气体压缩机的构造原理

气体压缩机的构造原理
气体压缩机的构造原理

主要技术参数:

■ 4M12二氧化碳压缩机参数表

气体压缩机的润滑方式及特点

在压缩机中润滑不仅可降低机器的摩擦和磨损,同时还可起到密封、冷却和降低运转噪声的作用,良好的润滑条件是压缩机长期可靠工作的重要保证。但对某些类型的压缩机如罗茨式压缩机,因转子相互间和转子与壳体间可经常保持一定间隙而无滑动接触,故可无油润滑;小型干式的螺杆式和滑片式压缩机也可在无润滑的条件下工作;在极低温度下(-20—-50度或更低)工作或压缩高纯度的气体的活塞式压缩机,为防止润滑介质冷凝或润滑液混入到压送气体中去也可采用无油润滑方式,但这时活塞和活塞杆或采用迷宫式的密封结构,或采用石墨或聚四氟乙烯等抗磨材料制造的活塞环或密封填料。本节将重点说明“油”润滑压缩机的润滑方式。

气体压缩机的润滑部位原则上可分为两类,其一为油与压缩气体直接接触的内部零件,如往复式压缩机的气缸、活塞、活塞环、活塞杆、排气阀、密封填料等;回转式压缩机的气腔、转子(旋转体)、排气阀等。其二为油不与压缩气体接触的外部传动机构,如往复式压缩机曲轴箱中零件、曲柄销、曲柄轴承、

连杆滑块、滑道、十字头;回转式和速度式压缩机的轴承、增速齿轮等。无油型气体压缩机则要考虑当气体泄漏时对外部润滑系统的影响。

通常对大、中容量、多级、带十字头传动的中、高压压缩机,以上所说的内部零件和外部零件的润滑均为相互分开的独立系统,可分别采用各自所要求的润滑介质或润滑油。外部零件润滑为油泵压力供油强制循环式润滑系统。该系统不仅可单独调节和分配各润滑点的供油量,并因设有独立的油泵、油箱、冷却器和过滤器等,可使润滑油液得到充分冷却和过滤,从而可长时间保持油液的清洁和相对恒定的油温。内部零件的润滑则采用多头注油器将压力油强制注入到气缸及活塞杆的填料密封处。

■隔膜式气体压缩机

一种新型隔膜式气体压缩机由电机控制柜、电机、压缩机本体和联轴器等组成,电机是可调速电机,调速电机控制柜与调速电机用导线联接,电机输出轴与隔膜式气体压缩机的曲轴用联轴器相连,通过电机控制柜旋钮调节电机转速,来改变隔膜式气体压缩机曲轴转速,实现调节柱塞直线往复运动速度,从而控制气量和压力。该装置在降低压力时,电机输出功率减小,可有效防止电机过载,同时隔膜式气体压缩机结构更加简单,效率明显提高,节能效果显著。

■氩气、氮气、混合气体压缩机

本压缩机是彩无水润滑等先进工艺的气体压缩机,压缩后的气体纯度可保证气源纯度%。本产品主要用于槽车、贮槽、空分设备的高纯度氩气、氮气及混合气体的压缩与回收。特别可用于混合气体充装。

本压缩机可以替代膜压机,压缩高纯度氮气和氩气、混合气体及其它隋性气体,投资一台产量为100m3/h左右的压缩机与产量为20m3/h的膜压机相比,在保证气体质量的前提下,具有降低投资成本、提高产量、节约能源的显著优势。■ 2ZET、VWET系列无油润特殊气体压缩机

ZET系列、VWET系列无油润滑二氧化碳压缩机是食品、饮料加工系统中回收二氧化碳气体的重要设备,该压缩机的特点是活塞环及填料均采用自润滑材料聚四氟乙烯环为密封元件,气缸内不需要注油。根据二氧化碳的化学性能,对压缩机的进口过滤器、气缸套、活塞、气阀、气水分离器、冷却器芯子以及与气体相接触的管道等部件,均采用1Cr18Ni9Ti不锈钢制作,对于其它非不锈钢件,考虑到二氧化碳气体的腐蚀性,亦均进行氮化处理或其它防锈处理,以提高抗腐蚀能力,同时对于二氧化碳的泄漏,该机设有回收气体的装置。

2ZET系列、VWET系列无油润滑二氧化碳压缩机,特别适用于啤酒、饮料、医药等部门使用,产品有、、3m3、6m3、8m3、10m3等,并均配有缺水、气压及油压自动保护装置。

在二氧化碳压缩机的基础上,开发了特殊气体压缩机,如氢气、氧气、氮气、煤气、氯乙烯气体压缩机和六氟化硫压缩机等,根据市场和用户的需要,还可开发和生产其它特殊气体压缩机。

■ WM-2F无油气体压缩机

产品介绍:

WM-2F无油气体压缩机新增了流量调节、流量显示等功能,而且该机还采用了自动放水结构,充分提高了整机输出气体的干燥程度,放水速度快,不影响其它工作正常动行,控制部分采用程序控制,气路部分采用国际流行的PVC管和快速接插结构,使整体设计更完美。

产品特点:WM-2F无油气体缩朵采用全新塑料外壳设计,款式新颖、结构流畅。■隔膜式气体压缩机

用途

充气

设备冷却系统,如涡轮发电机的气体冷却

气体混合

气体循环系统

气体转移- 危险气体,有毒气体,可燃气体,放射性气体

氢气和氧气发电机推进系统

加氢过程

稀有和特殊气体处理

反应炉加气

半导体气体处理过程

酸气加工处理

超临界溶剂萃取/反应/微粒化系统

气相沉积

■ ZW系列特种气体压缩机

ZW系列工艺压缩机为单列、立式无油润滑、水冷式往复活塞压缩机,可实现1-3级压缩,最高排气压力可达25Mpa。安全可靠、运行平衡、维修方便。

本系列产品全部采用专利技术:新型高效密封环,填函密封效果好。

本系列产品适用于各种纯度要求,中、小排气量的氢气、氧气、氮气、氩气、甲醇、一氧化碳、二氧化碳、煤气、天然气、液化气等特种气体介质及高、中、低压的压缩输送。

机型主参数:

活塞行程:S=80mm;

曲轴转速:n max =980r/min;

活塞秆直秆:d=30mm;

额定活塞力:F=

■活塞式气体压缩机

活塞式气体压缩机,为新设计的全无油气体压缩机,传动原理为曲轴、杠杆、摆杆、结构,气阀是新设计的直流阀。目前国内外生产的活塞式气体压缩机,传动原理是曲轴连杆传动(有油压缩机),或曲轴连杆十字滑块活塞杆传动(半无油压缩机),所用气阀均为网状阀。现以国产半无油压缩机、排气量3立方、排气压力7公斤、与同样新机型作一对比,新机型有以下优越性:

体积小、新机型的体积只有现机型的五分之三。

节省能源,新机型比现机型节能百分之二十以上。

新机为全无油机,保证排出气体的洁净,可为用户节省大量资金去购买空气净化设备。

制造成本低,新的传动原理,在机械零件数量上比现机型少百分之十。成本约低百分之八。

新机型曲轴箱内无润滑油并与大气连通,整个运动机械零件都在常温下工作,降温冷却效果特好,对整机的使用寿命,安全性,可先辈性,都大有提高。这是现机型无法相比的。

新机型用了二比一的杠杆机构,曲轴只承受一半的活塞力,对部份零件的强度要大为降低。

综合上述对比,新机型是一种全新换代产品。该产品可设计出多种规格,排气量为3至40立方,排气压力为5至12公斤。该产品在一般机械厂均可生产。市场需求量大,如化工、食品、石化、医药、纺织、等行业都要用该项技术。■液环式气体压缩机

