高中数学选修2-3第二章概率单元测试试题2

高中数学选修2-3第二章概率单元测试试题2
高中数学选修2-3第二章概率单元测试试题2

选修2-3第二章概率质量检测(二)

时间:120分钟 总分:150分 第Ⅰ卷(选择题,共60分)

.

1.某射手射击所得环数ξ的分布列如下:

已知ξA . B . C . D . 2.若X 的分布列为

则D (X )等于( )

A .

B .

C .

D .

3.已知某人每天早晨乘坐的某一班次公共汽车准时到站的概率为3

5,则他在3天乘车中,此班次公共汽车至少有2天准时到站的概率为( )

4.设随机变量X ~N (μ,σ2),且P (X c ),则c 的值为( ) A .0 B .1 C .μ

5.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率P (A |B ),P (B |A )分别是( )

,12 ,6091 ,6091 ,12

6.箱中装有标号为1,2,3,4,5,6且大小相同的6个球.从箱中一次摸出两个球,记下号码后放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是( )

7.已知X 的分布列为

且Y =aX +3,E (Y )=7

3,则a 为( )

,

A .-1

B .-12

C .-13

D .-1

4

8.已知变量x 服从正态分布N (4,σ2),且P (x >2)=,则P (x >6)=( ) A . B . C . D .

9.设由“0”,“1”组成的三位数组中,若用A 表示“第二位数字为‘0’的事件”,用B 表示“第一位数字为‘0’的事件”,则P (A |B )等于( )

10.把10个骰子全部投出,设出现6点的骰子的个数为X ,则P (X ≤2)=( )

A .C 210×? ????162×? ??

??568 B .C 110×16×? ????569+? ????5610

C .C 110×

16×? ????569+C 210×162×? ??

??568

D .以上都不对

11.已知随机变量X ~B (6,,则当η=-2X +1时,D (η)=( ) A .- B .- C . D .

12.节日期间,某种鲜花的进价是每束元,售价是每束5元,节后对

没售出的鲜花以每束元处理.据前5年节日期间这种鲜花销售情况得需求量ξ(单位:束)的统计如下表,若进这种鲜花500束在今年节日期间销售,则期望利润是( )

元 元

第Ⅱ卷(非选择题,共90分)

二、填空题(每小题5分,共20分)

13.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170,169,1

68,且各道工序互不影响,则加工出来的零件的次品率为________.

14.已知正态总体的数据落在区间(-3,-1)内的概率和落在区间(3,5)内的概率相等,那么这个正态总体的数学期望为________.

15.如果一个随机变量ξ~B ? ??

??

15,12,则使得P (ξ=k )取得最大值

的k 的值为________.

16.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.

三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)

17.(10分)设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.

(1)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;

(2)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望.

18.(12分)某同学参加3门课程的考试.假设该同学第一门课程

取得优秀成绩的概率为4

5,第二、第三门课程取得优秀成绩的概率分

别为p,q(p>q),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为

ξ0123

P

^

6

125

a b

24

125

(1)

(2)求p,q的值;

(3)求数学期望E(ξ).

19.(12分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.

(1)求所取3张卡片上的数字完全相同的概率;

(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. -

(注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数.)

20.(12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.

将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.

(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;

(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望E (X )及方差D (X ).

21.(12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和3

5.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.

(1)求至少有一种新产品研发成功的概率;

(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望. ~

22.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为,,,,各人是否需使用设备相互独立.

(1)求同一工作日至少3人需使用设备的概率;

(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.

答案

1.B ∵E (ξ)=7x +8×+9×+10y =7-y )+10y +=+3y ,∴+3y =,∴y =.

2.B 由题意知+a =1,E (X )=0×+a =a =,所以D (X )=. 3.C 设此班次公共汽车准时到站的天数为随机变量X ,则此班次公共汽车至少有2天准时到站的概率为P (X =2)+P (X =3)=C 23?

????352×2

5

+C 33?

??

??353=

81

125. 4.C 因为P (X c ),由正态曲线的对称性知μ=c .

·

5.A 由题意得事件A 包含的基本事件个数为6×5×4=120,事件

B 包含的基本事件个数为63-53=91,在B 发生的条件下A 发生包含

的基本事件个数为C 13A 2

5=60,

在A 发生的条件下B 发生包含的基本事件个数为C 13A 2

5=60,所以

P (A |B )=6091,P (B |A )=60120=1

2.故正确答案为

A.

6.B 若摸出的两球中含有4,必获奖,有5种情形;若摸出的两球是2,6,也能获奖.故获奖的情形共6种,获奖的概率为6C 26

=2

5.

现有4人参与摸奖,恰有3人获奖的概率是

C 34?

