变频器的运行方式之并联运行(强烈建议收藏)-民熔

变频器的运行方式之并联运行(强烈建议收藏)-民熔
变频器的运行方式之并联运行(强烈建议收藏)-民熔

变频器的运行方式之并联运行-民熔

并联运行

变频器的并联运行分为两种情况,即单台小变频器容量变频器并联运行方式和“一拖多”运行方式。其中单台小变频器容量变频器并联运行适用于单台变频器不能满足实际变频器容量需求的情况,“一拖多”运行方式是指一台变频器拖动多台电动机运行的模式。下面将详细介绍这两种方式。

1.变频器并联

生产当中变频器的容量需要很大时,如果单台变频器的容量有限,可以通过两台或者多台相同型号的变频器并联运行来满足大容量电动机的驱动要求,此时存在变频器的并联运行问题。两台变频器实现并联运行的基本要求是,控制方式、输入电源和开关的频率要相同,输出电压幅值、频率和相位都相等,频率的变化率要求严格一致。图为两台变频器的并联运行结构示意图。

实现上述条件的方法是在晶振振荡频率相同的条件下,根据反馈定理引入输出电压的负反馈,实现各逆变器输出电压的同步。值得注意的问题包括以下3点。

①变频器并联后导致各电源输出电压的差别加大,主要是因为反馈采样点的电压已不再是单台电源的输出电压,而是多台逆变器共同作用的结果。

②多台逆变器即使在稳态下的幅值、频率及相位均相等,它们的动态调节过程也不可能完全一样,会产生瞬时的动态电流,并且动态电流值很大,需要在各变频器的输出端串入限流电抗和均流电路。

③集成度较高的变频器控制电路,并联改造相对困难,应慎重对待。

2.一台变频器拖动多台电动机并联运行

如图所示,一台变频器拖动多台电动机并联运行时,不能使用变频器内的电子热保护,而是每台电动机外加热继电器,用热继电器的常闭触点串联去控制保护单元。此时,变频器的容量应根据电动机的启动方式确定多台电动机不是同时启动

而是顺序启动,首先将一台电动机从低频启动,待该变频器已经工作在某一频率时,其余电动机再全压启动。每启动一台电动机,变频器都会出现一次电流冲击,这时应保证变频器的电流能够承受电动机全压启动带来的电流冲击。如果多台电动机的容量不同,应尽可能先启动容量大的电动机,然后再启动容量小的电动机。应尽量避免电动机顺序启动的运行方式。如果电动机的台数较多,可以将电动机分成若干组,每组采用同时启动方式。

【实例】某污水处理工艺的处理池内安装有6台搅拌器,搅拌强度与污水处理量有关,要求分3种不同速度搅拌,由PLC控制搅拌器的启动、停止和搅拌强度。6台搅拌器电动机功率均为5.5kW,额定电流均为12.8A,按要求设计变频调速系统。

由于搅拌器类似于恒转矩负载,并且没有太大的过载运行可能性,因此任何品牌的变频器都可以选择,这里选择CIMR-F7A 4045变频器。

变频器的规格按照额定电流选择,6台电动机额定电流之和为76.8A,因此变频器额定电流应该不小于81A。选择CIMR-F7A 4045变频器,额定电流为91A,标称功率为45kW。这里6台电动机功率之和仅为33kW,但37kW变频器的额定电流却只有75A,这是因为低容量电动机的额定电流相对比较高,以电流和选择变频器时容量会大于功率之和。

该实例中采用“一拖多”的运行方式,电路接线如图所示。CIMR-F7A 4045变频器拖动6台搅拌器的电动机。变频器与PLC通过控制端子相连接,PLC送给变频器运行指令和两个多段速指令;变频器送给PLC运行信号和故障信号,6台热继电器的常开触点信号并联之后送给PLC,所以只要任何一台电动机过载,PLC即撤销运行指令,都会停止变频器的运行。

多台电机并联同步运行

3、多台电机并联同步运行 接线: 按图三所示的电路,连接空气开关、电磁开关、电源,检查接线无误后,合上空气开关和电磁开关,变频器上电,键盘数码管显示。 关掉电源,电源指示灯熄灭后,再连接电机、温度继电器、启停开关、正/反转开关、电位器、复位按钮、频率表(0~10V电压表头)等,三台电机并联同步运行,变频器和电动机接地端子可靠接地,并仔细检查。 图三三台电机并联同步运行接线图 每台电机均按电机容量采用温度继电器RT进行过载保护。 变频器功率按三台电机容量之和选取。 参数设定: 变频器上电,数码管显示 出厂值为0,设定为1 出厂值为0,设定为1 按电机名牌设定电机参数:、~ 查看的参数,旋转电位器,数码管显示值从~跟随电位器变化。

运行: 合上启停开关,变频器运行指示灯亮,输出频率从到达电位器设定频率,调节电位器,同步改变三台电动机转速。合上正/反转开关,三台电动机同步减速后反转。 4、多台变频器比例联动 接线:

按图四所示的电路,连接空气开关、电源,检查接线无误后,合上空气开关,变频器上电,数码管显示。 关掉电源,电源指示灯熄灭后,再连接电机、启停开关、主调电位器、微调 电位器、寸动按钮、频率表(0~10V电压表头)等,三台变频器和电机比例联动运行,变频器和电动机接地端子可靠接地,并仔细检查。