“QYJ系列、YLJ系列”压缩机属于改进型径向进排气双作用液环式压缩机。

主要为抽吸和压送干燥氯气及氯化氢气而设计制造的,但也常用来压缩乙烯、丙烯、氢气、氯甲醚等等易燃易爆的气体,或做真空泵使用,只是所用的液环介质不同;当压缩氯气、氯化氢气时,应用98%的浓硫酸,而压缩其它气体时用水即可,其功率消耗也随液体比重而减小。

这种液环式压缩机有时也用做自动控制系统的空压装置或医药、食品工业上,因为它排出的气体不含油污,非常干净。

技术性能:最大排气量:1314 m3/h(出口压力为零时);

排气量:1200 m3/h(出口压力为时)

排气压力:~ MPa (在此工况运行效率最高);

最高压力:MPa(QYJ型为);

最大真空度:MPa ;

进口管径:150 mm (QYJ型为200 mm);

出口管径:150 mm;

转向:人站在泵端面向泵为逆时针;

轴承温升:不高于环境35 oС,最高温度70oС;

主轴转速:960 转/分;

主要构件: 均采用球墨铸铁制造,经水压强试验;

设备均采用152型外装式机械密封:泵体外装刚玉陶瓷静环,动环由填充四氟和纯四氟分段压制而成,填充四氟耐磨,纯四氟柔韧性好,加工成波纹管形密封件,在不锈钢弹簧推力下,动环有很好的浮动性和密封比压,确保有足够的耐腐蚀性和耐磨性,正常的使用和维护将是它寿命的关键。不漏酸、不漏气,寿命长。

叶轮与锥形分配套之间的间隙是液环式压缩机输送气量的关键,间隙越大,抽气量越小,过小的间隙也容易使叶轮与锥套磨损。

主要规格有:

QYJ-1250/ QYJ-1200/

YLJ-1600/ YLJ-1200/ YLJ-1000/

YLJ-750/ YLJ-300/ YLJ-150/

该设备主要用于氯碱行业

医用空气压缩机的全面详解

医用空气压缩机 医用空气压缩机(英文名:Medical air compressor)是为需要气源的医疗保健设备提供充足、洁净的气源,上海岭泉实业发展有限公司专业生产医用空压机,质量过硬,品质优良。适用于牙科治疗设备、制氧机设备、呼吸机设备、医药气动设备等。 概述 《2013-2017年中国医用空气压缩机行业产销需求与转型升级分析报告》数据显示,我国的医用空气压缩机行业的市场规模均为8%以上的增速增长,2010-2011年增长率甚至超过了28%,市场规模扩张迅速。随着空气压缩机的行业的不断发转,越来越多的企业进入气压缩机行业,越来越多的人对气压缩机行业青睐,同时很多企业脱颖而出,例如上海岭泉实业发展有限公司为一家专业空压机及后处理设备的知名企业,主要经营产品:医用空压机、一体式空压机、吸附式干燥机(吸干机)、模块式吸干机及过滤器等等,并可提供压缩空气系统解决方案。然而,在规模如此巨大的市场上,过去很长一段时间由外资企业掌握绝大部分市场。2009年度,我国医用空气压缩机行业共有生产企业近400家,其中内资企业数量接近90%,实现销售收入总额约为60亿元,占全行业的40%;外资企业数量接近10%,实现销售收入总额约为90亿元,占全行业的60%。 简介 医用空气压缩机主要是为需要气源的医疗保健设备提供充足、洁净的气源,适用于牙科治疗设备、制氧机设备、呼吸机设备、医药气动设备等。 工作原理 医用空压机是属于微型无油往复活塞式压缩机,电机单轴驱动曲轴错角为180°分布的两组曲柄摇杆机构,主运动副为活塞环,付运动副为铝合金圆柱面,运动副之间由活塞环自润滑而不需添加任何润滑剂。压缩机通过曲柄摇杆的往复运动使圆柱面气缸的行程容积发生周期性变化,电机运转一周,每组气缸的行程容积将各有两次方向相反的变化。当活塞向轴

挖掘机的基本构造和工作原理

第一部分:挖掘机 第一章挖掘机的基本构造及工作原理 第一节概述 一、单斗液压挖掘机的总体结构 单斗液压挖掘机的总体结构包括①动力装置、②工作装置、③回转机构、④操纵机构、⑤传动系统、⑥行走机构和⑦辅助设备等,如图所示。

常用的全回转式液压挖掘机的动力装置、传动系统的主要部分、回转机构、辅助设备和 驾驶室等都安装在可回转的平台上,通常称为上部转台。因此又可将单斗液压挖掘机概括成 工作装置、上部转台和行走机构等三部分。 工作装置——①动臂、②斗杆、③铲斗、④液 压油缸、⑤连杆、⑥销轴、⑦管路 上部转台——①发动机、② 减震器主泵、③主阀、④驾 驶室、⑤回转机构、⑥回转 支承、⑦回转接头、⑧转台、 ⑨液压油箱、⑩燃油箱、○11 控制油路、○12电器部件、○13 配重 行走机构——①履带架、② 履带、③引导轮、④支重轮、 ⑤托轮、⑥终传动、⑦张紧 装置 挖掘机是通过柴油机把柴油的化学能转化为机械能,由液压柱塞泵把机械能转换成液 压能,通过液压系统把液压能分配到各执行元件(液压油缸、回转马达+减速机、行走马达+ 减速机),由各执行元件再把液压能转化为机械能,实现工作装置的运动、回转平台的回转 运动、整机的行走运动。 二、挖掘机动力系统 1、挖掘机动力传输路线如下 1)行走动力传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——中央回转接头——行走马达(液压能转化为机械能)——减速箱——驱动轮——轨链履 带——实现行走 2)回转运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——回转马达(液压能转化为机械能)——减速箱——回转支承——实现回转 3)动臂运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——动臂油缸(液压能转化为机械能)——实现动臂运动 4)斗杆运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——斗杆油缸(液压能转化为机械能)——实现斗杆运动 5)铲斗运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——铲斗油缸(液压能转化为机械能)——实现铲斗运动

气体压缩机的构造原理

主要技术参数:

■ 4M12二氧化碳压缩机参数表

气体压缩机的润滑方式及特点 在压缩机中润滑不仅可降低机器的摩擦和磨损,同时还可起到密封、冷却和降低运转噪声的作用,良好的润滑条件是压缩机长期可靠工作的重要保证。但对某些类型的压缩机如罗茨式压缩机,因转子相互间和转子与壳体间可经常保持一定间隙而无滑动接触,故可无油润滑;小型干式的螺杆式和滑片式压缩机也可在无润滑的条件下工作;在极低温度下(-20—-50度或更低)工作或压缩高纯度的气体的活塞式压缩机,为防止润滑介质冷凝或润滑液混入到压送气体中去也可采用无油润滑方式,但这时活塞和活塞杆或采用迷宫式的密封结构,或采用石墨或聚四氟乙烯等抗磨材料制造的活塞环或密封填料。本节将重点说明“油”润滑压缩机的润滑方式。 气体压缩机的润滑部位原则上可分为两类,其一为油与压缩气体直接接触的内部零件,如往复式压缩机的气缸、活塞、活塞环、活塞杆、排气阀、密封填料等;回转式压缩机的气腔、转子(旋转体)、排气阀等。其二为油不与压缩气体接触的外部传动机构,如往复式压缩机曲轴箱中零件、曲柄销、曲柄轴承、连杆滑块、滑道、十字头;回转式和速度式压缩机的轴承、增速齿轮等。无油型气体压缩机则要考虑当气体泄漏时对外部润滑系统的影响。 通常对大、中容量、多级、带十字头传动的中、高压压缩机,以上所说的内部零件和外部零件的润滑均为相互分开的独立系统,可分别采用各自所要求的润滑介质或润滑油。外部零件润滑为油泵压力供油强制循环式润滑系统。该系统不仅可单独调节和分配各润滑点的供油量,并因设有独立的油泵、油箱、冷却器和过滤器等,可使润滑油液得到充分冷却和过滤,从而可长时间保持油液的清洁和相对恒定的油温。内部零件的润滑则采用多头注油器将压力油强制注入到气缸及活塞杆的填料密封处。

起动机工作原理

汽车起动机工作原理 、 一、起动机的组成分类和型号 1、组成: 直流电动机--产生电磁转矩 传动装置(啮合机构)--起动时,啮合传动;起动后,打滑脱开 控制装置(电磁开关)--接通、切断电动机与蓄电池之间的电路 2、分类 (1)按控制装置分为:

直接操纵式 电磁操纵式 (2)按传动机构的啮合方式分为: 惯性啮合式--已淘汰 强制啮合式--工作可靠、操纵方便、广泛应用 电枢移动式--结构较复杂,大功率柴油车 齿轮移动式--电磁开关推动啮合杆 减速式--质量体积小,结构工艺复杂 3、型号 (1)产品代号: qd--表示起动机 qdj--表示减速起动机 qdy--表示永磁起动机 (2)电压等级:1-12v;2-24v (3)功率等级:1-0~1kw;2-1~2kw ;9-8~kw (4)设计序号 (5)变型代号:拼音大写字母表示,多表示电气参数的变化qd1225--12v,1~2kw,第25次设计,普通式起动机 二、发动机的起动性能和工作特性 1、发动机的起动性能评价指标有: (1)起动转矩 (2)最低起动转速

(4)起动极限温度 1、起动转矩 起动机要有足够大的转矩来克服发动机初始转动时的各种阻力。 起动阻力包括: (1)摩擦阻力矩 (2)压缩阻力矩 (3)惯性阻力矩 2、最低起动转速 (1)在一定温度下,发动机能够起动的最低曲轴转速。汽油机一般约为50~70r/min,最好70~100 r/min以上。 (2)起动机传给发动机的转速要大于发动机的最低转速: 若低于这个转速,汽油泵供油不足,气流速度过低,可燃混合气形成不充分,还会使压缩行程的散热损失和漏气损失增加,导致发动机不能起动。 3、起动功率 起动机所具有的功率应和发动机起动所必需的起动功率相匹配。 而蓄电池的容量与起动机的容量应成正比 p=(450~600)p/u 4、起动极限温度 当环境温度低于起动极限温度时,应采取起动辅助措施: (1)加大蓄电池容量

压缩机主要工作原理

主要工作原理 螺杆压缩机是利用一对相互啮合的阴阳转子来实现空气的持续吸气、压缩、排气等过程,主动转子为5纹螺旋,从动转子为6条齿槽,采用独特齿形,可产生高压缩效率。 1.空气从进气口吸入,充满封闭的齿轮间。 2.转子通过旋转的啮合使封闭的齿形的容积缩小,从而使空气得到压缩。 3.空气从敞开的齿间排出 以上过程随着转子不停的旋转啮合,不断产生脉动空气。 压缩空气中的水份来自何处? 一般大气中的水份皆呈气态,不易察觉其存在,但若经空气压缩机压缩及管路冷却后,则会凝结成液态水滴。举例说明:在大气温度30°c,相对湿度75%状况下,一台空气压缩机,吐出量3nm3/min,工作压力为0.7Mpa,运转24小时压缩空气中约含100l的水份。 为何须要干燥的空气? 假如没有使用任何可以除去水气的方法,立即可见的影响是造成产品品质不良,设备发生故障,严重影响生产流程,增加生产成本等不良后果,损失甚巨。 什么是露点温度? 即是一种检测压缩空气系统干燥度的温度,换句话说,就是空气中水份凝结成水滴的温度。露点温度愈低,压缩空气中所含的水份就愈少。 冷冻式压缩空气干燥机根据空气冷冻干燥原理,利用制冷设备将压缩空气冷却到一定的露点温度后析出相应所含的水分,并通过分离器进行气液分离,再由自动排水器将水排出,从而使压缩空气获得干燥。 离心压缩机:指气体在压缩机中的运动是沿垂直于压缩机轴的径向进行的。离心压缩机排气均匀,气流无脉冲,无油,性能曲线平坦,操作范围较宽。 压缩和压缩比 1、压缩 绝热压缩是一种在压缩过程中气体热量不产生明显传入或传出的压缩过程。在一个完全隔热的气缸内上述过程可成为现实。等温压缩是一种在压缩过程中气体保持温度不变的压缩过程。 2、压缩比:(R)

挖掘机的基本构造及工作基础学习知识原理

第二章挖掘机的基本构造及工作原理 第一节概述 一、单斗液压挖掘机的总体结构 单斗液压挖掘机的总体结构包括①动力装置、②工作装置、③回转机构、④操纵机构、⑤传动系统、⑥行走机构和⑦辅助设备等,如图所示。 中対可 / SWfi- KM轮蹄卄“节消声器 厠:肢摇杆

常用的全回转式液压挖掘机的动力装置、 传动系统的主要部分、回转机构、辅助设备和 驾驶室等都安装在可回转的平台上, 通常称为上部转台。因此又可将单斗液压挖掘机概括成 工作装置、上部转台和行走机构等三部分。 工作装置一一①动臂、②斗杆、③铲斗、④液 压油缸、⑤连杆、⑥销轴、⑦管路 支承、⑦回转接头、⑧转台、 ⑨液压油箱、⑩燃油箱、O 11 控制油路、O 12电器部件、013 配重 行走机构一一①履带架、② 履带、③引导轮、④支重轮、 ⑤托轮、⑥终传动、⑦张紧 装置 挖掘机是通过柴油机把柴油的化学能转化为机械能,由液压柱塞泵把机械能转换成液 上部转台 ①发动机、② 减震器主泵、③主阀、④驾 驶 室、⑤回转机构、⑥回转