????253×35=96

625

. 7.C E (X )=1×16+2×23+3×1

6=2, 由Y =aX +3,得E (Y )=aE (X )+3. 所以73=2a +3,解得a =-13.

8.A 因为P (x >2)=,所以P (x <2)=1-=.因为N (4,σ2),所以此正态曲线关于x =4对称,所以P (x >6)=P (x <2)=.故选A.

9.C 因为P (B )=1×2×22×2×2=12,P (A ∩B )=1×1×22×2×2=1

4,所以P (A |B )=P A ∩B P B

=1

2. 10.D

P (X ≤2)=P (X =0)+P (X =1)+P (X =2)=C 010×?

????160×? ??

??5610+C 110

×1

6×? ????569+C 2

10×? ????162×? ??

??

568. 11.C 由已知D (X )=6××=,则D (η)=4D (X )=4×=.

12.A 节日期间这种鲜花需求量的均值E (ξ)=200×+300×+400×+500×=340(束). }

设利润为η,则η=5ξ+(500-ξ)-500×=ξ-450,则E (η)=Eξ-

450)=(ξ)-450=×340-450=706(元).

解析:加工出来的零件的合格品率为

?

????1-170×? ????1-169×? ????1-168=6770,

所以次品率为1-6770=370.

14.1

解析:区间(-3,-1)和区间(3,5)关于x =1对称(-1的对称点是3,-3的对称点是5),所以正态分布的数学期望就是1.

15.7,8

解析:P (ξ=k )=C k 15?

??

??

1215,则只需C k 15最大即可,此时k =7,8. ~

解析:设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C ,显然P (A )=P (B )=P (C )=1

2,所以该部件的使用寿命超过1 000的事件为(A B +A B +AB )C .

所以该部件的使用寿命超过1 000小时的概率为

? ????12×12+12×12+12×12×12=38

. 17.解:(1)由题可得,至少购买甲、乙两种商品中的一种的概率为p =1-(1-(1-=.

(2)ξ可能的取值有0,1,2,3, p (ξ=0)=(1-3=, p (ξ=1)=C 13(1-=, p (ξ=2)=C 23(1-=, p (ξ=3)==.

?

故ξ的分布列为

ξ18.解:记事件A i 表示“该生第i 门课程取得优秀成绩”,i =1,2,3.

由题意知P (A 1)=4

5,P (A 2)=p ,P (A 3)=q .

(1)由于事件“该生至少有1门课程取得优秀成绩”与事件“ξ=0”是对立的,所以该生至少有1门课程取得优秀成绩的概率是1-P (ξ=0)=1-6125=119125.

(2)由题意知

P (ξ=0)=P (A 1A 2A 3)=15(1-p )(1-q )=6

125, P (ξ=3)=P (A 1A 2A 3)=45pq =24

125. 整理得pq =6

25,p +q =1. 由p >q ,可得p =35,q =2

5.

(3)由题意知a =P (ξ=1)=P (A 1A 2A 3)+P (A 1A 2A 3)+P (A 1A 2A 3)

=45(1-p )(1-q )+15p (1-q )+15(1-p )q =37125,

b =P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=58

125.

所以E (ξ)=0×P (ξ=0)+1×P (ξ=1)+2×P (ξ=2)+3×P (ξ=3)=9

5.

19.解:(1)由古典概型中的概率计算公式知所求概率为

P =C 34+C 3

3

C 39

=584.

(2)X 的所有可能值为1,2,3,且

P (X =1)=C 24C 15+C 34

C 39

=1742,

P (X =2)=C 13C 14C 12+C 23C 16+C 33

C 39

=4384, ;

P (X =3)=C 22C 1

7

C 39

=112,故X 的分布列为

从而E (X )=1×1742+2×4384+3×112=47

28.

!

20.解:(1)设A 1表示事件“日销售量不低于100个”,A 2表示事件

“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天销售量低于50个”.

因此P (A 1)=++×50=, P (A 2)=×50=, P (B )=×××2=.

(2)X 可能取的值为0,1,2,3,相应的概率为 P (X =0)=C 03·(1-3=, P (X =1)=C 13·(1-2=, P (X =2)=C 23·(1-=, P (X =3)=C 33·=. 分布列为

因为X ~B (3,,所以期望E (X )=3×=,方差D (X )=3××(1-=.

21.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功}.由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=2

5,

且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.

(1)记H ={至少有一种新产品研发成功},则H =E F ,于是P (H )=P (E )P (F )=13×25=215,

故所求的概率为P (H )=1-P (H )=1-215=13

15.

