发动机缸体(汽缸盖)常见缺陷与对策剖析

发动机缸体(汽缸盖)常见缺陷与对策剖析
发动机缸体(汽缸盖)常见缺陷与对策剖析

中小型乘用车发动机缸体(汽缸盖)常见缺陷与对策浅析概述

(铸件脉纹形成机理及其防治)

改革开放后近十年来,我国的汽车制造工业得到了飞速发展,许多高端汽车品牌,几乎与发达国家同步推出面世,与之相适应的汽车发运机制造业也得到了迅猛发展,其中发动机铸造的水平也得到了极大的提高,无论铸造产量还是铸件技术要求及铸件质量,都有基本上满足了现代汽车发动机日益提高的要求。

以中小型乘用发动机主要铸件汽缸体(汽缸盖)生产为例,众多汽车发动机铸造企业都有采用了粘土砂高压造型(少数为自硬树脂砂造型),制芯则普遍采用覆膜砂热芯或冷芯工艺,而在熔炼方面大都采用双联熔炼或电炉熔炼,所生产的发动机均为高强度薄壁铁件。许多厂家为满足高强度薄壁铸铁件的工艺要求,纷纷引进先进的工艺技术装备,如高效混砂机,高压造型线,高度自动化的制芯中心,强力抛丸设备,大多采用整体浸涂,烘干,并且自动下芯。在过程质量控制方面,许多企业实现了在线检测与控制,如配备了型砂性能在线检测,热分析法铁水质量检测与判断装置,真空直读光谱议快速检测。清洁度检查的工业内窥镜等。相当一部分企业还在产品开发方面应用了计算机模式拟技术。可以毫不夸张地说,就硬件配件而言,我国发动机铸造水平丝毫不亚于当今世界上工业发达国家,一句话,具备了现代铸造生产条件。(为叙述方便,以下称上述框架内容的生产条件为现代生产条件。)然而应该承认,在发动机铸造企业的经济效益与产品质量以及铸件所能达到的技术要求方面,我们与世界发达国家还有较大的差距。提高生产质量,减少废品损失,是缩小与发达国家差距,发挥引进设备效能,提高企业效益的重要途径。本文试图就我国铸造企业在现代铸造条件下,中小型乘用车发动机灰铸铁汽缸体(汽缸盖)铸件生产中常见的铸造缺陷与对策,与广大业界同仁作一交流。

1气孔

气孔通常是汽缸体铸件最常见缺陷,往往占铸件废品的首位。如何防止气孔,是铸造工作者一个永久的课题。

汽缸体的气孔多见于上型面的水套区域对应的外表面(含缸盖面周边),例如出气针底部(这时冒起的气针较短)或凸起的筋条部。以及缸筒加工后的内表面。严重时由于型芯的发气量大而又未能充分排气,使上型面产生呛火现象,导致大面积孔洞与无规律的砂眼。

在现代生产条件下,反应性气孔与析出性气孔较为少见,较为多见的是侵入性气孔。现对侵入性气孔分析出如下:

1.1原因

1.1.1 型腔排气不充分,排气系统总载面积偏小。

1.1.2浇注温度较低。

1.1.3浇注速度太慢;,铁液充型不平稳,有气体卷入。

1.1.4型砂水份偏高;砂型内灰分含量高,砂型透气性差。

1.1.5对于干式气缸套结构的发动机,水套砂芯工艺不当(如未设置排气系统或排气系统不完善;或因密封不严,使浇注时铁水钻入排气通道而堵死排气道;砂芯砂粒偏细,透气不良;上涂料后未充分干燥;砂芯砂与涂料发气量太大,或发气速度不当,涂料的屏蔽性差……).经验证明,干式缸套的缸体的气孔缺陷,很大程度上与水套工艺因素相关连。

1.1.6孕育剂未经干燥且粒度不当;铁液未充分除渣,浇注时未挡渣,由此引起渣气孔。

1.1.7浇注时未及时引火

1.2对策

1.2.1模型上较高部位设置数量足够,截面恰当的出气针或排气片;而芯头部位设置排气空腔.上述排气系统均应将气体引至型外。通常排气截面为应内浇道总截面积1.5~1.8倍左右。

1.2.2浇注系统按半开放半封闭原则设置为宜,且须具有一定的拦渣功能,这样铁液充型时比较

平稳,不会充击铸型或产生飞测或卷入气体.而浇注系统的截面大小以8~10kg/S的浇注速度来计算较为适宜。

1.2.3铁液的熔炼温度应不低于1500°C,而手工浇注时末箱的浇注温度应控制在1400°C左右(视铸件大小与壁厚可适当调整).最好能采用自动工浇注,浇注温度误差应在20°C以内。

1.2.4一个好的适于高压造型的砂处理系统,型砂水分应在控制在2.8-3.2%,其实的紧实率应在36~42之间,而湿压强度应达180~220kpa(均指在造型机处取样检测).为达这些指标,需监控型砂的灰份,辅助材料的添加量,合适的原砂粒度,循环砂的温度及混砂效率。

1.2.5注意做好铁液去渣,浇注时挡渣引火以及孕育剂的干燥等工作。

1.2.6对于干式气缸套结构的发动机缸体,至关重要的是要有非常完善到位的水套砂芯工艺:

a 、水套坭芯用砂的平均细度较之其他砂芯要粗一些,以求有良好的透气性。

b、设置充分的互相连通的排气孔网并使之能排出型外,这些孔网尽可能在制芯时生成,亦可在成型后钻加工形成。对于前者要定期监控检查孔网是否畅通(当心部芯砂固化不良时易将孔网堵塞)。

c、对砂芯砂性能要综合考虑,不能片面追求强度。当强度太高时,势必要增大树脂用量,从面使芯砂发气量太高;而当水套芯的结构比较复杂纤薄砂厚不均匀,且以能开出排气孔网时,就要求砂芯有较高的强度,即使发气量大些也无防。

d、当水套芯有排气孔网时,涂料要有较好的屏蔽性;当水套芯截面不便设置排气孔网时,涂料要有较好的透气性,这时砂的粒度也应更粗些。

e、当水套芯布有排气孔网时,且使用屏蔽性涂料时,在浸涂时要防止涂料液进入排气孔网,更要注意封火措施(可使用封火垫片材料),以免浇注时铁水进入排气孔网,把排气道堵死;

f、涂料的发气量要低,且施涂后一定要充分干燥。

一个成熟的水套芯工艺,可以将缸筒加工后内表面的气孔废品率控制在0.3%,甚至更低。2.砂眼

砂眼也是气缸体(气缸盖)铸件的常见缺陷,多见于铸件的上型面,也有在缸筒的内表面经加工后暴露出来的。

2.1 原因

2.1.1浇注系统设计不合理。

2.1.2型砂系列化统管理不善,型砂性能欠佳。

2.1.3型腔不洁净。

2.1.4砂芯表面状况不良或是施涂与干燥不当。

2.2 对策

2.2.1就浇注系统设置方面来说,为避免或减少砂眼缺陷,应注意以下事项;

a、要有合理的浇注速度。截面太小,则浇注速度太慢,铁液上升速度太慢,上型受铁液高温烘烤时间长,容易使型砂爆裂,严重时会造成片状脱落。浇注系统的比例,应使铁液能平稳注入,不得形成紊流或喷射。

b、尽量使铁液流经的整个通道在砂芯内生成,通常坭芯砂(热法覆膜砂或冷芯砂)较之外模粘土砂更耐高温铁液冲刷。而直浇道难以避免设置在外模的粘土砂砂型中通过,这时可在直浇口与横浇口搭接处设置过滤器(最好是泡沫陶瓷质),可以将铁液在直浇道内可能冲刷下来散砂和铁液夹渣加以过滤,从而可减少砂眼和渣眼。

c、浇道是变截面的,因此变截面处应尽可能圆滑光洁,避免形成易被铁液冲垮的尖角砂。

d、浇道的截面比例宜采用半封闭半开放型式,以降低铁液进入型腔时的流速与冲击,而内浇道位置应尽可能避免直接冲击型壁和型芯,且呈扩张形为好。

2.2.2为防止铸件的砂眼缺陷,型砂方面的主要措施是

a、是控制型砂中的微粉含量,型砂在反复使用中,微粉含量会越来越高,这会降低型砂的湿压强度,水份及紧实率则会提高,使型砂发脆。

b、浇注时砂芯溃散后混入旧砂,未燃尽的残留树脂膜,会使型砂的韧性变差,产生砂眼的可

能性也增大。为此需要改善型砂的表面稳定性,降低脆性,提高韧性,方法是应在型砂中增加适当的a-淀粉,均可取得良好的效果,也可以在型腔表面施表面安定剂(喷洒)。

2.2.3 在造型、翻箱,特别是下芯、合箱等各环节容易将砂粒掉入型腔,而又未能清理干净,极易造成铸件砂眼缺陷。为此,一是要选取恰当的芯头间隙和斜度并保证下芯和合箱的工装精度,以免破坏砂型或损坏型芯而将砂粒散落在型腔内;二是合箱前清理干净型内可能掉入的砂粒(抽吸法好于吹出法)。

