在学习物理中有关临界极值问题的处理

在学习物理中有关临界极值问题的处理
在学习物理中有关临界极值问题的处理

在动力学中临界极值问题的处理

佛山市高明第一中学(528500)周兆富

物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的

问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、电磁学密切相关,综合性强。在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。

一.解决动力学中临界极值问题的基本思路

所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。

解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。在解决临办极值问题注意以下几点:○1临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。○2临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。○3许多临界问题常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语其内含规律就能找到临界条件。○4有时,某些临界问题中并不包含常见的临界术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。○5临界问题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,抓住临界状态的特征,找到正确的解题方向。○6确定临界点一般用极端分析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。

二.匀变速运动规律中与临界极值相关问题的解读

在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。

?例1?速度大小是5m/s的甲、乙两列火车,在同一直线上相向而行。当它们相隔2000m时,一只鸟以10m/s的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。问:

(1)当两车头相遇时,这鸟共飞行多少时间?

(2)相遇前这鸟飞行了多少路程?

?灵犀一点?甲、乙火车和小鸟运动具有等时性,要分析相遇的临界条件。

?解析?飞鸟飞行的时间即为两车相遇前运动的时间,由于飞鸟在飞行过程中速率没有变化,可用s=vt求路程。

(1)设甲、乙相遇时间为t,则飞鸟的飞行时间也为t,甲、乙速度大小相等v甲= v乙=5m/s,同相遇的临界条件可得:s = (v甲+v乙)t

则:

2000

=200

10

s

t s s v v

==

+

(3) 这段时间,鸟飞行的路程为:10200s vt m '==?

?思维总结?本题难度不大,建立物理情景,分清运动过程,找到相遇的临界条件、三个运动物体运动具有等时性和小鸟速率不变是解题的切入点。

?例2?在平直公路上一汽车的速度为15m/s ,从某时刻汽车开始刹车,在阻力作用下,

汽车以2m/s 2的加速度做匀减速运动,则刹车后第10s 末车离刹车点的距离是 m.

?灵犀一点?在汽车刹车问题中,汽车速度为0后将停止运动,不会反向运动。在分析此类问题时,应先确定刹车停下来这个临界状态所用的时间,然后在分析求解。

?解析? 设汽车从刹车到停下来所用时间为t 0, 由运动学规律得:0000150,7.52

t t v v v v at t s s a --=-=== 由于t 0<10s ,所以在计算时应将t=7.5s 代入公式求解。 则有:22011(157.527.5)56.2522

s v t at m m =-=?-??= ?思维总结?本题经常犯的错误是不考虑汽车刹车后速度为零所需时间这一临界状态,直接把题目中所给的时间代入公式。汽车刹车后不可能再倒行,此类问题应注意验证结果的合理性,若给定的时间内汽车仍未停下,则可直接套用运动学公式;若给定时间汽车早以停下,就应先计算刹车时间,然后再把这一时间代入位移公式求解。

?例3?A 、B 两车停在同一点,某时刻A 车以2m/s 2的加速度匀加速开出,2s 后B 车同

向以3m/s 2的加速度开出。问:B 车追上A 车之前,在启动后多长时间两车相距最远,距离是多少? ?灵犀一点?速度相等是解决追及和相遇问题的临界点。

?解析?〖解法1〗由于当A 车的加速度度小于B 车的加速度,B 车后启动,则B 车一定能追上A 车,在追上前当两车的速度相等时,两车相距最远。设当A 车运动t 时间时,两车速度相等,则有,(3)A B A B v v a t a t ==- 解得:39B A B

a t s a a ==- 把t 代入两车之间距离差公式得:2211(3)2722

A B A B s s s a t a t m ?=-=

--= 〖解法2〗设A 启动ts 两车相距最远,A 车的位移:212A s at =,B 车的位移:21(3)2

B s a t =- 两车间距离为22211(3)0.5913.522

A B A B s s s a t a t t t ?=-=--=-+- 由数学知识可知,当992(0.5)

t s s =-=?-时, 两车间有最大距离:2211(3)2722A B A B s s s a t a t m ?=-=--= ?思维总结?在追及问题中,常常要求最远距离或最小距离,常用的方式有物理方法和数学方法,应用物理方法时,应分析物体的具体运动情况,两物体运动速度相等时,两物体间有相对距离的极大值和极小值。应用数学的方法时,应先列出函数表达式,再求表达式的极大值或极小值。