压能,通过液压系统把液压能分配到各执行元件(液压油缸、回转马达+减速机、行走马达 +减速机),由各执行元件再把液压能转化为机械能,实现工作装置的运动、回转平台的回 转运动、整机的行走运动。 二、挖掘机动力系统 1、挖掘机动力传输路线如下 1)行走动力传输路线:柴油机一一联轴节一一液压泵(机械能转化为液压能)一一分配 阀一一中央回转接头一一行走马达(液压能转化为机械能)一一减速箱一一驱动轮一一轨 链履带一一实现行走 2)回转运动传输路线:柴油机一一联轴节一一液压泵(机械能转化为液压能)一一分配 阀一一回转马达(液压能转化为机械能)一一减速箱一一回转支承一一实现回转 3)动臂运动传输路线:柴油机一一联轴节一一液压泵(机械能转化为液压能)一一分配 阀一一动臂油缸(液压能转化为机械能)一一实现动臂运动 4)斗杆运动传输路线:柴油机一一联轴节一一液压泵(机械能转化为液压能)一一分配 阀一一斗杆油缸(液压能转化为机械能)一一实现斗杆运动 5)铲斗运动传输路线:柴油机一一联轴节一一液压泵(机械能转化为液压能)一一分配阀一一铲斗油缸(液压能转化为机械能)一一实现铲斗运动

平衡机原理解说

RLW-1型 单面立式平衡机微机数据测量系统 操作手册 济南银箭数控设备制造有限公司

第一篇初级入门 第一节基本介绍 一.简介: 本系统和各种单面平衡机主机配套使用,用来平衡各种盘型旋转工件,已成功应用于汽车刹车盘、制动毂、离合器、风机叶轮、风扇风叶、水泵转子、飞轮、粮油农机零件,刀具,皮带轮等诸多领域,它由壹个振动传感器和一个基准相位传感器及壹套工业微机,15"的彩色显示器组成.可方便地显示工件的不平衡量值和相位,操作工人按照指示的不平衡量值和角度在工件上钻孔或焊接相应的校正块就能把工件平衡好. 二.系统基本技术特性: 1.适用平衡转速范围: 240-6000rpm 2.与机械桥架配套后: 最小可达不剩余不平衡量: 精密级 一次不平衡量减少率: >90% 三.使用条件: 1.室温:0-50℃ 2.相对湿度<85% 3.电源电压波动值190-240V(必要时用户自备稳压电源) 四.技术特点: RLW-1单面平衡机微机数据测量装置与各种单面平衡机配合使用,具备下述特点: 1.经过一次标定后,微机将标定参数存盘,测量时输入转子标号,就能在一次启动下 正确显示工件的不平衡量值和相位. 2.配用振动传感器可以是磁电式,压电式或电涡流式传感器. 角度传感器可以是磁 电开关或光电开关. 3.具有夹具补偿功能,可以自动补偿夹具制造误差. 4.选用工业PⅢ级计算机主板、15"彩色显示器,便于参数存盘、打印,系统测试精 度高、使用可靠、维修方便,较其它测试系统先进. 5.采用国外先进集成电路制造的自动跟踪滤波电路使得该系统更加完美. 6.具有去重校正辅助显示功能,可方便地显示钻孔深度、刹车盘铣削周角、制动毂 偏心车削宽度。

动平衡仪的原理与应用

动平衡仪仪的原理与应用 动平衡仪,久经考验的动平衡技术推出的一款便携式现场动平衡仪。兼备现场振动数据测量、振动分析和单双面动平衡等诸多功能,简捷易用,是企业预知生产、保养、维修,尤其是精密机床、主轴、电机、磨床、风机等设备制造厂和振动技术服务机构最为理想之工具。 旋转机械是机械系统的重要组成部分,在国防和国民经济众多领域中发挥着巨大作用。 转子不平衡是旋转机械中的常见问题,也是诱发转子系统故障的主要原因之一。因此,开展动平衡技术研究具有重要的学术和工程应用价值。 但随着电子计算机和测试等技术的迅猛发展,动平衡技术也得到了很大发展,其研究成果对推动旋转机械向高速、高效、高可靠方向发展起到了重要作用。有关转子动平衡技术的研究主要集中在动平衡测试、非对称/非平面模态转子平衡、无试重平衡、自动平衡等技术领域。

方法/步骤

1. 1 现场平衡概念和必要性常用机械中包含着大量的作旋转运动的零部件,例如各种传动轴、主轴、电动机和汽轮机的转子等,统称为动平衡仪回转体。 在理想的情况下回转体旋转时与不旋转时,对轴承产生的压力是一样的,这样的回转体是平衡的回转体。 不平衡产生: 但工程中的各种回转体,由于材质不均匀或毛坯缺陷、加工及装配中产生的误差,甚至设计时就具有非对称的几何形状等多种因素,使得回转体在旋转时,其上每个微小质点产生的离心惯性力不能相互抵消,离心惯性力通过轴承作用到机械及其基础上,引起振动,产生了噪音,加速轴承磨损,缩短了机械寿命,严重时能造成破坏性事故。 为此,必须对转子进行平衡,使其达到允许的平衡精度等级,或使因此产生的机械振动幅度降在允许的范围内。 2. 2 1、定义1)静平衡

起动机构造与工作原理

项目二起动系统单元一——起动机的构造与工作原理 教学目的要求: 通过教学掌握起动机的组成、分类、型号识别、起动性能、工作过程和工作原理。熟悉直流电动机中的通用型和减速型起动机结构特点及工作过程。 教学重点、难点: 起动机结构、工作原理 主要教学内容: 1、起动机的组成、分类和型号 2、起动机的起动性能和工作特性 3、通用型起动机的构造 4、直流电动机 5、传动机构 6、控制装置 7、减速型起动机 复习旧课: 交流发电机和调节器的使用和维护: 1、安装 2、使用注意事项 3、检查 4、零部件检修 5、常见故障及修理 6、电路分析 导入新课: 发动机最初的动力来源?

一、起动机的组成分类和型号 1、组成: 直流电动机--产生电磁转矩 传动装置(啮合机构)--起动时,啮合传动;起动后,打滑脱开控制装置(电磁开关)--接通、切断电动机与蓄电池之间的电路2、分类 (1)按控制装置分为: 直接操纵式 电磁操纵式 (2)按传动机构的啮合方式分为: 惯性啮合式--已淘汰 强制啮合式--工作可靠、操纵方便、广泛应用 电枢移动式--结构较复杂,大功率柴油车 齿轮移动式--电磁开关推动啮合杆 减速式--质量体积小,结构工艺复杂 3、型号 (1)产品代号: QD--表示起动机 QDJ--表示减速起动机 QDY--表示永磁起动机 (2)电压等级:1-12V;2-24V (3)功率等级:1-0~1KW;2-1~2KW ;9-8~KW (4)设计序号 (5)变型代号:拼音大写字母表示,多表示电气参数的变化

QD1225--12V,1~2KW,第25次设计,普通式起动机 二、发动机的起动性能和工作特性 1、发动机的起动性能评价指标有: (1)起动转矩 (2)最低起动转速 (3)起动功率 (4)起动极限温度 1、起动转矩 起动机要有足够大的转矩来克服发动机初始转动时的各种阻力。 起动阻力包括: (1)摩擦阻力矩 (2)压缩阻力矩 (3)惯性阻力矩 2、最低起动转速 (1)在一定温度下,发动机能够起动的最低曲轴转速。汽油机一般约为50~70r/min,最好70~100 r/min以上。(2)起动机传给发动机的转速要大于发动机的最低转速: 若低于这个转速,汽油泵供油不足,气流速度过低,可燃混合气形成不充分,还会使压缩行程的散热损失和 漏气损失增加,导致发动机不能起动。 3、起动功率 起动机所具有的功率应和发动机起动所必需的起动功率相匹配。 而蓄电池的容量与起动机的容量应成正比 P=(450~600)P/U 4、起动极限温度 当环境温度低于起动极限温度时,应采取起动辅助措施: (1)加大蓄电池容量 (2)进气加热 (3)电喷车低温补偿 2、起动机的工作特性 1、起动机工作特性图

