单相功率因数校正的仿真研究.

单相功率因数校正的仿真研究.
单相功率因数校正的仿真研究.

学号14051400645

毕业设计(论文)

题目:单相功率因数校正电路的仿真研究

作者王任届别2009届

系别机械与电气工程系专业自动化

指导教师荣军职称讲师

完成时间2009年5月21日

摘要

现代开关电源技术所面临的最重要课题之一就是功率因数校正(Power Factor Correction,PFC)。在各种单相PFC电路拓扑结构中,Boost升压型功率因数校正电路由于具有主电路结构简单,变换效率高,控制策略易实现等优点而得到广泛应用。本文叙述了有源功率因数校正(APFC)的原理和方法,对硬开关和软开关主电路的主要元器件参数进行设计,并在软件环境下搭建了功率因数校正电路Boost变换器与Boost-ZVT变换器的仿真模型,分别对输入电压与输入电流、开关管驱动波形、输出电压与输出电流进行仿真,并对仿真结果进行分析和比较,指出了它们各自的优点与缺点。

关键词:开关电源;功率因数校正;OrCAD/PSpice仿真

ABSTRACT

One of the most important issue in modern switching power technology is the Power Factor Correction(PFC). Among a variety of single-phase PFC circuit, Boost boost power factor correction has been widely used as a result of the simplicity of the main circuit structure, high conversion efficiency and easy control strategy achievement. This paper considers the principle and method of the Active Power Factor Correction(APFC) and designs the parameters of main circuit components of hard switching and soft switching. Meanwhile, it establishs the PFC Boost converter circuit and the Boost-ZVT converter simulation model by utilizing software. Moreover, it simulates the waveform of input voltage and current together with the drive waveform of the switch tube and the waveform of output voltage and output current respectively. At last, it analyzes the simulation results, then makes a comparison, pointing out their advantages and disadvantages respectively.

Key words: Switching Power; PFC; OrCAD/PSpice simulation

目录

摘要............................................................... I ABSTRACT........................................................... I I 目录............................................................. I II 1 绪论. (1)

1.1开关电源概述 (1)

1.2功率因数校正概述 (2)

1.3软开关单相升压功率因数校正 (3)

2 有源功率因数校正APFC的基本工作原理与应用 (3)

2.1功率因数校正(PFC)的定义及意义 (3)

2.1.1 功率因数校正的定义 (3)

2.1.2 功率因数校正的意义 (4)

2.2有源功率因数校正技术的研究现状 (6)

2.3功率因数校正实现方法 (6)

2.4有源功率因数校正技术的分类 (6)

3 BOOST变换器功率因数硬开关校正电路的仿真 (8)

3.1主电路的设计及工作波形图 (8)

3.2B OOST变换器基本原理 (8)

3.3主电路主要元器件的参数设计 (9)

3.3.1 高功率因数校正硬开关AC/DC变换电路技术指标 (9)

3.3.2 升压电感的设计 (9)

的设计 (10)

3.3.3 输出电容C

O

3.4主电路的仿真与分析 (11)

4 BOOST型ZVT-PWM功率因数软开关校正电路的仿真 (13)

4.1主电路的设计及工作波形图 (13)

4.2B OOST型ZVT-PWM变换器工作原理 (14)

4.3B OOST型ZVT-PWM变换器运行模式分析 (14)

4.4硬开关技术的缺点 (16)

4.5B OOST型ZVT-PWM变换器的优缺点 (19)

4.6软开关技术的特性 (19)

4.7主电路主要元器件的参数设计 (20)

4.7.1 高功率因数校正软开关AC/DC变换电路技术指标 (20)

4.7.2 谐振电感Lr的设计 (21)

4.7.3 谐振电容Cr的设计 (22)

4.8主电路的仿真与分析 (22)

5 全文总结 (25)

参考文献 (26)

致谢 (27)

1 绪论

1.1 开关电源概述

电源是所有用电设备的心脏,为设备提供动力。开关电源处于电源技术的核心地位,近十年有了突飞猛进的发展.按目前的习惯,开关电源专指电力电子器件工作在高频开关状态下的直流电源。

目前,应用最为广泛的直流电源又三类:线性电源、开关电源和相控电源。线性电源是开关电源的前身[1]。各种电子装置、许多电气控制设备的工作电源都是直流电源。在开关电源出现之前,这些装置的工作电源都采用线性电源。由于和线性稳压电源相比,开关电源在绝大多数性能指标上都具有很大的优势,因此,目前除了对直流输出电压的纹波要求极高的场合以外,开关电源己全面取代了线性稳压电源。另外一种常用的直流电源是相控电源。它的主要优点是电路简单控制方便,主要的缺点是体积大,重量重,输出滤波电感大,另外,由于其频率低,控制的响应速度很慢。因此,只有在很大功率的应用场合才会采用。

近年来,开关电源已广泛应用于电力,通信,交通等各个领域,并取得了显著的经济效益。随着开关器件以及磁性材料性能的不断改进,开关频率逐步提高,功率逐步增大,开关电源的性能也更加优良。相关技术的发展和开发软件的改进,也使开关电源的研发水平大大提高。

然而大多数开关电源是通过整流器和电力网相接的,在普通电力电子装置中,整流电路通常采用不控整流后接电容滤波或是晶闸管相控整流。整流器-电容滤波电路是一种非线形元件和储能元件的组合。虽然输入交流电压是正弦的,但输入电流是仅在交流电压波顶附近区域导通,滤波电容被整流后的电流充电,因此输入交流电严重畸变,呈脉冲状。这种电流的基波是和输入正弦电压同相位的,故产生有功功率,但交流波形中含有较大的高次谐波,这些高次谐波与输入正弦电压既不同频也不同相。因此功率因数很低,最高只有0.8左右。输入电流含有大量谐波,一方面使谐波噪声水平提高,同时在AC/DC整流电路的输入端必须增加滤波器,进而造成成本、体积、重量的增加。另一方面,大量的谐波倒流流入电网,造成对电网的谐波“污染”。

基于限制电流畸变和谐波“污染”,是电磁环境更干净的宗旨,一些世界学术组织和国家已经颁布和实施了一些输入电流谐波的限制标准。例如国际电工委员会制定了如

IEC555-2等法规,欧洲也制定了相应的IEC000-3-2标准。我国于1994年颁布了《电能质量功用电网谐波》标准GB/T1449-93。因此提高功率因数在通信开关电源应用中具有重大意义:(1)防干扰:核心是限制电网谐波电流成分。(2)可以减少输入电流的谐波成分,从而降低对其它设备的干扰。(3)可以提高电网设备的利用率。(4)可以提高电网设备的安全性。由此可知:有源功率因数校正技术在开关电源中占据着及其重要的位置,它能消除谐波污染,实现各种电源装置网侧电流正弦化,使功率因数接近于1,极大地减少电流的高次谐波,消除无功损耗。能够在大力倡导绿色电源的背景下,提高开关电源的功率因数已经成为国内开关电源研究的主要方面。

1.2 功率因数校正概述

电源整机的谐波干扰和对电网的污染问题,很早以前就提出来了。但当时的电源数量少,它们的谐波干扰比较小,因而没有引起普遍的注意。近二十几年来,随着现代经济和技术的高速发展,越来越多的电气设备加入电网,产生出大量的谐波分量又经电网串入其他电气设备,对计算机等重要电子设备的稳定工作产生严重的电磁干扰。

由于传统的稳压电源数量大增,其输入级不控整流器和高压大滤波电容产生的严重谐波电流干扰,已成为强噪声发射源,危害了电网的正常工作,使220V电网输送线路上损耗剧增,浪费了大量的电能[1]。开关电源的输入级峰值电流很高,使网侧的功率因数下降到0.5~0.65,即视在功率远大于有用功率,电网质量严重受损。所以发达国家率先采用了多种功率因数校正(PFC)方法,来实现“绿色能源”革命,并强制推行了国际标准IEC555-2、EN60555-2等,限制电子生产厂家入网电气设备的电流谐波值。