(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220. 因P (X =0)=P (E F )=13×25=2

15, P (X =100)=P (E F )=13×35=3

15, P (X =120)=P (E F )=23×25=4

15, P (X =220)=P (EF )=23×35=6

15,

*

故所求的分布列为

数学期望为E (X )=0×215+100×315+120×415+220×6

15=300+480+1 32015

=2 100

15=140.

22.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设

备,i=0,1,2,

B表示事件:甲需使用设备,

C表示事件:丁需使用设备,

D表示事件:同一工作日至少3人需使用设备.

(1)D=A1·B·C+A2·B+A2·B·C.

P(B)=,P(C)=,P(A i)=C i2×,i=0,1,2,

所以P(D)=P(A1·B·C+A2·B+A2·B·C)

=P(A1·B·C)+P(A2·B)+P(A2·B·C)

=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)

=.

(2)X的可能取值为0,1,2,3,4,其分布列为

P(X=0)=P(B·A0·C)=P(B)P(A0)P(C)

=(1-××(1-=,

P(X=1)=P(B·A0·C+B·A0·C+B·A1·C)

=P(B)P(A0)P(C)+P(B)P(A0)P(C)+P(B)P(A1)P(C)

=××(1-+(1-××+(1-×2××(1-=,

P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=××=,

P(X=3)=P(D)-P(X=4)=,

P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1----=,

数学期望E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)

=+2×+3×+4×=2.

高中数学解题方法系列:概率的热点题型及其解法

高中数学解题方法系列:概率的热点题型及其解法 概率主要涉及等可能事件,互斥事件,对立事件,独立事件的概率的求法,对于这部分,我们还应当重视与传统内容的有机结合,在以后的高考中,可能出现概率与数列、函数、不等式等有关内容的结合的综合题,下面就谈一谈概率与数列、函数、不等式等有关知识的交汇处命题的解题策略。 题型一:等可能事件概率、互斥事件概率、相互独立事件概率的综合。 例1:甲、乙两人各射击一次,击中目标的概率分别是 32和4 3.假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响. (Ⅰ)求甲射击4次,至少1次未击中目标的概率; (Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率; (Ⅲ)假设某人连续2次未击中... 目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少? 解:(1)设“甲射击4次,至少1次未击中目标”为事件A,则其对立事件A 为“4次均击中目标”,则()()4 26511381P A P A ??=-=-= ???(2)设“甲恰好击中目标2次且乙恰好击中目标3次”为事件B,则 ()223 23442131133448P B C C ??????=?????= ? ? ???????(3)设“乙恰好射击5次后,被中止射击”为事件C,由于乙恰好射击5次后被中止射击,故必然是最后两次未击中目标,第三次击中目标,第一次及第二次至多有一次未击中目标。 故()22123313145444441024 P C C ??????=+????=?? ? ?????????例2:某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的. (Ⅰ)求3个景区都有部门选择的概率; (Ⅱ)求恰有2个景区有部门选择的概率. 解:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等. (I)3个景区都有部门选择可能出现的结果数为!32 4?C (从4个部门中任选2个作为1组, 另外2个部门各作为1组,共3组,共有624=C 种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A 1,那么事件A 1的概率为 P(A 1)=.943!3424=?C (II)解法一:分别记“恰有2个景区有部门选择”和“4个部门都选择同一个景区”为事件A 2

高中数学选修2-3知识点汇编 (2)

高二数学选修2-1知识点 第一章常用逻辑用语 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句. 2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论. 3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p,则q”,它的逆命题为“若q,则p”. 4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p,则q”,则它的否命题为“若p ?,则q ?”. 5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p,则q”,则它的否命题为“若q ?,则p ?”. 6、四种命题的真假性: 四种命题的真假性之间的关系: ()1两个命题互为逆否命题,它们有相同的真假性; ()2两个命题为互逆命题或互否命题,它们的真假性没有关系. 7、若p q ?,则p是q的充分条件,q是p的必要条件. 若p q ?,则p是q的充要条件(充分必要条件). 8、用联结词“且”把命题p和命题q联结起来,得到一个新命题,记作p q ∧. 当p、q都是真命题时,p q ∧是真命题;当p、q两个命题中有一个命题是假命题时,p q ∧是假命题. 用联结词“或”把命题p和命题q联结起来,得到一个新命题,记作p q ∨.当p、q两个命题中有一个命题是真命题时,p q ∨是真命题;当p、q两个命题都是假命题时,p q ∨是假命题. 对一个命题p全盘否定,得到一个新命题,记作p ?. 若p是真命题,则p ?必是假命题;若p是假命题,则p ?必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“?”表示.含有全称量词的命题称为全称命题. 全称命题“对M中任意一个x,有() p x成立”,记作“x ?∈M,() p x”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“?”表示.含有存在量词的命题称为特称命题. 特称命题“存在M中的一个x,使() p x成立”,记作“x?∈M,() p x”. 10、全称命题p:x ?∈M,() p x,它的否定p ?:x?∈M,() p x ?.全称命题的否定是特称命题. 第二章圆锥曲线与方程 11、平面内与两个定点 1 F, 2 F的距离之和等于常数(大于 12 F F)的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 12、椭圆的几何性质: 焦点的位置焦点在x轴上焦点在y轴上图形 标准方程() 22 22 10 x y a b a b +=>>() 22 22 10 y x a b a b +=>>范围a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点 () 1 ,0 a A-、() 2 ,0 a A () 1 0,b B-、() 2 0,b B () 1 0,a A-、() 2 0,a A () 1 ,0 b B-、() 2 ,0 b B 轴长短轴的长2b =长轴的长2a = 焦点() 1 ,0 F c-、() 2 ,0 F c() 1 0, F c-、() 2 0, F c 焦距() 222 12 2 F F c c a b ==- 对称性关于x轴、y轴、原点对称 原命题逆命题否命题逆否命题真真真真 真假假真 假真真真 假假假假

