基于MATLAB软件的自动泊车控制系统设计与仿真

基于MATLAB软件的自动泊车控制系统设计与仿真
基于MATLAB软件的自动泊车控制系统设计与仿真

基于MATLAB软件的自动泊车控制系统设计与仿真

摘要

现代社会汽车的使用已经相当广泛。而每一个司机都会面对倒车问题,有经验的司机能够快速、准确的将汽车停到指定的位置。然而多数的司机尤其是一些刚刚考到驾照的新手们尤其对停车的问题十分烦恼。在准确性和速度之间往往很难同时满足,设想如果能有个智能装置,根据当前的车速和位置能够自动将车停到合适位置,且又同时满足快速性和准确性。本课题正是基于以上的设想,结合我们最近学习的模糊控制的相关知识以MATLAB为软件平台,搭建一个基于MATLAB的自动倒车模糊控制系统。

以往的各种传统控制方法均是建立在被控对象精确数学模型基础上的,然而,随着系统复杂程度的提高,将难以建立系统的精确数学模型。在工程实践中,人们发现,一个复杂的控制系统可由一个操作人员凭着丰富的实践经验得到满意的控制效果。这说明,如果通过模拟人脑的思维方法设计控制器,可实现复杂系统的控制,由此产生了模糊控制。模糊控制是建立在人工经验基础之上的。对于一个熟练的操作人员,他往往凭借丰富的实践经验,采取适当的对策来巧妙地控制一个复杂过程。若能将这些熟练操作员的实践经验加以总结和描述,并用语言表达出来,就会得到一种定性的、不精确的控制规则。如果用模糊数学将其定量化就转化为模糊控制算法,形成模糊控制理论。

糊控制理论具有一些明显的特点:

(1)模糊控制不需要被控对象的数学模型。模糊控制是以人对被控对象的控制经验为依据而设计的控制器,故无需知道被控对象的数学模型。

(2)模糊控制是一种反映人类智慧的智能控制方法。模糊控制采用人类思维中的模糊量,如“高”、“中”、“低”、“大”、“小”等,控制量由模糊推理导出。这些模糊量和模糊推理是人类智能活动的体现。

(3)模糊控制易于被人们接受。模糊控制的核心是控制规则,模糊规则是用语言来表示的,如“今天气温高,则今天天气暖和”,易于被一般人所接受。(4)构造容易。模糊控制规则易于软件实现。

(5)鲁棒性和适应性好。通过专家经验设计的模糊规则可以对复杂的对象进行有效的控制。

关键词:模糊控制; MATLAB仿真;智能控制;自动泊车

1.绪论

1.1 课题的背景及研究意义

世界汽车工业已有百年历史。在新世纪,随着计算机、通信、控制、传感器技术的发展,新型汽车日益趋向智能化。当前,汽车的智能化成为汽车工业发展的热点之一。对于汽车智能化的研究,主要有以下几个方面内容:

1.智能化的信息系统。为驾驶者提供丰富的交通信息。如GPS导航系统,可为驾驶者提供方位信息,并可给出到达目的地的路径。

2.智能化的安全系统。使驾驶过程更安全,减少交通事故发生的频率,降低事故的危害。如ABS(防抱死刹车系统)和ESP(电子稳定程序),二者结合可使车辆在各种情况下保持最佳的稳定性。

3.智能化的节能系统。实现降低能源消耗、减少环境污染。如混合动力车的出现,有效地提高了能源利用率。

4.智能化的辅助驾驶系统。指导、协助驾驶者完成驾驶任务,进而完全实现车辆的自主驾驶。如ACC(适应型巡航控制)、ICC(智能巡航系统)和国内外一些高校研制的陆地自主车(ALV)。

随着过去几十年汽车工业的快速发展,现今的发达国家汽车普及率已非常高了。在发展中国家,近年的汽车市场也增长得非常快。由于车辆的日益普及,现代都市中“停车难”问题逐渐显现,停车车位供不应求。为了缓解这一问题,停车场需要在有限的空间内划分出更多的车位,这样一来,每个车位的空间就相对窄小了。在窄小的空间进行倒车入位操作,对驾驶者来说,是一个不小的挑战。

如果在泊车的过程中,有智能系统的协助,将大大降低泊车的难度。自动泊车系统的概念由此而生。一个性能良好的自动泊车系统,可以帮助驾车者安全、快速地完成泊车的操作。节省了时间,减轻了驾车的压力。更重要的是,降低了泊车过程中车辆发生碰撞的可能性。一个低成本、高性能的自动泊车系统拥有良好的市场前景。

1.2 国内外研究及应用现状

1.2.1 自动泊车系统的研究现状

从二十世纪90年代起,国外学者开始对自动泊车的问题进行研究。

参考采用多个超声波传感器和编码器获取车辆周边障碍物及停车位的信息。考虑到测量的误差、车辆转向角和速度不可突变、转向角不可过大、倒车过程中

不可发生碰撞及环境可能发生变化等限制条件,先将车辆停在合适的起始位置,然后按设计好的控制函数对转向角和车速进行控制,将车辆驶入停车位。由于车位尺寸的限制及测量误差的影响,车辆很难通过一步操作就达到目的位置,所以需要通过实施的测量车位信息,经过车辆的向前、向后多次的移位后,才能将车辆位置调整到目的位置。这个方法在LIGIER自主车上进行实验。实验结果表明,LIGIER能动态修正车位长度,并完成泊车操作。

现如今专家提出了一种新的基于传感器的智能车位系统结构。智能车可在动态的部分信息可知的环境下,实现自主运动。此文的创新点是,建立一个数据库,管理各种常见的基于传感器的操作规则(SBM,sensor-based maneuver),SBM 以脚本形式保存。对于智能车需要执行的任务,首先分解成若干条SBM,形成参数化运动计划(PMP,parameterized motion plan);然后由执行机构实现各条SBM,如果在某SBM执行过程中,出现异常情况,如检测到前方有障碍物等,则修改PMP或重选SBM,以适应外界的变化。执行完PMP,就完成一项任务。此文将轨迹跟踪和平行泊车作为SBM的两个例子,通过在自主车上进行的实验结果,说明此体系结构的可行性。这里的自动泊车操作,正是使用了文中所描述的方法。

当今社会有一种利用超声波传感器的测量数据,以网格EM形式表现智能车周边环境信息的方法,并将此方法应用于车辆导航、车辆避障和平行泊车上.网格图以智能车的位置为中心,按与智能车的距离大小,把网格图分成三部分:离车身最近的区域,每个网格面积小,分辨率高;离车身较远的区域,网格面积较大,分辨率较低:离车身最远的区域,网格面积最大,分辨率最低。传感器探测到障碍物,则将网格图相应网格填充,表示此处有障碍物:当智能车运行时,网格图中表示为障碍物的移动。每一个网格中的障碍物有一个生存期,在传感器不能检测到障碍物时,障碍物并不马上在图中消失,而是要经过一段时间后,确定障碍物不再存在,才从图中消失。在讨论平行泊车问题时,使用的是路径规划的方法,倒车的路径由两个圆弧和一段线段组成。

本文中使用的模糊控制方法,在模型小车上实现了自动泊车功能。模型小车与真实车辆的比例约为1:10,配置了三个超声波传感器和一个编码器。整个泊车过程分为四个步骤:首先,车辆前行,检测车位;然后,车辆到达泊车操作的开始

位置,接着,车辆以‘S’形轨迹,倒入车位;最后,车辆调整位置,到达目标停车位。在整个泊车过程中,将人们的泊车经验以模糊规则形式表示出来,构成模糊控制器,以控制车辆完成直线前进和‘S’形倒车操作。

所描述的平行泊车方法相似,也是基于超声波传感器和编码器获取环境信息。此文中选择两个圆弧相切而组成的‘S’形路径作为倒车的轨迹。文中还提出“禁区”( forbidden area)的概念,当车身参考点进入禁区,则表明车身至少有一个部位与障碍物发生了碰撞。所以,车辆倒车的路径,应保证车身参考点不进入禁区。