图四三台变频器比例联动运行接线图 参数设定: 假定三台变频器的输出频率比例为1::2 合上空气开关,变频器上电,数码管显示 1号变频器参数设定: 出厂值为0,设定为1,端子开关启停 出厂值为0,设定为4,两路模拟量求和输入 出厂值为100,设定为10,微调电位器最大±5Hz 出厂值为100,保持不变,输出频率比例为1 按1号电机名牌设定电机参数:、~ 2号变频器参数设定: 出厂值为0,设定为1,端子开关启停 出厂值为0,设定为4,两路模拟量求和输入 出厂值为100,设定为15,微调电位器最大± 出厂值为100,设定为150,输出频率比例为 按2号电机名牌设定电机参数:、~ 3号变频器参数设定: 出厂值为0,设定为1 出厂值为0,设定为4,两路模拟量求和输入 出厂值为100,设定为20,微调电位器最大±10Hz 出厂值为100,设定为200,输出频率比例为2 按3号电机名牌设定电机参数:、~ 旋转主调电位器,分别查看三台变频器参数,键盘数码管显示的参考输入跟随电位器变化,且比例关系为1::2。分别旋转三个微调电位器,相应的变频器参考输入有微小的变化。 运行:

变频器并联、制动及保护控制电路

湖南省技工学校 理论教学教案 注:教案首页,教案用纸由学校另行准备湖南省劳动厅编制

[复习导入] 频率增益的概念及作用;变频器控制频率的方式有哪几种? 变频器制动电阻及制动单元的作用?变频器多功能输出端子有哪几类? 各输出何种类型的信号? [讲授新课] 变频器并联控制电路 变频器的并联运行、比例运行多用于传送带、流水线的控制场合。 一、由模拟电压输入端子控制的并联运行 1.运行要求 (1)变频器的电源通过接触器由控制电路控制; (2)通电按钮能保证变频器持续通电; (3)运行按钮能保证变频器连续运行,且运行过程中变频器不能断电; (4)停止按钮只用于停止变频器的运行,而不能切断变频器的电源。 (5)任何一个变频器故障报警时都要切断控制电路,从而切断变频器的 电源。 2 ?主电路的设计过程 (1)空气开关QF控制电路总电源,KM控制两台变频器的通、断电; (2)两台变频器的电源输入端并联; (3)两台变频器的VRF、COM端并联; (4)两台变频器的运行端子由继电器触点控制。 3.控制电路的设计过程 (1)两台变频器的故障输出端子串联在控制电路中; (2)通电按钮与KM的动合触点并联,使 KM能够自锁,;保持变频器持续通电。 (3)断电按钮与 KM线圈串联,同时与运行继电器动合触点并联,受运行继电器的封锁。 (4)运行按钮与运行继电器 KA的动合触点并联,使KA能够自锁,保持变频器连续运行。 (5)停止按钮与KA线圈串联,但不影响 KM的状态。 4 .变频器功能参数码设定: 两变频器的速度给定用冋一电位器,若冋速运行,可将两变频器的频率

每台变频器的输出频率由各自的多功能输出端子接频率表指示。 图4-8变频器的并联运行 5 .电路工作过程分析 合QF,控制电路通电T按 SB1, KM线圈得电T 'KM主触点闭合,接通变频器主电路电源[ 〔KM辅助触点闭合,实现自锁,保持变频器电源持续接通i T按SB3, KA继电器线圈得电T KA动合触点(主电路中)闭合,两台变频器同时正转运行 < KA动合触点(控制电路中)闭合,实现自锁,保持变频器连续运转‘I KA动合触点(控制电路中)闭合,锁定SB2,保证运行中不能直接断电 T按SB4, KA继电器线圈失电T KA继电器的所有动合触点断开T 两台变频器均停止运行 解除自锁T按SB2, KM线圈失电T〔 KM主触点断开,主电路 J 彳断电卜、解除对SB2的锁定I KM辅助触点断开,解除 自锁 T断开QF,电路断电 二、由升降速端子控制同速运行 1?运行要求 (1)两台变频器要同时运行,运行速度一致,且调速通过各自的UP、

各种变频器操作方法

变频器操作简明手册 (第二版) 沈阳第一机床厂 沈阳机床集团

变频器简明手册第二版 目录 目录 (1) 一、富士变频器 (2) 1、富士变频器的操作: (2) 2、富士变频器设定: (2) 二、安川变频器 (4) 1、安川变频器的操作: (4) 2、安川变频器的设定 (11) 三、日立变频器 (12) 1、日立变频器的操作 (12) 2、日立变频器的设定 (12) 四、艾默生变频器 (14) 1、艾默生变频器的操作 (14) 2、艾默生变频器的设定: (14) 五、Vacon变频器 (16) 1、Vacon变频器的操作 (16) 2、Vacon变频器的设定 (16) 六、汇川变频器 (18) 1、汇川变频器的设定: (18) 沈阳第一机床厂 1

第二版 变频器简明手册 沈阳第一机床厂 2 一、富士变频器 1、富士变频器的操作: 2、富士变频器设定: 首先,按PRG 键显示菜单——按FUNC 键显示菜单明细——按∧ ,∨键可移动游标选择项目——按FUNC 键显示相应的内容——输入数据,用SHIFT 》键任意选择要改变数据的位——按FUNC 键将它存入存贮器——按RESET 和PRG 键可返回到原来的状态。 自学习时参数的设置步骤与上述相同,将参数F02设为0即可,然后按FWD 或RWD 键——机床主轴自动运转至停止后按STOP 键——再将参数F02设为1即完成变频器的运行。 其中各项参数设置如下: F00=0 F01=1(频率设定)

变频器简明手册第二版F02=1(自学习=0) F03=155(最高频率)(90:6140V) F04=33或50(基本频率) F05=380(额定电压) F06=380(最高电压) F05=380(额定电压) F10=1(热继电器1) F11=11.6或15.6(OL设定值) F13=2 F15=160(上限频率) F16=0(下限频率) F23=0.5(起动频率) E20=9(零速信号) P01=4(极数) P02=5.5或7.5(容量) P03=11.6或15.6(额定电流) P04=2(自学习时设2) E01=9(外部故障信号连接时设) E02=8(外部故障信号连接时设) 沈阳第一机床厂 3

