求较高的生产机械上,如轧钢机、电力牵引、挖掘机械、纺织机械,龙门刨床等等,所以对直流电机的了解和研究仍然意义重大。

2 直流电动机基本结构与工作原理 2.1 直流电机结构 如下图,是直流电机结构图,电枢绕组通过换向器流过直流电流与定子绕组磁场发生作用,产生转矩。定子按照励磁可分为直励,他励,复励。电枢产生的磁场会叠加在定子磁场上使得气隙主磁通产生一个偏角,称为电枢反应,通常加补偿绕组使磁通畸变得以修正。 2.2 直流电机工作原理 如图所示给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷 A 流入,经过线圈abcd,从电刷 B 流出,根据电磁力定律,载流导体ab和 cd收到电磁力的作用, 其方向可由左手定则判 定,两段导体受到的力 形成了一个转矩,使得 转子逆时针转动。如果 转子转到如上图(b)所

示的位置,电刷 A 和换向片2接触,电刷 B 和换向片1接触,直流电流从电刷 A 流入,在线圈中的流动方向是dcba,从电刷 B 流出。 此时载流导体ab和cd受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。这就是直流电动机的工作原理。外加的电源是直流的,但由于电刷和换向片的作用,在线圈中流过的电流是交流的,其产生的转矩的方向却是不变的。 发电机的原理则是电机的逆过程:原动机提供转矩,利用法拉第电磁感应产生直流电流。 如下图,比较清晰的说明了直流电动机的原理。 3直流电机重要特性 如下图,更加清晰的揭示了直流电机电流电压与转速转矩之间的关系。 我们可以得到直流电机的四个基本方程:

基于单片机的直流电机控制设计性实验报告

设计题目:直流电机控制电路设计 一设计目得 1掌握单片机用PWM实现直流电机调整得基本方法,掌握直流电机得驱动原理。 2学习模拟控制直流电机正转、反转、加速、减速得实现方法. 二设计要求 用已学得知识配合51单片机设计一个可以正转、反转或变速运动得直流电机控制电路,并用示波器观察其模拟变化状况。 三设计思路及原理 利用单片机对PWM信号得软件实现方法.MCS一51系列典型产品8051具有两个定时计数器。因为PWM信号软件实现得核心就是单片机内部得定时器,所以通过控制定时计数器初值,从而可以实现从8051得任意输出口输出不同占空比得脉冲波形。从而实现对直流电动机得转速控制。 .AT89C51得P1、0—P1、2控制直流电机得快、慢、转向,低电平有效.P3、0为PWM波输出,P3、1为转向控制输出,P3、2为蜂鸣器。PWM控制DC电机转速,晶振为12M,利用定时器控制产生占空比可变得PWM波,按K1键,PWM值增加,则占空比增加,电机转快,按K2键,PWM值减少,则占空比减小,电机转慢,当PWM值增加到最大值255或者最小值1时,蜂鸣器将报警 四实验器材 DVCC试验箱导线若电源等器件

PROTUES仿真软件KRIL软件 五实验流程与程序 #include 〈 reg51、h > sbitK1 =P1^0;增加键 sbit K2 =P1^1 ; 减少键 sbit K3 =P1^2;转向选择键 sbit PWMUOT =P3^0; PWM波输出?? sbitturn_around =P3^1 ;?转向控制输出 sbit BEEP =P3^2 ;蜂鸣器 unsigned int PWM; void Beep(void); void delay(unsigned int n); void main(void) { TMOD=0x11;//设置T0、T1为方式1,(16位定时器) TH0=0 ; 65536us延时常数{t=(65536—TH)/fose/12} ?TL0=0; TH1=PWM; //脉宽调节,高8位 ? TL1=0; EA=1;? //开总中断 ET0=1; //开T0中断? ET1=1;??//开T1中断

直流电机的控制原理

直流电机的控制原理 直流无刷电机的控制原理:要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,inverter中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。当电机转子转动到hall-sensor感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。 基本上功率晶体管的开法可举例如下:AH、BL一组→AH、CL一组→BH、CL一组→BH、AL一组 →CH、AL一组→CH、BL一组,但绝不能开成AH、AL或BH、BL或CH、CL。此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则当上臂(或下臂)尚未完全关闭,下臂(或上臂)就已开启,结果就造成上、下臂短路而使功率晶体管烧毁。 当电机转动起来,控制部会再根据驱动器设定的速度

及加/减速率所组成的命令(Command)与hall-sensor信号变化的速度加以比对(或由软件运算)再来决定由下一组(AH、BL或AH、CL或BH、CL或……)开关导通,以及导通时间长短。速度不够则开长,速度过头则减短,此部份工作就由PWM 来完成。PWM是决定电机转速快或慢的方式,如何产生这样的PWM才是要达到较精准速度控制的核心。