三.在共点力动态平衡中与临界极值相关问题的解读

物体在多个共点力作用下的动态平衡问题中,常涉及到什么时候受力“最大”或“最小”,那个绳先断等问题。

?例4?如图1所示,质量为m 的物体,置于水平长木板上,物体与木板间的动摩擦因数为μ。现将长木板的一端缓慢抬起,要使物体始终保持静止,木板与水平地面间的夹角θ不能超过多少?设最大静摩擦力等于滑动摩擦力。

?灵犀一点?这是一个斜面问题。当θ增大时,重力沿斜面的分力增大。

当此分力增大到等于最大静摩擦力时,物体处于动与不动的临界状态。此时是

θ最大。

?解析?依题意可知,当 mgsin θ=μmgcos θ

物体处于临界状态,即 tan θ=μ

则 θ≤arcot μ

讨论:tan θ=μ是一重要临界条件。其意义是:tan θ<μ时,重力沿斜

面向下的分力小于滑动摩擦力,物体相对于长木板静止;tan θ=μ时,重力沿斜面向下的分力等于滑动摩擦力,当物体没有获得初速度时,物体相对于长木

板静止;tan θ>μ时,重力沿斜面向下的分力大于滑动摩擦力,物体将向下做加速运动。

?思维总结?对于此题的动态是否处于动态平衡问题讨论如下:①、将物体静止置于斜面上,如tan θ≤μ,则物体保持静止;如tan θ>μ,则物体不能保持静止,而加速下滑。②、将物体以一初速度置于斜面上,如tan<μ,则物体减速,最后静止;如tan θ=μ,则物体保持匀速运动;如tan θ>μ,则物体做加速运动。因此,tan θ=μ这一临界条件是判断物体在斜面上会如何运动的一个条件。

?例5?如图2所示,跨过定滑轮的轻绳两端,分别系着物体A 和B ,物体

A 放在倾角为α的斜面上,已知物体A 的质量为m ,物体

B 和斜面间动摩擦因数为

μ(μ

范围.

?灵犀一点?摩擦力可能有两个方向

?解析?以B 为研究对象,由平衡条件得:B T m g = 再以A 为研究对象,它受重力、斜面对A 的支持力、绳的拉力和斜面对A 的

摩擦作用.假设A 处于临界状态,即A 受最大静摩擦作用,方向如图所示,根据平衡条件有:cos N mg θ=

0,m m T f mg f N μ--==或:0,m m T f mg f N μ+-==

综上所得,B 的质量取值范围是:(sin cos )(sin cos )B m m m θμθθμθ-≤≤+

?思维总结?本题关键是要注意摩擦力的方向及大小与物体所受外力有关,故在处理问题时.要在物体临界条件下确定可能的运动趋势. ?例6?如图3所示,将一物体用两根等长OA 、OB 悬挂在半圆形架子上,B 点固定不动,在悬挂点A 由位置C 向位置D 移动的过程中,物体对OA

绳的拉力变化是()

A.由小变大

B.由大变小

C.先减小后增大

D.先增大后减小 ?灵犀一点?在进行动态分析时,要找到不变的因素和力发生变化的临

界点 θ

图1 图 2 图3 G

D

O C B A

?解析?悬挂点A 由位置C 移动的过程中,每个位置都处在平衡状态,合力为零。

以结点O 为研究对象,受三个力的作用而处于平衡状态,因此三个力必构成一个闭合矢量三角形。因重力的大小和方向始终不变,BO 绳的拉力方向不变,在AO 绳由位置C 到D 移动过程中可以做出一系列的闭合的三角形,如图4所示。由图可知OB 绳的拉力由小变大,OA 绳的拉力由大变小,当OA 垂直于OB 时绳OA 的拉力达到最小值,此时,绳OA 的接力由减小到增大的临界点。则C 正确。