变频器复习题及答案

1、输出电磁滤波器安装在变频器和 电动机 之间,抑制变频器输出侧的 浪涌 电压。 变频器具有多种不同的类型:按变换环节可分为交—交型和___交-直-交________型;按改变变频器输出电压的方法可分为脉冲幅度调制(PAM )型和_脉冲宽度调制(PWM )___型;按用途可分为专用型变频器和___通用型__型变频器。 1.变频器种类很多,其中按滤波方式可分为电压型和 电流 型;按用途可分为通用型和 专用 型。 2.变频器的组成可分为主电路和 控制 电路。 4.变频器安装要求其正上方和正下方要避免可能阻挡进风、出风的大部件,四周距控制柜顶部、底部、隔板或其他部件的距离不应小于120mm 。 变频器按控制方式分类 :压频比控制变频器 ( V/f )、转差频率控制变频器 (SF )、矢量控制 (VC )、直接转矩控制。 变频器产生谐波时,由于功率较大,因此可视为一个强大的干扰源,其干扰途径与一般电磁干扰途径相似,分别为传导、辐射和二次辐射、电磁耦合、边传导边辐射等。 13.输入电源必须接到变频器输入端子R 、S 、T 上,电动机必须接到变频器输出端子U 、V 、W 上。 交-交变频根据其输出电压的波形,可以分为矩形波及正弦波型两种。 高(中)压变频调速系统的基本型式有直接高-高型、高-中型和高-低-高型等三种。 8.(:对)电压型变频器多用于不要求正反转或快速加减速的通用变频器中。 5.(错)交-交变频器的最大输出频率和市网电压频率一样,为50Hz 。 16.变频器的问世,使电气传动领域发生了一场技术革命,即 交流调速 取代直流调速。 19.SCR 是指(可控硅)。 20.GTO 是指(门极关断晶闸管)。 21.IGBT 是指(绝缘栅双极型晶体管 )。 22.IPM 是指(智能功率模块)。 53.电阻性负载的三相桥式整流电路负载电阻L R 上的平均电压O U 为( )。 A .2.342U B .2U C .2.341U D .1U 107.下述选项中,( )不是高中压变频器调速系统的基本形式。 A .直接高-高型 B .高-中型 C .高-低-高型 D .交-交变频器 116.( )变频器矢量控制模式下,一只变频器只能带一台电动机。对

变频器的运行控制方式

变频器的运转指令方式 变频器的运转指令方式是指如何控制变频器的基本运行功能,这些功能包括启动、停止、正转与反转、正向电动与反向点动、复位等。 与变频器的频率给定方式一样,变频器的运转指令方式也有操作器键盘控制、端子控制和通讯控制三种。这些运转指令方式必须按照实际的需要进行选择设置,同时也可以根据功能进行相互之间的方式切换。 1操作器键盘控制 操作器键盘控制是变频器最简单的运转指令方式,用户可以通过变频器的操作器键盘上的运行键、停止键、点动键和复位键来直接控制变频器的运转。 操作器键盘控制的最大特点就是方便实用,同时又能起到报警故障功能,即能够将变频器是否运行或故障或报警都能告知给用户,因此用户无须配线就能真正了解到变频器是否确实在运行中、是否在报警(过载、超温、堵转等)以及通过led数码和lcd液晶显示故障类型。 按照前面一节的内容,变频器的操作器键盘通常可以通过延长线放置在用户容易操作的5m以内的空间里。同理,距离较远时则必须使用远程操作器键盘。 在操作器键盘控制下,变频器的正转和反转可以通过正反转键切换和选择。如果键盘定义的正转方向与实际电动机的正转方向(或设备的前行方向)相反时,可以通过修改相关的参数来更正,如有些变频器参数定义是“正转有效”或“反转有效”,有些变频器参数定义则是“与命令方向相同”或“与命令方向相反”。 对于某些生产设备是不允许反转的,如泵类负载,变频器则专门设置了禁止电动机反转的功能参数。该功能对端子控制、通讯控制都有效。 2端子控制 2.1基本概念 端子控制是变频器的运转指令通过其外接输入端子从外部输入开关信号(或电平信号)来进行控制的方式。 这时这些由按钮、选择开关、继电器、plc或dcs的继电器模块就替代了操作器键盘上的运行键、停止键、点动键和复位键,可以在远距离来控制变频器的运转。

变频器的运行方式之并联运行(强烈建议收藏)-民熔

变频器的运行方式之并联运行-民熔 并联运行 变频器的并联运行分为两种情况,即单台小变频器容量变频器并联运行方式和“一拖多”运行方式。其中单台小变频器容量变频器并联运行适用于单台变频器不能满足实际变频器容量需求的情况,“一拖多”运行方式是指一台变频器拖动多台电动机运行的模式。下面将详细介绍这两种方式。 1.变频器并联 生产当中变频器的容量需要很大时,如果单台变频器的容量有限,可以通过两台或者多台相同型号的变频器并联运行来满足大容量电动机的驱动要求,此时存在变频器的并联运行问题。两台变频器实现并联运行的基本要求是,控制方式、输入电源和开关的频率要相同,输出电压幅值、频率和相位都相等,频率的变化率要求严格一致。图为两台变频器的并联运行结构示意图。 实现上述条件的方法是在晶振振荡频率相同的条件下,根据反馈定理引入输出电压的负反馈,实现各逆变器输出电压的同步。值得注意的问题包括以下3点。 ①变频器并联后导致各电源输出电压的差别加大,主要是因为反馈采样点的电压已不再是单台电源的输出电压,而是多台逆变器共同作用的结果。