各种空气压缩机分类介绍教学内容

各种空气压缩机分类介绍 随着国内经济的发展,我国的空压机设计制造技术也会有突飞猛进的发展,在某些方面的技术水平也已经达到国际先进水平。但在一些方面与国际先进水平还存在一定差距。希望空压机用户在选型上能够切合实际,结合企业需求,选择经济、可靠、高效、环保的空压机,避免因选型错误导致的机器维修、成本加大等问题,面对市场上各式各样不同功效的空压机,很多用户对空压机的选型上无法有一个确切的认识,有时候是因为对不同空压机的功效和性能不能完全了解,而导致无法合理选型,无法选择可靠、高效、节能的空压机型。现将常用的几种空压机型的优缺点和其适用范围做一个简单的介绍,希望能为用户在选择空压机的时候做一个参考。若按照空压机气体方式的不同,通常将空压机分为两大类,即容积式和动力式(又名速度式)空压机。容积式和动力式空压机由于其结构形式的不同,又做了以下分类: 一、移动式空压机是一种动力式空压机,在其中有一个或多个旋转叶轮(叶片通常在侧面)使气体加速,主气流是径向的。动力式空压机又分为喷射式和透平式空压机,离心式空压机就属于透平式空压机组。在离心式空压机中,高速旋转的叶轮给予气体的离心力作用,以及在扩压通道中给予气体的扩压作用,使气体压力得到提高。 应用范围 近些年,化学工业和大型化工厂的陆续建立,使得离心式空压机成为了压缩和输送化工生产中各种气体的关键机器,占有及其重要的地位。随着气体动力学研究的成就使离心空压机的效率不断提高,又由于高压密封,小流量窄叶轮的加工,多油楔轴承等技术关键的研制成功,解决了离心空压机向高压力,宽流量范围发展的一系列问题,使离心式空压机的应用范围大为扩展,以致在很多场合可取代往复空压机,而大大地扩大了应用范围。 有些化工基础原料,如丙烯、乙烯、丁二烯、苯等可加工成塑料、纤维、橡胶等重要化工产品。在生产这种基础原料的石油化工厂中,离心式空压机也占有重要地位,是关键设备之一。除此之外,其他如石油精炼,制冷等行业中,离心式空压机也是极为关键的设备。 发展趋势 目前离心式空压机可用来压缩和输送化工生产中的各种气体,并且它的排气压力比早期有了很大的提高,其最小气量也有所降低,这就相应的扩大了离心式空压机的应用范围。 离心式空压机需要向大容量发展,以满足我国石化生产规模不断扩大的要求,同时随着新技术的发展、新型气体密封、磁力轴承和无润滑联轴器的出现,离心空压机的发展趋势主要表现为:不断开发高压和小流量产品;进一步研究三元流动理论,将其应用到叶轮和叶片扩压器等元件的设计中,以期达到高效机组;低噪

起动机的构造与工作原理

起动机的构造与工作原理 核心提示:一、起动机的组成分类和型号1、组成:直流电动机--产生电磁转矩传动装置(啮合机构)--起动时,啮合传动;起动后,打滑脱开控制装置(电磁开关)--接通、切断电动机与蓄电池之间的电路2、分类(1)按控制装置分为:直接操纵式电磁操纵式(2)按传动机构的啮合方式分为:惯性啮合式--已淘汰强制啮合式--工作可... 一、起动机的组成分类和型号 1、组成: 直流电动机--产生电磁转矩 传动装置(啮合机构)--起动时,啮合传动;起动后,打滑脱开

控制装置(电磁开关)--接通、切断电动机与蓄电池之间的电路2、分类 (1)按控制装置分为: 直接操纵式 电磁操纵式 (2)按传动机构的啮合方式分为: 惯性啮合式--已淘汰 强制啮合式--工作可靠、操纵方便、广泛应用 电枢移动式--结构较复杂,大功率柴油车 齿轮移动式--电磁开关推动啮合杆 减速式--质量体积小,结构工艺复杂 3、型号 (1)产品代号: qd--表示起动机 qdj--表示减速起动机 qdy--表示永磁起动机 (2)电压等级:1-12v;2-24v (3)功率等级:1-0~1kw;2-1~2kw ;9-8~kw (4)设计序号 (5)变型代号:拼音大写字母表示,多表示电气参数的变化 qd1225--12v,1~2kw,第25次设计,普通式起动机 二、发动机的起动性能和工作特性

1、发动机的起动性能评价指标有: (1)起动转矩 (2)最低起动转速 (3)起动功率 (4)起动极限温度 1、起动转矩 起动机要有足够大的转矩来克服发动机初始转动时的各种阻力。 起动阻力包括: (1)摩擦阻力矩 (2)压缩阻力矩 (3)惯性阻力矩 2、最低起动转速 (1)在一定温度下,发动机能够起动的最低曲轴转速。汽油机一般约为50~70r/min,最好70~100 r/min以上。 (2)起动机传给发动机的转速要大于发动机的最低转速: 若低于这个转速,汽油泵供油不足,气流速度过低,可燃混合气形成不充分,还会使压缩行程的散热损失和漏气损失增加,导致发动机不能起动。 3、起动功率 起动机所具有的功率应和发动机起动所必需的起动功率相匹配。 而蓄电池的容量与起动机的容量应成正比 p=(450~600)p/u

挖掘机的基本构造及工作原理演示教学

挖掘机的基本构造及 工作原理

第二章挖掘机的基本构造及工作原理 第一节概述 一、单斗液压挖掘机的总体结构 单斗液压挖掘机的总体结构包括①动力装置、②工作装置、③回转机构、④操纵机构、⑤传动系统、⑥行走机构和⑦辅助设备等,如图所示。

常用的全回转式液压挖掘机的动力装置、传动系统的主要部分、回转机 构、辅助设备和驾驶室等都安装在可回转的平台上,通常称为上部转台。因此 又可将单斗液压挖掘机概括成工作装置、上部转台和行走机构等三部分。 工作装置——①动臂、②斗杆、③铲 斗、④液压油缸、⑤连杆、⑥销轴、⑦ 管路 上部转台——①发动 机、②减震器主泵、③ 主阀、④驾驶室、⑤回 转机构、⑥回转支承、 ⑦回转接头、⑧转台、 ⑨液压油箱、⑩燃油 箱、○11控制油路、○12电 行走机构——①履带 架、②履带、③引导 轮、④支重轮、⑤托 轮、⑥终传动、⑦张紧挖掘机是通过柴油机把柴油的化学能转化为机械能,由液压柱塞泵把机械 能转换成液压能,通过液压系统把液压能分配到各执行元件(液压油缸、回转 马达+减速机、行走马达+减速机),由各执行元件再把液压能转化为机械能, 实现工作装置的运动、回转平台的回转运动、整机的行走运动。 二、挖掘机动力系统 1、挖掘机动力传输路线如下