?思维总结?作矢量图时,每个三角形所表示重力边的长度、方向都不变,

T B 的方向不变,然后比较做出的各个三角形表示有哪些不同。要特别注意是否存在极值和临界点,这是判断力变化的切入点。 四.动力学中的临界极值问题的解读

在应用牛顿运动定律解决动力学问题中,当物体运动的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词句时,

往往会有临界现象。此时要用极限分析法,看物体不同加速度时,

会有哪些现象发生,找出临界点,求出临界条件。

?例7?如图5所示,一质量为0.2kg 的小球系着静止在光滑的倾角为53°的斜面上,斜面静止时,球紧靠在斜面上,绳与斜面平行,当斜面以10m/s 2加速度水平向右作匀加速直线运动时,

求线对小球的拉力和斜面对小球的弹力。(g=10m/s 2) ?灵犀一点?要考虑到小球可能离开斜面的情况,用极限法把加速度推到两个极端进行分析。 ?解析?当0a →时,小球受到三个力(重力、绳的拉

力、斜面的支持力)作用,此时绳平行于斜面;当a 较大时,小球将“飞离”斜面,此时绳与斜面的夹角未知。

设小球处在刚要离开斜面的临界状态时加速度值为a 0,此时斜面对小球的支持力为零,斜面加速向右运动,对小球有:

200cot ,cot 7.5/mg ma a g m s θθ===

因为a =10m/s 2>7.5m/s 2,则小球离开斜面向右加速运动,如图6所示。 则绳对小球的拉力和斜面对小球的支持力分别为:22()() 2.83,0N F mg ma N F =+== ?思维总结?此题中的临界状态就是小球仍与斜面接触但与斜面间无弹力,在用极限法(分别设加速度为无穷大和零)分析出小球的两种可能。找出两种状态的分界点是解决本题的切入点。

?例8?一根劲度系数为k 、质量不计的轻弹簧,上端固定,下端系一质量为m

的物体,有一水平的板将物体托住,并使弹簧处于自然长度,如图7所示,现让木板

由静止开始以加速度a(a

?灵犀一点?当木板与物体之间作用力为零时,是两者分开的临界点。

?解析?木板与物体分离的临界条件是它们之间的作用力为零。

对于m 物体由牛顿运动定律得:mg F kx ma --=,

当F=0以后,随着x 的增大,物体m 的加速度减小,二者开始分离。

物体与木板分离的临界点为F= 0时,此时由上式可得:(),m g a mg kx ma x k

--== 由木板一直作加速度为a 的匀加速运动,则由运动学规律得:ma mg θ图 6

F θ图5

a 图7 T A2 T B 图4 T A1 G T A3 T A4

2122(),2x m g a x at t a x

-=== ?思维总结?分清物体运动过程受力情况的变化情况是本题的切入点,找到F=0时的是两物体分离临界点是解题的关键。

高中物理学习方法探究

佛山高明一中(528500)周兆富

在以知识创新与应用为特征的21世纪,高中物理作为提高科学素养的重要学科,对同学们的成长和提高创新能力有着非常重要的作用,随着新课改的逐渐深入,全面培养创新精神、实践能力,提倡主动学习、自主学习、合作学习和探究学习以成为历史负于同学们的责任。那么,在新课标理念下,同学们如何学好物理,在学习物理中有那此方法呢?