本文描述了一种模糊控制方法,实现在狭小空间的平行泊车。与所述方法相同的是,把泊车过程分解为扫描车位、到达起始点、倒车入位等步骤:不同的是,每一步的控制又分为若千个子过程,每个子过程只控制车辆的一个状态量,在一个状态量接近目标值时,再控制另一个状态量,使其也接近目标值。

在泊车的过程中,主要有两个状态量:车身偏向角和车辆位置。这两个状态量是相互藕合的,不能完全独立地进行控制。但在一些情况下,对各状态量轮流进行控制,可使各状态量收敛于日标值。文献[10]还考虑到自动泊车模糊控制跟的最优化和可移植性问题。即当车辆的特征参数(车身长度、宽度、轴距等)改变时,如何对模糊控制器的参数进行调整,以获得合适的控制器,达到应用要求。文中提出了一种利用遗传算法对模糊控制器的参数进行优化的方法。在车辆特征参数改变时,可使用此方法获得性能优良的模糊控制器。这种方法主要通过调整隶属度函数和比例因子实现模糊控制器的优化。

本文中所用的方法,用网格图的方式记录车辆周围的环境信息。在控制方法上,使用了模糊控制方法。

本文将模糊控制和滑动模式控制(SMC, sliding mode control)结合,用于车辆的轨迹跟踪控制。并使用模糊增益调度方法(fuzzy gain scheduling),从典型轨迹集中,生成车辆的参考路径。

综上所述,基本上是利用超声波传感器和编码器,获取车辆周围障碍物信息. 在控制方法上,主要分为两类:一种是按参考路径进行泊车;另一种是将驾驶者的倒车经验,以模糊规则的形式表现,设计模糊控制器。随着图像处理、识别技术的发展,有一些学者开始研究图像传感器在自动泊车系统上的应用问题。

本文中,探讨了如何利用摄像头所获得的信息,将车辆驶入由标志线划

分出来的停车位的问题。摄像头被安装在车后部,可拍摄到标志线。首先对拍摄图像进行滤波、边缘检测、二值化、降低分辨率等预处理,获得控制器的输入数据。控制器的设计上,给出了两种控制方法:一种是纯粹使用神经网络控制;另一种是将模糊控制和神经网络控制相结合.

本文使用两个摄像头获取停车位信息。其中一个摄像头装在车辆前端,

负责拍摄停车位前端车辆的图像;另一个摄像头装在车后部,负责拍摄停车位后端及侧面路肩的图像。图像经过预处理后,得到前后车辆及侧面路肩的边缘信息。通过计算边缘与参考点的距离(以像素为单位),估测车辆的位置。使用模糊控制方法生成控制命令,通过人机界面指导驾驶者完成泊车操作。

文中所讨论的问题与实际相似,也是利用摄像头采集的信息将车辆驶入标志线划分的长方形区域中。此文在图像处理时,使用了离散小波变换(DWT,discrete wavelet transformation)以减少数据量。使用SOM (self-organizing map)神经网络和模糊控制,实现对车辆的控制。

在自动泊车系统中,停车位的检测是一个重要的问题。文献[16, 17]对这个问题进行了研究,分别使用激光雷达和超声波传感器,实现停车位的检测。

本文对自动泊车系统的整体结构进行了论述。对传感器的选择、方向盘的控制、泊车控制方法、人机界面的设计等问题进行了分析.

我国目前有多家高校在进行陆地自主车(AM Autonomous land vehicle)的研究。主要成果有清华大学、北京理工大学、南京理工大学、浙江大学、国防科技大学等几所高校共同研制开发的7138系统;清华大学的THMR-III和THMR-V 自主车:吉林大学的JUTIV-11系统等[2a1.自动泊车系统可以认为是陆地自主车研究的一个子问题。

1.2.2自动泊车系统的应用现状

进入二十一世纪,多个汽车生产厂家陆续推出了自动泊车系统:2003年,丰田(Toyota)公司首先在其Prius混合动力车型上配置了智能泊车系统:2007年,

又在新款LS460轿车上使用了自动泊车系统;2006年,本田(Honda)公司宣布在改进款life车型上提供智能泊车辅助系统:2006年,法国的汽车零部件供应商法雷奥( Valeo)公司发布了其第一代自动泊车系统(Park4UlM ),并己在大众(Volkswagen)公司的途安系列车型中应用;BMW也在测试类似的统:SiemensVDO

公司正在开发名为Park Mate的自动泊车系统,预计2008至2009年推向市场。

下面介绍一下各厂家自动泊车系统的特点。LS460的自动泊车系统由雷克萨斯的母公司Toyota以及Aisin Seiki合作研发,采用了Dens。公司的超声波传感器和Aisin基于摄像头的图像识别技术。此系统配置了超声感应装置—车头六个感应头,车尾四个,目的是能准确检测车辆位置。图像识别上,其图像采集来自后置摄像头,Aisin通过色彩对比技术增强了该系统的空间识别性能。在开始泊车前,驾驶者需通过触摸屏确定泊车方式以及调整停车位的位置。设置好后,驾驶者按下“OK"按钮,把手从方向盘上拿开,由驾驶者控制车辆的倒车速度,自动泊车系统控制车辆的转向,借助后视摄像头、超声传感器以及转向系统中的电子马达。将车驶入停车位。这个过程中,驾驶者可以通过踩刹车或转动方向盘中止自动泊车。

本田2006改进款life上的智能泊车辅助系统,并不基于传感器技术。其工作原理是:首先,要求驾驶者将车辆停在某一特定位置(车身某一固定点与停车位边缘对齐,从而确定了车身与停车位之间的位置关系):然后,要求驾驶者选择停车方式〔如右倒车泊车、左倒车泊车,或纵列泊车):接着,驾驶者按下“START" 键,泊车辅助系统将车辆诱导至最佳倒车起始位置;最后,泊车辅助系统会通过语音提示的方式,指导驾驶者操作方向盘,将车倒进停车位。本田的这套系统,相对来讲,有一定的成本优势,但需要驾驶者进行较多的操作,智能性上有所欠缺.

法雷奥的Park4UTIn系统,是一个基于超声波传感器测距的自动泊车系统。安装了此系统的车辆只需按一下

“Park4U"键。即可启动泊车程序,车身侧面的传感器将扫描道路两侧,测量车位的长度。当系统确认有足够的泊车空间,即前后比车长各多出70厘米时,将通过指示器告知驾驶者.驾驶者继续向前行驶直至系统提示“开始位置”时,放开方向盘,只需控制速度和刹车即可停车入位。法雷奥的下一代Park4UTM系统,将可以在更狭小的空间内完成自动泊车,其目标是在前后比车长多出50厘米时,仍可完成自动泊车。此系统只是在没有碰撞的情况下,尽量把车倒进车位,在系统操作完成后,车辆并不一定能完全停入理想的位置,此时需要驾驶者人工操作,进行调整。

我国的汽车工业起步较晚,在自动泊车系统的应用上也落后于世界先进国家。比亚迪股份有限公司于2003年12月向国家知识产权局提出了自动泊车系统的实用新型专利申请,并在2005年获得授权[211。不过目前未得到更多关于此技术在具体车型上应用的报道。为了缩小国内与国外产品的水平差距,需要在自1.3课题的研究内容

本文是在国内外现有研究成果的基础上,对自动泊车系统进行研究,完成自动泊车系统的设计与实现的工作,并验证自动泊车系统的功能、性能是否达到设计要求。

课题的研究内容有:

1.自动泊车系统的总体设计,包括自动泊车系统功能模块的划分、传感器

的选择、车位检测的方法,以及人机交互方式的确定。

2.对平行泊车和垂直泊车两种常见泊车方式,分析泊车时的行驶轨迹,从

理论上计算理想的倒车起始位置,并提出基于模糊控制的泊车方法,通

过仿真实验验证方法的可行性。

3构建自动泊车系统的实验平台。此平台包括模型车辆、车辆运动控制电路及相关控制软件。

4.自动泊车系统软件的实现。包括车位检测方法的软件实现、平行泊车和

垂直泊车模糊控制方法的软件实现、人机界面的软件实现.