1)行走动力传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——中央回转接头——行走马达(液压能转化为机械能)——减速箱——驱动轮——轨链履带——实现行走 2)回转运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——回转马达(液压能转化为机械能)——减速箱——回转支承——实现回转 3)动臂运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——动臂油缸(液压能转化为机械能)——实现动臂运动4)斗杆运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——斗杆油缸(液压能转化为机械能)——实现斗杆运动5)铲斗运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——铲斗油缸(液压能转化为机械能)——实现铲斗运动

气动马达工作原理教学内容

气动马达工作原理

气动马达工作原理 气动马达是一种作连续旋转运动的气动执行元件,是一种把压缩空气的压力能转换成回转机械能的能量转换装置,其作用相当于电动机或液压马达,它输出转矩,驱动执行机构作旋转运动。在气压传动中使用广泛的是叶片式、活塞式和齿轮式气动马达。 ※活塞式气动马达的工作原理 主要由:马达壳体、连杆、曲轴、活塞、气缸、配气阀等组成。压缩空气进入配气阀芯使其转动,同时借配气阀芯转动,将压缩空气依次分别送入周围各气缸中,由于气缸内压缩空气的膨胀,从而推动活塞连杆和曲轴转动,当活塞被推至“下死点”时,配气阀芯同进也转至第一排气位置。经膨胀后的气体即自行从气缸经过阀的排气孔道直接排出。同时活塞缸内的剩余气体全部自配气阀芯分配阀的排气孔道排出,经过这样往复循环作用,就能使曲轴不断旋转。其功主要来自于气体膨胀功。 Piston pneumatic motor principle of work Mainly consists of: motor shell, connecting rod, crankshaft, piston and cylinder, valve, etc. Compressed air into the air with its core, with rotation by air, will be the core of compressed air into the surrounding air cylinder respectively, due to the expansion of compressed air in cylinder, so as to promote the piston and crankshaft connecting, when the piston is pushed down dead spots ", with the core with air exhaust to first place. The expansion of the gas automatically from the exhaust duct cylinder valve directly after discharge. While the residual gas piston cylinder valve core with all the vent duct, corundum, through such reciprocating cycle can make the crankshaft constantly rotating. Its function mainly comes from the gas expanding power.

挖掘机的基本构造及基本原理

液压挖掘机的基本原理与结构特征 1 液压挖掘机的组成和工作原理 液压挖掘机的工作原理与机械式挖掘机工作原理基本相同。液压挖掘机可带正铲、反铲、抓斗或起重等工作装置。 液压挖掘机是在动力装工与工作装盆之间采用了容积式液压传动系统(即采用各种滚压元件).直接控翻各系统机构的运动状态.从而进行挖掘工作的。液压挖掘机分为全液压传动和非全液压传动两种。若其中的一个机构的动作采用机械传动.即称为非全液压传动。例如.WY 一160型,WY -250璧和H121虽等即为全液压传动;WY -60型为非全液压传动.因为其行走机构采用机械传动方式。一般悄况下.对液压挖掘机.其工作装置及回转装置必须是液压传动.只有行走机构既可为液压传动.也可为机械传动。 (1)液压反铲挖掘机。 1)液压反铲挖掘机的组成。液压反挖掘机机结构示意图,它由工作装置、回转装置和运行装置三大部分组成。液压反铲工作装置的结构组成是:下动臂和上动臂,用辅助油缸来控制两者之间的夹角。依命下动臂油缸4.使动臂绕其下支点A进行升降运动。依靠斗柄油缸6.可使斗柄8绕其与上臂的铰接点摆动。问样.借助转斗油缸,.可使铲斗绕着它与斗柄的校接点转动。操纵控制阀,就可使各构件在油缸的作用下,产生所需要的各种运动状态和运动轨迹,特别是可用工作装置支撑起机身前部.以便机器维修。 2)液压反铲挖妇机工作原理。液压反铲挖翻机的工作原理如图4-16所示。工作开始时,机器转向挖拥工作面.间时.动份油缸的连杆腔进油.动,下降.铲斗落至工作面(见图中位盆11).然后,铲斗油缸和斗柄油缸顺序工作.两油缸的活塞腔进油,活班的连杆外伸.进行挖劫和装段(如从位盆田到I)。铲斗装润后(在位置ll》这两个油缸关闭,动份油缸关闭.动衡油缸就反向进油.使动,提升.随之反向接通回转油马达,铲斗鱿转至卸峨地点.斗柄油缸和铲斗油iti 反向进油.铲斗匆截。匆叔完毕后.回转油马达正向接通.上部平台回转.工作装,转回挖州位2,开始第二个工作循环。 在实际操作工作中.因土城和工作面条件的不间和变化.液压反铲的各油缸在挖拥循环中的动作配合是灵活多样的.上述的工作方式只是其中的一种挖月方法。 3)滚压反铲挖翻机的工作特点。液压反铲挖拥机叮用于挖拓机停机面以下的土镶挖扭工作.如挖蜂沟、基坑等。由于各油缸可以分别操纵或联合操纵.故挖拥动作显得更加灵活。护斗挖扭轨迹的形成取决于对各油缸的操纵。当采用动有油虹工作进行挖扭作业时(斗柄和铲斗油位不工作》.就可以得到最大的挖翻半径和最大的挖翻行程.这就有利于在较大的工作面上工作。挖翻的高度和挖扭的深度决定于动特的.大上倾角和下倾角,亦即决定于动价油缸的行程。 当采用斗柄油位进行挖翻作业时.铲斗的挖月轨进是以动份与斗柄的校接点为回心.以斗齿至此校接点的距离为半径所作的圈弧线.圈弧线的长度与包角由斗柄油缸行程来决定。当动,位于级大下倾角,采用斗柄油缸工作时.可得到最大的挖扭深度和较大的挖抽行程,在较坚硬的土质条件下工作时也能装摘铲斗.故在实际工作中常以斗柄油缸进行挖翻作业和平场工作。 当采用铲斗油缸进行挖拓作业时.挖拐行程较短。为便护斗在挖翻行程终了时能保证铲斗装脚土峨.需要有较人的挖翻力挖取较厚的土续。因此.铲斗油包一般用于清除障碍及挖翻。 各油IE组合工作的工况也较多。当挖抽荃坑时,由于深度要求大、基坑璧陡而平整,需要采用动衡会斗柄两油缸同时工作;当挖拓坑底时,挖掘行程将结束.为加速装摘铲斗和挖扭过程需要改变铲斗切削角度等.则要求采用斗柄和铲斗网时工作.以达到良好的挖掘效果并提高生产率。 根据液压反铲挖捆机的结构形式及其结构尺寸.利用作图法可求出挖掘轨进的包络图.从

常见的空气压缩机原理

压缩机,将低压气体提升为高压气体的一种从动的流体机械,是制冷系统的心脏。它从吸气管吸入低温低压的制冷剂气体,通过电机运转带动活塞对其进行压缩后,向排气管排出高温高压的制冷剂气体,为制冷循环提供动力,从而实现压缩→冷凝(放热)→膨胀→蒸发( 吸热) 的制冷循环。 压缩机分为活塞压缩机,螺杆压缩机,离心压缩机等。 01 活塞压缩机 ▼