2.2.4 不能忽视的是,砂芯的飞边毛刺要清理干净,上涂烘干后待用的砂芯表面的砂粒灰尘也要吹净,否则容易被铁水冲刷并富集在铸件某处形成砂眼。同时,需要强调的是,砂芯上涂不能太厚,优其是当工艺要求个别砂芯的个别部位或全部两次浸渗涂料时,涂料不能太厚,且须等第一次上涂料干燥到一定程度后才能上涂第二次,否则浇注时过厚的涂料会爆裂而形成夹砂(渣)。

3 脉纹(飞翅)

通常在铸件的内表面或热节部位,如缸体缸盖的水套腔内,或是进排气道内,由于浇注时高温铁液的作用,使砂芯硅砂发生相变膨胀引起砂芯表面产生裂缝,液体金属渗入其中,从而导致铸件形成飞翅状凸起的缺陷,即"脉纹"。脉纹一旦出现,难以清理,当水套腔内有脉纹时,轻者会影响内腔的清洁度,重者会影响冷却水的流量,从而降低对发动机的冷却效果,甚会引起“烧缸”,“拉缸”严重后果;当气道内出现脉纹时,会影响气道涡流特性,最终影响发动机的整机工作性能。生产实残证明,冷芯工艺产生脉纹的倾向要稍大于壳芯产生脉纹的倾向。

3.1 原因

3.1.1 如上所述,产生脉纹的根本原因是高温铁液作用于砂芯引起硅砂的膨胀裂纹。

3.1.2 砂芯材料不具备低膨胀的性能,或者其自身不能吸收这种受热产生的膨胀。

3.1.3 砂芯的韧性或高温强度不足以克服膨胀应力导致产生裂纹。

3.1.4 所用材料不能低御砂芯在高温下产生膨胀裂纹。

3.1.5 铁液未能在砂芯产生裂纹前凝固结壳,从而预防脉纹产生。

3.2 对策

针对3.1所列产生脉纹的原因(或者说脉纹形成的机理)。显然应采取以下措施;

3.2.1 在保证能得到健全铸件而不产生气孔等缺陷的铁液充型温度下,尽可能采取较低的浇注温度以减轻砂芯受热膨胀的程度;同时采用较快的浇注速度,以避免砂芯长时间受到高温烘烤可能产生的膨胀裂纹。

3.2.2 用于易产生脉纹砂芯(如水套芯,进排气道芯)的芯砂原砂预先进行消除相变膨胀处理,或者在砂芯材料中添加一些辅助材料,降低砂芯材料的热膨胀率;再就是原砂的颗粒组成以三筛或四筛级配,以求砂芯材料能自身吸收膨胀变型。

3.2.3 必要时,在砂芯材料中使用一定比例的非石英系列砂(如橄槛石砂,锆英砂等),第一它们的膨胀率极小,第二其导热性能好,使铁液结壳时间早于砂芯相变膨胀开裂时间。

3.2.4 提高砂芯材料的韧性和高温强度。

3.2.5 使用强度、韧性优良,且导热性能极好的烧结型涂料,以增强砂芯表面抗膨胀裂纹的能力。

以上这些措施使用于冷芯砂,也使用于热法覆模砂(壳型砂)。由此看出,预防或减少脉纹缺陷的主要措施是改善砂芯膨胀性能。

4 清洁度

现代发动机对清洁度的要求非常苛刻,对气缸体(气缸盖)铸件而言,水腔、油腔、挺杆室等到部位允许残留的砂粒和异物,仅限为数克(g)以内,许多企业尽管采取了二次抛丸、强力抛丸,甚至引进了先进的抛丸设备,如鼠笼或机械手抛丸,要完全达到内腔清洁度要求,仍然较为困难,无论是壳芯或是冷芯,情形均一样。

4.1 原因

清洁度达不到要求,从根本上来说是由于铸件结构方面的原因,上述各腔在抛丸时,因为出砂孔眼少而小,铁丸所能投射进去的量有限,所以内腔的光洁度与清洁程度均不及铸件的外表面,也不及曲轴箱和缸筒面等部位。在不能改变铸件结构的情况下,只能查找影响清洁度其他方面的原因。

4.1.1 砂芯表面状况不良,如充填不紧实;砂芯表面粗糙;粘膜等。

4.1.2 施涂不当,如涂料性能差,玻美度不合适,涂层厚度不够等。

4.1.3 现有强力抛丸装置对铸件大部分内外表层都能清理得很干净,但对狭窄复杂的水腔、油腔仍显不足。

4.2 对策

4.2.1 改善和提高砂芯表面的质量状况,如选用流动性好的制芯材料(安息角<29°);合理设置排气塞并加以维护使其畅通;施用品质好的脱模剂防止粘膜等,这些措施的目的是得到表面紧实致密的砂芯。

4.2.2 通常都要对坭芯施以涂料层。涂料玻美度要合适;涂料要有较强的渗透性;涂料要有一定的厚度(一般要达0.2mm),涂层干燥后不能显见砂粒为宜;选用的涂料防粘砂性能优良,在浇注温度下能在铸件表面形成一低熔点的烧结层,而且在铸件冷却过程中因收缩率的不同能自动剥离下来。

4.2.3 如3.0所述,要努力避免防止脉纹缺陷的产生。一旦出现脉纹,铸件的内腔清洁度情况就更加恶化。有关措施参见3.2。

4.2.4 对铸件内腔清理,国内外的主流工艺方法是采用强力机械抛丸的方式,其形式有鼠笼抛丸,机械手夹持抛丸等。对这类抛丸设备,要维护达到额外电流值,要调整最佳抛射角度,对后一种抛丸方式,还可对难以清理的内腔将程序设置在最佳入射角度时适当延长抛射时间。此外还有以下几种改善和提高内腔清洁度的手段:

a、电液压清理,其原因是将待清理铸件置于水池中,在高能量放电过程中,所产生的高压冲击波将粘附在铸件上的砂粒振击脱落,理论上说水能浸入的孔腔内,其粘砂均能清理干净,但这种方法占地面积大,耗能高,流程长(尚要倒空内腔积水并烘干水迹)、维护量大,也有一定的安全问题。

b、先将铸件置于炉内焙烧,再进行抛丸。这种方式提高铸件清洁度的效果还是很明显的,但同样是能耗较高、周期长,如以煤炭作加热炉燃料,则作业环境较差。

c、有的厂家除采用强力抛丸以外,还针对水道腔或油道腔进行喷丸清理。这种方式对提高内腔清洁度最有效,所能达到的清洁度水平最高,但目前仅有此类通用单机产品,尚需人工握持喷丸头伸进密封的工作室对准有关砂孔喷射,劳动强度大,环境恶劣,期待着专用的自动喷丸设备在气缸体(气缸盖)清理生产线上应用。

5 渗漏

渗漏是指气缸体(汽缸盖)在压力试验(水压/气压)时的渗漏现象,多发生在汽缸体(或汽缸盖)的水套腔或是油道腔。

引起渗漏的原因有夹杂和疏松两大类(机械损伤或铸件裂纹引起的曲轴箱渗漏的情况极少,在此不加论述)。

5.1 夹杂引起的渗漏

5.1.1 原因

(1) 砂芯在修芯时未清除飞边、毛刺,或砂芯上有松散粘附的大小不一的砂粒、砂团未清除干净,致使浇注时被铁液冲刷下来并飘浮富集在水套壁或油道壁,形成夹砂(砂眼)。使腔壁贯通渗漏。

(2) 组合好的砂芯被粉尘砂粒污染或型腔内不慎掉入散砂,没有清理干净,也会形成砂眼使腔壁贯通而渗漏。

(3) 铁液不纯净,而浇道内又无过滤措施或拦渣效果差,使铁液中的夹渣进入型腔,使水腔或油腔的腔壁形成贯通性的渣孔而渗漏。

5.1.2 对策

(1) 认真清除砂芯的飞边毛刺,并清除坭芯上附着的砂粒砂团,避免在水腔/油腔壁上可能形成的砂眼。

(2) 吹净砂粒与粉尘污染的组合好的砂芯组,清理掉入型腔的砂粒。

(3) 直浇道设置高效的过滤器,横浇道应有良好的拦渣功能,并做好铁液净化工作(造渣,除渣),以防腔壁上产生渣眼。

5.2 缩松引起的渗漏

这种渗漏常发生在水腔(油腔)或喷油嘴等热节部位。

5.2.1 原因

(1)铁液成分不恰当。Si/C过高,石墨片粗大,组织疏松。

(2)孕育过量,致使共晶团数量过多,微晶间隙难以补缩致密。

5.2.2 对策

(1)在规定的碳当量保持不变的前提下,限制Si/C在0.5~0.6之间。

(2)不得孕育过量,较有效的措施是采用SISr(含锶)孕育剂,其石墨化能力级强,用量仅FeSi 孕育剂的50%,即可充分孕育消除截面敏感性,以可避免产生过多数量的共晶团。

(3)在易产生缩松的热节部位,局部刷除碲粉醇基涂料,增加该部位的冷却能力,防止产生缩松.有报道称,含pb量达0.0008%,即可造成缩松渗漏,须注意使用的炉料中有否镀pb材料,或须先行除去镀层.此外影响缩松渗漏的微量元素还有Ti,AL等,它们都会增加铁液的收缩倾向,严格控制。