5在自动泊车实验平台上进行平行泊车和垂直泊车实验,以验证所设计的

自动泊车系统的可行性。

本文第二章介绍了自动泊车系统研究过程中应用到的理论知识和技术;第三章给出了自动泊车系统的总体结构,并阐述了除泊车控制方法以外的各功能模块的设计思路;第四、五章分别对平行泊车和垂直泊车两种方式,提出泊车控制方法,给出mattab软件仿真结果,并对结果进行分析;第六章首先介绍自动泊车系统实验平台的构建,然后阐述自动泊车系统各功能模块的软件实现,最后对自动泊车系统在实验平台上的测试结果进行分析。

2.相关知识介绍

2.1车辆的数学模型

本文所研究的自动泊车系统,主要应用于前轮转向的四轮小车上。由于在泊车时,车辆行驶的速度一般不会很快,因此忽略离心力的作用,以及车轮与地面打滑的情况。建模时,认为车轮是刚体圆盘。小车理想的动力学模型如图2.1所示:

Y

图2.1 车辆的动力学模型

图2.1中,车辆前后车轴的距离为L ,车身与参考坐标x 轴夹角为B.因为要

求车辆转向时,车轮不打滑,所以过车辆四个车轮中心点,作车轮的垂直线,相

交于一点尸。从图2-1看出,左、右前轮偏转角度是不相同的。可以把两个前轮

等效于在前车轴中点ml 的一个车轮,等效的偏转角度为W^假设车辆前车轴中点

ml 的运行速度为,,后车轴中点m2的坐标为((x,y),则可列出车辆的运动方程:

?????===L

v v y

v x /sin sin cos cos cos ?θθ?θ? (2.1)

2.2超声波传感器测距原理

超声波传感器由发射端和接收端组成,利用压电陶瓷等材料的物理特性实现

能量的转换。发射端将电能转换为机械能,并以超声波形式向外传播;接收端则

将超声波的能量转换为电能。超声波传感器有固定的工作频率,在工作频率上,

能量转换效率最高。一个固定频率在40KHz 的超声波传感器,需要使用40KIIz

的电信号驱动发射端,使其向外发射40KHz 的超声波;接收端在40KHz 超声波的

驱动下,将产生40KH

z的电信号。一般地,发射端的驱动电信号幅度在5V以上而接收端所产生的电信号是l0mV级的。

图2.2超声波传感器测距的示意图

超声波传感器发射端和接收端与障碍物的位置关系如图2.2所示。发射端向外发送超声波,超声波经障碍物反射,被接收端检测到,设整个过程经历时间为t.超声波传播速度为v,则障碍物与传感器之间的距离1为:

l=vt/2 (2.2)

超声波在空气中传播的速度并非为常数.不同温度下,超声波的传播速度如表2-1所示。因此,超声波测距存在一定的误差,误差最大约在10%左右。若需要较为精确的结果,则可加入温度补偿。

假设超声波传播速度为340m/s,障碍物与传感器之间的距离在20cm至3m 范围内,由式(2.2)可得,超声波传播时间t在Ims至18ms范围内。使用单片机内部集成的定时器(timer),可测量出超声波的传播时间。

表2.1声速与温度的关系

2.3増量式光电编码器原理

光电编码器是一种集光、机、电为一体的数字检测装置。通常用于角位移和线位移的测量0从光电编码器的输出信号种类来划分,可分为增量式和绝对式两大类。绝对式编码器直接输出数字量,对应于转轴的转动角度;增量式编码器则输出脉冲信号,转轴转动一定角度,相应输出一定个数的脉冲。

采用增量式编码器进行速度检测常用的方法有测M法和测T法。测M法是测量在一定时间内编码器产生的脉冲数,以确定码盘转动速度;测T法是测量编码器产生的一个脉冲的宽度,以确定码盘转动速度。测分法通常应用于定时采样中,测T法在定步釆样中使用较多。在转速较低时,测T法的分辨率较高;转速较高时,测分法分辨率较高。在转速变化范围较广的情况下,可将两种方法相结合。

2.4 MATLAB简介

MATLAB是MathWorks公司1982年推出的一套高性能的数值计算和可视化软件,到目前它已发展成为国际公认最出色的数学应用软件。其强大的扩展功能为各领域的应用提供了基础。它面向控制领域推出的建模可视化功能SIMULINK和模糊控制、神经网络、控制系统等工具箱为控制系统的仿真提供了有力的支持,极大的推动了仿真研究的发展。

MATLAB软件包括MATLAB主程序和许多日益增多的工具箱。工具箱实际就是用MATLAB基本语句编写的各种子程序集,用于解决某一方面的专门问题或实现某一类的新算法。MATLAB提供了与其他应用语言的接口,以实现数据的共享和传递。

本文将模糊控制和PID控制结合在一起,根据各自的特点构造了一个自整定模糊PID控制系统,并在MATLAB中的模糊逻辑工具箱和SIMULINK基础上,对该控制系统进行了仿真研究。

2.5本章小结

本章对论文中使用到的理论知识和技术作了简要介绍。首先是对自动泊车系统的控制对象一小车,建立数学模型。然后介绍了超声波传感器和增量式编码器的工作原理。在自动泊车系统中,超声波传感器用于测量障碍物距离,而增量式编码器用于测量车辆的位移和速度。本章最后简单介绍了MATLAB软件。MATLAB 是运用非常广泛的一种对控制系统进行仿真的工具。

3.模糊控制的理论基础

模糊理论是由LotfiA, Zadeh 在二十世纪60、70年代创立的。1965年,Zadeh

发表了《模糊集合》提出了“模糊集合”的概念,并把集合论中的运算扩展到模

糊集合。1973年他发表了另一篇开创性文章《分析复杂系统和决策过程的新方

法纲要》,“建立了研究模糊控制的基础理论,在引入语言变量这一概念的基础上,

提出了用模糊规则来量化人类知识”。

3.1模糊集合及基本运算

设U 为某些对象的集合,称为论域,可以是连续的或离散的;u 表示U 的元 素,

记为U={u}。如果存在一个函数力

f A (u),将论域U 中每一个元素映射到区间[0,1] 中的一个值,则可以用函数f A (u)表征一个定义在论域U 上的模糊集合:这

个集合由论域所含的元素组成,每个元素具有由

f A (u)决定的对这个集合的隶属程度。f A (u)称为隶属函数。

一个集合可以认为是对论域中元素按某一特征进行分类的结果。在现实世界

中,事物的很多特征是不能精确描述的,如美、丑、甜、咸等,是人的一种感觉,

不同的人有不同的评价。那么,如果用这些不能精确描述的特征去对论域元素进

行分类,如何表示分类结果呢?模糊集合就是这种分类结果的一种数学语言描

述。

在模糊集合上的基本运算有:补、并、交。模糊集合上的基本运算结果仍然 是

模糊集合。

1.补运算。设模糊集合A 的补运算结果为A ,A 的隶属函数定义为: ))(()(x f C x f A A = (3.1)

函数C 可选择任何满足以下两个条件的函数:

(1)C(0)=1, C(1)=0;

(2)当m 、n ∈[0,l]时,如果 m

通常选择式(3.2)作为A 的隶属函数。 )(1)(x f x f A A -= (3.2)

2.并运算。模糊集合A 和B 的并运算表示为B A ,B A 的隶属函数定

义为:

))(),(()(x f x f s x f B A B A = (3.3)

函数s 满足以下四个条件:

(1) s(1,1)=l,s(0,m)=s(m,0)=m;