高中数学概率统计专题

高中数学概率统计专题文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高三文科数学:概率与统计专题 一、选择题: 1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A.1 3 B. 1 2 C. 2 3 D. 3 4 3、在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相 等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=1 2x+1上,则这组样本 数据的样本相关系数为 (A)-1 (B)0 (C)1 2(D)1 4.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为 (A)10 3 (B) 1 5 (C) 1 10 (D) 1 20 5.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是 A.1 4B. π 8 C.1 2 D.π4

6.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( ) 二、填空题: 7、从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______。 8、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____. 9.某单位为了了解用电量y (度)与气温x (℃)之间的关系,随机统计了某4天的用电量与当天气温,制作了对照表: 方程y ^=b ^x +a ^由表中数据得回归直线 中的b ^=-2,预测当气温为-4 ℃时,用电量约为________度. 三、解答题 10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。 (Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式。 (Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 日需求量 n 14 15 16 17 18 19 20 频数 10 20 16 16 15 13 10 (1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数; (2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量 气温(℃) 18 13 10 -1 用电量(度) 24 34 38 64

(最全)高中数学概率统计知识点总结

概率与统计 一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。 2、平均数:①、常规平均数:12n x x x x n ++???+= ②、加权平均数:112212n n n x x x x ωωωωωω++???+=++???+ 3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。 4、方差:2222121 [()()()]n s x x x x x x n = -+-+???+- 二、频率直方分布图下的频率 1、频率 =小长方形面积:f S y d ==?距;频率=频数/总数 2、频率之和:121n f f f ++???+=;同时 121n S S S ++???+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。 2、平均数: 112233n n x x f x f x f x f =+++???+ 112233n n x x S x S x S x S =+++???+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。 4、方差:22221122()()()n n s x x f x x f x x f =-+-+???+- 四、线性回归直线方程:???y bx a =+ 其中:1 1 2 22 1 1 ()() ?() n n i i i i i i n n i i i i x x y y x y nxy b x x x nx ====---∑∑== --∑∑ , ??a y bx =- 1、线性回归直线方程必过样本中心(,)x y ; 2、?0:b >正相关;?0:b <负相关。 3、线性回归直线方程:???y bx a =+的斜率?b 中,两个公式中分子、分母对应也相等;中间可以推导得到。 五、回归分析 1、残差:??i i i e y y =-(残差=真实值—预报值)。分析:?i e 越小越好; 2、残差平方和:21?()n i i i y y =-∑, 分析:①意义:越小越好; ②计算:222211221 ????()()()()n i i n n i y y y y y y y y =-=-+-+???+-∑ 3、拟合度(相关指数):221 2 1 ?()1() n i i i n i i y y R y y ==-∑=- -∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高; 4、相关系数 :()() n n i i i i x x y y x y nx y r ---?∑∑= = 分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关 ③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.2 2() ()()()() n ad bc k a b c d a c b d -= ++++ ②.犯错误上界P 对照表 3、独立性检验步骤