活塞式压缩机的工作是气缸、气阀和在气缸中作往复运动的活塞所构成的工作容积不断变化来完成。如果不考虑活塞式压缩机实际工作中的容积损失和能量损失(即理想工作过程),则活塞式压缩机曲轴每旋转一周所完成的工作,可分为吸气,压缩和排气过程。 活塞式压缩机工作原理 压缩过程:活塞从下止点向上运动,吸、排汽阀处于关闭状态,气体在密闭的气缸中被压缩,由于气缸容积逐渐缩小,则压力、温度逐渐升高直至气缸内气体压力与排气压力相等。压缩过程一般被看作是等熵过程。 排气过程:活塞继续向上移动,致使气缸内的气体压力大于排气压力,则排气阀开启,气缸内的气体在活塞的推动下等压排出气缸进入排气管道,直至活塞运动到上止点。此时由于排气阀弹簧力和阀片本身重力的作用,排气阀关闭排气结束。 02 螺杆压缩机

▼ 螺杆式压缩机又称螺杆压缩机,分为单螺杆式压缩机及双螺杆式压缩机。单螺杆式压缩机是在70年代由法国辛恩开发出来,因其的结构更加合理,迅速的应用到国防领域,并被开发国家保护起来,技术一直都在相对独立。双螺杆式压缩机最早由德国人H.Krigar在1878年提出,直到1934年瑞典皇家理工学院A.Lysholm才奠定了螺杆式压缩机SRM 技术,并开始在工业上应用,取得了迅速的发展。

汽车起动机的工作原理

汽车起动机的工作原理 速,才能启动内燃机。汽车发动机常 用的启动方式有人力启动和电力启动机启 动两种。 人力启动(手摇)最简单,但劳动强度大, 且不安全,目前只作为后备启动方式。电力 启动机启动具有操作方 便、启动迅速可靠、 有重复启动能力等特点,因而被广泛采用。 用于启动内燃机的电动机及附属装置,叫作 启 动装置0 -2 .对启动电动机的基本要求 (1) 必须有足够的转矩和转速 转矩和 转速是对 1柯框 1 也硏?■ 4 ■卫 II *? 10' 14 ovHDrwrM&? U H H 巒IE i|T?? ft'IJL VM WR?Hfwi *3LD 乍 viTWMJ Hit 劃 誨 TfchMDiJLL Cm~DB 11,?? 2 VH4 II 八■■ I3.lt 『 ?■■ tlVBLH*B4 i 诃IL 嗨 Mi P MIWI ^JUHS NUtnM& raliM vvM-Mwniit OM JL H RB FF- H-Ht i* *W? ?■ ■良 TI ■-^-■■niH miiT? AWM^TlTiF W UFmD mxt : IJkdlh *. 、概述 1 .启动机功用 汽车发动机是靠外力启动的,必须依靠 外力使曲轴旋转,并要求曲轴的旋转达到一 定的转 因为:

电动机最主要的要求,

有关。对于构造一定的发动机来说,当温度降低时,润滑油的黏度增大,阻力矩显著增加;在启动加速过程中, 还要克服各运动机件的惯性力,故启动电动机必须具备足够的转矩。’ 2)要保证启动发动机除具备足够转矩夕卜,还必须使发动机的转速升至一定程度。因为转速过低时,对于化油器式发动机来说?化油器中的气流速度过低,低压程度过?小,汽油不易喷出,也不易雾化,造成混合气过稀,发动机便不能发动。当温度较低(在冬天)时,雾化条件变坏,混合气变得更稀,启动更加因难。一般要求 化油器发动机的启动转速应在40, . -50转/分以上。 (2)转矩应能随转速的升高而降低因为在启动之初,曲轴由静止开始转动时,机’件作加速度运动须克服很大的静止惯性力,同时各摩擦部分处于半干摩擦状态,摩擦阻力较大,这时需要较大的启动转矩,才能带动发动机转动,并使转速很快升高,但随着曲轴转速升高,加速阻力减小,油膜也逐渐形成,所需的转矩相应减小,而当曲轴转速升至启动转速,发动机一旦发动后.自己就能够独立工作,就不需要电动机带着转动了。所以, 希望转矩能随着转速的升高而降低。 3?启动机的组成与分类 (1)启动机的组成电力启动机都是由直流串励式电动机、传动机构和控制装置三大部分组成(见图1)。 1)直流串励式电动机,其作用是产生电磁转矩。 2)传动机构(或称啮合机构),其作用是:在发动机启动时,使启动机小齿轮啮入飞轮齿圈,将启动机转矩 传给发动机曲轴;而在发动机启动后,使启动机自动脱开飞轮齿圈。 3)控制装置(即开关)用来接通与截断启动机与蓄电池间的电路。 常见发动机的启动装置是以蓄电池为电源的直流电动机,其电动机的启动动力必须超过发动汽缸的压缩压 力及其他摩擦阻力;必须具有足够的启动转矩,以便使发动机达到规定的转速。在满足上述要求的情况下,启动装置应尽可能小型轻量化。为此,启动装置除必须有直流电动机和附属装置外,还应有把电动机的动力传 递给发动机的动力传递机构。动力传递机构由转矩齿轮(飞轮上的齿环)和电动机轴上的小齿轮及行星减速机构组成。发动机启动时,小齿轮与转矩齿轮相啮合,电动机转动,通过减速机构将转矩扩大,再通过小齿轮驱动(2)启动机的分类启动机的种类很多,但电动机部分一般没有大的差别,传动机构和控制装置则差异较大。

立磨的构造与原理

立磨的构造及原理 一、立磨发展概况 水泥生产主要设备:“三磨一烧”,“三磨”指煤磨、生料磨、水泥磨,“一烧”则指回转窑的熟料煅烧;都是主要的耗能设备.四大粉磨设备:立磨\辊压机\辊筒磨\球磨机而传统球磨机有效功太低,很大部分变为无用功而浪费,如热能;靠料床挤压原理粉磨的立磨(也称辊式磨),有效功是球磨机的2.5倍,可大量节省电能,粉磨煤和水泥原料单位电耗节省5kwh/t,较球磨机节电30%;磨水泥节省8kwh/t.上世纪60年代前,刚开发出的立磨,结构不完善,磨损件不耐磨,只能磨较软的煤,寿命也不长,仍主要靠球磨机.上世纪70年代,随着新型干法水泥技术的飞速发展以及规模的不断扩大,节能要求的提高,使立磨技术不断进步完善,特别是液压加压技术替代弹簧加压技术,在粉磨生料上应用越来越多.80年代,开展了立磨粉磨水泥和矿渣的研究,预粉磨或终粉磨,随着耐磨材料技术的不断发展,粉磨矿渣更具优势,节能50~60%. 二、ZJTL3840立磨 技术性能、结构概述、立磨的特点及工作原理; 立磨是一种理想的大型粉磨设备,广泛应用于水泥、电力、冶金、化工、非金属矿等行业。它集破碎、干燥、粉磨、分级输送于一体,生产效率高,可将块状、颗粒状及粉状原料磨成所要求的粉状物料。 立磨的研发与生产技术要求很高,我国相关研究机构曾在80年代就提出在水泥行业大力推广立磨的建议,而且当时也有一些厂家推出了自己的立磨产品。但在当时的研发水平局限下,这时的立磨产品具有不可避免的技术缺陷,因此很多水泥生产厂家最后重又转投球磨机。 近几年来,随着磨粉机械研发技术的大幅提升,国外磨粉机生产企业的立磨技术已经日臻成熟,立磨的产品技术优势也日益凸显。在这种形势下,国磨粉机生产企业吸取国外成功经验,进行重大技术改革,也相继重新推出了具有自己相关专利技术的立磨产品,并逐渐的为国水泥、电力、化工行业所接受,成为行业粉磨首选设备。