(2) S(m,n)=s(n,m);

(3) 如果m ≤m ’且n ≤n ’,则s(m,n)≤s(m ’,n ’);

(4) S((m,n),p)=s(m,s(n,p))。

满足以上四个条件的函数为s-范式。常用的B A 的隶属函数有max 函数。

3.交运算。模糊集合A 和B 的交运算表示为B A ,B A 的隶属函数定义为: ))(),(()(x f x f t x f B A B A (3.4) 函数t 满足以下四个条件:

(1)t (0,0)=0,t (1,m)=t(m,1)=m;

(2)t(m,n)=t(n,m);

(3)如果m ≤m ’且n ≤n ’,则t(m,n)≤t(m ’,n ’);

(4)t((m,n),p)=t(m,t(n,p))。

满足以上四个条件的函数称为t-范式。常用的B A 的隶属函数有min 函数。

3.2 模糊语言

语言是一种符号系统,它包括自然语言,机器语言等等。其中自然语言是以字或词为符号的一种符号系统,人们用它表示主客观世界的各种事物、观念、行为和情感的意义,是人们在日常工作和生活中所使用的语言。自然语言中常含有模糊概念。在实际生产过程中,人们发现,有经验的操作人员,虽然不懂被控对象或被控过程的数学模型,却能凭借经验采取相应的决策,很好的完成控制工作。

在现实世界中,世界的很多特征是无法精确描述的。为了能用数学形式描述这些特征,Zadeh 引入了语言变量这个概念。语言变量可表征为四元组(X,T,U,M),各个元素的含义如下:

X 为语言变量名称,如“温度”;

T 为语言变量X 取值的术语集合,如X=“温度”,T={冷,暖,热};

U 是语言变量X 的论域,如X=“温度”,U=[-10,40];

M 是X 取值的语义规则。

从分类的角度看,U 是分类对象,T 是各个类别的标签,M 是一个分类器,分类的结果是若干个模糊集合。

车辆工程毕业设计124汽车泊车辅助系统设计

本科学生毕业设计 汽车泊车辅助系统设计 系部名称:汽车与交通工程学院 专业班级:车辆工程 学生姓名: 指导教师: 职称:实验师

The Graduation Design for Bachelor's Degree Design of Car Parking Auxiliary System Candidate:Qi Hao Specialty:Vehicle Engineering Class:BW07-3 Supervisor:Experimentalist Division.Qi Yiqiang Heilongjiang Institute of Technology

摘要 随着我国经济的快速发展,交通运输车辆及私家用车的不断增加,不可避免的交通问题瞬时成为人们关注的问题。其中由于泊车事故发生的频率高,已引起了社会和交通部门的高度重视。泊车事故发生的原因是多方面的,造成泊车时的事故率远大于汽车正常行驶时的事故率,尤其是非职业驾驶员以及女性更为突出。而泊车事故给车主带来许多麻烦,不仅经济上,更有人身伤害,例如撞上别人的车,如果伤及儿童更是不堪设想,基于此基础,汽车高科技产品中,专为汽车泊位设置的“汽车泊车辅助系统”应运而生,汽车泊车辅助系统的加装可以解决司机的不少麻烦,大大降低了泊车事故的频率。 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求。本系统工作过程中超声波发射器发出一系列的脉冲信号,由单片机对接收的信号依据时间差进行处理,自动计算出车与障碍物之间的距离。超声波测距原理简单,成本低,制作方便,但其传输速度受天气影响较大,不能精确测距;因此大都用于汽车倒车雷达等近距离测距中本文根据声波在空气中传播反射原理,以超声波换能器为接口部件 该设计由超声波发射模块、信号接收模块、单片机处理模块、数码显示以及声光报警显示模块等部分组成,文中详细介绍了测距器的硬件组成、检测原理、方法以及软件结构。接收电路使用NE5532及LM311芯片对回波信号进行整波,对衰减后的信号进行了放大和整波,更好的实现了超声波的接受,对单片机提供外部中断信号。 关键词:超声波;报警;AT89S52;设计;调试

Matlab结构图控制系统仿真

图5. 利用 SIMULINK仿

4. 建立如图11-54所示的仿真模型,其中PID控 制器采用Simulink子系统封装形式,其内部 结构如图11-31(a)所示。试设置正弦波信号 幅值为5、偏差为0、频率为10πHz\始终相位 为0,PID控制器的参数为Kp=10.75、 Ki=1.2、Kd=5,采用变步长的ode23t算法、 仿真时间为2s,对模型进行仿真。 (6)观察仿真结果。系统放着结束后,双击仿真模型中的示波器模块,得到仿真结果。单击示波器窗口工具栏上的Autoscale按钮,可以自动调整坐标来 使波形刚好完整显示,这时的波形如图所示。 图3 2. 题操作步骤如下: (1) 打开一个模型编辑窗口。 (2) 将所需模块添加到模型中。在模块库浏览器中单击Sources,将 Clock(时钟)拖到模型编辑窗口。同样,在User-Defined Functions(用户定义模块库)中把Fcn(函数模块)拖到模型编辑窗口,在Continuous(连续系统模块库)中把 Integrator(积分模块)拖到模型编辑窗口,在Sinks中把Display模块编辑窗口。 (3) 设置模块参数并连接各个模块组成仿真模型。双击Fcn模块,打开Function Block operations中把Add模块拖到模型编辑窗口,在Sinks中把Scope模块拖到模型编辑窗口。 (3) 设置模块参数并连接各个模块组成仿真模型。先双击各个正弦源,打开其Block Parameters对话框,分别设置Frequency(频率)为2*pi、 6*pi、10*pi、 14*pi、18*pi,设置Amplitude(幅值)为1、1/3、1/5、1/7和1/9,其余参数不改变。对于求和模块,將符号列表List of signs设置为 +++++。 (4) 设置系统仿真参数。单击模型

一种自动泊车智能停车系统的设计与制作

一种自动泊车智能停车系统的设计与制作 发表时间:2018-06-12T10:05:47.187Z 来源:《电力设备》2018年第3期作者:王志兵许成彬陈柏然练宇威余铨 [导读] 摘要:本文针对车位紧张、寻找车位难、泊车难且耗时等问题,设计一种自动泊车智能停车系统,该停车系统利用红外和传感器自动识别进出车辆,智能显示各个停车区域空闲车位,并引导车辆到距离最近且有空车位的区域,通过取号分配系统自动分配一个空闲车位号码,最后自动泊车取车系统负责把车停到指定车位,该智能停车系统有效地防止寻找车位难、泊车难且耗时的问题。 (东莞职业技术学院广东 523808) 摘要:本文针对车位紧张、寻找车位难、泊车难且耗时等问题,设计一种自动泊车智能停车系统,该停车系统利用红外和传感器自动识别进出车辆,智能显示各个停车区域空闲车位,并引导车辆到距离最近且有空车位的区域,通过取号分配系统自动分配一个空闲车位号码,最后自动泊车取车系统负责把车停到指定车位,该智能停车系统有效地防止寻找车位难、泊车难且耗时的问题。 关键词:自动泊车;识别检测;智能感应;显示报警;引导监控 1引言 随着汽车工业的迅速发展,汽车使用量的急剧增加,城市车位的数量与需求的矛盾日益突出,车位难寻、泊车难且费时的问题逐渐显现,城市公共停车系统越来越不能满足日益增长的停车需求,如何在最大程度上满足车主对停车系统的车辆停放需求,已成为当前的热点问题,急需解决,因此,建设科学、规范的自动泊车智能停车系统显得尤为重要,具有极大的现实意义和广阔应用前景[1,2]。 国外,早在上世纪70年代初,德国就已经建立了初级停车诱导系统。国内,对于智能停车系统的研究,特别是对智能停车服务的提供和使用,目前还处于起步阶段[3,4]。 总的来说,我国在自动泊车智能停车系统系统上的研究起步较晚,研制水平不高,所能实现的功能相对单一,仍然处于实验阶段。因此,研究成本更低、可靠性更好,能广泛使用的自动泊车智能停车系统具有极大的应用价值和转化前景。 2红外识别和智能车辆感应系统 本设计采用HC-05主从一体蓝牙模块,实现控制系统与小车通讯。控制装置为主机,小车为从机,主机发出信号,从机接收到信号后,单片机调用相应程序,启动小车。当小车第一次驶过黑线时,触发光电传感器,单片机接收到一个低平信号后开始计时计费,第二次驶过黑线时,单片机终止计时计费程序,并将数值反应到显示屏上。小车则根据预先设定好的程序进执行入库动作。当小车完全进入车库时,小车尾部的分体式红外传感器被触发,启动声光报警系统。 系统包括小车主控系统和智能停车控制系统两部分,其中,小车主控系统包括避障模块,电机驱动模块和声光报警模块;智能停车控制系统包括红外识别模块、按键模块和显示模块。两个系统通过蓝牙模块进行通信。自动泊车智能停车系统框图如图1所示。 图1 自动泊车智能停车系统框图 其中,红外识别和智能车辆感应系统的主要包括进出车辆的智能感应并进行增减计数统计,红外识别进出车辆并进行车辆信息记录,其中,车辆进出感应通过传感器来实现,车辆进出识别通过红外发射、接收模块和控制系统来实现,实际应用还可以增加高清摄像头来识别车牌,车型、车身颜色或者是车主人脸识别。 3引导车辆智能停车及实时监控系统 引导车辆智能停车及实时监控系统主要包括引导进入停车系统的车辆到距离最近且有空闲车位的区域,实时对车辆位置进行监控并记录信息,车主也可以根据实际情况自己选择有空闲车位的区域停车。 图2是小车驱动模块电路原理图,实验使用5相42步进电机作为智能小车系统的驱动电机。此电机通过控制脉冲个数来控制角位移量,定位精度高,动态惯性较低,可较精确的定位小车的前进距离和位置。