高中数学选修2-2-2-3知识点

-可编辑- 高中数学选修2----2知识点 第一章 导数及其应用 知识点: 一.导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数()y f x =在0x x =处的瞬时变化率是000 ()() lim x f x x f x x ?→+?-?, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000 ()() lim x f x x f x x ?→+?-? 2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。容易知道,割 线n PP 的斜率是00 ()() n n n f x f x k x x -= -,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的 斜率k ,即000 ()() lim ()n x n f x f x k f x x x ?→-'==- 3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ', 即0 ()() ()lim x f x x f x f x x ?→+?-'=? 考点:无 知识点: 二.导数的计算 1)基本初等函数的导数公式: 1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α =,则1 ()f x x αα-'=; 3 若()sin f x x =,则()cos f x x '= 4 若()cos f x x =,则()sin f x x '=-; 5 若()x f x a =,则()ln x f x a a '= 6 若()x f x e =,则()x f x e '= 7 若()log x a f x =,则1()ln f x x a '= 8 若()ln f x x =,则1()f x x '= 2)导数的运算法则 1. [()()]()()f x g x f x g x '''±=± 2. [()()]()()()()f x g x f x g x f x g x '''?=?+? 3. 2 ()()()()() [ ]()[()] f x f x g x f x g x g x g x ''?-?'= 3)复合函数求导 ()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=? 考点:导数的求导及运算 ★1、已知 ()22sin f x x x π=+-,则()'0f = ★2、若()sin x f x e x =,则()'f x = ★3.)(x f =ax 3+3x 2+2 , 4)1(=-'f ,则a=( ) 3 19.3 16 .3 13.3 10.D C B A ★★4.过抛物线y=x 2上的点M )4 1,21(的切线的倾斜角是() A.30° B.45° C.60° D.90° ★★5.如果曲线2 932 y x = +与32y x =-在0x x =处的切线互相垂直,则0x = 三.导数在研究函数中的应用 知识点: 1.函数的单调性与导数: 一般的,函数的单调性与其导数的正负有如下关系: 在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数 极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;

高中数学概率大题

高中数学概率大题(经典二)一.解答题(共10小题) 1.某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率; (Ⅲ)当p1=,p2=时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字). 2.已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次数,求ξ的分布列及Eξ. 3.某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设李老师

和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到李老师或张老师所发活动通知信息的学生人数为X. (I)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(II)求使P(X=m)取得最大值的整数m. 4.在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇的只数. (Ⅰ)写出ξ的分布列(不要求写出计算过程)和数学期望Eξ;(Ⅱ)求概率P(ξ≥Eξ). 5.A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时): A班 6 7 8 B班 6 7 8 9 10 11 12

高中数学专题――概率统计专题.

专题二概率统计专题 【命题趋向】概率与统计是高中数学的重要学习内容,它是一种处理或然问题的方法,在工农业生产和社会生活中有着广泛的应用,渗透到社会的方方面面,概率与统计的基础知识成为每个公民的必备常识.概率与统计的引入,拓广了应用问题取材的范围,概率的计算、离散型随机变量的分布列和数学期望的计算及应用都是考查应用意识的良好素材.在高考试卷中,概率与统计的内容每年都有所涉及,以解答题形式出现的试题常常设计成包含离散型随机变量的分布列与期望、统计图表的识别等知识为主的综合题,以考生比较熟悉的实际应用问题为载体,以排列组合和概率统计等基础知识为工具,考查对概率事件的识别及概率计算.解答概率统计试题时要注意分类与整合、化归与转化、或然与必然思想的运用.由于中学数学中所学习的概率与统计内容是最基础的,高考对这一部分内容的考查注重考查基础知识和基本方法.该部分在高考试卷中,一般是2—3个小题和一个解答题. 【考点透析】概率统计的考点主要有:概率与统计包括随机事件,等可能性事件的概率,互斥事件有一个发生的概率,古典概型,几何概型,条件概率,独立重复试验与二项分布,超几何分布,离散型随机变量的分布列,离散型随机变量的期望和方差,抽样方法,总体分布的估计,正态分布,线性回归等.【例题解析】 题型1 抽样方法 -)中,在公证部门监督下按照随机抽取的方法确【例1】在1000个有机会中奖的号码(编号为000999 定后两位数为的号码为中奖号码,该抽样运用的抽样方法是() A.简单随机抽样B.系统抽样C.分层抽样D.以上均不对 分析:实际“间隔距离相等”的抽取,属于系统抽样. 解析:题中运用了系统抽样的方法采确定中奖号码,中奖号码依次为:088,188,288,388,488,588,688,788,888,988.答案B. 点评:关于系统抽样要注意如下几个问题:(1)系统抽样是将总体分成均衡几个部分,然按照预先定出的规则从每一部分抽取一个个体,得到所需要的样本的一种抽样方法.(2)系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第一段中用简单随机抽样确定起始的个体编号;④按事先研究的规则抽取样本.(3)适用范围:个体数较多的总体. 例2(2008年高考广东卷理3)某校共有学生2000名,各年级男、女生人数如表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为() A.24B.18C.16D.12 Array 分析:根据给出的概率先求出x的值,这样就可以知道三年级的学生人数,问题就解决了. x=?=,这样一年级和二年级学生的解析:C 二年级女生占全校学生总数的19%,即20000.19380 +++=,三年级学生有500人,用分层抽样抽取的三年级学生应是总数是3733773803701500 64 50016 ?=.答案C. 2000 点评:本题考查概率统计最基础的知识,还涉及到一点分析问题的能力和运算能力,题目以抽样的等可能性为出发点考查随机抽样和分层抽样的知识. 例3.(2009江苏泰州期末第2题)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系, 2500,3500(元)月收入段应抽要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[) 出人.