6材质性能方面的缺陷

纵观国内外发动机技术发展趋势,都在追求减薄铸件壁厚,从而减轻铸件乃至整机重量,达到降低油耗的目的,目前发动机单位功率的缸体缸盖重量达到1.8gk/kw左右,相应的铸件主要壁厚仅3.5mm左右,这就对铸件的材质性能提出了很高的要求。概括起来说,主要为:a,干型单铸试棒的抗拉强度qb≥250Mpa,指定本体部位的抗拉强度Qb≥250Mpa;

b,铸件指定部位的硬度在180HB以上;铸件厚薄断面的硬度差在30HB以下;

c,件本体的主要部位珠光体含量在90%以上,石墨型态应在大部分为A型,充充表面有少量B,D型,石墨最大长度液压在250um以下。

尽管我国大多数专业发动机铸件生产厂家,通过技术改造和技术引进,达到了现代生产条件,但也常出现达不到上述材质要求方面的缺陷。

6.1原因

6.1.1铁液熔炼温度偏低,过冷度小,使得后续的孕育强化效果差。

6.1.2炉料(金属炉料与非金属炉料)质量差,微量元素及非金属夹杂物含量高。

6.1.3合金化措施不当或(或合金元素选择不当,或合金加入量不当,或合金化方法不当)。6.1.4孕育措施不当(孕育剂成分,孕育剂形态,孕育量,孕育方法等)。

6.1.5在保温炉内处置不当(如频繁且大幅度调整化学成分,使铁液在炉内保温时间过长,元素变化大),成份控制精度差。

6.2对策

6.2.1提高熔炼温度提高铁液的稳定性,增加其过冷倾向,消除原材料的"遗传性);并保证出铁温度大于1480°C,以确初始浇注温度达到1450°C,而终了浇注温度达1400°C。

6.2.2加强冲天炉控制,使之炉况稳定,从而保证进入保温电炉的铁液成分稳定(减少成分烧损的波动)这样可减少电炉内成分调整所需的时间,以免增加铁液的收缩倾向和白口倾向。

6.2.3保温电炉内不得已需要增C操作时,一定要选择吸收率高的增碳剂,二要保证有充分电磁搅拌和充分吸收的时间,否则所取铁水样不能反应整个熔体真实含C量,导致实际碳当量发生偏差。

6.2.4减少碳当量的波动,提高成分控制精度,要求△CE≤0.05%,△Si≤0.1%。

6.2.5对于形状复杂,薄壁高强度的缸体,缸盖类铸件的铁液,即要有高强度,也要有良好的铸

造性能,为此通常其成分设计为高强当量(3.9-4.1%),使其具有良好的铸造性能,而为了达到较高力学性能则采用低合金化措施。

a根据我国资源情况以及多数企业的经验与习惯,多采用Cr,Cu等合金元素.有利于增加并细化和稳定珠光体,改善石墨状态,从而得到较高的力学性能。

b合金的加入量必须加以控制。Cr是一种促进形成并稳定珠光体的元素,且能细化珠光体,因而能显著提高灰铸铁的强度,然而Cr与C又有较强的亲和力,是一种强碳化物元素,这就会增加铁液的白口倾向;同时Cr元素还会降低铸铁的共晶凝固温度,使铁液的凝固温度范围扩大,因此加大了灰铸铁的缩松,缩孔倾向,降低铸件的致密性,这就可能影响Cr对灰铁的强化作用。当Cr是在0.2-0.3%范围时,则能避害趣利。

同样,CU也是促进稳定和细化珠光体的元素,Cu又是促进石墨化的元素,这就可以抵消Cr增大白口倾向的不利影响。CU的适宜加入量为0.4-0.5%。

由此,推荐Cr与Cu组合使用,会取得更好的效果,即保证了良好的铸造性能,又提高了铸件的力学性能。

这里需要指出的是由于Cr,CU元素的作用,增加珠光体并稳定和细化珠光体成片间距很小的层片状组织,改善石墨状态(呈A型),分布于大小,因此缸体,缸盖在热交变应力作用下抵抗热疲劳产生裂纹的能力也得到提出高(即具有好的热稳定性)[3]

6.2.6采用恰当的孕育处理,可以提高缸体,缸盖铸件的材质强度,特别是提出高其硬度和显微组织的均匀性,改善厚薄截面的敏感性,使得硬度差在30HB以内,并具有良好的切削加工性,这里恰当的孕育处理包括:

a选用合适的孕育剂,在众多孕育剂中,含Ba.Ca.Sr(锶)等元素的孕育剂,不仅有很好的抗孕育衰退作用;且具有强烈的石墨化作用,可显著改善铸件截面敏感性,避免铸件在最小壁厚处的白口倾向,且显微组织也更加均匀。

b合适的孕育方法。在包内孕育,喂丝孕育,型内孕育,随流孕育等方法中,以随流孕育为简便,最适宜于大批量流水生产,效果也最好。推荐粒度为0.5-1.0mm,加入量为0.1-0.2%。

c 需要指出的是,BaSi孕育剂会使铸件硬度偏低,可加入微量Sn(0.04-0.06%)或Sb(锑)(0.02%),可称补硬度偏低的不足。

6.2.7严格控制炉料,标准是(1)微量元素低;(2)洁净;(3)严禁混入合金元素。

7收缩

汽缸体(汽缸盖)铸件结构复杂,壁厚差别较大。园弧曲面凸起的厚大部位,大批量水生产时,工艺上又不便采取冒口补缩之类的措施,当其它工艺处置不当时,这些厚大热节处往往会产生集中收缩,严重时会产生较深的缩裂缺陷。

7.1原因

7.1.1上述部位的根部,时有造型充填不紧实,该部位铸型硬度/钢度不足的情形。当铁液凝固石墨化膨胀时,发生型壁位移。

7.1.2浇注温度偏高

7.1.3铸液收缩倾向较大

7.2对策

7.2.1提高型砂的流动性,控制合适的型砂紧实率,对气冲造型或气流预紧实的造型方法,模型相应部位增加排气塞,采取这些措施后,可提高缺陷发生部位的铸型硬度∕刚度,使高碳当量铁液凝固时不会因为石墨化膨胀产生型壁位移,从而能实现无冒口自补缩。

7.2.2在满足充型要求,不得产生气孔等缺陷的情况下,切勿盲目提高浇注温度,(浇注温度太高,还会引起跑火漏箱和粒砂等到缺陷)。

7.2.3保证铁液有良好的铸造成性能,尤其要防止铁液的白口倾向收缩倾向。

a)要精确控制碳当量(3.9-4.1%),低于下限时,则铁液的收缩倾向加大,在前述部位出现缩孔缺陷的可能性就越大。

b)对高碳当量铁液低合金化处理时,要控制可能由此引起收缩增大的倾向,一些增大灰铁白

口倾向,收缩倾向的合金元素,要严格用量。如前述Cr,会降低共晶温度扩大凝固温度区间,其用量不得超过0.035%等。

c)电炉内采用增碳剂调整碳当量(碳量)时,一定要有充分吸收增c的时间,否则会出现增碳假象。这样的铁水浇注的产品。往往会出现收缩。

d)要控制原铁水中非合金化带来的一些有害元素的含量,如P,Ti,V等到也会增加铁液的收缩倾向。

8加工性能

切削加工性能差是我国发动机铸件普遍存在一个问题,也是与国外铸件质量最在的差距所在。即使国产铸件与进口KD件的化学成份,基体金相组织乃至硬度值相近,但国产铸件的切削加工性能仍远不及进口KD件,有时刀具消耗相差一倍以上。

8.1原因

8.1.1来自原材料的微量元素的影响

A,铁中微量元素超标,如Ti,V,Pb,Be,B等,这些微元素含量较高时,有的呈游离碳化物,氮化物等硬质点形式存在(碳化钛,氮化钛等),有的使硬质相索氏体数量明显增加(如V 等)。

B,废铁中混入合金钢(如Ti,V等),或使用了带有镀层的废铁。如镀Pb废钢板。

C,有的元素(如Pb,Be)增加铸件的白口倾向。

8.1.2熔炼工艺不当,如在电炉中熔炼时间过长,铁液白口化倾向加大。

8.1.3孕育等工艺不当,即所选用的孕育剂或孕育工艺未能消除铸件断面的敏感性,尤其未能消除5mm薄壁处的显微组织硬质相。

8.2对策

8.2.1选用恰当的生铁,控制生铁中微量元素的含量,Ti<;05%,V≤0.01%,采用低碳钢废钢,严禁废钢中混入合金钢。

8.2.2避免合金化过程中产生过多的且分布不均匀的硬质相显微组织。通常为保证良好的铸造性能和达成到较高的力学性能,一般都采用高碳当量辅以合金化措施.合金化的目的是增加珠光体量,并细化和稳定珠光体,但要避免产生白口化倾向,避免产生偏析,避免硬质相显微组织出现,这就合理选择并组合合金化元素。并最好采用孕育方式加入。

8.2.3改善切削加工性能十分重要的一环是;采取有效的孕育工艺。一般选用含Ca,Ba的孕育剂要优于传统的75SiFe孕育剂,二是采用随流孕育处理,这样的孕育工艺可获得均匀的组织以及均匀的显微硬度,尤其是对壁厚差较大的汽缸体(汽缸盖)铸件,其最小壁厚5mm处的显微组织与性能更趋均匀。