控制系统MATLAB仿真基础

系统仿真 § 4.1控制系统的数学模型 1、传递函数模型(tranfer function) 2、零极点增益模型(zero-pole-gain) 3、状态空间模型(state-space) 4、动态结构图(Simulink结构图) 一、传递函数模型(transfer fcn-----tf) 1、传递函数模型的形式 传函定义:在零初始条件下,系统输出量的拉氏变换C(S)与输入量的拉氏变换R(S)之比。 C(S) b1S m+b2S m-1+…+b m G(S)=----------- =- -------------------------------- R(S) a1S n + a2S n-1 +…+ a n num(S) = ------------ den(S) 2、在MATLAB命令中的输入形式 在MATLAB环境中,可直接用分子分母多项式系数构成的两个向量num、den表示系统: num = [b1, b2, ..., b m]; den = [a1, a2, ..., a n]; 注:1)将系统的分子分母多项式的系数按降幂的方式以向量的形式输入两个变量,中间缺项的用0补齐,不能遗漏。 2)num、den是任意两个变量名,用户可以用其他任意的变量名来输入系数向量。 3)当系统种含有几个传函时,输入MATLAB命令状态下可用n1,d1;n2,d2…….。 4)给变量num,den赋值时用的是方括号;方括号内每个系数分隔开用空格或逗号;num,den方括号间用的是分号。 3、函数命令tf( ) 在MATLAB中,用函数命令tf( )来建立控制系统的传函模型,或者将零极点增益模型、状态空间模型转换为传函模型。 tf( )函数命令的调用格式为: 圆括号中的逗号不能用空格来代替 sys = tf ( num, den ) [G= tf ( num, den )]

matlab控制系统仿真.

课程设计报告 题目PID控制器应用 课程名称控制系统仿真院部名称龙蟠学院 专业自动化 班级M10自动化 学生姓名 学号 课程设计地点 C208 课程设计学时一周 指导教师应明峰 金陵科技学院教务处制成绩

一、课程设计应达到的目的 应用所学的自动控制基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB软件上建立控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 二、课程设计题目及要求 1.单回路控制系统的设计及仿真。 2.串级控制系统的设计及仿真。 3.反馈前馈控制系统的设计及仿真。 4.采用Smith 补偿器克服纯滞后的控制系统的设计及仿真。 三、课程设计的内容与步骤 (1).单回路控制系统的设计及仿真。 (a)已知被控对象传函W(s) = 1 / (s2 +20s + 1)。 (b)画出单回路控制系统的方框图。 (c)用MatLab的Simulink画出该系统。

(d)选PID调节器的参数使系统的控制性能较好,并画出相应的单位阶约响应曲线。注明所用PID调节器公式。PID调节器公式Wc(s)=50(5s+1)/(3s+1) 给定值为单位阶跃响应幅值为3。 有积分作用单回路控制系统PID控制器取参数分别为:50 2 5 有积分作用单回路控制系统PID控制器取参数分别为:50 0 5

大比例作用单回路控制系统PID控制器取参数分别为:50 0 0 (e)修改调节器的参数,观察系统的稳定性或单位阶约响应曲线,理解控制器参数对系统的稳定性及控制性能的影响? 答:由上图分别可以看出无积分作用和大比例积分作用下的系数响应曲线,这两个PID调节的响应曲线均不如前面的理想。增大比例系数将加快系统的响应,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏;

控制系统的MATLAB仿真与设计课后答案

控制系统的MATLAB仿真与设计课后答案

>>z=-4*sqrt(2)*sin(t); >>plot3(x,y,z,'p'); >>title('Line in 3-D Space'); >>text(0,0,0,'origin'); >>xlabel('X'),ylable('Y'),zlable('Z');grid; 4>>theta=0:0.01:2*pi; >>rho=sin(2*theta).*cos(2*theta); >>polar(theta,rho,'k'); 5>>[x,y,z]=sphere(20); >>z1=z; >>z1(:,1:4)=NaN; >>c1=ones(size(z1)); >>surf(3*x,3*y,3*z1,c1); >>hold on >>z2=z; >>c2=2*ones(size(z2)); >>c2(:,1:4)=3*ones(size(c2(:,1:4))); >>surf(1.5*x,1.5*y,1.5*z2,c2); >>colormap([0,1,0;0.5,0,0;1,0,0]); >>grid on >>hold off 第四章 1>>for m=100:999 m1=fix(m/100); m2=rem(fix(m/10),10); m3=rem(m,10); if m==m1*m1*m1+m2*m2*m2+m3*m3*m3 disp(m) end end 2M文件:function[s,p]=fcircle(r) s=pi*r*r; p=2*pi*r; 主程序: [s,p]=fcircle(10) 3>>y=0;n=100; for i=1:n y=y+1/i/i; end >>y

自动泊车辅助系统

自动泊车辅助系统 百科名片 在众多的汽车配套产品中,与倒车安全有关的配套产品格外引人注目,配有倒车辅助系统的品牌车型也常常成为高档车配置的重要标志之一。 目录 一、概要 1二、奔驰自动泊车辅助系统设计初衷 1启动条件 1实施步骤 1优点 1缺点 三、斯柯达昊锐PLA自动泊车辅助系统 四、迈腾自动泊车辅助系统 一、概要据统计,由于车后盲区所造成的交通事故在中国约占30%,美国20%,交 管部门建议车主安装多曲率大视野后视镜来减少车后盲区,提高车辆的安全性能,但依旧无法有效降低并控制事故的发生。汽车尾部盲区所潜在的危险,往往会给人们带来生命财产的重大损失以及精神上的严重伤害。对于新手司机或女士而言,每次倒车时更是可以用瞻前顾后,胆战心惊来形容。现有的汽车倒车辅助产品如果从手动与自动的区别来分大致可分为两类:一类是手动类(以传统倒车系统为代表)和一类是自动类(以智能倒车系统为代表)。传统倒车系统主要以倒车雷达和倒车可视为代表,通过发出警示声音或可视后部情况提醒车主车后情况,使其主动闪避,以减少事故伤害。该产品对于驾驶者而言,主动性较差,虽然能在很大程度上避免车辆对行人的伤害,却无法顺利有效的完成泊车,极易造成刮蹭或碰撞。 二、奔驰自动泊车辅助系统 设计初衷官方读法是主动式停车辅助系统,是借助前后保险杠上安装的十组超声波感应器来实现辅助的泊车系统。为了应付欧洲路边停车设计的,增加泊车的便利性,注意是增加,不是从根本性改变泊车习惯,例如你还是要踩刹车,还是要挂挡的。 启动条件(1)车速要低于36km/h (2)打转向灯(以给系统提示要停车在哪个方向)(3)停车区域要长于车身的1.2到1.3米(B级车长4273mm)(4)车辆必须离开障碍物(例如停车区域前后的车)距离在1.5米之内,意思是不能离开太远。(5)停车区域必须是想路边临时停车那种,一排车在一侧,一字排开,象停车场那种每部车竖直并列排放的,不能实现该功能。