功率因数校正电路(PFC)分为有源和无源两种。无源校正电路通常由大容量的电感、电容和工作于工频电源的整流器组成。虽然采用无源功率因数校正技术得到的功率因数不如有源校正电路高,但仍然可以使功率因数提高到0.7~0.8,因而这种技术在中小功率电源中被广泛采用。本文主要讨论有源功率因数校正方法。有源校正电路自20世纪90年代以来得到了迅速推广。它是在桥式整流器与输出电容滤波器之间加入一个功率变换电路,使功率因数接近1。有源校正电路工作于高频开关状态,它们的体积小、重量轻,比无源校正电路效率高。

1.3 软开关单相升压功率因数校正

目前,升压电路被广泛应用于单相整流电源的功率因数校正(PFC)技术中。传统的升压电路工作在硬开关状态,其特点是工作在不连续导电模式时,电感电流峰值正比于输入电压,输入电流波形跟随输入电压波形,因而控制简单;缺点是开关不仅要通过较大的通态电流,而且关断较大的峰值电流会引起很大的关断损耗,同时还会产生严重的电磁干扰。因此,在升压电路中采用软开关技术不但可以提高开关频率,还能解决开关开通与关断损耗、容性开通、感性关断和二极管反相恢复4大难题[2]。然而,在软开关技术方面前人已经提出好几种电路,如谐振型转换器、准谐振转换器和零开关PWM转换器等,虽然在单相功率因数校正电路中采用这些电路可以提高功率因数和系统效率,但总体上并不理想。工作在软开关状态,特点是工作在连续导电模式,优点是功率开关管开通损耗和二极管的反向恢复损耗都大大降低,较之采用传统硬开关控制技术的功率因数校正提高了一大步。通过电路仿真和实际电路设计,发现都可以很好地达到功率因数校正的目的,而且显著减少了功率管的开关损耗,抑制了电磁干扰,可获得较高的效率。升压谐振转换器(包括准谐振和多谐振转换器)的谐振电感和谐振电容一直参与能量传递,而且它们的电压和电流应力很大。而零开关PWM转换器中,虽然谐振元件不是一直工作在谐振状态,但谐振电感却串联在主功率回路中,它的损耗较大,同时,开关管和谐振元件的电压应力和电流应力与准谐振转换器完全相同,为此提出了零转换PWM转换器。它可分为零电压转换PWM转换器(升压ZVT-PWM)和零电流转换PWM转换器(升压ZCT-PWM)。这类转换器是软开关技术的又一飞跃。其特点是工作在PWM方式下,辅助谐振电路只是在主开关管开关时工作一段时间,从而实现开关管的软开关;其它时候不工作,从而减小了辅助电路的功耗。而且,辅助电路并联在主功率回路中,辅助电路的工作不会增加主开关管的电压和电流应力,主开关管的电压和电流应力较小。

2 有源功率因数校正APFC的基本工作原理与应用

2.1 功率因数校正(PFC)的定义及意义

2.1.1 功率因数校正的定义

功率因数(PF)是指交流输入有功功率(P)与输入视在功率(S)的比值。即

φγφφcos cos cos 1111=?===rms

rms I I I V I V S P PF (2-1) 式中:1I ——交流输入市电的基波电流有效值;

rms I ——交流输入市电电流有效值;

γ——交流输入市电电流的波形畸变系数;

φcos ——交流输入市电的基波电压与基波电流之间的相移因数。

因此功率因数PF 又可定义为失真因数与相移因数之乘积。假设输入电流无谐波时1=γ或R I I =1,故上式变为φcos =PF [7]。

功率因数校正的基本原理,就是从电路上采取措施,使电源输入电流实现正弦波,并与输入电压保持同相。可以证明,功率因数PF 与电流总谐波失真THD 的关系为:

2)(11cos THD PF +=

=φγ (2-2)

由此可知,要提高PF 就需要减少THD 。

2.1.2 功率因数校正的意义 由整流二极管和滤波电容组成的整流滤波电路应用十分普遍,价格低廉、可靠性高是它的突出优点,但是它对电网的谐波污染却十分严重,由整流二极管和滤波电容组成的整流滤波电路主要存在如下的问题。

1.启动时产生很大的冲击电流,约为正常工作电流的十几倍至数十倍。

2.正常工作时,由于整流二极管导通角很小,形成一个幅度很高的窄脉冲,电流波峰因数(CF )高、电流总谐波畸变率(THD )通常超过100%,同时引起电网电压波形的畸变。

3.功率因数(PF )低,一般约为0.5~0.6。

开关电源的输入端通常采用如图2-1所示的由整流二极管和滤波电容组成的整流滤波电路,输入220V 交流市电整流后直接接滤波电容,以得到波形较为平滑的直流电压。但是由整流二极管和滤波电容组成的整流滤波电路是一种非线形元件和储能元件的组合,虽然交流输入市电输入电压V i 的波形是正弦的,但是整流器件的导通角不足180?,

只有很小的导通角,导致输入交流电流波形严重畸变,输入交流电流波形如图2-2所示

的脉冲状。

AC R

图2-1电路图图2-2 常规开关电源输入电压电流波形由此可见,大量应用整流电路,使供给电网产生了严重畸变的非正弦电流,输入电流中除含有基波外,还含有很多的奇次、高次谐波分量,这些高次谐波倒流入电网,引起严重的谐波“污染”,造成严重危害。其主要危害[10]有:

1.产生“二次效应”。即谐波电流在输电线路阻抗上的压降会使电网电压(原来是正弦波)发生畸变,影响各种电气设备的正常工作。

2.谐波会造成输变电线路故障,使变电设备损坏。例如,线路和配电变压器过热、过载。在高压远距离输电系统中,谐波电流会使变压器的感抗与系统的容抗发生LC谐振;在三相电路中,中线电流是三相三次谐波电流的叠加,因此,谐波电流会使中线电流过流而损坏,等等。

3.谐波还会影响用电设备正常工作。例如,谐波电流对电机除增加附加损耗外,还会产生附加谐波转矩、机械振动等,这些都严重影响电机的正常运行;谐波可能使白炽灯工作在较高的电压下,这将导致灯丝工作温度过高,缩短灯丝的使用寿命,等等。

4.谐波会使测量仪器附加谐波误差。常规的测量仪表是设计并工作在正弦电压、正弦电流波形情况下的,因此,在测量正弦电压和电流时能保证其精度,但是,这些仪表用于测量非正弦量时,会产生附加误差,影响测量精度。

5.谐波会对通信电路造成干扰。电力线路谐波电流会通过电场耦合、磁场耦合和共地线耦合对通信电路造成影响。

综上所述,为了减少AC/DC变流电路输入端谐波电流造成的噪声和对电网产生的谐波“污染”,以保证电网供电质量,提高电网的可靠性;同时也为了提高输入端功率因数,以达到节能的效果,必须限制AC/DC电路的输入端谐波电流分量。由此可知提高功率因数在AC/DC开关电源应用中具有重大的意义。

2.2 有源功率因数校正技术的研究现状

PFC 技术的主要方法可以分为无源PFC 技术和有源PFC 技术。无源PFC 技术采用无源器件,如电感和电容组成的谐振滤波器,实现PFC 功能,主要优点:简单 、成本低、可靠性高及EMI 小等。主要缺点:难以得到高功率因数,低频时元器件尺寸和重量大,工作性能与频率、负载变化和输入电压变化有关,电感和电容间有大的充放电电流等。有源PFC 技术的基本原理是利用控制电路强迫输入交流电流波形跟踪输入交流电压波形而实现交流输入电流的正弦化,并与输入电压同步。其中关键电路是乘法器和除法器,有源功率因数校正电路的特点是:功率因数高,PF 可达0.99以上;总谐波畸变率低,THD <10%;交流输入电压范围宽,交流输入电压范围可达AC90~270V ;输出电压稳定;所需磁性元件小。主要缺点是:电路复杂,可靠性下降,EMI 高,成本增加,效率会下降。有源技术已经广泛应用在AC/DC 开关电源、UPS 电源、电子镇流器、程控交换机电源等电子仪器中[14]。