高中数学选修2-3知识点总结

高中数学选修2-3知识点总结

第一章 计数原理 1、分类加法计数原理:做一件事情,完成它有 N 类办法,在第一类办法中有M 1种不同的 方法,在第二类办法中有M 2种不同的方 法,……,在第N 类办法中有M N 种不同的 方法,那么完成这件事情共有 M 1+M 2+……+M N 种不同的方法。 2、分步乘法计数原理:做一件事,完成它需要 分成N 个步骤,做第一 步有m1种不同的 方法,做第二步有M 2不同的方法,……, 做第N 步有M N 不同的方法.那么完成这件 事共有 N=M 1M 2...M N 种不同的方法。 3、排列:从n 个不同的元素中任取m(m ≤n )个元 素,按照一定顺序...... 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列 4、排列数: ),,()! (!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=Λ 5、组合:从n 个不同的元素中任取m (m ≤n )个 元素并成一组,叫做从n 个不同元素中取出 m 个元素的一个组合。 6、组合数:)!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ ;m n n m n C C -= m n m n m n C C C 1 1+-=+

7、二项式定理 :()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n +=++++++---011222…… 8、二项式通项公式展开式的通项公式:,……T C a b r n r n r n r r +-==101() 9.二项式系数的性质: ()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变 量的函数()f r ,定义域是{0,1,2,,}n L , (1)对称性.与首末两端“等距离”的两个二项式系数相等(∵m n m n n C C -=). (2)增减性与最大值:当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项1 2n n C -,1 2n n C +取得最大值. (3)各二项式系数和:∵1(1)1n r r n n n x C x C x x +=+++++L L , 令1x =,则0122n r n n n n n n C C C C C =++++++L L 第二章 随机变量及其分布 知识点: (3)随机变量:如果随机试验可能出现的结果 可以用一个变量X 来表示,并且X 是随着 试验的结果的不同而变化,那么这样的变量 叫做随机变量. 随机变量常用大写字母X 、 Y 等或希腊字母 ξ、η等表示。 (4)离散型随机变量:在上面的射击、产品检 验等例子中,对于随机变量X 可能取的值, 我们可以按一定次序一一列出,这样的随机 变量叫做离散型随机变量.

高中数学概率大题(经典二)

高中数学概率大题(经典二) 一.解答题(共10小题) 1.某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字). 2.已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次数,求ξ的分布列及Eξ.3.某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由老师和老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设老师和老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到老师或老师所发活动通知信息的学生人数为X. (I)求该系学生甲收到老师或老师所发活动通知信息的概率; (II)求使P(X=m)取得最大值的整数m. 4.在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以ξ表示笼还剩下的果蝇的只数. (Ⅰ)写出ξ的分布列(不要求写出计算过程)和数学期望Eξ; (Ⅱ)求概率P(ξ≥Eξ). 5.A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时): A班 6 6.5 7 7.5 8 B班 6 7 8 9 10 11 12 C班 3 4.5 6 7.5 9 10.5 12 13.5 (Ⅰ)试估计C班的学生人数; (Ⅱ)从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率; (Ⅲ)再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明) 6.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ 1 2 3 4 5 P 0.4 0.2 0.2 0.1 0.1 商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润. (Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);

高中数学概率统计教案

专题二 概率统计(文科) (一)统计 【背一背基础知识】 一.抽样方法 抽样方法包含简单随机抽样、系统抽样、分层抽样三种方法,三种抽样方法都是等概率抽样,体现了抽样的公平性,但又各有其特点和适用范围. 二.用样本估计总体 1.频率分布直方图:画一个只有横、纵轴正方向的直角坐标系,把横轴分成若干段,每一段对应一个组的组距,然后以此段为底作一矩形,它的高等于该组的 频率 组距 ,这样得出一系列的矩形,每个矩形的面积恰好是该组上的频率,这些矩形就构成了频率分布直方图.在频率分布直方图中,每个小矩形的面积等于相应数据的频率,各小矩形的面积之和等于 1; 2.茎叶图:茎叶图是一种将样本数据有条理地列出来,从中观察样本分布情况的图.在茎叶图中,“茎”表示数的高位部分,“叶”表示数的低位部分. 3.样本的数字特征: (1)众数:一组数据中,出现次数最多的数据就是这组数据的众数(一组数据中的众数可能只有一个,也可能有多个).在频率分布直方图中,最高的矩形的中点的横坐标即为该组数据的众数; (2)中位数:将一组数据由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.在频率分布直方图中,中位数a 对应的直线x a =的左右两边的矩形面积之和均为0.5,可以根据这个特点求频率分布直方图中的中位数; (3)平均数:设n 个数分别为1x 、2x 、L 、n x ,则()121 n x x x x n = +++L 叫做这n 个数的算数平均数.在频率分布直方图中,它等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和; (4)方差:设n 个数分别为1x 、2x 、L 、n x ,则 ()()() 2222 121n s x x x x x x n ? ?=-+-++-????L 叫做这n 个数的方差,方差衡量样本的稳定