MatLab与控制系统仿真(重点编程)

第 4 章 MatLab 的程序设计 MatLab 是一个工具、开发平台,同时它也是一门编程语言。与在命令窗口用交互的方式工作相比,通过程序运行来解决实际问题,其效率更高,因此,凡是复杂的、大型的应用都是以程序的方式执行。相对其它高级语言, MatLab 更简单、编程的效率更高、调试过程也更容易。 MatLab 中的程序文件是以 m 为后缀,所以通常将 MatLab 的程序文件称为 m 文件。MatLab提供了两种形式的m文件,即:脚本(Script)式m文件(就简称m文件)、函数型 m 文件。在 MatLab 中已经嵌入了一个功能强大的集成开发环境—— m 文件编辑器,用它来进行程序的编辑、修改、调试、运行等,完成应用开发工作。 4.1 MatLab 程序设计基础 通过前面内容的学习,大家对 MatLab 已经有了一个初步的认识和印象,到目前为止,我们都是在“命令”窗口中,以交互的方式运行,完成我们的工作。实际上简单的m 文件,就是一个批处理程序,它是若干条命令的集合。 例: 4.1.1 M 文件规则和属性 函数 M 文件必须遵循一些特定的规则。除此之外,它们有许多的重要属性,这其中包括: 1. 函数名和文件名必须相同。例如,函数 fliplr 存储在名为 fliplr.m 文件中。 2. MATLAB 头一次执行一函数个 M 文件时,它打开相应的文本文件并将命令编辑成存储器的内部表示,以加速执行以后所有的调用。如果函数包含了对其它函 数 M 文件的引用,它们也同样被编译到存储器。普通的脚本 M 文件不被编译,即使它们是从函数 M 文件内调用;打开脚本 M 文件,调用一次就逐行进行注释。 3. 在函数 M 文件中,到第一个非注释行为止的注释行是帮助文本。当需要帮助时,返回该文本。例如, ? help fliplr 返回上述前八行注释。 4. 第一行帮助行,名为 H1 行,是由 lookfor 命令搜索的行。 5. 函数可以有零个或更多个输入参量。函数可以有零个或更多个输出参量。

基于MATLAB软件的自动泊车控制系统设计与仿真

基于MATLAB软件的自动泊车控制系统设计与仿真 摘要 现代社会汽车的使用已经相当广泛。而每一个司机都会面对倒车问题,有经验的司机能够快速、准确的将汽车停到指定的位置。然而多数的司机尤其是一些刚刚考到驾照的新手们尤其对停车的问题十分烦恼。在准确性和速度之间往往很难同时满足,设想如果能有个智能装置,根据当前的车速和位置能够自动将车停到合适位置,且又同时满足快速性和准确性。本课题正是基于以上的设想,结合我们最近学习的模糊控制的相关知识以MATLAB为软件平台,搭建一个基于MATLAB的自动倒车模糊控制系统。 以往的各种传统控制方法均是建立在被控对象精确数学模型基础上的,然而,随着系统复杂程度的提高,将难以建立系统的精确数学模型。在工程实践中,人们发现,一个复杂的控制系统可由一个操作人员凭着丰富的实践经验得到满意的控制效果。这说明,如果通过模拟人脑的思维方法设计控制器,可实现复杂系统的控制,由此产生了模糊控制。模糊控制是建立在人工经验基础之上的。对于一个熟练的操作人员,他往往凭借丰富的实践经验,采取适当的对策来巧妙地控制一个复杂过程。若能将这些熟练操作员的实践经验加以总结和描述,并用语言表达出来,就会得到一种定性的、不精确的控制规则。如果用模糊数学将其定量化就转化为模糊控制算法,形成模糊控制理论。 糊控制理论具有一些明显的特点: (1)模糊控制不需要被控对象的数学模型。模糊控制是以人对被控对象的控制经验为依据而设计的控制器,故无需知道被控对象的数学模型。 (2)模糊控制是一种反映人类智慧的智能控制方法。模糊控制采用人类思维中的模糊量,如“高”、“中”、“低”、“大”、“小”等,控制量由模糊推理导出。这些模糊量和模糊推理是人类智能活动的体现。 (3)模糊控制易于被人们接受。模糊控制的核心是控制规则,模糊规则是用语言来表示的,如“今天气温高,则今天天气暖和”,易于被一般人所接受。(4)构造容易。模糊控制规则易于软件实现。 (5)鲁棒性和适应性好。通过专家经验设计的模糊规则可以对复杂的对象进行有效的控制。 关键词:模糊控制; MATLAB仿真;智能控制;自动泊车

MATLAB控制系统各种仿真例题(包括simulink解法)

一、 控制系统的模型与转换 1. 请将下面的传递函数模型输入到matlab 环境。 ]52)1)[(2(24)(322 33++++++=s s s s s s s G ) 99.02.0)(1(568 .0)(22+--+=z z z z z H ,T=0.1s >> s=tf('s'); G=(s^3+4*s+2)/(s^3*(s^2+2)*((s^2+1)^3+2*s+5)); G Transfer function: s^3 + 4 s + 2 ------------------------------------------------------ s^11 + 5 s^9 + 9 s^7 + 2 s^6 + 12 s^5 + 4 s^4 + 12 s^3 >> num=[1 0 0.56]; den=conv([1 -1],[1 -0.2 0.99]); H=tf(num,den,'Ts',0.1) Transfer function: z^2 + 0.56 ----------------------------- z^3 - 1.2 z^2 + 1.19 z - 0.99 2. 请将下面的零极点模型输入到matlab 环境。请求出上述模型的零极点,并绘制其位置。 )1)(6)(5()1)(1(8)(22 +++-+++=s s s s j s j s s G ) 2.8() 6.2)(2.3()(1 511-++=----z z z z z H ,T=0.05s >>z=[-1-j -1+j]; p=[0 0 -5 -6 -j j]; G=zpk(z,p,8) Zero/pole/gain: 8 (s^2 + 2s + 2) -------------------------- s^2 (s+5) (s+6) (s^2 + 1) >>pzmap(G)