2.3 功率因数校正实现方法

功率因数校正的基本原理,就是从电路上采取措施,使电源输入电流实现正弦波,并与输入电压保持同相。关键在于实现功率因数为1的重要目标,即公式

111cos =?==φγPF 。实现或者基本实现功率因数校正的方法有多种,有源校正技术,特别是用于开关电源的单相升压式高频有源功率因数校正电路,具有高的功率因数值99.0≥PF ,低频谐波失真%10~%8≤THD ,电源效率高达90%以上,输出电压B V 稳定(升至400V 左右),适用于中大功率电源(100W ~2000W ),且适应宽输入电压(90~270V ),磁性元件小,可省略或简化庞大的原输入级滤波器[1]。在电源输入级插进功率因数校正网络,就是通过适当的控制电路不断调节输入电流波形,使其逼近正弦波,并与输入的电网电压保持同相。

2.4 有源功率因数校正技术的分类

有源功率因数校正变换电路有升压(Boost )、降压(Buck )、升降压(Buck-Boost )和回扫四种类型[3]。在多数情况下,开关电源中,以升压型最为流行。它的主要优点是:第一,能有效地抑制输入电源电流的谐波失真,完全可以达到甚至低于谐波电流畸变指

标要求;第二,能将系统功率因数提高到几乎等于1的水平,完全能够满足世界各国对功率因数和总谐波含量的技术标准要求;第三,输出低纹波含量的直流电压,能确保开关电源的电流波峰系数低于1.5;第四,当输入交流电压在较大的范围内波动时,实现电压宽带输入(85~265V),而输出电压可得到稳定的直流电压;第五,消除了浪涌电压及尖峰电压对电路元件的冲击,提高了开关电源的可靠性和安全性,有力延长了开关电源的使用寿命。

APFC可以采用不同的方法进行控制。从变换电路的工作频率分为固定频率和可变频率两种;从电流控制方法上分有峰值电流控制、平均电流控制和滞环电流控制三种,按电感扼流圈有无存储电流分,有连续传导模式(CCM)和不连续传导模式(DCM)两种,前者用于输出功率较大的场合,后者适用于200W以下的中功率APFC变换器。CCM相对DCM其优点为:①输入和输出电流纹波小、THD和EMI小、滤波容易;②RMS电流小、器件导通损耗小;③适应于大功率应用场合。在开关控制模式上又分为零电流开关(ZCS)和零电压开关(ZVS)两种类型。

此外,有源功率因数的电流控制方法基本上有三种,即峰值电流控制、滞环电流控制以及平均电流控制。下面就假设工作模式为CCM,来介绍一下三种方法的特点。

1.峰值电流法是检测峰值电流,采用恒定的开关电源工作频率,只有稳定的工作频率才能有效地、快速地检测出峰值电流,并将这一电流“削尖”、均化来控制开关管,对PWM进行调节,使输入电流波形与输入电压保持同步,从而提高功率因数。由于输入电流被“削尖”,在电路上对输入电流波形需要进行斜率补偿。

2.滞环电流法是检测APFC电路中电感上的电流,当电感电流达到一定值时,开关管开始导通;电感电流下降到一定值时,开关管陡然截止,它的控制方式是利用工作频率改变来控制开关管的导通和截止。一般设计输出滤波电路时,按最低工作频率考虑,所以,开关电源的体积和重量是最小的,工作损耗最小。

3.平均电流法是开关电源和电子镇流器对有源功率因数校正用得最多的一种方法。THD值小,对噪声不敏感,电感电流峰值与平均值之间的误差小,具有恒定的工作频率,可以任意拓扑各种控制电路,输入电压可以随便调节。这中方法的缺点是控制电路比较复杂,需要增添电流误差放大器。

3 Boost 变换器功率因数硬开关校正电路的仿真

3.1 主电路的设计及工作波形图

本节采用Boost 变换器功率因数校正电路,其主电路设计图及工作波形图如图3-1和3-2所示。

L

图3-1 Boost 变换器主电路图

i

u t

t

图3-2 Boost 变换器工作波形 3.2 Boost 变换器基本原理

分析Boost 变换器电路的工作原理时,首先假设电路中电感L 值很大,电容C 值也很大。当T r 处于通态时,整流后得直流电压向电感L 充电,充电电流基本恒定为I 1,同时电容C 上的电压向负载R 供电,因C 值很大,基本保持输出电压u 0为恒值,记为U 0。

设T r 处于通态的时间为t on ,此阶段电感L 上积蓄的能量为EI 1t on 。当T r 处于断态时E 和

L 共同向电容C 充电,并向负载R 提供能量。设T r 处于断态的时间t off ,则在此期间电

感L 释放的能量为(U 0- E)I 1t off 。当电路工作于稳态时,一个周期T 中电感L 积蓄的能量

与释放的能量相等,即

off on t I E U t EI 101)(-= (3-1)

化简得

E t T E t t t U off

off off

on =+=0 (3-2) 上式中T/t off ≥1,输出电压高于电源电压,故称该电路为升压斩波电路,也称之为boost

变换器(Boost Converter )。

升压斩波电路之所以能使输出电压高于电源电压,关键有两个原因:一是L 储能之后具有电压泵升的作用,二是电容C 可将输出电压保持住。在以上分析中,认为T r 处于通态期间因电容C 的作用使得输出电压U 0不变,但实际上C 值不可能无穷大,在此阶段

其向负载放电,U 0必然会有所下降,故实际输出电压会略低于理想结果,不过,在电容

C 值足够大时,误差很小,基本可以忽略[6]。

3.3 主电路主要元器件的参数设计

3.3.1 高功率因数校正硬开关AC/DC 变换电路技术指标

输入电压:单相交流220±10%V

输入频率:50Hz

输出电压:直流400V

最大输出功率:3KW

功率因数:99%

开关频率:f=100kHz

3.3.2 升压电感L 的设计

电感将决定在输入侧高频纹波电流的大小,且它的值与纹波电流的大小有关。电感值由输入侧的交流电流峰值来决定。由于最大的峰值电流出现在线电压为最小值,负载最大时,所以有:

A V P I in out pk L 43.21198

300022(min))(=?=?= (3-3) 本设计中,转换器的输入线电流峰值为21.43A ,出现在交流电压为198V 时。假如允许电感电流有20%的电流脉动,则有:

A I I pk L 29.42.0)(=?=?(I ?是指电流纹波峰对峰值) (3-4)

在升压型转换器中最大纹波电流发生在占空比为50%时,即在升压比为M=V 0/V in =2

的时候。电感电流的峰值一般不会发生在这个时候,因为它的峰值是由正弦控制信号的峰值所决定的。

电感值是由半波整流最低输出电压时的电流峰值在此电压时的占空比D 以及开关频率所决定的(此处V in(pk)是电网电压最低时整流桥输出电压的峰值),其关系式如下:

pk I 时的占空因数:

3.0400

19824000)(0=?-=-=

V V V D pk in (3-5) 计算升压电感:

mH I f D

V L s pk in 196.029.4101003.019823)(=????=???= (3-6) 为了方便起见,电感值被四舍五入而以整数0.2mH 代替。

3.3.3 输出电容C O 的设计

PFC 电路的输出电容的选择主要应考虑:输出电压的大小及纹波值,电容允许流过的电流值,等效串联电阻的大小,容许温升等众多因素。此外,稳压电源还应要求在输入交流电断电的情况下,电容容量足够大以保证一定的放电维持时间。本文以保持时间来确定输出电容值,保持时间是指在输入电压关断后,输出电压能够维持正常输出值的时间长度,典型保持时间为?t 为15~50ms 。满负载功率为3kW ,电容电压在此期间允许的跌落为100V ,输出电容由容许的输出最大纹波电压决定,输出纹波电压频率为2倍的基频率。本设计输出的范例里,输出电容如下式所述: F V V t P C out O μ3429300