以上是根据我国铸造企业近年来取得较大技术进步,铸造材料供应也有较大改观,总体水平有了较大提出升的情况,对中小型乘用车发动机灰铸铁汽缸体(汽缸盖)铸件生产中常见的,较为普遍遇到的铸造缺陷及其对策所作的一个肤浅的分析,由于技术进步,一些不常见到,不常发生或是所占比例很小的铸造缺陷,如机械损伤,尺寸偏差,粒砂等,这里不再涉及。

创建时间:2009年12月30日

发动机常见故障分析与处理

发动机常见故障分析与处理 一、故障分类:发动机控制电路故障,发动机自身故障,其它外部故障。排除故障思路:原则上先排除控制电路故障——再排除发动机自身故障——后排除其它外部故障。 二、常见故障现象及分析处理(以下疏理的是针对不同故障现象可能的原因,编者尽量按照排查故障的思路流程按照顺序罗列,考虑到不同检修人员的技术能力和对不同大机的熟悉程度等因素,仅为检修人员提供参考的流程): 1、启动困难或不能启动。(电气控制的原因见电气故障,这里不再叙述) 原因分析及处理:(前五项为操作人员自己可查,后面的需要经过发动机专业培训的人员进行检查) A、环境温度过低。处理:对燃油箱安装预热装置;更换燃油;检查预热火花塞状况。 B、电瓶无电或电瓶损坏。处理:给电瓶充电或更换新电瓶。 C、启动电机故障。原因:启动电机无动作,检查启动电机是否得电,如不得电,则检查或检查外部控制电路是否有电压进入,如得电,检查启动电机连线是否松动或锈蚀(电压标准:24V的电压测量应不低于22.18v)。启动电机仍然无动作,判断启动电机损坏。处理:启动电机一般损坏的原因可能是电磁阀损坏或电机碳刷磨损,修理或更换启动电机。现场临时应急处理启动电机损坏故障方法:手动拉起停机电磁阀开启;采用连接线或长螺丝刀连接启动电机的电磁离合器控制线桩头和电源线桩头2~3秒,带动发动机启动后立即断开(此方法操作不当对发动机有一定的伤害,为应急情况下使用)。 C、燃油不足导致无法吸上燃油或燃油质量及燃油供油管路问题。处理:⑴、检查油位并检查油箱排气孔是否堵塞造成吸油不到位。⑵、检查管路有否漏气情况。 ⑶、检查管路有无脏污。⑷、燃油滤芯的密封圈是否损伤,配合是否正确。⑸、燃油软管是否有损伤、老化和折叠现象。⑹、柴油管中空心螺丝的铜垫是否变形。 ⑺、柴油滤芯是否脏污。

图解常见汽车发动机结构图

发动机作为汽车的动力源泉,就像人的心脏一样。不过不同人的心脏大小和构造差别不大,但是不同汽车的发动机的内部结构就有着千差万别,那不同的发动机的构造都有哪些不同?下面我们一起了解一下。 ●汽车动力的来源 汽车的动力源泉就是发动机,而发动机的动力则来源于气缸内部。发动机气缸就是一个把燃料的内能转化为动能的场所,可以简单理解为,燃料在汽缸内燃烧,产生巨大压力推动活塞上下运动,通过连杆把力传给曲轴,最终转化为旋转运动,再通过变速器和传动轴,把动力传递到驱动车轮上,从而推动汽车前进。 ●气缸数不能过多

一般的汽车都是以四缸和六缸发动机居多,既然发动机的动力主要是来源于气缸,那是不是气缸越多就越好呢?其实不然,随着汽缸数的增加,发动机的零部件也相应的增加,发动机的结构会更为复杂,这也降低发动机的可靠性,另外也会提高发动机制造成本和后期的维护费用。所以,汽车发动机的汽缸数都是根据发动机的用途和性能要求进行综合权衡后做出的选择。像V12型发动机、W12型发动机和W16型发动机只运用于少数的高性能汽车上。 ●V型发动机结构 其实V型发动机,简单理解就是将相邻气缸以一定的角度组合在一起,从侧面看像V字型,就是V型发动机。V型发动机相对于直列发动机而言,它的高度和长度有所减少,这样可以使得发动机盖更低一些,满足空气动力学的要求。而V型发动机的气缸是成一个角度对向布置的,可以抵消一部分的震动,但是不

好的是必须要使用两个气缸盖,结构相对复杂。虽然发动机的高度减低了,但是它的宽度也相应增加,这样对于固定空间的发动机舱,安装其他装置就不容易了。 ●W型发动机结构 将V型发动机两侧的气缸再进行小角度的错开,就是W型发动机了。W型发动机相对于V型发动机,优点是曲轴可更短一些,重量也可轻化些,但是宽度也相应增大,发动机舱也会被塞得更满。缺点是W型发动机结构上被分割成两个部分,结构更为复杂,在运作时会产生很大的震动,所以只有在少数的车上应用。 ●水平对置发动机结构

关于本田发动机连杆断裂案例分析

发动机连杆断裂是一种较为常见的故障现象。引起发动机连杆断裂的原因很多,既有可能是零部件本身的缺陷,也有可能是外来因素的影响,还有可能是用户使用不当造成。连杆断裂的发生往往会导致发动机报废,造成较大经济损失。所以,对发动机连杆断裂的原因进行总结和分析,不仅能够对汽车生产厂家提高产品质量水平有积极的促进作用,而且能指导用户正确使用车辆,避免产生不必要的维修费用。下面分析几种典型的原因。 一、发动机汽缸进水 一辆本田雅阁2.0L乘用车,行驶里程为28993km。在行驶过程中,听到一声较大的异响后发动机熄火,不能再次启动。拖至维修站检查,发现发动机缸体破损(如图1所示)。进一步拆检,发现第一缸连杆断裂。 经分析,连杆材质各项指标均正常,排除了因材质问题引起故障的可能性。检查发动机舱时发现:电池安装座上有较多

泥沙;在保险丝盒附近有大量飞溅的泥点;拆开空气滤清器,发现空气滤清器上盖上有较多泥点,且空气滤清器下盖上有相当多的泥土。种种迹象表明,该车曾经涉深水行驶。 解体发动机后,观察各缸缸套上活塞环运动的最高位置(上止点),可以看出第一缸的上止点明显比其它缸低(如图2 所示)。笔者认为,连杆是弯曲运转一段时间后才发生断裂。 该车进气系统由进气口、共鸣腔、空气滤清器、进气管、节气门体、进气歧管等组成(如图3所示)。水是如何进入进气系统从而进入发动机的呢?笔者认为,车辆在水中行驶时会使水面发生较大波动,造成水面高度相对进气口时高时低,水面高于进气口时,发动机将水吸入汽缸。

最初进入汽缸的水,在缸体高温的作用下很快形成水蒸气,使该缸无法形成可燃混合气。随着进水量的增多,水会积存在活塞顶部,使燃烧室的有效容积减小,压缩阻力增大,活塞传给连杆的压力也增大。当积水量达到一定程度(如接近燃烧室容积)时,压缩行程实际上变成了对水的压缩,连杆所承受的压力急剧增大,以至发生弯曲变形直至断裂,从而打破发动机缸体。 现代发动机一般采用直径较大的进气总管和进气阻力系数较小、呈弯曲手指状的进气歧管,给空气的进入提供便利的条件。然而,如果车辆在深水路面行驶,这种结构同样给水的进入提供便利条件。一般情况下,当水被吸入进气管时,由于惯性,水将首先涌到水平的进气总管末端,然后再往回流,导致位于进气总管末端的第一缸进气歧管最易进水。另

气缸垫的更换操作方法

气缸垫的更换操作方法 汽车(发动机)大修 更换气缸垫作业的方法 判定为气缸垫烧蚀故障后,要按照正确的力法更换,以提高气缸垫的密封质量。 (1)拆卸缸盖螺栓时,必须等发动机完全冷封之后再进行,拆卸时要按照“从两边向中间对角均匀松开”的原则,以防止缸盖发生翘曲变形。 (2)清除旧的气缸垫,清洁气缸盖及气缸体密封表面。 此项工作要求特别的耐心细致,要彻底清除密封表面的旧密封胶、积炭及腐蚀生成物,并用压缩空气吹干净。 (3)检查气缸盖与气缸体密封表面有无变形。 用直尺和厚薄规沿着密封表面的纵向和横向分别检查,一般要求在气缸体与气缸盖的密封面全长上不平度不大于0.10mm,在任何100mm 的长度上不平度不大于0.03mm,在密封面上不能有任何的凸起或凹陷部位。检查缸套上端面高于气缸体上平面的高度,要在规定的0.05~0.15mm 范围内。

(4)选用的气缸垫必须是符合要求、质量可靠的原厂配件安装时要注意其安装方向,基本原则是卷边朝向易修整的接触面或硬平面。 具体说明如下: ①如果气缸垫本身有安装标志,则按安装标志进行安装。 ②无标志,缸盖为铸铁,卷边朝向缸盖,缸盖为铸铝时,卷边要 朝向缸体,当缸盖缸体均为铸铝时,卷边朝向湿式缸套的凸沿。 (5)缸盖螺栓的紧固方法:

缸盖螺栓的紧固是保证气缸垫密封质量的最重要的一环,此项操作的规范与否,直接影响气缸垫的密封质量,必须严格按照技术标准进行操作,同时有一些细节问题必须加以注意: ①要彻底清理螺栓孔内的污泥、积炭、冷却液、机油等杂物和液体,必要时用丝锥清理螺纹,并用压缩空气吹干净。 ②彻底清洁缸盖螺栓,认真检查螺栓,如果有裂纹、点蚀及颈缩现象就应报废不能继续使用。用卡尺测量螺栓在自由状态下的长度,如果螺栓的塑性变形量超过1.5%就不能再继续使用。还有一些发动机生产厂在拧紧缸盖螺栓时是将螺栓扭紧到材料的屈服点,用这种方法可以在缸盖上形成更为一致的夹紧力,以保证气缸垫的可靠密封。因此这种螺栓是按照仅使用一次的标准设计的,拆卸后必须更换。如果使用旧螺栓,再次扭紧到材料的屈服点,就会产生薄弱点,造成气缸垫密封失效。 ③缸盖螺栓在安装前要在螺纹部分及法兰支撑面处涂少许机油, 以减轻螺纹副处的干摩擦。 ④对于分体式缸盖,在紧固缸盖螺栓前要将分水管及进气管安装 到缸盖上(不装垫片),并按规定的力矩紧固,否则可能会由于缸盖侧面不在同一平面上而发生漏水或漏气的故障。 ⑤按技术规范紧固缸盖螺栓。各种不同的发动机缸盖螺栓的紧 固方法及力矩是不同的,总的原则是应从中间向两侧对称地扩展交叉进行,分2~4 次扭紧至规定扭矩,在发动机热车时再重复紧固。 ⑥由于材料膨胀系数的不同,为了防止受热后缸盖螺栓的膨胀大 于铸铁缸盖的膨胀而使压紧度降低,对于铸铁缸盖要在发动机达到正常工作温度时再进行第2 次扭紧,铝合金缸盖由于其膨胀系数大于钢,所以在发动机热起后,压紧力会更大,故只需在冷态下一次扭紧即可。

摩托车的故障诊断与排除(doc 9页)

摩托车的故障诊断与排除(doc 9页)

摩托车的故障诊断与排除 第一节发动机的故障诊断与排除 一、发动机不能起动 发动机在环境温度为-5~30℃的情况下,做好起动前的准备工作后,若起动方法正确,而起动时间超过15s,则称为发动机不能起动。 1.发动机不能起动的原因 发动机不起动的原因有:火花塞跳火太弱或不跳火;可燃混合气未能进入气缸;气缸压缩压力不足。 2.诊断与排除方法 诊断这种故障时,首先要判明故障所在系统,然后在该系统进行检查,查明故障所在部位,予以排除。 判明故障所在系统,一般先从点火系统入手(因点火系统故障率较高)。首先检查点火系统的技术状况是否正常。若正常,再检查供油系统是否存在故障, 表1:发动机不能起动的诊断顺序 顺序诊断方法征兆故障原因及检查 1 起动发动机试验1.有发动征兆 2.无发动征兆 1.点火系统高压电路故障 2.拆下火花塞作跳火试验 2 跳火试验1.无火花或火花太弱 2.火花强,仍不能起动 1.点火系统故障或火花间隙太小(0.6~0.7mm) 2.检查供油系统 3 向气缸内滴入少量燃 油后,再作起动试验 1.能起动 2.不能起动 1.供油系统故障 2.检查气缸压缩压力和可燃混合气浓度 4 拆下火花塞察看1.火花塞潮湿淹死 2.火花塞干燥 1.供油系统故障或起动方法不正确 2.检查气缸压缩压力 5 装上气缸压力表压缩压力< 9*105Pa 发动机内部机械故障 表2:火花塞跳火太弱或不跳火的诊断顺序 顺序诊断方法征兆故障原因及检查 1 拆下火花塞跳火试验1.火花较强 2.无火花或火花较弱 1.检查其他系统 2.点火系统故障或火花塞电极间隙太小 2 拆下高压帽用高压线头 作跳火试验 1.火花较帽 2.无火花 1.火花塞炭连或损坏 2.检查低压电路 3 按下电喇叭1.声音清晰宏亮 2.不响或声响微弱 1.从蓄电池至开关间线路无故障 2.蓄电池电量不足或线路有故障 4 蓄电池负极导线搭铁试 验 1.无火花 2.有火花 1.线路无故障 2.电源开关至蓄电池这段导线有故障 5 用导线使点火线圈的低 压接线柱正极搭铁试火 1.有火花 2.无火花 1.线路无故障 2.线路有故障 6 用导线使点火线圈的低 压接线柱负极搭铁试火 3.有火花 4.无火花 1.点火线圈正常 2.点火线圈损坏

发动机连杆失效分析

v .. . .. 汽车发动机连杆失效分析 学院机电工程学院 作者XXX 学号XXXXXXXX 专业班级XXXXXXXX 小组成员XXXXXXXXXXXXXX 指导教师XXXXXX 2013年12月

目录 引言 (3) 一.基本知识 (3) 1. 连杆的结构 (3) 2. 制造工艺 (3) 3. 钢锻连杆使用材料 (3) 4. 连杆受力分析及有限元法 (3) 二.断口理化检验 (3) 1. 材料化学成分 (3) 2. 断口外观质量和失效形貌 (3) 3. 微观断口夹杂物检测分析 (3) 4. 断口金相组织 (3) 5. 断裂位置 (3) 三.失效原因(断裂原因) (3) 1. 失效原因总结 (3) 2. 连杆疲劳强度研究 (3) 3. 连杆疲劳寿命预测 (3) 四.总结 (3) 1. 影响疲劳强度的主要因素 (3) 2. 对连杆生产的建议 (3) 五.参考文献 (3)

引言 连杆是车用发动机的重要部件,从对车用发动机的失效历史数据来看,连杆的失效概率非常高,而且其失效模式与失效原因具有多态性,其本身结构的复杂性、制造工艺、热处理工艺、工况的恶劣程度、使用频率以及设备维护、维修等因素均可造成失效。 连杆的作用是将活塞的往复运动变成曲轴的旋转运动,并把活塞上的力传给曲轴。连杆小端做往复运动,大端做旋转运动,杆身做复杂的平面运动,它承受活塞传来的气体压力,往复运动惯性力及本身摇摆所产生的惯性力的作用,这些力的大小和方向周期性变化,易引起连杆失效。据统计,连杆的主要破坏形式是疲劳破坏。 摘要:连杆的主要破坏形式是疲劳破坏。本文主要对钢锻连杆进行分析,并从连杆结构、制造工艺、受力分析、所选材料以及断口组织结构等方面对失效原因和疲劳破坏进行分析总结。 关键词:汽车、发动机、钢锻连杆、失效分析、疲劳

某型发动机连杆小头衬套故障分析与优化设计20150814

某8V柴油机连杆小头衬套故障分析与改进设计 赵志强1王根全1王延荣1 张利敏1 许春光1 (1.中国北方发动机研究所(天津),天津300400) 摘要:针对某8V柴油机50h台架试验中出现的衬套磨损和松动的故障,在故障分析的基础上,从改善轴承润滑、提高衬套固持力和提高连杆小头刚度三方面入手,借助经验、理论计算及有限元仿真等手段开展结构改进分析进而提出改进方案,该方案经500h台架耐久性试验考核未重现上述故障,由此验证本文改进措施的有效性。 关键词:柴油机衬套改进设计试验验证 连杆是往复活塞式内燃机动力传递的重要组件,它承受周期性交变载荷,把活塞旋转往复直线运动转化为曲轴的旋转运动,并将作用在活塞上的力传递给曲轴对外输出功率[1,2]。连杆小头衬套作为连杆组件的关键零件,它与活塞销组成一对滑动轴承副,连杆小头衬套与连杆体采取过盈的方式紧固联接、小头衬套与活塞销为间隙配合,连杆衬套的磨损和松动是连杆的主要失效形式。 本研究对象为某8V柴油机连杆小头衬套,分析并确定其故障机理,基于经验、理论公式和有限元仿真软件技术确定出改进方案,最终经试验验证,找到衬套磨损和松动的解决措施。 1 某8V柴油机连杆小头衬套故障描述 某8V柴油机在初样机阶段多台样机在50h 台架试验中发生衬套磨损和松动的故障,连杆小头衬套磨损故障见图1、连杆小头衬套松动见图2。 图1连杆小头衬套磨损故障 图2连杆小头衬套松动故障 2 故障分析 依据经验分析,连杆衬套磨损、发黑一般应从润滑角度考虑;连杆小头衬套松动、脱出应该从衬套与连杆体固持力不足角度分析,但往往两者非独立故障导致衬套故障,存在一定关联关系影响。如连杆轴承润滑不良,衬套和活塞销摩擦表面的摩擦磨损状态会发生剧变,衬套安装固持力和摩擦力会此消彼长,过度的磨损使衬套的固持力持续下降,而摩擦力持续增加,当衬套安装固持力和工作摩擦力发生逆转时,故障现象随即出现;而衬套固持力不足,衬套会发生松动和旋转现象,使衬套进油孔和连杆体进油孔位置错位,导致轴承润滑不畅发生衬套磨损和烧蚀故障。鉴于上述分析,决定从提高固持力和加强润滑两条思路同时出发,以解决某8V柴油机的连杆衬套故障。 3 改进方案