一. 建立知识网络,形成知识体系

物理学是一门有完整知识网络和体系的自然科学,同学们要学习物理的基础知识,了解物质结构、相互作用和运动的一些基本概念和规律,了解物理学的基本观点和思想。初步了解物理学发展历程,关注科学技术的主要成就和发展趋势以及物理学对经济、社会发展的影响。认识实验在物理学中的地位和作用,掌握实验的一些基本技能,会使用基本的实验仪器,能独立完成一些物理实验。经过一个学期的学习,同学们已经初步掌握了一些运动学的物理知识,在期末复习阶段同学们首先要把所学的内容形成知识体系和网络,这一点我们从各类教学辅导书的章末都能找到一页本章知识网络图,通过这页网络图同学们要对本章的基础知识、基本概念、经典实验、基本题型、研究问题的方法有一个初步了解,建立属于自己的知识系统。这也是高考备考一轮所要达到的目标。

例如,我们学习“第三章 研究物体间相互作用”这一章时,首先要了解如下知识网络,其次是掌握受力分析的方法和本章在高考中的地位等:

1.“研究物体间相互作用”知识网络

2.受力分析的方法

(1)对物体受力分析的一般思路

1明确研究对象。研究对象可以是质点、结点、物体、物体系统; ○

2接顺序分析物体受力。一般顺序先重力、弹力、摩擦力,再分析电场力、磁场力等; ○

3正确画出受力图。不同对象受力图用隔离法分别画出。对于质点和不考虑力对物体的形变、转动效果时,可将力平移至物体重心上,各力均从重心画起。

4检验受力图,防止多画或少画。 (2)受力分析的注意事项

1只分析研究对象所受的力,不分析研究对象对其它物体所施的力; ○

2每分析一个力都应找出施力物体; ○

3合力和分力不能同时作为物体所受的力。 3.本章在高考中的地位和学法归纳

牛顿定律是贯穿高中物理的基本定律,是学习进一步学习力学知识的掌握电磁学部分知识的力

种力

力的作用效果 力的三要素 力的分类

大小

方向

作用点

重力 弹力 摩擦力

力的产生 力的大小 力的方向 滑动摩擦

静摩擦 受力分析 分析对象 分析方法 力的合成与分解 合分定则

合成方法 分解方法

力是物体间相互作

共点力平衡 平衡条件 计算方法

重要基础,牛顿运动定律是历年高考的热点。本章内容强调对定律本身深刻内含的理解和全面把握。同学们要通过对具体问题的综合分析,形成和理顺解决动力学的问题一般思路和方法。做到对力和运动的关系为线索构建知识结构,理解定律本身的意义,形成正确的概念,学会解决实际问题的思路和方法,注重在研究对象的选取和受力分析中技巧的应用及数学方法的运用。

二. 搞清物理情景,建立物理模型

高中物理学所分析、研究实际问题往往很复杂,有众多的因素,为了便于着手分析与研究,物理学往往采用一种“简化”的方法,对实际问题情景进行科学抽象化处理。物理模型是根据所研究的对象和问题的特点,从所考察的角度出发,撇开问题中个别的、非本质的因素,抽出主要的、本质的因素加以考察研究,并把同一类物理事物共同的、本质的属性联合起来,从而建立起一个轮廓清晰、主题突出、易于研究的新形象、新过程或者形成新的概念。例如,通过对质点模型的建立就可以使学生很好的体会什么是质点模型、质点模型与实物的区别、什么样的实物可以看成质点等问题,同时对以后学习其他的模型有所帮助。

运用模型法的关键是通过归纳法培养学生透过现象看本质的能力,将一些物理事实归入某个范畴,并找到其规律性。在认真分析题意的基础上,通过审慎地考察各种条件,并运用比较、分析、综合、抽象、概括、演泽、推理等方法找出普遍的物理规

律和结论。而下面看似无关的五道例题,我们完全可以用

一个质点受力模型去解决。

?例1?如图1所示,表面光滑,重力不计的角度为

α的劈尖插在缝AB 间,在劈尖背上加一竖直向下的压力F ,

则劈尖对A 和B 侧的压力是各是多少?(答案 :N 1 = Fcot

α N 2 = F/sin α )

?例2?如图2所示,在倾角为α角的斜面上,放一

质量为m 的光滑小球,球被竖直木板档住,则球对木板的

压力是多少?