40004.0300022222(min)020≈-??=-???=

(3-7) 式中:

out P ——负载功率

t ——电容维持时间,取40ms

O V ——输出电压

(min)O V ——维持负载工作的最小电压

3.4 主电路的仿真与分析

为了验证本章节主电路设计的可行性和参数的选择的正确性,本节利用OrCAD/PSpice 软件对该主电路进行仿真和分析。

图3-3为Boost 变换器主电路仿真模型图。最后的仿真及实验参数为:输入电压V in 为单相220V ,升压电感L 为0.2mH ,输出滤波电容C O 为3429μF ,开关频率f 为100kHz 。

L

D5VOFF = 0v

R050

图3-3 Boost 变换器主电路仿真模型

下文是对上述仿真模型进行仿真后的各类仿真波形及相应分析:

功率因数校正之基本原理

功率因数校正之基本原理 何谓工率因数? 功率因数(power factor;pf)定义为实功(real power;P)对视在功率(apparent power;S)之比,或代表电压与电流波形所形成之相角之余弦,如图1。功率因数值可由0至1之间变化,可为电感性(延迟的、指标向上)或电容性(领先的、指标向下)。为了降低电感性之延迟,可增加电容,直到pf为1。当电压与电流波形为同相时,工率因数等于1(cos(0o)=1)。所有努力使工率因数等于1是为了使电路为纯电阻化(实功等于视在功率)。 ▲图1: 功率因数之三角关系。 实功(瓦特)可提供实际工作,此为能量转换元素(例如电能到马达转动rpm)。虚功(reactive power)乃为使实功完成实际工作所产生之磁场(损耗)。而视在功率可想成电力公司提供之总功率,如图1所示。此总功率经由电力线提供产生所需之实功。 当电压与电流皆为正弦波时,如前述定义之功率因数(简称为功因)为电压与电流波形之对应相角,但大部份之电源供应器之输入电流乃非正弦波。当电压为正弦波而电流为非正弦波时,则功因包括两个因素:1)相角位移因素,2)波形失真因素。等式1表示相角位移与波形失真因素之于功因的关系。 ----------------------------------------------------(1)

Irms(1)为电流之主成份,Irms电流之均方根值。因此功率因数校正线路是为了使电流失真最小,且使电流与电压同相。 当功因不等于1时,电流波形没有跟随电压波形,不但有功率损耗,且其产生之谐波透过电力线干扰到连接同一电力线之其它装置。功因越接近1,几乎所有功率皆包含于主频率,其谐波越接近零。 ■了解规范 EN61000-3-2对交流输入电流至第40次谐波规范。而其class D对适用设备之发射有严格之限制(图2)。其class A要求则较宽松(图3)。 ▲图2:电压与电流波形同相且PF=1(Class D)。

单相功率因数校正的仿真研究.

学号14051400645 毕业设计(论文) 题目:单相功率因数校正电路的仿真研究 作者王任届别2009届 系别机械与电气工程系专业自动化 指导教师荣军职称讲师 完成时间2009年5月21日

摘要 现代开关电源技术所面临的最重要课题之一就是功率因数校正(Power Factor Correction,PFC)。在各种单相PFC电路拓扑结构中,Boost升压型功率因数校正电路由于具有主电路结构简单,变换效率高,控制策略易实现等优点而得到广泛应用。本文叙述了有源功率因数校正(APFC)的原理和方法,对硬开关和软开关主电路的主要元器件参数进行设计,并在软件环境下搭建了功率因数校正电路Boost变换器与Boost-ZVT变换器的仿真模型,分别对输入电压与输入电流、开关管驱动波形、输出电压与输出电流进行仿真,并对仿真结果进行分析和比较,指出了它们各自的优点与缺点。 关键词:开关电源;功率因数校正;OrCAD/PSpice仿真

ABSTRACT One of the most important issue in modern switching power technology is the Power Factor Correction(PFC). Among a variety of single-phase PFC circuit, Boost boost power factor correction has been widely used as a result of the simplicity of the main circuit structure, high conversion efficiency and easy control strategy achievement. This paper considers the principle and method of the Active Power Factor Correction(APFC) and designs the parameters of main circuit components of hard switching and soft switching. Meanwhile, it establishs the PFC Boost converter circuit and the Boost-ZVT converter simulation model by utilizing software. Moreover, it simulates the waveform of input voltage and current together with the drive waveform of the switch tube and the waveform of output voltage and output current respectively. At last, it analyzes the simulation results, then makes a comparison, pointing out their advantages and disadvantages respectively. Key words: Switching Power; PFC; OrCAD/PSpice simulation

有源功率因数校正原理要点

有源功率因数校正PFC 电路主要有升压型、降压型、升压--降压型和回扫型等 基本电路形式,其中升压型有源PFC 电路在一定输出功率下可减小输出电流,减小输 出滤波电容的容值和体积,故在电子镇流器中广泛应用。升压型有源PFC 电路在控制方法上,有电感电流断续传导模式和峰值电流控制模式。其电路原理图如图2所示。 电路工作原理如下:Q1导通时,D5截止,电容C1向负载放电;Q1截止,电感L1储能经D5对电容C1充电。由于Q1和D5交替导通,使整流器输出电流经电感L1连续。这样输入电流也连续。图中,R1取样输入电压,保证通过电感L1的电流跟随输入电压按正弦规律变化,通过L1的高频电流包络正比于输入电压,其平均电流呈正弦波形,使输入电流呈正弦波;R2取样输出电压,控制APFC 控制器的输出 占空比,稳定输出电压。 目前,APFC 专用芯片很多,在电子镇流器中应用广泛,具体电路不做详细介绍,可参阅参考文献。 4 利用自振荡半桥PWM 驱动器设计的APFC 电路 在某些自振荡半桥PWM 驱动器电路中,可以利用PWM 驱动器输出固定频率的 脉冲来作APFC 控制,这里介绍两种典型电路。 4.1利用自振荡输出波形控制的APFC 电路 电路原理图如图3所示。

升压电感L1、二极管D5、电容C2和开关管Q3等组成APFC 电路。由于PWM 驱动器U1输出脉冲的频率和占空比都是固定的,Q3导通时,D5截止,C2向负载放电;Q3截止时,电感L1产生的突变电势使D5正向偏置而导通,电感 L1通过D5向C2和负载释放储能,此时整流二极管电流经电感L1连续,使输入电流波形连续,呈正弦波形,可将线路功率因数提高到0.95以上,使输入电流总谐波失真度(THD )降低到10%以下。 4.2 利用自振荡PWM 驱动器的定时电路 图3利用自振荡PWM 驱动器输出波形控制的APFC 原理电路图图4利用自振荡PWM 驱动器的定时器设计的APFC 原理电路图和波形图设计的APFC 电路自振荡半桥PWM 驱动器的振荡器是一个类似555的定时振荡器,CT 端为锯齿波,可以用一电路产生同频、占空比可调的APFC 电路。其原理电路如图4所示。 自振荡PWM 驱动器的CT 端波形为锯齿波,送到比较器U2的正端;将直流输出 电压分压送到比较器U2的负端。当C 点的电压小于D 点时,E 点为高电平,Q4导通;当B 点为高电平时,F 点为高电平,Q3导通,电感L1储能,电容C2向后级供电。当C 点电压高于D 点时,E 点为低点平,不论F 点电平状态,Q4截止,Q3截止,电感L1经 D5向C2和后级释放储能。这样二极管电流经电感L1连续,各点相关波形如图4(B )所示。从波形上可以看出F 点波形脉冲宽度小于A 或B ,而且可调,但小于50%;通过 调整R1、R2的分压比,可调整输出电压和输出功率,构成可调输出电路,这在开关电源和电子镇流器中有较广泛的应用。 5 利用TOPSwitch 开关构成的APFC 电路