②多台逆变器即使在稳态下的幅值、频率及相位均相等,它们的动态调节过程也不可能完全一样,会产生瞬时的动态电流,并且动态电流值很大,需要在各变频器的输出端串入限流电抗和均流电路。 ③集成度较高的变频器控制电路,并联改造相对困难,应慎重对待。 2.一台变频器拖动多台电动机并联运行 如图所示,一台变频器拖动多台电动机并联运行时,不能使用变频器内的电子热保护,而是每台电动机外加热继电器,用热继电器的常闭触点串联去控制保护单元。此时,变频器的容量应根据电动机的启动方式确定多台电动机不是同时启动

变频器运行操作规程实用版

YF-ED-J7645 可按资料类型定义编号 变频器运行操作规程实用 版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

变频器运行操作规程实用版 提示:该操作规程文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1. 了解上次运行、停机情况后,配电屏上 合上电源开关,接通电源,若有异常情况应立 即关掉电源,并通知有关人员; 2. 将控制箱电位器旋转到底,转速表设定 为零 3. 按运行按钮启动变频器,变频器输出 0.5Hz的启动频率后输出“0”,转速显示为 “0”; 4. 顺时针缓慢旋转电位器按钮,电机转速 由“0”开始增加,电机开始运行; 5. 观察电机运行是否正常,若有异常立即

停止运行,断电查清原因后再运行; 将电位器顺时针旋转到所需转速,若旋转到底,则变频器的输出转速为电机的额定转速; 按停止按钮,电机停止运行; 切断电源开关; 第一次停止时,控制箱电位器未动则第二次启动时只需按启动按钮,则电机自动运行到所需转速。 10. 注意事项 10.1电动机的温升,在使用变频器时会比工频运行时略有增加,属正常现象,但电机的温度不得超过60℃; 10.2 在较低频率运行时可能出现电机散热

变频器运行方式分析

文章编号:1004—289X (2002)03-0001-03 变频器运行方式分析 刘美俊 (湖南工程学院,湖南 湘潭 411101) 摘 要:分析了变频器的三种运行方式,并提出了制动运行时外接电阻的计算方法,这种计算方法具有很大的实用性。 关键词:变频器;寸动运行;并联运行;制动运行中图分类号:TM 43 文献标识码:B A naly sis of Operat ion method of a Frequency T ransfo rmer L IOU M ei -j un (Hunan Engineering Inst itute ,Xiangt an Hunan 411101China ) Abstract :Threc operation metho ds of a frequency transformer ar e analyzed in the paper,and presents caluclation m ethod of ex ternal resistance at running under br aking.T his method is o f quite pr actical applicability . Key w ords :fr equency transfor mer ;small m ove o peratio n ;parallel o peratio n ;operation under braking 1 引言 在交流变频调速系统中,由于控制对象和系统的控制要求不同,因此变频器的运行方式也不一样,对不同的运行方式,应选择不同的外围设备和控制回路,以满足负载的要求。通常,变频器有多种运行方式,如正反转运行、寸动运行、并联运行、同步运行、带制动器的电机运行等方式,本文着重分析三种运行方式的控制线路,注意事项以及制动电阻的选择。 2 寸动运行 寸动运行是变频器最常用的运行方式之一,其控制电路如图1所示。 图中变频器正常运行,由接触器K 1控制,寸动运行时由接触K2控制,同时,当K2闭合时,可选择寸动运行频率,寸动频率通过改变电位器电阻的大小来确定。需要指出的是:第一,寸动运行时,由寸动运行用频率给定器给出低速的频率指令,而不是平常运行时使用的频率给定器,因为寸动运行时,频率不能太高,否则,电动机产生过大的起动冲击电流,损坏变频器,当然,寸动运转的控制回路也是单独设置的,单独给变频 器输入起动指令信号;第二,不要在变频器负载侧另加 接触器进行寸动运行,这样很容易损坏变频器,对于带制动器电机的寸动运行,停止时使用变频器的输出停止端子M RS 或RES(本图中未画出)。 3 并联运行 用一台变频器使多台电机同时并联运行,其控制线路如图2所示。 图1 电机寸动运行电路图 这时,不能使用变频器内的电子热保护,而是每台电机外加热继电器,再用热继电器的常闭触点串联去控制保护单元。此时,变频器的容量应根据电机的起动 方式确定。如果多台电机是同时由低频起动,变频器的容量应该大于或等于多台电机的容量和。同时,在加速

变频器各种负载应用概要

变频器在各类负载中的应用 1.风机水泵负载类 风机水泵变频调速的节电原理: 如图示为离心风机水泵的风压、(水压)H-风量(流量)Q曲线特性图: n1-代表风机水泵在额定转速运行时的特性; n2-代表风机水泵降速运行在n2转速时的特性; R1-代表风机水泵管路阻力最小时的阻力特性; R2-代表风机水泵管路阻力增大到某一数组时的阻力特性。 风机水泵在管路特性曲R1工作时,工况点为A,其流量压力分别为Q1、H1,此时风机水泵所需的功率正比于H1与Q1的乘积,即正比于AH1OQ1的面积。由于工艺要求需减小风量(流量)到Q2,实际上通过

增加管网管阻,使风机水泵的工作点移到R2上的B点,风压(水压)增大到H2,这时风机水泵所需的功率正比H2Q2的面积,即近比广BH2OQ2的面积。显然风机水泵所需的功率增大了。这种调节方式控制虽然简单、但功率消耗大,不利于节能,是以高运行成本换取简单控制方式。 若采用变频调速,风机水泵转速由n1下降到n2,这时工作点由A 点移到C点,流量仍是Q2,压力由H1降到H3,这时变频调速后风机(水泵)所需的功率正比于H3与Q2的乘积,即正比于CH3OQ2的面积,由图可见功率的减少是明显的。 风机水源节能的计算: 风机水泵流量变化量,如前所述,采用变频调速是节电之有效的措施。如下的计算公式。 采用档板调节流量对应电动机输入功率P1V与流量Q的关系为:P1V≈[0.45+0.55(Q/QN)2]P1e (1) 式中:P1e——额定流量时电动机输入功率(kW)。 Q N——额定流量 变频调速时电机功率与流量关系为P1V≈(Q/QN)3P1e 需要注意的是水泵静压不为零时功率与流量不在保持比例而且为了保持最小需要的压力,转速不能随意降低,应该以最小需要的压力确定最低频率,防止频率过低引起的压力不足问题。 在串联风道的情况下,风机会被吹的自己旋转,启动过程容易过压保护,故变频器应设置成飞车启动模式。