汽车发动机常见的故障原因分析及解决方法

●汽车发动机常见的故障原因分析及解决方法。发动机无法启动或者是发动机不运转,以及发动机运转但不工作。解决:可以通过听汽车喇叭的声音及点亮大灯的方法来做个初步判断。现象1:如果喇叭声音嘶哑而发动机不运转,此时应该检查蓄电池。当普通蓄电池极板露出来或是免维护蓄电池观察孔的颜色不是绿色时,就可以断定是蓄电池电力不足造成的发动机无法启动。遇上普通蓄电池电力不足时,补充蒸馏水,也可用纯净水应急。如果是免维护电池电力不足,只能用跨接的方法请其他车辆上的蓄电池帮忙了。此时一定要注意随车携带发动机的电缆线,在借用其他车辆蓄电池电量时,电池的正极连正极,负极连负极。注意被借方车辆发动机一定要先启动。现象2:喇叭及点亮大灯都无异常,但汽车会发出"哞呀、哞呀"的声音。如果用钳子夹住接头,轻轻向左右转动一下,接头处发出"咕吱、咕吱"的移动声音,则可进一步断定为接头接触不良。此时可以选择用砂纸清理接头圆柱。当没有砂纸时,可以用钳子夹住左右轻轻转动来清理圆柱。现象3:喇叭良好,而发动机不运转,可以考虑发动机是否通电。如果发动机本身出现故障,如电磁开关失效等,就必须采用拆下发动机,更换零部件的措施了。小技巧如果发动机也未卡死,

可以考虑利用外力启动的方法,具体操作要点:将排挡杆推到次高挡(如 4 挡车型, 3 挡),用左脚踏离合器踏板,右脚踩在油门踏板,松开制动,打开发动机开关。当汽车具有一定的惯性后,快速地抬起离合器踏板。其难点在于要在右脚不离开油门踏板的情况下控制车速,因此要学会用手刹来控制。发动机在运转过程中,发出难闻的味道。解决:车辆使用一段时间后,一些橡胶密封件老化,机油就会从密封件中泄漏,滴在排气歧管上,随着排气歧管温度升高,机油在短时间内蒸发,就会发出油烧焦的气味。只需更换密封件即可。当尾气发出异味时,其主要原因是混合气过浓,往往要考虑油路、排气管、消音器等出现故障,有时由于排气管和消音器的结合部位发生松动而漏气,综合症状是消音器周围发出"叭哩、叭哩"的异响。离合器片瞬间打滑而发出的异味非常难闻,主要是离合器片负荷过大造成的。发动机水温过高,甚至超过红线。解决:冷却水不足造成的发动机过热。此时记住千万不要立即加冷水(防止变形开裂)。首先将车开放到通风、阴凉的地方。然后打开发动机罩,等待冷却水水温下降。漏水也可能造成发动机过热。在防冻液壶上安装着许多细小的管子,有可能是胶管松动或者破损造成漏水。紧急时可以用胶布缠上破损

发动机缸体

发动机缸体

————————————————————————————————作者: ————————————————————————————————日期:

发动机缸体 [摘要]缸体是汽车发动机乃至汽车中最重要的零件之一,发动机的加工质量直接影响发动机的质量,进而影响到汽车整体的质量,因此发动机缸体的制造加工长期以来一直受到国内外汽车生产企业的重视。[缸体的简单介绍]发动机缸体是发动机的基础零件和骨架,同时又是发动机总装配时的基础零件。缸体的作用是支承和保证活塞、连杆、曲轴等运动部件工作时的准确位置;保证发动机的换气、冷却和润滑;提供各种辅助系统、部件及发动机的安装。汽车发动机的缸体和上曲轴箱常铸成一体,称为缸体——曲轴箱。缸体上部的圆柱形空腔称为气缸,下半部为支承曲轴的曲轴箱,其内腔为曲轴运动的空间。在缸体内部铸有许多加强筋,冷却水套和润滑油道等。根据缸体与油底壳安装平面的位置不同,通常把缸体分为以下三种形式。(1)一般式缸体:其特点是油底壳安装平面和曲轴旋转中心在同一高度。这种缸体的优点是机体高度小,重量轻,结构紧凑,便于加工,曲轴拆装方便;但其缺点是刚度和强度较差(2)龙门式缸体:其特点是油底壳安装平面低于曲轴的旋转中心。它的优点是强度和刚度较好,能承受较大的机械负荷;但其缺点是工艺性较差,结构笨重,加工较困难。(3)隧道式缸体:这种形式的缸体曲轴的主轴承孔为整体式,采用滚动轴承,主轴承孔较大,曲轴从缸体后部装入。其优点是结构紧凑、刚度和强度好,但其缺点是加工精度要求高,工艺性较差,曲轴拆装不方便。为了能够使缸体内表面在高温下正常工作,必须对缸体和缸盖进行适当地冷却。冷却方法有两种,一种是水冷,另一种是风冷。水冷

GB3801-83汽车发动机气缸体与气缸盖修理技术条件

GB3801-83汽车发动机气缸体与气缸盖修理技术条件 中华人民共和国国家标准GB3801-83 UDC621.431.72.222.004.124 本标准适用于国产往复活塞式汽车发动机铸铁及铝合金气缸体与气缸盖的修理。其他汽车发动机气缸体与气缸盖可参照执行。通过修理的气缸体与气缸盖应符合本标准的要求。 1技术要求 1.1气缸体与气缸盖不应有油污、积炭、水垢及杂物。 1.2水冷式气缸体与气缸盖用3.5-4.5kgf/cm2的压力作连续5min水压试验,不得渗漏。 1.3汽油发动机气缸体上平面到曲轴轴承承孔轴线的距离,不小于原设计差不多尺寸0.40mm。 注:原设计是指制造厂和按规定程序批准的技术文件(下同〉。 1.4所有结合平面不应有明显的凸出、凹陷、划痕或缺损。气缸体上平面和气缸盖下平面的平面度公差应符合表1的规定。 1.5气缸体曲轴、凸轮轴轴承承孔的同轴度公差应符合原设计规定。凡能用减磨合金补偿同轴度误差的,以气缸体两端曲轴轴承承孔公共轴线为基准,所有曲轴轴承承孔的同轴度公差为0.15mm,以气缸体两端凸轮轴轴承承孔公共轴线为基准,所有凸轮轴轴承承孔的同轴度公差为ф0.15mm。

1.6气缸体后端面对曲轴两端轴承承孔公共轴线的端面全跳动不大于0.20mm。 1.7燃烧室容积不小于原设计最小极限值的95%。同一台发动机的气缸盖燃烧室容积之差应符合原设计规定。 1.8气缸体、气缸盖各结合面经加工后的表面光洁度应不低于▽6。 1.9气缸盖上装火花塞或喷油嘴和预热塞的螺孔螺纹损害不多于一牙,气缸体与气缸盖上其他螺孔螺纹损害不多于两牙。修复后的螺孔螺纹应符合装配要求。各定位销、环孔及装配基准面的尺寸和形位公差应符合原设计规定。 1.10选用的气缸套、气门导管、气门座圈及密封件应符合相应的技术条件,并应满足本标准的有关装配要求。 1.11气门导管承孔内径应符合原设计尺寸或分级修理尺寸(见表2)。气门导管与承孔的配合过盈一样为0.02-0.06mm。 1.12进、排气门座圈承孔内径应符合原设计尺寸或修理尺寸(见表2)。气门座圈承孔的表面光洁度不低于▽5,圆度公差为0.0125mm,与座圆的配合过盈一样为0.07-0.17mm。 1.13镶装干式气缸套的承孔内径应为原设计尺寸或同一级修理尺寸(如表2)。承孔表面光洁度不低于▽6,圆柱度公差为0.0lmm。气缸套与承孔的配合过盈应符合原设计规定;无规定者,一样为0.05-0.10mm。有突缘的气缸套配合过盈可采纳0.05-0.07mm;无突缘的气缸套可采纳0.07-0.l0mm。气缸套上端面应不低于气缸体上平面,亦不得高出0.l0mm。 1.14湿式气缸套承孔的内径应为原设计尺寸或同一级修理尺寸(见表2)。湿式气缸套与承孔的配合间隙为0.05-0.15mm,安装后气缸套上端面应高出气缸体上平面,并应符合原设计规定。 1.15同一气缸体各气缸或气缸套的内径应为原设计尺寸或同一级修理尺寸(见表2),缸壁表面光洁度不低于气78。干式气缸套的气缸圆度公差为0.005mm,圆柱度公差为0.0075mm;湿式气缸套的气缸圆柱度公差为0.0125mm。

发动机冲缸垫故障的排除

编订:__________________ 单位:__________________ 时间:__________________ 发动机冲缸垫故障的排除 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-1862-16 发动机冲缸垫故障的排除 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 冲缸垫是发动机的常见故障。冲缸垫有多种形式,共同点是有异响。由于缸垫被冲的程度不同,产生的异响声音也不同。本文根据3台红旗-120型推土机发动机不同的冲缸垫故障,说明排除方法。 一台推土机在冷启动时,发生“当、当”两声敲击声,并先冒出一股白烟,待冒出黑烟后发动机才着火;突然加大油门时也有敲击声,油门稳定后异响基本消失;若反复突然加大油门时,仍有敲缸声。断缸检查时,发现异响出在VI缸。怀疑是喷油器油针被卡滞。拆下检查,结果正常。拆下VI缸缸盖时,发现缸垫有烧黑烟现象,原来该缸缸盖螺栓很紧(扭力达250N·m),而缸盖与缸垫却没能压紧,原因是机体上有一水堵高于机体的上平面。更换缸垫,并使水堵高度低于机体上平面,装复后异响即消失,发动机运转