(答案:N 1 = Gtan α)

?例3?如图3所示,人站立在岸上通过定滑轮用绳

牵引小船,若水的阻力恒定不变,则船在匀速靠岸过程中,

绳的拉力和船的所受的浮力如何变化?(答案:拉力不断增大,则浮力减小)

?例4?如图4所示,电灯挂于两墙之间更换原水平

绳OA ,使结点A 向上移动而保持O 点不动,则A 点上移时,

OA 所受的拉力如何变化?(答案:OA 所受拉力先变小后变大的结论。)

?例5?如图5所示,水平地面放一个木板,上面放

一个木块,设木块对木板的压力为N ,木块所受的摩擦力为 f ,若使木板的 B 端逐渐升高时,木块仍静止,则 N 和 f 如何变化?(答案:N 减小,f 增大)

?解析?当我们仔细分析上述各题中研究对象的受力情况,并画出受力分析图,如果

忽略物体的大小和形状,只画出其受力示意图时,你会发现,原来它们有这样多的相似之处,且可以用三力汇交原理轻松的分析并得出正确的结论。三力汇交原理是指物体在受到三个力(或三个以上力)作用的情况下,常常根据力的平行四边形法则把其中的两个力合成为一个力,然后根据初中学过的二力平衡原理求解另一个力,从而达到把一个复杂的问题简单化的目的(如图6所示,具体解法略)。

图1 A B 图2 图

3

A O 图4

图5 图6

?思维总结?模型方法具有较大的灵活性,每种模型也有限定的运用条件和适用范围。同学们应注重培养具体问题具体分析的科学态度,在问题面前做出选择。在解决具体问题过程中,关键是掌握模型方法,理解如何去简化和抽象,弄清为了什么目的而这样简化和抽象的。

三. 分清物理过程,掌握正确的解题方法

在物理学习过程中,分清的物理过程是解决问题的关键,同学们应当注意到在新课标理念下的学习强化了对三维目标的落实,在未来的高考中将加大考查“三维目标”落实情况的力度,其中“知识与技能”也是传统教学理念下高考考查的重点,“情感与价值观”很难在高考命题和答卷中得到体现,因此未来高考变化最大的应当是加大对“过程与方法”的考查力度。因此,同学们在高一阶段学习物理时就应注重对过程与方法考察问题的思考和训练。

?例6?(广东物理1)下列对运动的认识不正确的是

A .亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动

B .伽利略认为力不是维持物体速度的原因

C .牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动

D .伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去

?灵犀一点?物理学发展史本身就是重要的知识财富

?解析?亚里士多德认为没有力作用在物体上,物体就不会运动是错误的认识。伽利略认为力不是维持物体运动的原因,伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去。牛顿认为力是改变物体运动状态的原因,并不是使物体运动的原因。故答案为A 。而从这些方面的变化我们也能看出未来高考的发展趋势,这一点我们从刚刚结束的全国统一考试的各类物理试题中可以寻找到课改的信息,并对2007年高考内容和方式做出准确的预测。

?思维总结?本题涉及到亚里士多德、伽利略、牛顿三个经典物理发展的重要时期,是考查考生对物理学发展过程了解的经典题,在学习物理过程中,掌握物理学发展史,了解前辈大师发现和研究物理过程和方法也是学习物理的重要内容,通过对物理发展过程的了解和大师们研究问题的方法的掌握对提高考生的综合能力作用是非常大的。所谓牛顿是站在巨人肩上,就是他善于总结前人的经验,如果我们也能做到如此,掌握研究问题的“过程与方法”,那将来想成为一代大师也不是什么难事。

?例7?随着现代生产科技的高速发展和普及,传感器、光电计时器等

一些与高新技术或信息技术有关的仪器已经走进了高中物理实验室。光电计时

器是一种研究物体运动情况的常用计时仪器,其结构如图7所示,a 、b 分别是

光电门的激光发射和接收装置,当有物体从a 、b 间通过时,光电计时器就可以显示物体的挡光时间。

利用如图8所示装置测量滑块与长1m 左右的木板间动摩擦因数及被压

缩弹簧的弹性势能,图中木板固定在水平面上,木板的左壁固定有一个处于锁

定状态的压缩轻弹簧(弹簧长度与木板相比可忽略),弹簧右端与滑块接触,1和2是固定在木板上适当位置的两个光电门,与之连接的两个光电计时器没有

画出。现使弹簧解除锁定,滑块获得一定的初速度后,水平向右运动,光电门1、2各自连接的计时器显示的挡光时间分别为2.0×10-2s 和5.0×10-2s ,用游

标卡尺测量小滑块的宽度d ,卡尺示数如图9所示.