变频器操作步骤

一、变频器参数修改:1、按“PAR”键进入参数修改画面。2、按 或键在各组间翻动参数找到需要修改的那一组参数,再按 或在组内翻动找到需要修改的组内相应的参数,需要修改那个参数翻到那个参数后按“ENTER”键,该参数会被括号括起来, 再按或键进行调整,调整完后再按“ENTER”键确认。调整完参数后需要保存,保存主参数时将参数翻到99.02,再按“ENTER” 键,然后按或翻到“user 2 load”再按一下“ENTER”键,参数开始保存,保存过程中显示屏最后一行会一直闪烁,当屏幕最后一行显示不再闪烁说明保存完毕;保存从参数时将参数翻到

99.02,再按“ENTER”键,然后按或翻到“user 1 load”再按一下“ENTER”键,参数开始保存,保存过程中显示屏最后一行会一直闪烁,当屏幕最后一行显示不再闪烁说明保存完毕,保存过程中不能断电。 二、变频器辨识操作:1、按“LOC”键将变频器切换为本地控制,修改变频器99组电机相关参数,电机相关参数必须和电机铭牌上的电机参数相符。2、修改完电机参数按“ACT”键,变频器会提示辨识 显示“ID MAGN”这时按启动键,变频器开始辨识,当显示屏显示“ID DOWN”,说明辨识完毕,辨识完毕后需要存储,将参数翻到99.02主参数保存在“user 2 load”,从参数保存在“user 1 load ”,保存过程中不能断电,当屏幕最后一行显示不再闪烁说明保存完毕,再按“LOC”键切换为远程控制。 三、变频器报警和故障的一般处理过程 (1)在判断变频器故障前,确保给变频器提供电源 (2)断电检查快速熔断器,如果有一个快熔损坏,变频器应正常显示,只是在带负荷运行时报出电源缺相故障,可更换快熔;如果两个快熔损坏,则需要用万用表检查接线端子是否有接地故障,检查作为电能储存器的电容组。不允许在不检查的情况下,直接更换快熔,可能再次损坏快熔。 (3)观察控制盘是否亮,如果有一个控制盘不亮,可采取互换控制盘和连接线确认控制盘是否损坏。如果互换完控制盘和连接线,该变

变频器的可靠性分析10页word

高压变频器基础教程 随着电气传动技术,尤其是变频调速技术的发展,作为大容量传动的高压变频调速技术也得到了广泛的应用。高压电机利用高压变频器可以实现无级调速,满足生产工艺过程对电机调速控制的要求,以提高产品的产量和质量,又可大幅度节约能源,降低生产成本。近年来,各种高压变频器不断出现,高压变频器到目前为止还没有像低压变频器那样近乎统一的拓扑结构。根据高压组成方式可分为直接高压型和高-低-高型,根据有无中间直流环节来分,可以分为交-交变频器和交-直-交变频器,在交-直-交变频器中,按中间直流滤波环节的不同,可分为电压源型和电流源型。高-低-高型变频器采用变压器实行输入降压,输出升压的方式,其实质上还是低压变频器,只不过从电网和电机两端来看是高压的,是受到功率器件电压等级技术条件的限制而采取的变通办法,需要输入,输出变压器,存在中间低压环节电流大,效率低下,可靠性下降,占地面积大等缺点,只用于一些小容量高压电机的简单调速。常规的交-交变频器由于受到输出最高频率的限制,只用在一些低速,大容量的特殊场合。直接高压交-直-交变频器直接高压输出,无需输出变压器,效率高,输出频率范围宽,应用较为广泛。我们将对目前使用较为广泛的几种直接高压输出交-直-交型变频器及其派生方案进行分析,指出各自的优缺点。评价高压变频器的指标主要有:成本,可靠性,对电网的谐波污染,输入功率因数,输出谐波,dv/dt,共模电压,系统效率,能否四象限运行等。顺便指出,我们习惯称作的高压变频器,实际上电压一般为2.3-10KV,国内主要为3KV,6KV和10KV,和电网电压相比,只能算作中压,故国外常成为Medium Voltage Drive。 高压变频器正向着高可靠性,低成本,高输入功率因数,高效率,低输入输出谐波,低共模电压,低dv/dt等方向发展。电流源型变频器技术成熟,且可四象限运行,但由于高压时器件串联的均压问题,输入谐波对电网的影响和输出谐波对电机的影响等问题,使其应用受到限制。对风机和水泵等一般不要求四象限运行的设备,单元串联多电平PWM电压源型变频器在输入,输出谐波,效率和输入功率因数等方面有明显的优势,具有较大的应用前景。对于轧机,卷扬机等要求四象限运行和动态性能较高的场合,双PWM结构的三电平电压源型变频器会得到广泛的应用。 电流源型变频器(CSI:Current Source Inverter)采用大电感作为中间直流滤波环节。整流电路一般采用晶闸管作为功率器件,少数也有采用GTO的,主要目的是采取电流PWM控制,以改善输入电流波形。逆变部分一般采用晶闸管或GTO 作为功率器件。由于存在着大的平波电抗器和快速电流调节器,所以过电流保护比较容易。当逆变侧出现短路等故障时,由于电抗器存在,电流不会突变,而电流调节器则会迅速响应,使整流电路晶闸管的触发角迅速后移,电流能控制在安全范围内。为了对接地短路也实现保护,通常把滤波电抗器分为两半,上下直流母线各串一半。电流源型变频器的一大优点是能量可以回馈电网,系统可以四象限运行。虽然直流环节电流的方向不能改变,但整流电压可以反向(当整流电路工作在有源逆变状态时),能量可以回馈到电网。 晶闸管目前工业应用的最高电压为8000V左右,当电网电压较高时,可采用