发动机缸体(汽缸盖)常见缺陷与对策剖析

中小型乘用车发动机缸体(汽缸盖)常见缺陷与对策浅析概述 (铸件脉纹形成机理及其防治) 改革开放后近十年来,我国的汽车制造工业得到了飞速发展,许多高端汽车品牌,几乎与发达国家同步推出面世,与之相适应的汽车发运机制造业也得到了迅猛发展,其中发动机铸造的水平也得到了极大的提高,无论铸造产量还是铸件技术要求及铸件质量,都有基本上满足了现代汽车发动机日益提高的要求。 以中小型乘用发动机主要铸件汽缸体(汽缸盖)生产为例,众多汽车发动机铸造企业都有采用了粘土砂高压造型(少数为自硬树脂砂造型),制芯则普遍采用覆膜砂热芯或冷芯工艺,而在熔炼方面大都采用双联熔炼或电炉熔炼,所生产的发动机均为高强度薄壁铁件。许多厂家为满足高强度薄壁铸铁件的工艺要求,纷纷引进先进的工艺技术装备,如高效混砂机,高压造型线,高度自动化的制芯中心,强力抛丸设备,大多采用整体浸涂,烘干,并且自动下芯。在过程质量控制方面,许多企业实现了在线检测与控制,如配备了型砂性能在线检测,热分析法铁水质量检测与判断装置,真空直读光谱议快速检测。清洁度检查的工业内窥镜等。相当一部分企业还在产品开发方面应用了计算机模式拟技术。可以毫不夸张地说,就硬件配件而言,我国发动机铸造水平丝毫不亚于当今世界上工业发达国家,一句话,具备了现代铸造生产条件。(为叙述方便,以下称上述框架内容的生产条件为现代生产条件。)然而应该承认,在发动机铸造企业的经济效益与产品质量以及铸件所能达到的技术要求方面,我们与世界发达国家还有较大的差距。提高生产质量,减少废品损失,是缩小与发达国家差距,发挥引进设备效能,提高企业效益的重要途径。本文试图就我国铸造企业在现代铸造条件下,中小型乘用车发动机灰铸铁汽缸体(汽缸盖)铸件生产中常见的铸造缺陷与对策,与广大业界同仁作一交流。 1气孔 气孔通常是汽缸体铸件最常见缺陷,往往占铸件废品的首位。如何防止气孔,是铸造工作者一个永久的课题。 汽缸体的气孔多见于上型面的水套区域对应的外表面(含缸盖面周边),例如出气针底部(这时冒起的气针较短)或凸起的筋条部。以及缸筒加工后的内表面。严重时由于型芯的发气量大而又未能充分排气,使上型面产生呛火现象,导致大面积孔洞与无规律的砂眼。 在现代生产条件下,反应性气孔与析出性气孔较为少见,较为多见的是侵入性气孔。现对侵入性气孔分析出如下: 1.1原因 1.1.1 型腔排气不充分,排气系统总载面积偏小。 1.1.2浇注温度较低。 1.1.3浇注速度太慢;,铁液充型不平稳,有气体卷入。 1.1.4型砂水份偏高;砂型内灰分含量高,砂型透气性差。 1.1.5对于干式气缸套结构的发动机,水套砂芯工艺不当(如未设置排气系统或排气系统不完善;或因密封不严,使浇注时铁水钻入排气通道而堵死排气道;砂芯砂粒偏细,透气不良;上涂料后未充分干燥;砂芯砂与涂料发气量太大,或发气速度不当,涂料的屏蔽性差……).经验证明,干式缸套的缸体的气孔缺陷,很大程度上与水套工艺因素相关连。 1.1.6孕育剂未经干燥且粒度不当;铁液未充分除渣,浇注时未挡渣,由此引起渣气孔。 1.1.7浇注时未及时引火 1.2对策 1.2.1模型上较高部位设置数量足够,截面恰当的出气针或排气片;而芯头部位设置排气空腔.上述排气系统均应将气体引至型外。通常排气截面为应内浇道总截面积1.5~1.8倍左右。 1.2.2浇注系统按半开放半封闭原则设置为宜,且须具有一定的拦渣功能,这样铁液充型时比较

发动机冲缸垫故障的排除正式样本

文件编号:TP-AR-L1748 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 发动机冲缸垫故障的排 除正式样本

发动机冲缸垫故障的排除正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 冲缸垫是发动机的常见故障。冲缸垫有多种形式,共同点是有异响。由于缸垫被冲的程度不同,产生的异响声音也不同。本文根据3台红旗-120型推土机发动机不同的冲缸垫故障,说明排除方法。 一台推土机在冷启动时,发生“当、当”两声敲击声,并先冒出一股白烟,待冒出黑烟后发动机才着火;突然加大油门时也有敲击声,油门稳定后异响基本消失;若反复突然加大油门时,仍有敲缸声。断缸检查时,发现异响出在VI缸。怀疑是喷油器油针被卡滞。拆下检查,结果正常。拆下VI缸缸盖时,发现缸垫有烧黑烟现象,原来该缸缸盖螺栓很紧(扭力

达250N·m),而缸盖与缸垫却没能压紧,原因是机体上有一水堵高于机体的上平面。更换缸垫,并使水堵高度低于机体上平面,装复后异响即消失,发动机运转正常。 另一台推土机的现象是发动机在怠速时,有“吭、吭”的响声;当V缸断油时,响声减弱直到消失。曾怀疑是V缸怠速油量大所致,但调小也无济于事;大、中油门运转时,异响并不明显;气门间隙正常。启动发动机猛加油门时,出现“当、当”的敲击声,反复加大油门,V缸缸垫处冒烟。经检查,故障均为缸垫被冲造成的。 还有一台推土机,有负荷时响声明显;中小油门且无负荷时。异响不明显;反复施加负荷时,响声明显,而且III、IV缸缸盖之间冒气。断缸检查发现。III缸缸垫被烧。更换缸垫后,故障被排除。

发动机振动特性分析与试验

发动机振动特性分析与试验 作者:长安汽车工程研究院来源:AI汽车制造业 完善的项目前期工作预示着更少的项目后期风险,这也是CAE工作的重要意义之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH试验,很难通过试验的方法预测产品的NVH水平。因此,通过仿真的方法对整机NVH性能进行分析甚至优化显得十分重要。 众所周知,发动机NVH是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激励等,这些结构振动又通过缸盖罩、缸盖、缸体和油底壳等传出噪声。 发动机结构振动分析方法简介 图1 发动机结构振动分析方法 如图1所示,发动机结构噪声分析方法包括以下几个步骤: 1. 动力总成FE建模及模态校核 建立完整的短发动机和变速器装配的有限元模型;对该有限元模型进行模态分析,通过分析结果判断各零件间连接是否完好;通过分析结果判断动力总成整体模态所在频率范围是否合理,零部件的局部模态频率是否合理,若存在整体或局部模态不合理的情况,需要对结构进行初步更改或优化。

2. 动力总成模态压缩 缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。 3. 运动件简化模型建立 发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。 4. 动力总成多体动力学分析 在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。 5. 动力总成结构振动分析 基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、变速器以及各种外围件的表面振动特性,进行评判和结构优化。 实例分析 1. 分析对象 以一款成熟的直列四缸1.5L发动机为平台,针对其结构振动问题,对其进行结构振动CAE 分析,并与其台架试验结果相比较。发动机的部分参数如下:缸径75mm,冲程85mm,缸间距84mm,最大缸压6MPa。 2. 坐标定义 为了便于以后叙述,对动力总成进行了坐标定义(见图2)。

汽车发动机的常见故障维修分析(最新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 汽车发动机的常见故障维修分析 (最新版)

汽车发动机的常见故障维修分析(最新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 汽车是人类进入工业化社会的主要代表特征之一,在社会经济快速发展的今天,汽车的保有量逐年攀升。随着汽车普及,汽车发动机成为汽车运行中故障频率最高的部位。发动机是汽车的核心部件,是汽车的动力源泉,因此确保汽车发动机正常稳定的工作是汽车行业发展的必要手段之一,而在低碳环保化的今天,低故障率的汽车还能够为国家的环保建设做出一定的贡献。 汽车发动机简介 发动机是汽车的动力提供装置,其主要工作系统包括燃料供应、点火启动以及冷却润滑等系统,主要的工作结构为曲柄连杆机构与配气机构。燃料供应系统主要包括与燃油供应的主要装置,如油箱油表、油管油泵等;点火启动系统主要包括火花塞、蓄电池、点火开关等部件;冷却润滑即维护发动机正常工作的润滑系统、冷却系统等,而机构则主要完成各个系统之间的衔接与能量传递。 汽车发动机常见故障原因分析