智能自动泊车系统设计方案

摘要:一个有效的智能泊车系统,不仅能帮助驾驶者快速、安全地完成泊车操作,从而减轻驾驶员负担,减少交通事故,而且能够有效提高汽车的智能化程度,增加汽车的附加值,从而带来巨大的经济效益。使用AT89C52单片机作为小车的主控制器,在该控制器基础上,添加了光电避障电路、测速电路、光源引导电路和电机驱动电路,从而实现了智能泊车系统设计。该系统结构简单、成本低,并在实验室中取得了预期的效果,能够使小车进入指定的停车位。 0 引言 随着我国汽车数量逐年急剧增多,泊车位、停车场的数量却跟不上其增长的步伐,越来越多的人为如何泊车而发愁。日益拥挤的泊车环境要求人们对汽车的泊车技术更加地娴熟,这就更加重了人们工作之外的紧张情绪,降低了人们的生活质量。因此,如何解决泊车过程中的不便利,消除安全隐患,迅速、准确、行车记录仪https://www.360docs.net/doc/199372946.html,/安全地将汽车停靠到合适的位置,逐渐引起了人们的关注。 1 系统的工作原理及功能 智能泊车系统可分为控制部分和信号检测部分。 其中信号检测部分包括障碍物检测模块,光源检测模块和速度检测模块;控制部分包括控制器模块,电机控制模块。智能泊车系统基本模块方框图如图1所示。 图1 智能泊车系统基本框图 系统工作原理如下:在小车启动之后,通过霍尔传感器A44E进行小车的速度检测,对小车进行智能限速,小车行进过程中通过红外光电传感器避障,车库系统发送光源指示信号,光敏三极管接收车库指示信息,使小车到达指定车库后,停车。 1.1 单片机最小系统设计 AT89C52是51系列单片机的一种,是一个低功耗,高性能,CMOS 8位单片机,片内含8KB的可反复擦写的FLASH只读程序存储器和256B的随机存取数据存储器(RAM),由ATMEL公司采用高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和FLASH存储单元,片内有ROM/EPROM,因此,这种芯片构成的最小系统简单可靠,只要将单片机接上时钟电路和复位电路即可。 1.2 避障电路设计 红外光电式传感器具有非接触、响应快、性能可靠、体积小、安装轻便等诸多特点,因此在工业自动化装置和智能小车中获得广泛应用。本设计中采用的光电避障传感器是 HS0038B.红外光电接收电路工作原理为:当接收到载波频率为38kHz的脉冲调制信号时,首先,HS0038B内的红外敏感元件将脉冲调制红外光信号转换成电信号,再由前置放大器和自动增益控制电路进行放大处理,然后通过带通滤波器进行滤波,滤波后的信号由解调电路进行解调,最后由输出电路进行反向放大并输出低电平;未接收到载波信号时,电路则输出高电平。红外发射电路由555定时电路产生方波,对红外发射管进行调制。

汽车泊车辅助系统设计说明

济南大学泉城学院毕业设计 题目汽车泊车辅助系统设计 学院工学院 专业机械设计制造及其自动化(专升本)班级1502班 学生高雯亭 学号2015040118 指导教师张兴达武华蒯建明

二〇一七年五月十六日

摘要 随着国民经济迅猛发展,汽车保有量逐年递增。在汽车使用过程中,泊车成为摩擦事故频发的一个环节,给人们的生命财产安全带来诸多隐患。针对这一问题,本设计提出了一种基于单片机的汽车泊车辅助系统。实现了泊车过程中的距离监测、报警、显示等功能,为泊车提供了可靠助力。 本设计主要包含硬件部分设计与软件部分设计。其中硬件部分主要包含核心控制部分、信号采集部分、显示部分、报警部分。具体工作主要有元器件选型、电路设计、电路制作及调试等。软件部分以C语言为工具,设计了完整的程序流程框图并完成了程序编写,实现了数据接收、分析以及控制指令输出等功能,结合硬件平台实现了预期功能。 通过电路制作及调试,验证了本设计系统的有效性,为进一步的研究及应用提供了一定的数据参考。 关键词:单片机;传感器;超声波测距

ABSTRACT With the rapid development of the national economy,car ownership increased year by year. In the process of car use,parking has become a frequent part of the friction accident,to people's lives and property to bring a lot of hidden dangers. Aiming at this problem,this design proposes a vehicle parking assist system based on single chip microcomputer. To achieve the process of parking distance monitoring,alarm,display and other functions for the parking to provide a reliable power. This design mainly includes the hardware part design and the software part design. The hardware part mainly includes the core control part,the signal

《MATLAB与控制系统。。仿真》实验报告剖析

《MATLAB与控制系统仿真》 实验报告 班级: 学号: 姓名: 时间:2013 年 6 月

目录实验一 MATLAB环境的熟悉与基本运算(一)实验二 MATLAB环境的熟悉与基本运算(二)实验三 MATLAB语言的程序设计 实验四 MATLAB的图形绘制 实验五基于SIMULINK的系统仿真 实验六控制系统的频域与时域分析 实验七控制系统PID校正器设计法 实验八线性方程组求解及函数求极值

实验一 MATLAB环境的熟悉与基本运算(一) 一、实验目的 1.熟悉MATLAB开发环境 2.掌握矩阵、变量、表达式的各种基本运算 二、实验基本原理 1.熟悉MATLAB环境: MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器、文件和搜索路径浏览器。 2.掌握MA TLAB常用命令 表1 MA TLAB常用命令 3.MATLAB变量与运算符 3.1变量命名规则 3.2 MATLAB的各种常用运算符 表3 MATLAB关系运算符 表4 MATLAB逻辑运算符

| Or 逻辑或 ~ Not 逻辑非 Xor 逻辑异或 符号功能说明示例符号功能说明示例 :1:1:4;1:2:11 . ;分隔行.. ,分隔列… ()% 注释 [] 构成向量、矩阵!调用操作系统命令 {} 构成单元数组= 用于赋值 4.MATLAB的一维、二维数组的寻访 表6 子数组访问与赋值常用的相关指令格式 三、主要仪器设备及耗材 计算机 四.实验程序及结果 1、新建一个文件夹(自己的名字命名,在机器的最后一个盘符) 2、启动MATLAB,将该文件夹添加到MATLAB路径管理器中。 3、学习使用help命令。

19-20汽车自动泊车辅助系统(二)-汽车车身电控系统教案

教学设计

教学过程 教学环节教师讲授、指导(主导)内容 学生学习、 操作(主体)活动 时间 分配 一、二、三、组织教学 (师生问候) 复习旧识 1、自动泊车辅助系统的功能 2、自动泊车辅助系统的应用的组成 新授知识 一、自动泊车的工作过程 1、启动泊车系统 每次进行泊车前都需要通过按键来启动自动泊车辅助系 统。 2、测量泊车长度 自动泊车辅助系统在向驾驶员提供转向帮助之前,必须 对泊车位进行测量,并识别车辆相对于泊车位的位置。 即使自动泊车辅助系统未开启,传感器也保持工作状态。 在车辆前行过程中当车速低于40km/h或低于20km/h时,两 个位于车前端的传感器便会测量车辆两侧所有可停入的泊车 位,与在笔直道路上没有差别。除车辆外,系统还能识别到 其他物体已经某一物体的或两个物体之间的泊车位。如果自 动泊车辅助系统没有识别出泊车位前面较小的物体,当车辆 靠近这些物体时,就会由泊车距离控制系统发出警告。 步骤一 未开启自动泊车辅助系统的车辆低于20km/h的速度行驶 下,平行泊车位和垂直泊车位都能被找到。 步骤二 泊车位将被暂存在控制单元中,如果此时驾驶员启动泊 车辅助系统,就可进行泊车。 步骤三 泊车位仍存在控制单元中 步骤四 下一个可用泊车位被测量并被暂时保存,泊车位被删除。 步骤五 驾驶员驶过泊车位并按下自动泊车辅助系统按键,泊车 位被存入控制单元并立刻在组合仪表显示器上显示出来。车 辆所在位置不足以完成泊车,系统要求驾驶员继续向前行驶。 3、测量泊车位相关参数 (1)平行泊车参数 师生问好 根据上次课的内容, 对学生们进行提问 介绍测量泊车位相 关参数 图示法,介绍平行泊 车位参数和垂直泊 车位参数 学生们通过教师的 讲解,和图片展示, 学习自动泊车辅助 系统的自诊断功能, 并记录相关知识点 1min 10min 14min 20min 10min 10min 10min