西门子G150变频器并联注意事项

大功率G150的并联介绍 1.大功率G150介绍 G150大功率装置 指电压等级400V 630KW以上和电压等级690V 1000KW以上的变频器,其硬件结构为并联方式, 即由二套完全相同的小功率装置并联构成, 外部主回路设备如输入侧开关,断路器,接触器,电抗器,电机连接端子等为二套. 而控制器CU320,输入输出端子板TM31和AOP30操作面板为一套. 某大功率的G150外观如下图: . 2. G150并联方案种类 并联结构的 G150装置即可以用做6脉动系统,也可以用做12脉动系统,依据用户的设计或变压器的要求,G150可灵活适配.

图二图三 对图二的系统 (变压器为双绕阻, 异步电机为电气隔离的双绕阻电机), 输入侧的二个2%电抗器选件必须有,并联的输入和输出侧的动力电缆尽可能对称如长度相等,粗细相同, 从而保证负荷尽可能平均分配.并联后的功率为总功率的97%. 对非并联的G150, 主接触器为选件,可选,也可不选, 但对并联结构的G150, 主接触器选件L13或L26必须包括. 对图三的系统 (变压器为双绕阻,异步电机为单绕阻电机),输入侧的二个2%电抗器选件必须有.对此种方案, 如功率单元到马达的动力电缆长度大于最小电缆长度, 则用于解耦的输出电抗器不要求,否则输出电抗器选件必须. 并联的输入和输出侧的动力电缆尽可能对称如长度相等,粗细相同, 从而保证负荷尽可能平均分配. 并联的功率为总功率的92%.对非并联的G150, 主接触器为选件,可选,也可不选, 但对并联结构的 G150, 主接触器选件L13或L26必须包括.

图四图五 对图四系统 (变压器为三绕阻, 异步电机为电气隔离的双绕阻电机), 变压器的阻抗大于4%. 输入侧的二个2%电抗器依据变压器的类型和阻抗决定, 如变压器为双层的设计且阻抗大于6%,可不加输入电抗器, 并联的输入和输出侧的动力电缆尽可能对称如长度相等,粗细相同保证负荷尽可能平均分配. 并联的功率为总功率的97%. 对图五系统 (变压器为三绕阻, 异步电机为单绕阻电机),变压器的阻抗大于4%,输入侧的二个2%电抗器依据变压器的类型和阻抗决定,如变压器的阻抗双层的设计且大于6%,可不加输入电抗器, 如功率单元到马达的动力电缆长度大于最小电缆长度,则用于解耦的输出电抗器不要求.并联的输入和输出侧的动力电缆尽可能对称如长度

变频器运行操作步骤

变频器运行操作步骤 一. 变频器启动电机操作 1.确定电机处于可以运行状态。 2.合上变频器控制电源开关CDS1,并按UPS 上电按钮后,控制系统上电,此时 键盘上最左边的power on灯亮,表示380V控制电源已经上电,变频器电源正常,过60秒后,键盘显示正常。 2.1)CDS1位置如照片所示 2.2)UPS 开关如下图, TEST 键为开机 键,POWER 键为关机键 2.3)控制电源上电后,变频器显示

3.观察变频器的键盘显示,如果键盘上显示有故障(键盘上故障指示灯长亮),按键盘上的故障复位键,确定故障是否能被复位,如不能复位说明设备有问题,察看键盘的故障提示,采取相应解决的措施,或按控制柜上提供的电话 (021-********热线电话)联系西门子上海电气传动设备有限公司。如果键盘上的故障灯闪烁,说明内部有报警,查看报警情况,看完后按故障位键,若不能复位,采取相应的措施。 4.确认变频器控制柜上的就地/远程 旋钮开关打到远程位置。 5.合上上级用户高压开关之后,柜顶风机开始旋转,其中变压器柜顶一个风机旋转,功率单元柜顶一个风机旋转。观察变频器有无故障显示,要按复位按钮将报警或故障复位,若不能消除故障或报警,则查看是何原因引起的故障和报警,并采取相应的措施。键盘显示为待机状态,并且上级PLC 显示就绪时,就可以由远程进行启动变频器的操作,变频器启动后单元柜和变压器柜顶共8个风机同时转动,然后根据工艺要求设定变频器的运行速度。 5.1)变频器就绪后键盘显示如下: 5.2)变频器运行后键盘显示如下: 二. 变频器停止电机操作 1.远程控制发出信号让变频器停止的命令,电机速度降到零速。 2.断开上级用户高压开关。 3.关闭UPS, 并断开变频器控制电源开关CDS1,操作完毕。 注意:如果变频器长时间停止使用,可以关断高压和380V 控制电源,但是如果短 时间的停止,则保持380V 和高压带电,尽量避免频繁合高压开关,变频器可以长期保持在就绪状态。 在打开变频器中压柜门的时候,一定要确认上级高压开关已经断开。

水泵变频运行的图解分析技巧

水泵变频运行的图解分析方法 作者:变频器世界 1 引言 水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。 2 水泵变频运行分析的误区 2.1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律 流量比例定律Q1/Q2=n1/n2 扬程比例定律H1/H2=(n1/n2)2 轴功率比例定律P1/P2=(n1/n2)3 并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。 以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题: (1) 为什么水泵变频运行时频率在30~35Hz以上时才出水? (2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高? 2.2 绘制水泵的性能特性曲线和管道阻力曲线 很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。 图1 水泵的特性曲线