由单相有源功率因数校正(APFC)组合成三相APFC的几种方法

由单相有源功率因数校正(APFC)组合成三相APFC的几种方法 中心议题:由单相APFC组合成三相APFC的几种方法 解决方案:由三个分别带隔离DC/DC变换的单相PFC并联组成由三个单相PFC在输出端直接并联组成两个单相PFC组成的三相PFC电路由矩阵式DC/DC变换器构成 功率因数校正(Power Factor CorrecTIon,简称PFC)技术,尤其是有源功率因数校正(Active Power FactorCorrection,简称APFC)技术可以有效的抑制谐波,单相APFC技术的研究比较成熟,已有不少商业化的专用控制芯片,如UC3854,IRll 50,LTl508,ML4819。与单相功率因数校正整流装置相比,三相PFC整流装置具有许多优点:(1)输入功率高,功率额定值可达几千瓦以上;(2)单相PFC整流装置输入功率是一个两倍于工频变化的量,但在三相平衡装置中,三相输入功率脉动部分的总和为零,输入功率是一恒定值,三相PFC整流装置输出功率的脉动周期仅为单相全波整流的三分之一,脉动系数低,因此可以使用容量较小的输出电容,从而可以实现更快的输出电压动态响应。三相APFC技术正成为众多学者研究的重点,但其实现有一定的困难,而且还未见成熟的专用控制芯片。若能将单相APFC电路简单整合成一个三相APFC电路,将能充分利用成熟的单相控制芯片,制作出满足要求的三相APFC装置。下面介绍几种由单相APFC组合成三相APFC的方法。1 由单相APFC组合成三相APFC的几种方法单相PFC组合成三相PFC的技术优势是:(1)无需研究新的拓扑和控制方式,可直接应用发展比较成熟的单相PFC拓扑,以及相应的单相PFC控制芯片和控制方法;(2)电路由多个单相PFC同时供电,如果某一相出现故障,其余两相仍能继续向负载供电,电路具有冗余特性; (3)由于单向模块的使用,因此需要更少的维护和维修,而且有利于产品的标准化;(4)与三相PFC相比,不需要高压器件等。下面将对由单相PFC实现三相PFC的几种方法分别进行介绍。1)由三个分别带隔离DC/DC变换的单相PFC并联组成的方法每个单相PFC后跟随一个隔离型DC/DC变换器,DC/DC变换器输出端并联起来,形成一个直流回路后向负载供电,。此类电路即可采用三相三线制接法,也可用三相四线制的接法,很灵活且很简单。而且此类电路都可设计成单级形式,从而减少功率等级且动态响应比较快。但该类电路由三个完全独立的单相PFC及DC/DC变换器组成,由于需3个外加隔离的DC/DC变换器,因此用的器件比较多,成本较高。 (1)单相PFC电路由全桥电路构成 图2电路的特点是DC/DC的开关控制比较简单,相对于其它电路更适合于大功率场合的应用。但是由于隔离变压器反射电压的影响,全桥电路相对于反激电路来说有更高的电流失真。 (2)单相PFC电路由Buck电路构成图3用三个单相Buck变换器组成的三相PFC示意图,图3所示Buck型电路的结构比较简单,同全桥电路相似,由于隔离变压器反射电压的影响,其相对于反激电路来说也有较大的电流失真,但其谐波仍可以限定在比较低水平,达到IEC—1000的要求。另外,其可实现的功率等级的大小不如全桥高,但比反激式电路要大。 (3)单相PFC电路由反激电路构成图4所示反激式电路有比较接近正弦的相电流,而且功率因数也更接近于单位功率因数。由于其本身的结构特点,所以不必以增加电压为代价即可达到隔离的作用。但相对于前两种电路其功率不容易做大。 (4)单相PFC电路由SEPIC电路构成在Boost变换中,传统的隔离在此种情况下的应用并不理

无源功率因数校正电路的原理和应用

无源功率因数校正电路的原理和应用 摘要:本文介绍SIEMENS公司提出的开关电源集成控制器TDA16846无源功率因数校正(PFC)电路原理及其在电视机开关电源中的应用。功率因数的改善是基于一个特殊的由电感,电容及二极管组成的充电泵电路,该电路在功率管的高压端兼起吸收缓冲作用,因此它具有输入谐波电流分量小,PF值高以及EMI小、电路简单、成本低和可靠性高等优点。这为电视机厂家提供了一个高效价廉的解决电源谐波问题的新方案。 关键词:开关电源功率因数校正 一、引言 众所周知,目前电视机和大部分通用电器都广泛地从交流电网中提取电能经整流后变成直流电供全机使用,AC电源经桥式整流后常接一个滤波平整电容。由于该电容的存在,使整流臂的导通时间小于半个周期,因而做成输入电源电压是正弦形,而输入电流却是正负交替的脉冲形。后者导致大量电流谐波特别是三次谐波的产生,这既构成对电网效能的干扰和损害,又降低了本机功率因数,为此,我国跟欧美各国一样,已于去年12月1日起正式实施限制功耗大于75W的通用电器产品输入谐波电流的新规定。面对这种新情况,当前各电器厂家都必须考虑更新产品中的电源设备,尤其是对25英寸以上的彩色电视机,过去国内产品绝大部分都没有安装PFC电路,其PF值一般在0.55~0.65之间,输入电流谐波分量往往超出国家限定的标准,因此改进电源电路,增加PFC功能以便降低电视机的输入电流谐波分量是各厂家的当务之急。 本文介绍由SIEMENS公司推出的与开关电源集成控制器TDA16846配合使用的一个无源功率因数校正(PFC)电路,该电路能将电源PF值提高到0.9以上,与有源PFC电路相比,它明显地具有结构简单,成本低,可靠性高,和EMI小等优点,因此对电视机厂家来说,不失为一个有效的解决电源谐波问题的可行方案。 二、无源PFC电路工作原理介绍 图1示出一个不含PFC的标准型电源电路的输入电压Vm和输入电流Im波形,Im只在Vm为正最大和负最大的一小段时间内流通,在这些时间以外,Im为零。这是因为此时的正弦电压输入值小于泸波电容上的电压,导致整流二极管不导通的缘故。

基于Matlab的功率因数 的仿真分析

基于Matlab的功率因数校正电路的仿真 分析 摘要:根据功率因数校正的原理和特点,建立了一种基于Matlab的功率因数校正电路的仿真模型,详细介绍了模型的建立过程并给出了具体的算法,最后对一种三相无源功率因数校正电路进行了参数的优化和仿真,并对建立的模型作了验证。仿真结果表明,运用Matlab中的SimPowerSystems模块对复杂的电路进行仿真分析和研究,不失为一种准确、直观有效的方法。 关键词:功率因数;模型;仿真 Abstract: Based on the principle and characteristic of PFC, a simulator model is built based on Matlab about PFC. The process of the model-building is introduced in detail and the arithmetic is given. Finally, a three-phase passive PFC circuit is simulated and its parameters are optimized, the model is validated. Meanwhile, the simulation result shows that the SimPowerSystems model of Matlab is an accurate, intuitionistic and effective method on simulation analysis and research of complicated circuit. Keywords: power-factor; model; simulation 0 引言 Matlab是一种功能强大的数值计算软件,应用领域很广。在继Matlab5.3之后推出的电力系统工具箱(Power System Blocket),它是在Simulink仿真软件的运行环境下的一个电路工具箱,操作简单易学,不需要自己编程,只需用鼠标拖出元器件来搭建自己需要的电路,仿真速度比Pspice快。。在仿真过程中,可以随时观察仿真结果,并对仿真结果进行处理,以及对电路参数进行分析和优化,达到事半功倍的效果。本文对Matlab在功率因数校正方面的电路进行建模和仿真分析。 1 功率因数校正的原理 功率因数校正电路基本上是一个AC/DC变换器。其输出是不可调节的直流电压Vd,一个大电容Cd(1000uF)用来滤除低频纹波。电容和电阻作为电路的等效负载,电网仅在每个工频周期的一小部分时间里给负载提供能量。电流中包含丰富的高次谐波电流存在