MATLAB控制系统与仿真设计

MATLAB控制系统与仿真 课 程 设 计 报 告 院(系):电气与控制工程学院 专业班级:测控技术与仪器1301班 姓名:吴凯 学号:1306070127

指导教师:杨洁昝宏洋 基于MATLAB的PID恒温控制器 本论文以温度控制系统为研究对象设计一个PID控制器。PID控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。PID控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器(至今在全世界过程控制中用的84%仍是纯PID调节器,若改进型包含在内则超过90%)。在PID控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB仿真系统。本设计就是借助此软件主要运用Relay-feedback法,线上综合法和系统辨识法来研究PID控制器的设计方法,设计一个温控系统的PID控制器,并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。 关键词:PID参数整定;PID控制器;MATLAB仿真。 Design of PID Controller based on MATLAB Abstract This paper regards temperature control system as the research object to design a pid controller. Pid control is the most common control method up until now; the great majority feedback loop is controlled by this method or its small deformation. Pid controller (claim regulator also) and its second generation so become the most common controllers in the industry process control (so far, about 84% of the controller being used is the pure pid controller, it’ll exceed 90% if the second generation included). Pid parameter setting is most important in pid controller designing, and with the rapid development of the computer technology, it mostly recurs to some advanced software, for example, mat lab simulation software widely used now. this design is to apply that soft mainly use Relay feedback law and synthetic method on the line to study pid

《控制系统MATLAB仿真》实验讲义88

《自动控制原理实验》 目录 第一部分实验箱的使用 第二部分经典控制实验 第一章基本实验 实验一典型环节及其阶跃响应 实验二二阶系统阶跃响应 实验三控制系统的稳定性分析 实验四控制系统的频率特性 实验五连续控制系统的串联校正 实验六数字PID控制实验 第二章综合实验 第三部现代控制理论实验 第一章基本实验 第二章综合实验

实验一 典型环节及其阶跃响应 预习要求: 1、复习运算放大器的工作原理;了解采用A μ741运算放大器构成各种运算电路的方法; 2、了解比例控制、微分控制、积分控制的物理意义。 一、实验目的 1、学习自动控制系统典型环节的电模拟方法,了解电路参数对环节特性的影响。 2、学习典型环节阶跃响应的测量方法; 3、学会根据阶跃响应曲线计算确定典型环节的传递函数。 二、实验内容 1、比例环节 电路模拟: 图1-1 传递函数: 2211 ()()()U s R G s U s R ==- 2、惯性环节 电路模拟: 图1-2 传递函数: 22112()/()()11 U s R R K G s U s Ts R Cs = =-=- ++ 3、积分环节 电路模拟: A/D1 D/A1 A/D1

图1-3 传递函数: 21()11 ()()U s G s U s Ts RCs = =-=- 4、微分环节 电路模拟: 图1-4 传递函数: 211() ()() U s G s s RC s U s τ= =-=- 5、比例微分 电路模拟: 图1-5 传递函数: 222111 ()()(1)(1)()U s R G s K s R C s U s R τ= =-+=-+ 6、比例积分 电路模拟: 图1-6 A/D1 2 R D/A1 A/D1 A/D1 A/D1 C

自动泊车辅助系统的研究与开发

自动泊车辅助系统的研究与开发 汽车产业的蓬勃发展给人们出行带来了极大便利,同时也带来了交通拥堵、环境污染等负面影响,汽车数量的持续增长与现有基础设施不能满足需求之间的矛盾日益尖锐,车位稀缺、停车困难等一系列问题逐渐暴露出来。针对上述问题,整合了传感器技术、电子控制技术和总线通信技术的自动泊车辅助系统应运而生,提出了快捷、高效的解决方案。 本文以广汽本田某型号车为试验载体,针对泊车过程中最复杂的工况——平行车位多次泊车入位展开研究,提出了基于累加算法的路径规划方案。采用逆向思维分析车辆在车位内部的运动规律,反向推导出车辆在车位外部的路径轨迹, 得到自动泊车的完整路径,并利用MATLAB软件设计GUI界面进行了仿真验证。 接着,对几种常用测距技术的特点进行对比,综合考虑了传感器的测距精度、安装便捷性和经济成本,选择SRF01超声波传感器作为外部环境感知模块的输入。为了进一步降低车位采集过程中波束角造成的误差,提出了车身侧面双超声波传感器斜向安装协同工作的新方法,并分别进行了单个传感器正向安装误差补偿试验和双传感器斜向安装测距试验,通过对比选择了误差值更低的后者作为本文的车位采集安装方式。 然后,根据自动泊车辅助系统各功能模块的需要,搭建了以飞思卡尔8位单 片机MC9S08DZ60芯片为泊车主控制器的硬件试验平台,并设计了各子模块对应 的软件程序。基于通信要求,分别设计了泊车控制器与超声波传感器Arduino控制板之间的SCI串口通信模块以及与EPS系统和整车之间的CAN通信模块。 为了控制试验车转向系统,设计了EPS软件控制策略和硬件控制器,用于替 换试验车EPS系统,并在转向执行机构小齿轮轴上安装了博世转角传感器,完成

自动泊车系统

内蒙古科技大学 本科生毕业设计说明书(毕业论文) 题目:自动泊车系统的设计 学生姓名:赵文强 学号:1167118210 专业:电子信息工程 班级:2011-2班 指导教师:高丽丽

自动泊车系统 摘要 随着车辆的普及度、保有量越来越高,街道、小区、公路、停车场等拥挤不堪,人们对车辆的可操作性和智能性也提出了更多的要求,所以智能的自动泊车的研发迫在眉睫。本设计以蓝牙模块与单片机最小系统通过串口相连接,并与电脑端蓝牙连接实现下位机与上位机之间的通信过程,从而实现自动泊车的功能。 本设计由上位机、蓝牙模块、STC15F2K61S2单片机最小系统、GY-26电子指南针模块、光电避障模块、超声波模块、电机驱动模块、舵机组成系统。主要包括以下几个方面:第一,硬件电路设计,硬件电路通过Altium Designer软件进行硬件电路设计,主要包括包括电源系统和单片机最小系统,第二,STC15F2K61S2单片机最小系统设计,最小系统可以实现超声波数据、光电避障模块数据、电子指南针模块数据的接受,由上位机端发送命名实现对小车的相应控制。第三,上位机软件设计,上位机由C Sharp语言在Visual Studio 2010平台编写,主要实现对由下位机说发送的数据进行处理并实时显示出来的,并且对自动泊车系统进行整体控制,通过蓝牙向单片机最小系统发送数据,单片机接收到数据后控制小车完成侧位泊车或倒车入库动作。 关键词:上位机;单片机最小系统;自动泊车

Automatic parking system Abstract With the popularization of vehicle, retains the quantity is more and more high, streets, communities, roads, parking lots and other crowded. People of the vehicle can also put forward more requirements for the operation and intelligent, so the research and development of intelligent automatic parking is imminent. This design takes the Bluetooth module and the microcontroller smallest system through the serial port, and realizes the communication process between the lower computer and the upper computer with the Bluetooth connection of the computer terminal. The design of the PC and Bluetooth module, STC15F2K61S2 MCU minimum system, GY-26 electronic compass module, photoelectric obstacle avoidance module, ultrasonic module, motor drive module, servo system. Mainly includes the following aspects: first, hardware circuit design, hardware circuit through Altium designer software were hardware circuit design, including including power supply system and the smallest single-chip system. Second, STC15F2K61S2 smallest single-chip system design, the minimum system can realize ultrasonic data, photoelectric obstacle avoidance module data, electronic compass module data received, sent by the host computer end named the corresponding control of the car.Third, PC software design and PC by C sharp language on the platform of Visual Studio 2010 prepared, mainly to achieve by the slave computer said transmitted data for processing and real-time display, and the automatic parking system integrated control, via Bluetooth to send data to the MCU minimum system, MCU receives the data control the car lateral parking or reversing storage action. Key words: PC, minimum single-chip microcomputer, automatic parking

相关文档
最新文档