(1)读出滑块的宽度d = cm. (2)滑块通过光电门1的速度v 1= m/s ;滑动通过光电门2的速度v 2= m/s ;

图8 1 2 l b 0 0 0 显示屏 光电门 光电计时器 图7 a

(3)若用米尺测量出两个光电门之间的距离为l ,已知当地的重力加速为g ,则滑块与木板动摩擦因数表达式为 (各量均用字母表示)。

?灵犀一点?分清过程,找到规律是本题解题的关键

?解析?(1)游标卡尺的读数为5.50cm

(2)滑块通过第一个光电门的平均速度

2

121 5.5010/ 2.75/2.010

d v m s m s t --?===? 滑块通过第二个光电门的平均速度2

122 5.5010/ 1.10/5.010

d v m s m s t --?===? (3)对于滑块由牛顿第二定律得,f mg ma a g μμ=-==- 由运动学关系得222

2122122,2v v v v al gl gl μμ--==∴= ?思维总结?学会对实验的观察和数据采集是物理学习的重点,本题叙述过程较复杂,主要涉及到的过程:○1弹簧锁定解除,滑块弹出过程;○2滑块运动并经过光电门过程;○3游标卡尺测量滑块宽度过程。涉及到的知识点○1平均速度与瞬时速度的关系;○2牛顿第二定律;○3匀变速运动规律;本题是近年高考中经常出现信息题的一种,如何学会正确阅读并找出有效信息找出规律是近年高考命题者常思考的一个重要问题,专家们想通过这类命题来引导学生提高阅读和理解能力,学会化繁为简,这也是提高创新能力的重要途径之一。 图9

高中物理必修一常考题型+例题及答案讲课稿

高中物理必修一常考题型 一、直线运动 1、xt图像与vt图像 2、纸带问题 3、追及与相遇问题 4、水滴下落问题(自由落体) 二、力 1、滑动摩擦力的判断 2、利用正交分解法求解 3、动态和极值问题 三、牛顿定律 1、力、速度、加速度的关系; 2、整体法与隔离法 3、瞬时加速度问题 4、绳活结问题 5、超重失重 6、临界、极值问题 7、与牛顿定律结合的追及问题 8、传送带问题 9、牛二的推广 10、板块问题 11、竖直弹簧模型

一、直线运动 1、xt图像与vt图像 2014生全国(2) 14.甲乙两汽车在一平直公路上同向行驶。在t=0到t=t1的时间内,它们的v-t图像如图所示。 在这段时间内 A.汽车甲的平均速度比乙大 B.汽车乙的平均速度等于 22 1v v C.甲乙两汽车的位移相同 D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 2016全国(1) 21.甲、乙两车在平直公路上同向行驶,其v-t图像如图所示。已知两车在t=3s时并排行驶,则 A.在t=1s时,甲车在乙车后 B.在t=0时,甲车在乙车前7.5m C.两车另一次并排行驶的时刻是t=2s D.甲、乙两车两次并排行驶的位置之间沿公路方向的距离 为40m 2、纸带问题 【2012年广州调研】34.(18分)(1) 用如图a所示的装置“验证机械能守恒定律”①下列物理量需要测量的是__________、通过计算得到的是_____________(填写代号)A.重锤质量B.重力加速度 C.重锤下落的高度 D.与下落高度对应的重锤的瞬时速度②设重锤质量为m、打点计时器的打点周期为T、重力加速度为g.图b是实验得到的一条纸带,A、B、C、D、E为相邻的连续点.根据测得的s1、s2、s3、s4写出重物由B点到D点势能减少量的表达式__________,动能增量的表达式__________.由于重锤下落时要克服阻力做功,所以该实验的动能增量总是__________(填“大于”、“等于”或“小于”)重力势能的减小量