有源功率因数校正

有源功率因数校正 编辑锁定 本词条由“科普中国”百科科学词条编写与应用工作项目审核。 有源功率因数校正是指通过有源电路(主动电路)让输入功率因数提高,控制开关器件让输入电流波形跟随输入电压波形,相对于无源功率因数校正电路(被动电路)通过加电感和电容要复杂一些,功率因数的改善要好些,但成本要高一些,可靠性也会降低。 中文名 有源功率因数校正 性质 技术 优点 功率因数的改善要好些 缺点 成本要高一些,可靠性也会降低 目录 1. 1校正电路分类 2. 2工作原理 有源功率因数校正校正电路分类 编辑 常用有源功率因数校正电路分为连续电流模式控制型与非连续电流模式控制型两类。其中,连续电流模式控制型主要有升压型(Boost)、降压型(Buck)、升降压型(Buck-Boost)之分;非连续电流模式控制型有正激型(Forward)、反激型(Fly back)之分。[1] 有源功率因数校正工作原理 编辑 升压型PFC电路 升压型PFC主电路如图所示,其工作过程如下:当开关管Q导通时,电流IL流过电感线圈L,在电感线圈未饱和前,电流线性增加,电能以磁能的形式储存在电感线圈中,此时,电容C放电为负载提供能量;当Q截止时,L两端产生自感电动势VL,以保持电流方向不变。这样,VL与电源VIN串联向电容和负载供电。

升压型PFC主电路 这种电路的优点是:(1)输入电流完全连续,并且在整个输人电压的正弦周期内都可以调制,因此可获得很高的功率因数;(2)电感电流即为输入电流,容易调节;(3)开关管栅极驱动信号地与输出共地,驱动简单;(4)输入电流连续,开关管的电流峰值较小,对输入电压变化适应性强,适用于电网电压变化特别大的场合。主要缺点是输出电压比较高,且不能利用开关管实现输出短路保护。 降压型PFC电路 降压型PFC电路如图所示,其工作过程如下:当开关管Q导通时,电流IL流过电感线圈,在电感线圈未饱和前,电流IL线性增加;当开关管Q关断时,L两端产生自感电动势,向电容和负载供电。由于变换器输出电压小于电源电压,故称为降压变换器。 降压型PFC主电路 (1)这种电路的主要优点是:开关管所受的最大电压为输人电压的最大值,因此开关管的电压应力较小;当后级短路时,可以利用开关管实现输出短路保护。 (2)该电路的主要缺点是:由于只有在输人电压高于输出电压时,该电路才能工作,所以在每个正弦周期中,该电路有一段因输人电压低而不能正常工作,输出电压较低,在相同功率等级时,后级DC/DC变换器电流应力较大;开关管门极驱动信号地与输出地不同,驱动较复杂,加之输人电流断续,功率因数不可能提高很多,因此很少被采用。 升降压型PFC电路 升降压型PFC电路如图所示,其工作过程如下:当开关管Q导通时,电流IIN流过电感线圈,L储能,此时电容C放电为负载提供能量;当Q断开时,IL有减小趋势,L中产生的自感电动势使二极管D正偏导通,L释放其储存的能量,向电容C和负载供电。 图3升压型PFC主电路 (1)该电路的优点是既可对输人电压升压又可以降压,因此在整个输入正弦周期都可以连续工作;该电路输出电压选择范围较大,可根据一级的不同要求设计;利用开关管可实现输出短路保护。

有源功率因数校正技术及控制方式分析_张浩

第25卷第3期上海电力学院学报V o l .25,N o .3 2009年6月 J o u r n a l o f S h a n g h a i U n i v e r s i t y o f E l e c t r i c P o w e r J u n e 2009 文章编号:1006-4729(2009)03-0201-07 有源功率因数校正技术及控制方式分析 收稿日期:2009-03-30 作者简介:张浩(1962-),男,博士,教授,博士生导师,江苏无锡人.主要研究方向为电力系统自动化,工业以太网, 现场总线,电力监测与管理,电力企业信息化等.E -m a i l :h z h a n g k @y a h o o .c o m .c n . 张 浩,许龙虎 (上海电力学院电力与自动化工程学院,上海 200090) 摘 要:电力电子设备谐波污染问题越来越严重,功率因数校正技术是解决该问题的最有效方法,而有源功率因数校正(A P F C )技术因其独特的优势成了该领域的研究重点.介绍了功率因数的定义和校正原理,并根据有源功率因数校正电路说明了A P F C 的工作原理,重点阐述了A P F C 技术的各种控制方法及其未来的发展趋势. 关键词:有源功率因数;校正技术;控制方式中图分类号:T P 217+.3 文献标识码:A A c t i v e P o w e r F a c t o r C o r r e c t i o n T e c h n o l o g y a n dC o n t r o l Me t h o d s A n a l y s i s Z H A N GH a o ,X UL o n g -h u (C o l l e g e o f E l e c t r i c P o w e r a n dA u t o m a t i o nE n g i n e e r i n g ,S h a n g h a i U n i v e r s i t y o f E l e c t r i c P o w e r ,S h a n g h a i 200090,C h i n a ) A b s t r a c t : T h eh a r m o n i c p o l l u t i o np r o b l e m o f p o w e r e l e c t r o n i cd e v i c e s b e c o m e s m o r ea n dm o r e s e r i o u s ,a n d p o w e r f a c t o r c o r r e c t i o n t e c h n o l o g y i s t h e m o s t e f f e c t i v e m e t h o d t o s o l v e t h i s p r o b l e ma n d t h e a c t i v e p o w e r f a c t o r c o r r e c t i o n(A P F C )t e c h n o l o g y h a s b e c o m e t h e r e s e a r c hf o c u s o w i n gt oi t s u n i q u e a d v a n t a g e s .T h ed e f i n i t i o na n dp r i n c i p l e s o f p o w e r f a c t o r c o r r e c t i o na r ei n t r o d u c e d ,t h e w o r k i n g p r i n c i p l e o f A P F Ct e c h n o l o g y i s s h o w e d a c c o r d i n g t o t h e A P F Cc i r c u i t .T h e d e v e l o p m e n t t r e n d a n d v a r i o u s c o n t r o l m e t h o d s o f A P F Ct e c h n o l o g y a r e m a i n l y a n a l y z e d .K e y w o r d s : a c t i v e p o w e r f a c t o r ;c o r r e c t i o n t e c h n o l o g y ;c o n t r o l m e t h o d s 随着我国经济的发展,各种换流设备的使用越来越多、容量越来越大,加上一些非线性用电设备接入电网,将其产生的谐波电流注入电网,使公用电网的电压波形发生畸变,造成电能质量下降,威胁电网和包括电容器在内的各种电气设备的安全经济运行.为了提高电网的供电质量,限制高次谐波污染,国内外电气组织先后制定了相关标准,我国国家技术监督局1993年颁布了G B /T 14549 -93电能质量公用电网谐波,国际电工委员会(I E C )1998年制定了I E C 61000-3-2标准 [1] .解 决电力电子设备谐波污染问题的方法有两种:一是对电网采用滤波补偿;二是对电力电子设备本 身进行改进,即进行功率因数校正.相对来说,功率因数校正能够更有效地消除整流装置的谐波,具有更广泛的前景,已经成为电力电子技术的一 个重要研究方向[2] .