单片机控制直流电机课程设计报告

课程设计报告书 姓名: 学号: 班级: 课程名称:计算机控制与接口技术

设计题目:单片机控制直流电机 1.设计思路 直流电机调速性能好,可靠性高,机械特性强,在自动控制中的应用极为广泛。直流电机的调速系统多种多样,但系统复杂,控制精度和成品价格难以兼顾。本文使用价格低廉、应用广泛的MCS - 51 系列单片机为控制芯片,以PI 调节控制算法为基础,完成对直流电机转速的调节,达到了控制性能好,成本低的目的。本文重点阐述了该系统的基本工作原理、所采用的相关技术等,进而交代了电机转速测量控制的实现方法。 硬件设计总体思路 根据本次课程设计的具体要求为,使用LCD显示出直流电机的转速,我们由题目可以分析出,这个题目实际是由多个部分组成的。 既第一个部分应该为,用单片机控制直流电机的转速,并且系统应提供直流电机驱动、测速电路,使用单片机驱动直流电机,测量直流电机的转速,控制直流电机稳定运行在一个围。 其二,可以分析出第二个部分应该为,使用LCD显示系统显示出直流电机的具体转速,并且单片机控制的电机实际转速与液晶显示器显示出的转速应该时时对应。 其三,这个硬件系统的隐含意义是,本系统应该具有数模和模数转换的部分,因为这个模数转换部分在这个系统中是不可缺少的,单片机控制的直流电机转速,在实际中无论是对电机控制的信号,还是电机输出的信号都应该是数字信号,因为只有数字信号才能被单片机所识别,而最重要的是,单片机控制的直流电机输出的转速的信号只有是数字信号时才能被液晶显示LCD模块所识别,并最终准确的显示出直流电机的转速。 设计原理方框图如图2-2 所示, 以AT89C51单片机为控制核心,包括测速电路、PWM波

直流电机PID控制与仿真.

长春大学 课程设计说明书 题目名称直流电机速度PID控制与仿真 院(系)电子信息工程学院 专业(班级)自动化13403 学生姓名张华挺 指导教师曹福成 起止日期2016.10.24——2016.11.04

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 直流电机速度PID控制与仿真 摘要:在本次课程设计中重点研究直流电机的工作原理以及直流电机的各种调速方法。在调速控制中,我们包含两个大的部分,一个是直流电机的开环控制,另一个是直流电机的闭环控制,在直流电机的闭环控制中,又分别介绍转速闭环控制和PID闭环控制,并且对直流电机的每个模型进行建模并仿真,观察其动态性能,分析研究直流电机的各个控制的优缺点。 关键词:直流电动机;转速控制;PID控制;Matlab仿真

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ DC Motor Speed PID Control and Simulation Abstract: In this curriculum design, the work principle of DC motor and DC motor speed control methods are studied. In speed control, we include two parts, one is the open loop control of DC motor, the other is a closed loop DC motor control in DC motor closed-loop control, and introduces the speed closed-loop control and PID control, and each model of the DC motor for modeling and simulation to observe the dynamic performance analysis of DC motor control and the advantages and disadvantages of each. Keywords: DC motor; speed control; PID control; Matlab simulation

直流电机控制设计

河南科技大学 课程设计说明书 课程名称现代电子系统课程设计题目直流电机控制设计 学院电子信息工程学院 班级电子信息科学与技术062班学生姓名**** 指导教师齐晶晶,张雷鸣 日期___2010年1月10号____

摘要 使用直流电源的电机叫做直流电机。只要把直流电机的端子接到直流电源上就可以简单使其运转。直流电机是一种具有优良控制特性的电机。因此,在角位移控制和速度控制的伺服系统中有着广泛的应用。为了调整直流电机的转速和输出转矩,可以采用改变电枢直流电压的方法来实现,主要的控制方法有线性控制方式和PWM(脉宽调制)控制方式。一般小功率电机平滑转速控制常采用线性控制方式,而大功率电机高效控制时,则常使用PWM控制方式。本文介绍的是利用FPGA实现PWM脉宽调制信号的产生和相应的用数字电路的方法实现的换档、正反向控制等。直流电机的转动速度调节则归结于对驱动脉宽的占空比的调节上,通过调节占空比而改变单位时间内直流电机的通电时间长短,即改变了电机的转速。转动方向可用功率放大电路和H 桥组成的正反向功率驱动电路来实现 直流电机控制电路主要由五部分组成: ●PWM脉宽调制信号产生电路:主要功能是产生pwm信号,并控制转速。 ●FPGA中正/反转方向控制:用2选1数据选择器控制电机的pwm信号的输入端,从而实现正反转。 ●由功率放大电路和H桥组成的正反转功率驱动电路: ●分频和去抖电路模块:通过两个维持阻塞D触发器实现消抖。 ●测量转速模块:通过红外线测量电机每转一周产生的脉冲实现转速测量。 关键词:速度调节、旋转方向控制、去抖动电路、数字显示转速、PWM、占空比、FPGA

直流电机三种控制方法示例及比较

直流电机的三种控制方法讨论 比较了三种跟踪定位点命令及减小负载扰动敏感性的技术。 ?前馈控制 ?积分反馈控制 ?LQR最优二次型算法控制 一、问题描述 在电枢控制的直流电动机中,外加电压Va控制电机转轴的转角速度。如图1所示 图1 带负载电机工作示意图 图1中显示了两种减小角速度对负载变化(改变电机负载的反向转矩)敏感性的方法。 图2所示的是一个简单的直流电机模型,转矩Td作为电机的负载扰动。在该扰动下,必须使转速的变化减到最小。 图2 带负载电机结构模型

模型参数入下所示: R = 2.0; % Ohms L = 0.5; % Henrys Km = 0.1; Kb = 0.1; % torque and back emf constants转矩和反电势常数 Kf = 0.2; % Nms 粘滞摩擦系数 J = 0.02; % kg.m^2/s^2 转动惯量 首先构造一个直流电机的状态空间模型,有两个输入(Va,Td)和一个输出(w): h1 = tf(Km,[L R]); % armature电枢传递函数 h2 = tf(1,[J Kf]); % eqn of motion 转动负载的传递函数 dcm = ss(h2) * [h1 , 1]; % w = h2 * (h1*Va + Td) 角速度函数 dcm = feedback(dcm,Kb,1,1); % close back emf loop 现在绘制阶跃输入电压为Va的角速度响应曲线,如图3所示。右键点击图形,选择Characteristics 可查看具体响应参数,上升时间,调节时间,峰值时间等。 stepplot(dcm(1)); 图3 带负载电机在输入单位阶跃电压信号Va时的响应曲线

相关文档
最新文档