汽车发动机缸体结构

由于发动机缸体是大平面的板状结构,还存在少量的质量集中,本文在建立缸体有限元模型时用到的有限元单元类型有壳单元(大部分为四边形,为了满足结构特征,采用了少量三边形)、实体单元(六面体和五面体)。汽修学校:在薄壁和缸体上所有加筋的地方,采用了壳体单元,而在壁厚或者受力较大的地方,例如缸筒周围,采用了实体单元。这样一个复杂的结构,最后简化为由31707个单元和44162个节点所组成的有限元模型。 有限元模型在既有壳体单元,又有实体单元时,我们应考虑到它们的边界问题。因为壳体单元的节点具有六个自由度,而实体单元的节点只具有三个自由度。 而且壳体单元较实体单元要软的多,汽修学校:刚度远远不如实体单元。为了实现很好的刚度过渡,我们采用了无质量的虚拟单元。这种虚拟单元除了密度为零以外,其他参数根据构件的材料特性来定。 壳体单元和实体单元在采用虚拟单元相连时,有三种不同的连接形式,这些虚拟单元都是无质量的壳体单元,其参数给定,连接方式壳体单元在和壳体单元相连接时,节点自由度是相同的,但是并不意味着壳体单元之间能直接连接.直接连接会造成单元受力与实际结构受力不相符合,汽修学校:例如在壁与壁的连接处,尤其是不同壁厚的两壁交界处,壳体单元之间应采用虚拟单元连接。是发动机缸体的有限元模型,蓝色的是壳体单元,红色的是实体单元,灰白色的单元是虚拟单元. 由图可以看出缸体的单元网格划分的非常细,主要是因为缸体受力复杂,为了更好的掌握缸体具体部位的振动形态,使结果更精确。发动机的排气管一侧发动机的油底壳主要是储存机油并封闭曲轴箱。汽修学校:机油盘受力很小,一般采用薄钢板冲压而成。虽然油底壳受力不大,但它存在大面积的平面结构,刚度较低,振动剧烈,因而在这些地方最容易产生结构噪声。根据油底壳的结构特征,我们选择了壳体单元作为有限元模型的单元类型。 油底壳的有限元模型共有1849个单元和1$81个节点。其模型如图5所示。传统的发动机在缸体下部是曲轴箱,但由于下部呈开口箱形状,刚度差、振动剧烈、辐射噪声大,因此,近年来对曲轴箱的结构改进较大,汽修学校:例如采用龙门式或隧道式结构的曲轴箱。但是这些措施在降低噪声方面所起到的效果并不显著,根据国外发动机的设计经验,采用梯形框架可以大幅度的增加缸体、油底壳之间的刚度。 梯形框架是连接在缸体和油底壳之间的部件,它起到支撑曲轴、、封闭缸体下部的作用。由于梯形框架这种结构刚度较高,所以大大的增加了发动机缸体下部的刚度;由于梯形框架的使用,降低了油底壳的高度,汽修学校:使得油底壳的噪声辐射面变小,而且改善了油底壳的响应特性,大大降低油底壳的振动噪声。根据梯形框架结构特点和受力特性 我们采用了实体单元为主,夹带壳体单元的有限元单元类型,总共由5209个单元和8223个节点所组成。其模型如图6所示。在梯形框架的有限元模型中,

发动机更换气缸垫的要点

发动机更换气缸垫的要点 一台汤姆洛克DINO500型钻机,配用CAT3116DIT型发动机,使用了2000h左右就出现了气缸垫漏水现象。 经研究认为,该机的气缸盖结构是整体式缸盖,其上有各缸燃油系统的单体泵及气门间隙的调整机构等,虽然气缸盖更换工作本身比较容易完成,但由于没有该机的任何技术资料,气缸盖更换后单体泵供油时间的调整会是整个修复过程的难点,考虑到该机使用时间不长,运转时各方面性能及排出的烟色都正常,说明机器磨损不太严重,有关单体泵喷油行程的调整数据可以通过发动机铭牌获得,且送出外修则会花费很大,因此仍决定自行更换气缸盖垫,并在拆卸、安装过程中注意了以下要点。 1、拆卸过程 由于没有该机的有关技术资料和数据,在拆卸气缸盖前做了以下测量工作。(1)单体泵行程的测量 利用深度游标尺对单体泵各部位进行了测量,发现附图所示单体泵的喷油行程h 值与发动机铭牌上的喷油行程数据相同,并发现了以下规律: A、逐缸检测时,在某缸作功时,下一个即将作功气缸的单体泵的行程h值与发动机铭牌上的喷油行程数据相同,均为64.78mm,这为选用逐缸调整单体泵供油时间提供了依据。 B、在I缸作功时,III、V、VI缸喷油行程h和实测值与发动机铭牌上的喷油行程数据相同,在VI缸作功时,I、II、IV缸喷油行程h的实测值与发动机铭牌上的喷油行程数据相同。据此,可以在以后选用两次调整法调整各缸单体泵的喷油行程h值。 另外,拆卸时应用划针将单体泵在气缸盖的相对位置做好记号。 (2)气门间隙的测量 测得气门间隙是:进气门0.40mm,排气门0.65mm;考虑到磨损等因数,认为安装时气门间隙应调整到与CAT3306型发动机的一样,即进气门0.38mm、排气门0.64mm。 (3)气缸盖螺栓拧紧力矩的测量

发动机常见故障成因及诊断方法分析

发动机常见故障成因及诊断方法分析

设计题目:汽车故障诊断与排除案例分析

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

EA888型发动机缸体模态分析

第32卷第3期 2 0 1 7年8月 青岛大学学报(工程技术版) JOURNAL OF QINGDAO UNIVERSITY (E&T) V ol. 32 No. 3 A u g.2 0 17 文章编号:1006 - 9798(2017)03 -0140 - 05; DOI:10.13306/j.1006 - 9798.2017.03.026 EA888型发动机缸体模态分析 王楠1,张洪信1,赵清海2,尹怀仙1,张铁柱2 (1.青岛大学机电工程学院,山东青岛266071; 2.青岛大学动力集成及储能系统工程技术中心,山东青岛266071) 摘要:为了避免共振并满足发动机缸体的强刚度要求,本文以E A888发动机缸体为研究对象,对 发动机缸体进行模态分析。分别利用C A T I A和有限元软件H y p e r m e s h l l. 0建立了发动机缸体 实体模型和有限元模型,然后进行网格划分及模态计算,最后利用L M S振动模态分析系统对缸体 的模态进行实验分析,并与有限元计算模态结果进行对比。分析结果表明,两者所得固有频率吻合 性较高,验证了有限元分析结果的正确性。该研究为缸体振动特性分析和结构优化奠定了基础。 关键词:发动机缸体;有限元模态分析;实验模态分析;振动特性 中图分类号:U464. 13 文献标识码:A 随着经济和社会的发展,环境问题越来越严重,汽车发动机产生的振动也受到人们的关注[1]。发动机的振动 不仅损坏机器本身,而且其发出的噪声会危害人们的健康[2]。因此,在发动机的设计阶段进行模态分析,控制 发动机缸体的振动、降低噪声成为发动机设计研究的一个重要方向[3]。高艳霞等人[4]利用A n s y s软件建立发动 机缸体的有限元模型,并进行了计算模态分析以及振动响应分析,对发动机缸体的设计以及生产有一定的指导作 用;石勇等人[5]利用有限元分析软件A B A Q U S对某柴油机缸体进行了自由模态计算分析,得到了发动机缸体的 前10阶固有频率和振型,利用D A S P系统对其进行了试验模态分析,并对有限元结果和试验模态结果进行对比,计算得到固有频率和试验值最大相差5. 7%,一定程度上验证了仿真模型的准确性。但以上研究只对比了前 10阶固有频率,而没有对比振型结果。基于此,本文以E A8888发动机缸体为研究对象,建立了发动机缸体的有 限元仿真计算模型。基于L M S振动模态分析系统的Pre- T e s t模块,以有限元模型的模态分析为基础,以各个 点的相关性最小为原则确定测点布置方案;利用L M S软件振动模态[6]分析系统进行了缸体的模态实验分析,得 到模态置信矩阵,各个点的频响函数、相干函数和稳态图等指标验证了试验模态的准确性。最后与有限元计算模 态结果对比分析,两者所得固有频率吻合性较高,验证了有限元分析结果的正确性。该研究为缸体振动特性分析 和结构优化奠定了基础。 1缸体有限元模型的建立 发动机缸体是铸造的箱类零件,形状和结构都很复杂[7]。气缸机是整个发动机的最主要的部件,它将发动机 的各个气缸和曲轴箱连接在一起,是安装曲轴、活塞以及其他零部件的支承骨架[8]。本文利用C A D法国达索公 司的C A T I A建立发动机缸体的三维实体模型。 在计算缸体结构固有振动特性时,网格划分应均勻。由于气缸体固有频率和振型与它本身质量和刚度分布 有关,气缸体不存在应力集中现象,因此采用相对较均勻的四面体网格划分,对于气缸体结构的质量和刚度矩阵 的分布元素相差不大,分析的实体固有频率和振型较准确[9]。采用S〇lid45计算实体自由模态,单元大小为4 m m,每个单元有8个节点,每个节点有三个方向自由度,适合不规则模型网格划分[1°]。该缸体由灰铸 铁铸成,设置材料相关参数为:弹性模量£=1〇〇 G P a,泊松比M=0.3,密度^0=7 OCX)k g/m3。划分后缸体节点数 为139 452,单元数为586 700。 收稿日期:2017 - 01 -03;修回日期:2017 - 04 - 20 作者筒介:王楠(1988 -),男,山东省惠民县,硕士研究生,主要研究方向为节能与新能源汽车。 通讯作者:赵清海(1985 -),男,博士,主要研究方向为车辆新型动力传动技术及其电子化。Email:zqhbit@https://www.360docs.net/doc/1a7817017.html,

相关文档
最新文档