动力学中的临界极值问题的处理

动力学中临界极值问题的处理及分析 物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、力学密切相关,综合性强。在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。一.解决动力学中临界极值问题的基本思路 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。在解决临办极值问题注意以下几点:○1临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。○2临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。○3许多临界问题常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语其内含规律就能找到临界条件。○4有时,某些临界问题中并不包含常见的临界术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。○5临界问题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,抓住临界状态的特征,找到正确的解题方向。○6确定临界点一般用极端分析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。 二.匀变速运动规律中与临界极值相关问题的解读 在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。 【例1】速度大小是5m/s的甲、乙两列火车,在同一直线上相向而行。当它们相隔2000m 时,一只鸟以10m/s的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。问: (1)当两车头相遇时,这鸟共飞行多少时间? (2)相遇前这鸟飞行了多少路程? 【致远提示】甲、乙火车和小鸟运动具有等时性,要分析相遇的临界条件。 【思维总结】本题难度不大,建立物理情景,分清运动过程,找到相遇的临界条件、三个运动物体运动具有等时性和小鸟速率不变是解题的切入点。

高中物理常见临界问题

高中物理常见临界问题(极值问题)分析处理训练 一问题概述: 当物体由一种运动形式(物理过程与物理状态)变为另一种运动形式(物理过程与物理状态)时,可能存在一个过渡的转折点,即分界限的现象。这时物体所处的状态通常称为临界状态,与之相关的物理条件则称为临界条件。这是量变质变规律在物理中的生动表现。如:力学中的刚好滑动;正常行驶;宇宙速度,共振;电学中电源最大输出功率;光学中的临界角;光电效应中的极限频率等 解决临界问题,通常以定理、定律为依据,分析所研究问题的一般规律和一般解的形式及其变化情况,然后找出临界状态,临界条件,从而通过临界条件求出临界值,再根据变化情况,直接写出条件。 所谓极值问题,一般而言,就是在一定条件下求最值结果。求解极值问题的方法从大的角度可分为物理方法和数学方法。物理方法即用临界条件求极值。数学方法包括(1)利用矢量图求极值(2)用三角函数关系求极值;(3)用二次方程的判别式求极值;(4)用不等式的性质求极值。(5)导数法求解。一般而言,用物理方法求极值直观、形象,对构建模型及动态分析等方面的能力要求较高,而用数学方法求极值思路严谨,对数学能力要求较高.若将二者予以融合,则将相得亦彰,对增强解题能力大有裨益。极值问题与临界问题从本质上说是有区别的,但高考中极值问题通常都可用物理临界法求解。 解答临界问题的关键是找临界条件。许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词语对临界状态给出了明确的暗示,审题时,一定要抓住这些特定的词语发掘其内含规律,找出临界条件。 有时,有些临界问题中并不显含上述常见的“临界术语”,具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,耐心讨论状态的变化,可用极限法(把物理问题或过程推向极端,从而将临界状态及临界条件显露出来)假设法(即假设出现某种临界状态,物体的受力情况及运动状态与题设是否相符,最后再根据实际情况进行处理。)数学函数极值法等方法找出临界状态。然后抓住临界状态的特征,找到正确的解题方向。 ※为了提高解题速度,可以理解记住一些重要的临界条件及状态: 物体自由地沿斜面刚好匀速下滑则μ=tgα。 物体刚好滑动静摩擦力达到最大。 两个物体沿同一直线运动,在速度相等时距离最大或最小。 两物体刚好相对静止必速度相等、加速度相等。 两个物体距离最近(远),相对速度相等。 速度达到最值——沿速度方向的合外力为零(曲线运动时则切向合外力为零) 两个一同运动的物体刚好(不)脱离时,两物体间的弹力刚好为零,速度、加速度相等。 刚好到达某点——速度为零(速度不一定为零) 物体刚好(不)滑出——物体到达末端时二者等速。 在竖直面内做圆周运动,绳端物体刚好到达最高点——绳拉力为零,重力是向心力, 杆端物体刚好到达最高点——物体速度等于零。 两个物体刚好(不)分离——两物接触且弹力为零,速度加速度(垂直接触面方向)相等。绳刚好拉直——绳直且拉力为零,绳刚好拉断——张力等于绳所能承受最大拉力。 刚好不相撞——两物体间距为零时等速。 碰撞过程碰后相对速度为零时,损失的动能最大 粒子刚好(不)飞出两极板间匀强电场或匀强磁场——轨迹与板边缘相切,粒子刚好(不)飞出磁场区——轨迹与磁场边界相切。