高中数学选修2_2全套知识点与练习答案解析

选修2-2 知识点及习题答案解析 导数及其应用 一.导数概念的引入 1. 导数的物理意义: 瞬时速率。一般的,函数()y f x =在0x x =处的瞬时变化率是000 ()()lim x f x x f x x ?→+?-?, 我们称它为函数 () y f x =在 x x =处的导数,记作 0() f x '或 |x x y =',即 0()f x '=000 ()()lim x f x x f x x ?→+?-? 2. 导数的几何意义: 曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数 ()y f x =在0x x =处的导数就是切线PT 的斜率 k ,即00 ()()lim ()n x n f x f x k f x x x ?→-'==- 3. 导函数:当x 变化时, ()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有 时也记作 y ',即 ()()()lim x f x x f x f x x ?→+?-'=? 二.导数的计算 基本初等函数的导数公式: 1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1 ()f x x αα-'=; 3 若()sin f x x =,则()cos f x x '= 4 若()cos f x x =,则()sin f x x '=-; 5 若()x f x a =,则()ln x f x a a '= 6 若()x f x e =,则()x f x e '= 7 若 ()log x a f x =,则1()ln f x x a '= 8 若 ()ln f x x =,则1()f x x '= 导数的运算法则 1. [()()]()()f x g x f x g x '''±=± 2. [()()]()()()()f x g x f x g x f x g x '''?=?+? 3. 2 ()()()()()[]()[()] f x f x g x f x g x g x g x ''?-?'= 复合函数求导 ()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=? 三.导数在研究函数中的应用 1.函数的单调性与导数: 一般的,函数的单调性与其导数的正负有如下关系: 在某个区间(,)a b 内

高中数学大题规范解答-全得分系列之十概率与统计的综合问题答题模板

概率与统计是高中数学的重要学习内容,在高考试卷中,每年都有所涉及,以解答题形式出现的试题常常设计成包含概率计算,统计图表的识别等知识为主的综合题,以考生比较熟悉的实际应用问题为载体,注重考查基础知识和基本方法;以排列组合和概率统计等基础知识为工具,考查对概率事件的识别及概率计算. “大题规范解答——得全分”系列之(十) 概率与统计的综合问题答题模板 [典例](2012辽宁高考改编·满分12分)电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图: 将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性. (1)根据已知条件完成下面的2×2列联表,并据此资料判断是否有95%的把握认为“体育迷”与性别有关? 非体育迷体育迷合计 男 女 合计 (2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率. 附K2=n(ad-bc)2 (a+b)(c+d)(a+c)(b+d) ,

P (K 2≥k ) 0.05 0.01 k 3.841 6.635 [教你快速规范审题] 1.审条件,挖解题信息 观察 条件 ―→ 100名观众收看节目时间的频率分布直方图及日均收看时间不低于40分钟的观众称为体育迷,女体育迷10名 ??????→ 借助直方可确定图非体育迷及 体育迷人数 2.审结论,明解题方向 观察所求结论―→完成2×2列联表并判断“体育迷”与性别的相关性 ???→ 需要确定a ,b ,c ,d 及K 2的值 3.建联系,找解题突破口 由直方图及条件确定体育迷与非体育迷人数―→完成列联表―→ 计算K 2可判断结论 1.审条件,挖解题信息 观察条件―→确定“超级体育迷”标准且有2名女性“超级体育迷” ??????→由率分布直方频图 确定“超级体育迷”的人数 2.审结论,明解题方向 观察所求结论―→从“超级体育迷”中任取2人求至少有1名女性观众的概率 ????→ 分分析类1名女性观众或两名女性观众 3.建联系,找解题突破口 由频率分布直方图确定“超级体育迷”的人数?????→列法列出 举举