图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ与流量Q成正比。采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。 按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。 2.3 变频泵与工频泵并联 变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌? 3 以上分析的误区 (1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。而比例定律是相似定律作为特例演变而来的。即两台完全相同的泵在相同的工况条件下,输送相同的流体,且泵的直径和输送流体的密度不变,仅仅转速不同时,水泵的流量、扬程和功率与转速之间的关系。 (2) 在风机单机运行时,风门挡板不变且温度和密度不变时,管网阻力只与风机的流量有关,阻力系数为常数。因此其运行工况与标准工况相同,可以应用比例定律。但在风机并联运行时,由于出口风压受其它风机的风压的影响,出口流量也与总流量不同,造成工况变化,因此比例定律已经不再适用了。 (3) 相似定律在引风机中,如果挡板不变但介质温度和密度发生了变化时,作为特例,其形式也发生了变化,与上述比例定律不同,必须进行温度或密度的修正。 (4) 在水泵方面,比例定律仅适用于水泵的出水口和进水口之间没有高度差,即没有净扬程的情况。比如在没有落差的同一水平面上远距离输水,水泵的输出扬程(压力)仅用来克服管道的阻力,在这种情况下,当转速降到零时,扬程(压力)也降到零,流量也正好降到零,这是理想的水泵运行工况。图1中工作点A和C就完全适合这种工况,可以使用比例定律。 (5) 但实际水泵运行工况不可能达到理想工况,水泵的出水口和进水口之间是有高度差的,有时还很大。在水泵并联运行时,水泵的出水口压力还要受到其它水泵运行压力的影响。并联运行的泵要想出水,水其扬程必须大于其他水泵当时的压力。水泵出口流量并不是总管网流量,总管网流量为所有运行的水泵的流量和。由于管网总流量增大和阻力增大,因此并联运行的水泵扬程更高,工况发生变化,因此比例定律在此也不再适用。

罗宾康变频器操作步骤

变频器运行操作步骤 一、变频器启动电机操作 1.确定电机处于可以运行状态。 2.合上变频器控制电源开关CDS1,按下UPS电源键,此时键盘上最左边的power on灯亮,表示380V控制电源已经上电,变频器电源正常,确认风机转动正常(时常用一张A4的纸,放在滤网上,看能否吸住),过60秒后,观看键盘显示。 3.观察变频器的键盘显示,如果键盘上显示有故障(键盘上故障指示灯长亮),按键盘上的故障复位键,确定故障是否能被复位,如不能复位说明设备有问题,察看键盘的故障提示,采取相应解决的措施,或按控制柜上提供的电话联系罗宾康公司。如果键盘上的故障灯闪烁,说明内部有报警,查看报警情况,看完后按故障位键,若不能复位,采取相应的措施。 4.确认变频器控制柜上的就地/远程旋钮开关打到远程位置。注意:如果在就地位置,则DCS无法操作变频器,此时可以通过键盘来控制变频器。 5.确认上级高压开关已经断开, 旁路柜的工频运行刀闸K3处于断开 位置,合变频器的进线刀闸K1,合出线刀闸K2。注意:在分合上述刀闸的时候,一定要确定相应的刀闸已经在正确的位置,可以打开柜上的照明开关来察看。 6.合上上级用户高压开关之后,观察变频器有无故障显示,要按复位按钮将报警或故障复位,若不能消除故障或报警,则查看是何原因引起的故障和报警,并采取相应的措施。当面板上无故障显示,并且键盘的MODE 下边现实OFF,在DCS上则可以看到变频器准备好的信号,此时就可以由DCS

进行启动变频器的操作。 注意的是,如果高压开关不能合上,一定要确定刀闸是否在正确的位置,因为刀闸的节点已经串入高压开关的合闸回路中去了,如果刀闸不在正确的位置,则高压开关无法合上。 7. 如果没有设定给定速度,则变频器接受到启动信号后按30%的速度给定启动(因为内部已经设定最小转速30%),当给定的速度超过30%时候,则电机按给定的速度转动。 二、变频器停止电机操作 1. DCS或键盘发出信号让变频器停止的命令,电机速度降到零速。 2.断开上级用户高压开关,断开变频运行的K1,K2刀闸。注意:尽量不要经常的停送高压电,保持控制部分和风机旋转 3.按下UPS电源按钮,此时风机停机,断开变频器控制电源开关CDS1,CDS2,操作完毕。 三、变频器使用时要注意的问题: 变频器有任何异常情况都会发出报警或者故障信号,在键盘上表示为:故障灯长亮表示故障,若是闪烁表示报警。报警不影响变频器运行。故障可分为两种,一种是跳上级的用户高压开关,这些故障为:门打开、按急停、风机故障、变压器温度过热、变频器损耗过大、以及变压器次级短路,这些故障的产生将会产生严重后果或者威胁人身安全,所以要跳高压开关。另一种是不跳用户的高压开关。两种故障的发生都会使变频器停止输出,电机此时自由滑行停车。发生报警或故障的时候先按复位键,如果不能复位,则要查明原因,相关人员也要到变频器前去看是什么原因引起的报警或故障。在键盘上也会留下报警或故障信息,按键盘上的故障复位键才能将报警或故障信息清除。

日博RB600系列变频器使用手册范本

■键盘布局 - - 考试资料.