功率因数校正(PFC)的几个小知识

1、什么是功率因数校正(PFC)? 功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因数可以衡量电力被有效利用的程度,当功率因数值越大,代表其电力利用率越高。开关电源供应器上的功率因数校正器的运作原理是去控制调整交流电电流输入的时间与波型,使其与直流电电压波型尽可能一致,让功率因数趋近于。这对于电力需求量大到某一个水准的电子设备而言是很重要的, 否则电力设备系统消耗的电力可能超出其规格,极可能干扰铜系统的其它电子设备。一般状况下, 电子设备没有功率因数校正(Power Factor Correction, PFC)时其PF值约只有0.5。 PFC的英文全称为“Power Factor Correction”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。计算机开关电源是一种电容输入型电路,其电流和电压之间的相位差会造成交换功率的损失,此时便需要PFC电路提高功率因数。目前的PFC有两种,一种为被动式PFC(也称无源PFC)和主动式PFC(也称有源式PFC)。 PFC打个形象的比方:一个啤酒杯的容积是一定的,就好比是视在功率,可是你倒啤酒的时候很猛,就多了不少的泡沫,这就是无功功率,杯底的啤酒其实很少,这些就是有功功率。这时候酒杯的利用率就很低,相当于电源的功率因数就很小。PFC的加入就是要减少输入侧的无功功率,提高电网的利用率,对于普通的工业用电来讲是把电流的相位与电压的相位调整到一块了,对于开关电源来讲是把严重畸变了的交流侧输入电流变成正弦,另外还有降低低次谐波的功能,因为输入的电流是正弦了。 2、为什么我们需要PFC? 功率因素校正的好处包含: 1. 节省电费 2. 增加电力系统容量 3. 稳定电流 低功率因数即代表低的电力效能,越低的功率因数值代表越高比例的电力在配送网络中耗损,若较低的功率因数没有被校正提升,电力公司除了有效功率外,还要提供与工作非相关的虚功,这导致需要更大的发电机、转换机、输送工具、缆线及额外的配送系统等事实上可被省略的设施,以弥补损耗的不足。有PFC 功能的电子设备配可以帮助改善自身能源使用率,减少电费,PFC也是一种环保科技,可以有效减低造成电力污染之谐波,是对社会全体有益的功能。 PFC电源供应器是如何帮助节省能源? 藉由降低您的电力设备必须传输的电压-电流,以提供一台电源供应器至少所需的供电量。因为产生较少无用的谐波(只会替交流电运输系统增加不必要的负担),让电力的消耗减少。 什么是谐波? 谐波是一种噪音形式,基本上是由复合的60个循环正弦波组合而成的频率所造成。他们通常发生在电源供应器及其它包括计算机在内等多种频率相关机器。谐波会扭曲基本的正弦波波型, 也会在同一系统的水线及接地线造成偏高的电流。[注: 美国的电源线,有3个pins,就是(Live,火线)-(Neutral,水线)-(Ground,地线)] 有哪些国家规定PFC为电子设备的标准配备? 2001年一月,欧盟正式对电子设备谐波有详细规范,规定凡输出在75W~600W范围间之电子设备产品,都必须通过谐波测试[Harmonics test(EN 61000-3-2)],测量待测物对电力系统所产生的谐波干扰;中国大陆自2002年5月起,规范凡政府机关采购之电子设备,皆将功率因数校正(PFC)视为电子设备的标准配备功能;日本已着手研拟关于节约电力的各项方案,这是一种未来的趋势,相信在不久的将来,其它国家将陆续跟进。 什么是主动式/被动式功率因数校正(Active/Passive PFC)? 被动式PFC,使用由电感、电容等组合而成的电路来降低谐波电流,其输入电流为低频的50Hz到60Hz,因

功率因数校正电路(pfc)电路工作原理及应用

功率因数校正(英文缩写是PFC)是 目前比较流行的一个专业术语。PFC 是在20世纪80年代发展起来的一项新技术,其背景源于离线开关电源的迅速发展和荧光灯交流电子镇流器的广泛应用。PFC 电路的作用不仅仅是提高线路或系统的功率因数,更重要的是可以解决电磁干扰(EMI)和电磁兼容(EMC)问题。 线路功率因数降低的原因及危害 导致功率因数降低的原因有两个,一个是线路电压与电流之间的相位角中,另一个是电流或电压的波形失真。前一个原因人们是比较熟悉的。而后者在电工学等书籍中却从未涉及。 功率因数(PF)定义为有功功率(P)与视在功率(S)之比值,即PF=P/S 。对于线路电压和电流均为正弦波波形并且二者相位角Φ时,功率因数PF 即为COS Φ。由于很多家用电器(如排风扇、抽油烟机等)和电气设备是既有电阻又有电抗的阻抗负载,所以才会存在着电压与电流之间的相位角Φ。这类电感性负载的功率因数都较低(一般为0.5-0.6),说明交流(AC)电源设备的额定容量不能充分利用,输出大量的无功功率,致使输电效率降低。为提高负载功率因数,往往采取补偿措施。最简单的方法是在电感性负载两端并联电容器,这种方法称为并联补偿。 PFC 方案完全不同于传统的“功率因数补偿”,它是针对非正弦电流波形而采取的提高线路功率因数、迫使AC 线路电流追踪电压波形的瞬时变化轨迹,并使电流与电压保持同相位,使系统呈纯电阻性的技术措施。 长期以来,像开关型电源和电子镇流器等产品,都是采用桥式整流和大容量电容滤波电路来实现AC-DC 转换的。由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。根据桥式整流二极管的单向导电性,只有在AC 线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC 输入电压瞬时值低于滤波电容上 的电压时,整流二极管因反向偏置而截止。也就是说,在AC 线路电压的每个半周期内,只是在其峰值附近,二极管才会导通(导通角约为70°)。虽然AC 输入电压仍大体保持正弦波波形,但AC 输入电流却呈高幅值的尖峰脉冲,如图l 所示。这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降。若AC 输入电流基波与输入电压之间的位移角是Φ1,根据傅里叶分析,功率因数PF 与电流总谐波失真(度)THD 之间存在下面关系: 而是由二极管、电阻、电容和电感等无源元件组成。无源PFC 电路有很多类型,其中比较简单的无源PFC 电路由三只二极管和两只电容组成,如图2所示。这种无源PFC 电路的工作原理是:当50Hz 的AC 线路电压按正弦规律由0向峰值V m 变化的1/4周期内(即在0

有源功率因数校正 总结

有源功率因数校正 一、功率因数的定义 功率因数PF 定义为:功率因数(PF )是指交流输入有功功率(P )与输入视在功率(S )的比值。 PF =S P =R L L I U I U φcos 1=R I I 1cos φ= γcos φ (1) 式中: γ:基波因数,即基波电流有效值I 1与电网电流有效值I R 之比。 I R :电网电流有效值 I 1:基波电流有效值 U L :电网电压有效值 cos Φ:基波电流与基波电压的位移因数 在线性电路中,无谐波电流,电网电流有效值I R 与基波电流有效值I 1相等, 基波因数γ=1,所以PF =γ·cos Φ=1·cos Φ=cos Φ。当线性电路且为纯电阻性负载时,PF =γ·cos Φ=1·1=1。 二、有源功率因数校正技术 1.有源功率因数校正分类 (1)按电路结构分为:降压式、升/降压式、反激式、升压式(boost )。 其中升压式为简单电流型控制,PF 值高,总谐波失真(THD :Total Harmonic Distortion )小,效率高,适用于75W~2000W 功率范围的应用场合,应用最为广泛。它具有以下优点: ● 电路中的电感L 适用于电流型控制 ● 由于升压型APFC 的预调整作用在输出电容器C 上保持高电压,所以电容器C 体积小、储能大 ● 在整个交流输入电压变化范围内能保持很高的功率因数 ● 输入电流连续,并且在APFC 开关瞬间输入电流小,易于EMI 滤波 ● 升压电感L 能阻止快速的电压、电流瞬变,提高了电路工作可靠性 (2)按输入电流的控制原理分为:平均电流型(工作频率固定,输入电流

连续)、滞后电流型、峰值电流型、电压控制型。 图1 输入电流波形图 其中平均电流型的主要有点如下: ●恒频控制 ●工作在电感电流连续状态,开关管电流有效值小、EMI滤波器体积小。 ●能抑制开关噪声 ●输入电流波形失真小 主要缺点是: ●控制电路复杂 ●需用乘法器和除法器 ●需检测电感电流 ●需电流控制环路