高中数学概率大题经典一

高中数学概率大题(经典一) 一.解答题(共10小题) 1.在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.(1)如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X 的数学期望; (2)若主力队员中有2名队员在练习比赛中受轻伤,不宜同时上场;替补队员中有2名队员身材相对矮小,也不宜同时上场;那么为了场上参加比赛的5名队员中至少有3名主力队员,教练员有多少种组队方案? 2.某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分 (1)估计第三个顾客恰好等待4分钟开始办理业务的概率; (2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望. 3.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行. (1)有三人参加抽奖,要使至少一人获奖的概率不低于,则“海宝”卡至少多少张? (2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值. 4.一袋中有m(m∈N*)个红球,3个黑球和2个白球,现从中任取2个球. (1)当m=4时,求取出的2个球颜色相同的概率; (2)当m=3时,设ξ表示取出的2个球中黑球的个数,求ξ的概率分布及数学期望; (3)如果取出的2个球颜色不相同的概率小于,求m的最小值. 5.某商场为促销设计了一个抽奖模型,一定数额的消费可以获得一张抽奖券,每张抽奖券可以从一个装有大小相同的4个白球和2个红球的口袋中一次性摸出3个球,至少摸到一个红球则中奖. (Ⅰ)求一次抽奖中奖的概率; (Ⅱ)若每次中奖可获得10元的奖金,一位顾客获得两张抽奖券,求两次抽奖所得的奖金额之和X(元)的概率分布和期望E(X). 6.将一枚硬币连续抛掷15次,每次抛掷互不影响.记正面向上的次数为奇数的概率为P1,正面向上的次数为偶数的概率为P2. (Ⅰ)若该硬币均匀,试求P1与P2; (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较P1与P2的大小. 7.某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:

高中数学选修计数原理概率知识点总结

选修2-3定理概念及公式总结 第一章基数原理 1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法 N=m 1+m 2+……+m n 种不同的方法 2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有N=m 1×m 2×……m n 种不同的方法 分类要做到“不重不漏”,分步要做到“步骤完整” 3.两个计数原理的区别: 如果完成一件事,有n 类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理, 如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理. 4.排列:从n 个不同的元素中取出m 个(m ≤n)元素并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. (1)排列数: 从n 个不同的元素中取出m 个(m ≤n)元素的所有排列的个数.用符号m n A 表示 (2)排列数公式:)1()2)(1(+-???--=m n n n n A m n 用于计算, 或m n A )! (! m n n -=() n m N m n ≤∈*,, 用于证明。 n n A =!n =()1231????-Λn n =n(n-1)! 规定0!=1 5.组合:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 (1)组合数: 从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,用m n C 表示 (2)组合数公式: (1)(2)(1) ! m m n n m m A n n n n m C A m ---+==L 用于计算, 或)! (!! m n m n C m n -= ),,(n m N m n ≤∈*且 用于证明。

高中数学教材选修2-2知识点

高中数学选修2-2知识点汇总 目录 第一章导数及其应用 (2) 常见的函数导数和积分公式 (2) 常见的导数和定积分运算公式 (3) 用导数求函数单调区间的步骤 (3) 求可导函数f(x)的极值的步骤 (3) 利用导数求函数的最值的步骤 (4) 求曲边梯形的思想和步骤 (4) 定积分的性质 (4) 定积分的取值情况 (4) 第二章推理与证明 (5) 第三章数系的扩充和复数的概念 (7) 常见的运算规律 (8)

高中数学选修2-2知识点总结 第一章 导数及其应用 1.函数的平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;(3)边际成本。 常见的函数导数和积分公式

常见的导数和定积分运算公式 若()f x ,()g x 均可导(可积),则有: 用导数求函数单调区间的步骤 ①求函数f (x )的导数'()f x ②令'()f x >0,解不等式,得x 的范围就是递增区间.③令'()f x <0,解不等式,得x 的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。 求可导函数f(x)的极值的步骤 (1)确定函数的定义域。(2) 求函数f (x )的导数'()f x (3)求方程'()f x =0的根(4) 用函数的导数为0的 点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/ ()f x 在方程根左右的值的符号, 如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值

2020高考数学概率统计(大题)

全国一卷真题分析---概率统计 1.(2011年)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的 概率为0.3,设各车主购买保险相互独立. (Ⅰ)求该地1位车主至少购买甲、乙两种保险中的l种的概率; (Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数.求X的期望. 2.(2012年)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果 当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进16朵玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,N n )的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 以100天记录的各需求量的频率作为 各需求量发生的概率. (ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差; (ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由. 3.(2013年)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中 优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下, 这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为1 2, 且各件产品是否为优质品相互独立. (1)求这批产品通过检验的概率; (2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望. 1

相关文档
最新文档