■在故障状态,该二键用于查询故障。 PRG 编程键■在运行状态或停机状态,按该键可进入参数设定状态。 ■在参数设定状态,按该键放弃参数修改或返回到运行状态 或停机状态。 SET 设定键■在停机或运行状态,该键用于查看变频器当前运行状态。 ■在参数设定状态,查看功能代码和保存修改的代码内容 (参4.2.2节参数设定过程)。 电位器键盘模拟量给定,用于快速调整变频器输出频率。 ?键盘指示 键盘上共有5位七段LED监视器,一个LCD监视器和八个运行指示灯。其中LED可显示功能代码及当前功能代码对应的参数值,LCD可用中英文双语分别显示当前变频器的运行状态,及相关的功能代码对应的参数 监视器LED监视器设定状态:显示功能代码或代码内容 停机状态:显示运行状态 故障状态:显示故障信息 LCD监视器设定状态:显示功能代码及代码内容 运行状态:显示运行状态 故障状态:显示故障信息 状态指示灯RUN 变频器处于运行状态时,此指示灯点亮。FWD 正转指示。在参数设定状态,指示端子Fud,F/r的状态。运行时,指示当前的运行方向。REV 反转指示。在参数设定状态,指示端子REV,F/r 的状态。运行时,指示当前运行方向。TRIP TRIP:故障指示。变频器发生故障时,此灯点 亮并闪烁。 功能指示灯FUN 指示设定参数(代码内容)与非设定参数(功 能代码)。当用户按PRG进入参数设定状态 后,FUN点亮,指示或两键的操作对象。 当用户退出参数设定后,FUN灯自动熄灭。 4-2

- . - - 考试资料. 单位指 示灯 Hz: 赫兹; Sec:秒; %:百分比 4.2.1变频器工作状态: 图4-3 四种工作状态切换图 停机状态 运 行 状 态故障状态运行设定 状 态故障信号 停机设定状 态参数设定状态 RUN RUN STOP RESET STOP RESET STOP RESET PRG PRG PRG PRG [1]:运行状态:输出端子有电压, 按键可查看设定频率、输出频率、输 出电流、输出电压等。按“PRG ”键进入设定状态,可查看所有参数,但 只能在线修改一部分参数(详细情况参见功能码表说明);按 “STOP/RESET ”键,变频器停止进入停机设定状态,此时可对绝大部分 参数进行修改。 [2]:设定状态:本系列变频器提供两种设定状态:运行设定状态:变频器 正在运行中,部分参数是不可修改的(详细情况参见功能码表);停机设 定状态,变频器待机,对所有可修改的参数都可进行修改。变频器在运 行或停止时,按“PRG ”键,可进入设定状态,当监视器显示内容为功能 代码时,按“PRG ”可返回到变频器原来所在状态。(注意:在运行设定

变频器运行操作规程正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training.变频器运行操作规程正式 版

变频器运行操作规程正式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事项。文档可以直接使用,也可根据实际需要修订后使用。 1. 了解上次运行、停机情况后,配电屏上合上电源开关,接通电源,若有异常情况应立即关掉电源,并通知有关人员; 2. 将控制箱电位器旋转到底,转速表设定为零 3. 按运行按钮启动变频器,变频器输出0.5Hz的启动频率后输出“0”,转速显示为“0”; 4. 顺时针缓慢旋转电位器按钮,电机转速由“0”开始增加,电机开始运行; 5. 观察电机运行是否正常,若有异常立即停止运行,断电查清原因后再运行;

将电位器顺时针旋转到所需转速,若旋转到底,则变频器的输出转速为电机的额定转速; 按停止按钮,电机停止运行; 切断电源开关; 第一次停止时,控制箱电位器未动则第二次启动时只需按启动按钮,则电机自动运行到所需转速。 10. 注意事项 10.1电动机的温升,在使用变频器时会比工频运行时略有增加,属正常现象,但电机的温度不得超过60℃; 10.2 在较低频率运行时可能出现电机散热风叶不能及时散热问题,应注意观察电机温度,如超过使用温度应停机并采取

变频器的运行问题分析及改善措施

变频器的运行问题分析及改善措施 邰洋 (南京理工大学紫金学院土木一班,江苏南京210046) 摘要:文中对变频器运行过程中存在的谐波、负载匹配等问题逐一进行了分析,并提出了相对应的解决方案。关键词:变频器、问题分析、改善措施 The Analyse Of Inverter Harmonic’s Problems And It’s Improve Measures Tai Yang (Nanjing University of Science and Technology Zijin College Civil engineering class1,Nanjing210046,China) Abstract:In this paper analyse some problems of inverter harmonic in runing,and made the relatively the measure. Keywords:inverter harmonic、problems analysc、improve measures ⒈引言 目前,通用变频器以其智能化、数字化、网络化等优点越来越受到人们的青睐。随着通用变频器应用范围的扩大,暴露出来的问题也越来越多,主要有以下几方面:

①谐波问题 ②变频器负载匹配问题 ③发热问题 ④调速问题 由变频器构成的交流调速系统普遍存在的问题是,系统运行在低频区域时,其性能不够理想,主要表现在低频启动时启动转矩小,造成系统启动困难甚至无法启动。由于变频器的非线性产生的高次谐波,引起电动机的转距脉动及电动机发热,并且电动机运行噪声也加大。低频稳态运行时,受电网电压波动或系统负载的变化及变频器输出电压波形的奇变,将造成电动机的抖动。当变频器距电动机距离较大时及高次谐波对控制电路的干扰,极易引起电动机的爬行。由于上述各种现象,严重降低由变频器构成的调速系统的调速特性和动态品质指标,本文对以上进行分析,提出相应的措施,以使系统的运行特性能得以改善。 ⒉变频器问题分析及其改善措施 ⒉1谐波问题及其改善措施 通用变频器的主电路形式一般由三部分组成:整流部分、逆变部分和滤波部分。整流部分为三相桥式不可控整流器,逆变器部分为IGBT三相桥式逆变器,且输出为PWM波形。 通用变频器的输出电压中确实含有除基波以外的其他谐波。较低次谐波通常对电机负载影响较大,引起转矩脉动,而较高的谐波又使变频器输出电缆的漏电流增加,使电机出力不足,故变频器输出的高低次谐波都必须抑制。

相关文档
最新文档