单相有源功率校正电路

实验五:单相有源功率校正电路 (一)实验目的 1.掌握单相有源功率校正电路的工作原理,要求输出电压达到给定值,且网侧电流正弦化,功率因数为1; 2.掌握电压外环和电流内环的设计方法。 (二)实验原理 有源功率因数校正(Active Power Factor Correction APFC)电路,是指在传统的不控整流中融入有源器件,使得交流侧电流在一定程度上正弦化,从而减小装置的非线性、改善功率因数的一种高频整流电路。 基本的单相APFC电路在单相桥式不可控整流器和负载电阻之间增加一个DC-DC功率变换电路,通常采用Boost电路。通过适当的控制Boost电路中开关管的通断,将整流器的输入电流校正成为与电网电压同相位的正弦波,消除谐波和无功电流,将电网功率因数提高到近似为1。其电路原理图如图1所示。 假定开关频率足够高,保证电感L的电流连续;输出电容C足够大,输出电压u o可认为是恒定直流电压。电网电压u i为理想正弦,即u i=U m sinωt,则不可控整流桥的输出电压u d为正弦半波,u d=u i=U m sinωt。 图1.APFC电路原理图 当开关管Q导通时,u d对电感充电,电感电流i L增加,电容C向负载放电;当Q关断、二极管D导通时,电感两端电压u L反向,u d和u L对电容充电,电感电

流i L减小。电感电流满足下式。 通过控制Q的通断,即调节占空比D,可以控制电感电流i L。若能控制i L近似为正弦半波电流,且与u d同相位,则整流桥交流侧电流i i也近似为正弦电流,且与电网电压u i同相位,即可达到功率因数校正的目的。为此需要引入闭环控制。 控制器必须实现以下两个要求:一是实现输出直流电压u o的调节,使其达到给定值;二是保证网侧电流正弦化,且功率因数为1。即在稳定输出电压u o的情况下,使电感电流i L与u d波形相同。采用电压外环、电流内环的单相APFC双闭环控制原理如图2所示。 电压外环的任务是得到可以实现控制目标的电感电流指令值i L?。给定输出电压u o?减去测量到的实际输出电压u o的差值,经PI调节器后输出电感电流的幅值指令I L?测量到的整流桥出口电压u d除以其幅值U m后,可以得到表示u d波形的量u d′,u d′为幅值为1的正弦半波,相位与u d相同。I L?与u d′相乘,便可以得到电感电流的指令值i L?。i L?为与u d′同相位的正弦半波电流,其幅值可控制直流电压u o的大小。 图2.APFC控制框图 电流内环的任务是通过控制开关管Q的通断,使实际的电感电流气跟踪其

功率因数校正控制方案

功率因数校正方案 方案一:采用数字控制 方案:采用MCU (微控制单元)或DSP(数字信号处理)通过编程控制完成系统的功率因数校正。,MCU 时刻检测输入电压、输入电流以及输出电压的值,在程序中经过一定的算法后输出PWM 控制信号,经过隔离和驱动控制开关管,从而提高输入端的功率因数。采用数字控制的优点是通过软件调整控制参数,使系统调试方便,减少了元器件的数量。缺点是软件编程困难,采样算法复杂,计算量大,难以达到很高的采样频率,此外还要注意控制器和主电路的隔离和驱动。 方案二:采用模拟控制 方案:采用专用PFC(功率因数校正)控制芯片来完成系统功率因数的校正。整流后的线电压与误差放大器处理的输出电压相乘,建立电流的参考信号,该参考信号就具有输入电压的波形,同时也具有输出电压的平均幅值。因此在电流反馈信号的作用下,误差放大器控制的PWM 信号基本变化规律是成正弦规律变化的,于是得到一个正弦变化的平均电流,其相位与输入电压相同,达到功率因数校正的目的。该方案的优点是,使用专用IC 芯片,简单直接,无需软件编程。缺点是电路调试麻烦,易受噪声干扰。模拟PFC 控制是当前的工业选择,且技术成熟,成本低,使用方便。通过比较,系统选用方案二,采用TI 公司专用PFC 控制芯片UCC28019 来完成功率因数的校正。 方案一:LC校正电路根据电感电流不能突变的原理,整流后采用LCC滤波电路,可在一定程度上提高功率因素PF,一般可达0.8~0.9。优点是电路简单、可靠性高、成本低、EMI(电磁干扰)小;缺点是体积大、重量重,电感损耗较大,PF很难接近1。 方案二:填谷式PF校正电路使用电容C1~C2及二极管D5~D7构成填谷式滤波电路,扩展了整流二极管电流波形导通角θ,二极管D6后可串联浪涌电流限制电阻R,可将PF提高到0.8~0.9之间。该电路优点:体积略小于LC校正电路,可靠性高,EMI小,PF也容易达到0.85以上;缺点是输出功率小,只能用在输出功率小于25W的AC-DC变换器中,损耗相对较大,输入电压允许变化范围小,一般不超过15%。电路原理图如图2.1所示。 2.1 填谷式电路 方案三:有源功率因素校正(APFC)电路在整流器与负载之间插入具有特定功能的DC-DC变换器,使输入电流波形尽可能接近正弦波,构成有源功率因素校正电路(APFC)。该技术优点是:电路体积小,校正后的PF接近1;输入电压变化范围大,目前支持全电压范围(90V~265V)的APFC电路技术非常成熟、应用也很普及,因此在输出功率为20W~300W的AC-DC 变换器中使用APFC电路来改善电流波形THD(总谐波失真)参数较为合适。缺点是:该电

单相有源功率因数校正电路仿真

单相有源功率因数校正电路仿真 摘要:传统的AC-DC 变换器的广泛应用对电网产生了大量的谐波污染。有源功率因数校正技术(APFC)是抑制谐波电流、提高功率因数的行之有效的办法。本文论述了单相功率因数校正APFC 的原理和方法,通过对Boost 型滞环控制的DC-DC 变换器采用Matlab 进行仿真,获得了最后校正的功率因数结果,说明这种PFC 方案的能获得良好的效果,适用于多种场合。 关键词:有源功率因数校正,Boost 电路,滞环控制 1 绪论 功率因数指的是有效功率与总耗电量(视在功率)之间的关系。功率因数可以衡量电力被有效利用的程度,当功率因数值越大,代表其电能利用率越高。交换式电源供电器上的功率因数校正器的运作原理是通过控制调整交流电电流输入波形,使其与直流电电压波形尽可能一致,让功率因数趋近于1.折对于电力需求量达到某一个水平的电子设备而言是很重要的,否则,电力设备系统消耗的电能可能超出其规格,极可能干扰同系统的其他电子设备。 2 功率因数的定义和校正原理 根据电工学的基本理论功率因数(PF )的定义:交流输入有功功率(P )与视在功率(S )的比值,用公式表示为: 1111cos cos cos rms rms U I I P PF S U I I φφγφ==== (1) 式中:1U 表示输入基波电流有效值;cos φ表示基波电压与基波电流之间的位移因数;γ表示输入电流畸变因数;rms I 表示输入电流有效值。可见PF 由电流畸变因数γ和位移因数cos φ决定,cos φ小表示用电设备的功率大,在有功功率不变的情况下实在功率增加,线路总电流增大,线路传输压降也将增大,倒是电气设备容量增加,利用率低,导线、变压器绕组损耗大,严重影响电网的供电质量,变化快时甚至可以导致电网崩溃。输入电流即便因数γ值低,表示输入电流谐波分量大,将造成输入电流波形畸变,对电网造成污染,使用电设备产生机械振动、噪声、过电压,损坏电子设备。在实际的电能运用和传输中,最主要的危害是电流的畸变引起的谐波而污染电网,因此,可以说谐波的抑制电路即为功率因数校

相关文档
最新文档