启动机工作原理及常见故障

汽车起动机的工作原理以及常见故障检修方法 汽车的启动系统包括:启动机、启动开关、启动继电器及空挡启动开关。 启动发动机所需要的曲轴转矩和最低启动转速取决于发动机的型式、发动机的排量、汽缸数、压缩比、轴承的摩擦力,以及由发动机曲轴带轮所驱动的附加负荷、燃油的供给方式及机油温度等。通常.随着机油温度的下降.启动机要求的启动转矩和启动转速会升高;所以在设计启动机时上述因素都应予以考虑。 一、概述 1.启动机功用汽车发动机是靠外力启动的,必须依靠外力使曲轴旋转,并要求曲轴的旋转达到一定的转速,才能启动内燃机。汽车发动机常用的启动方式有人力启动和电力启动机启动两种。 人力启动(手摇)最简单,但劳动强度大,且不安全,目前只作为后备启动方式。电力启动机启动具有操作方便、启动迅速可靠、有重复启动能力等特点,因而被广泛采用。用于启动内燃机的电动机及附属装置,叫作启动装置o - 2.对启动电动机的基本要求 (1)必须有足够的转矩和转速转矩和转速是对电动机最主要的要求,因为: 1)要带动发动机旋转,必须克服发动机的阻力矩。发动机的阻力矩与发动机的工作容积、汽缸数、压缩比等有关。对于构造一定的发动机来说,当温度降低时,润滑油的黏度增大,阻力矩显著增加;在启动加速过程中,还要克服各运动机件的惯性力,故启动电动机必须具备足够的转矩。? 2)要保证启动发动机除具备足够转矩外,还必须使发动机的转速升至一定程度。因为转速过低时,对于化油器式发动机来说.化油器中的气流速度过低,低压程度过.小,汽油不易喷出,也不易雾化,造成混合气过稀,发动机便不能发动。当温度较低(在冬天)时,雾化条件变坏,混合气变得更稀,启动更加因难。一般要求化油器发动机的启动转速应在40,.-50转/分以上。 (2)转矩应能随转速的升高而降低因为在启动之初,曲轴由静止开始转动时,机?件作加速度运动须克服很大的静止惯性力,同时各摩擦部分处于半干摩擦状态,摩擦阻力较大,这时需要较大的启动转矩,才能带动发动机转动,并使转速很快升高,但随着曲轴转速升高,加速阻力减小,油膜也逐渐形成,所需的转矩相应减小,而当曲轴转速升至启动转速,发动机一旦发动后.自己就能够独立工作,就不需要电动机带着转动了。所以,希望转矩能随着转速的升高而降低。 3.启动机的组成与分类 (1)启动机的组成电力启动机都是由直流串励式电动机、传动机构和控制装置三大部分组成(见图1)。 1)直流串励式电动机,其作用是产生电磁转矩。 2)传动机构(或称啮合机构),其作用是:在发动机启动时,使启动机小齿轮啮入飞轮齿圈,将启动机转矩传给发动机曲轴;而在发动机启动后,使启动机自动脱开飞轮齿圈。 3)控制装置(即开关)用来接通与截断启动机与蓄电池间的电路。 常见发动机的启动装置是以蓄电池为电源的直流电动机,其电动机的启动动力必须超过发动汽缸的压缩压力及其他摩擦阻力;必须具有足够的启动转矩,以便使发动机达到规定的转速。在满足上述要求的情况下,启动装置应尽可能小型轻量化。为此,启动装置除必须有直流电动机和附属装置外,还应有把电动机的动力传递给发动机的动力传递机构。动力传递机构由转矩齿轮(飞轮上的齿环)和电动机轴上的小齿轮及行星减速机构组成。发动机启动时,小齿轮与转矩齿轮相啮合,电动机转动,通过减速机构将转矩扩大,再通过小齿轮驱动发动机曲轴旋转。

汽车起动机的工作原理

汽车起动机的工作原理 一、概述 1.启动机功用汽车发动机是靠外力启动的,必须依靠外力使曲轴旋转,并要求曲轴的旋转达到一定的转速,才能启动内燃机。汽车发动机常用的启动方式有人力启动和电力启动机启动两种。 人力启动(手摇)最简单,但劳动强度大,且不安全,目前只作为后备启动方式。电力启动机启动具有操作方便、启动迅速可靠、有重复启动能力等特点,因而被广泛采用。用于启动内燃机的电动机及附属装置,叫作启动装置o -2.对启动电动机的基本要求

(1)必须有足够的转矩和转速转矩和转速是对电动机最主要的要求,因为: 1)要带动发动机旋转,必须克服发动机的阻力矩。发动机的阻力矩与发动机的工作容积、汽缸数、压缩比等有关。对于构造一定的发动机来说,当温度降低时,润滑油的黏度增大,阻力矩显著增加;在启动加速过程中,还要克服各运动机件的惯性力,故启动电动机必须具备足够的转矩。’ 2)要保证启动发动机除具备足够转矩外,还必须使发动机的转速升至一定程度。因为转速过低时,对于化油器式发动机来说.化油器中的气流速度过低,低压程度过.小,汽油不易喷出,也不易雾化,造成混合气过稀,发动机便不能发动。当温度较低(在冬天)时,雾化条件变坏,混合气变得更稀,启动更加因难。一般要求化油器发动机的启动转速应在40,.-50转/分以上。 (2)转矩应能随转速的升高而降低因为在启动之初,曲轴由静止开始转动时,机’件作加速度运动须克服很大的静止惯性力,同时各摩擦部分处于半干摩擦状态,摩擦阻力较大,这时需要较大的启动转矩,才能带动发动机转动,并使转速很快升高,但随着曲轴转速升高,加速阻力减小,油膜也逐渐形成,所需的转矩相应减小,而当曲轴转速升至启动转速,发动机一旦发动后.自己就能够独立工作,就不需要电动机带着转动了。所以,希望转矩能随着转速的升高而降低。 3.启动机的组成与分类 (1)启动机的组成电力启动机都是由直流串励式电动机、传动机构和控制装置三大部分组成(见图1)。 1)直流串励式电动机,其作用是产生电磁转矩。 2)传动机构(或称啮合机构),其作用是:在发动机启动时,使启动机小齿轮啮入飞轮齿圈,将启动机转矩传给发动机曲轴;而在发动机启动后,使启动机自动脱开飞轮齿圈。 3)控制装置(即开关)用来接通与截断启动机与蓄电池间的电路。 常见发动机的启动装置是以蓄电池为电源的直流电动机,其电动机的启动动力必须超过发动汽缸的压缩压力及其他摩擦阻力;必须具有足够的启动转矩,以便使发动机达到规定的转速。在满足上述要求的情况下,启动装置应尽可能小型轻量化。为此,启动装置除必须有直流电动机和附属装置外,还应有把电动机的动力传递给发动机的动力传递机构。动力传递机构由转矩齿轮(飞轮上的齿环)和电动机轴上的小齿轮及行星减速机构

相关文档
最新文档