在学习物理中有关临界极值问题的处理

在动力学中临界极值问题的处理 佛山市高明第一中学(528500)周兆富 物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的 问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、电磁学密切相关,综合性强。在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。 一.解决动力学中临界极值问题的基本思路 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。在解决临办极值问题注意以下几点:○1临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。○2临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。○3许多临界问题常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语其内含规律就能找到临界条件。○4有时,某些临界问题中并不包含常见的临界术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。○5临界问题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,抓住临界状态的特征,找到正确的解题方向。○6确定临界点一般用极端分析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。 二.匀变速运动规律中与临界极值相关问题的解读 在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。 ?例1?速度大小是5m/s的甲、乙两列火车,在同一直线上相向而行。当它们相隔2000m时,一只鸟以10m/s的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。问: (1)当两车头相遇时,这鸟共飞行多少时间? (2)相遇前这鸟飞行了多少路程? ?灵犀一点?甲、乙火车和小鸟运动具有等时性,要分析相遇的临界条件。 ?解析?飞鸟飞行的时间即为两车相遇前运动的时间,由于飞鸟在飞行过程中速率没有变化,可用s=vt求路程。 (1)设甲、乙相遇时间为t,则飞鸟的飞行时间也为t,甲、乙速度大小相等v甲= v乙=5m/s,同相遇的临界条件可得:s = (v甲+v乙)t 则: 2000 =200 10 s t s s v v == + 乙 甲

高中物理中的临界与极值问题

高中物理中的临界与极值问题 宝鸡文理学院附中何治博 一、临界与极值概念所谓物理临界问题是指各种物理变化过程中,随着条件的逐渐变化,数量积累达到一定程度就会引起某种物理现象的发生,即从一种状态变化为另一种状态发生质的变化(如全反射、光电效应、超导现象、线端小球在竖直面内的圆周运动临界速度等),这种物理现象恰好发生(或恰好不发生)的过度转折点即是物理中的临界状态。与之相关的临界状态恰好发生(或恰好不发生)的条件即是临界条件,有关此类条件与结果研究的问题称为临界问题,它是哲学中所讲的量变与质变规律在物理学中的具体反映。极值问题则是指物理变化过程中,随着条件数量连续渐变越过临界位置时或条件数量连续渐变取边界值(也称端点值)时,会使得某物理量达到最大(或最小)的现象,有关此类物理现象及其发生条件研究的问题称为极值问题。临界与极值问题虽是两类不同的问题,但往往互为条件,即临界状态时物理量往往取得极值,反之某物理量取极值时恰好就是物理现象发生转折的临界状态,除非该极值是单调函数的边界值。因此从某种意义上讲,这两类问题的界线又显得非常的模糊,并非泾渭分明。 高中物理中的临界与极值问题,虽然没有在教学大纲或考试说明中明确提出,但近年高考试题中却频频出现。从以往的试题形式来看,有些直接在题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等

词语对临界状态给出了明确的暗示,审题时,要抓住这些特定的词语发掘其内含的物理规律,找出相应的临界条件。也有一些临界问题中并不显含上述常见的“临界术语”,具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,周密讨论状态的变化。可用极限法把物理问题或物理过程推向极端,从而将临界状态及临界条件显性化;或用假设的方法,假设出现某种临界状态,分析物体的受力情况及运动状态与题设是否相符,最后再根据实际情况进行处理;也可用数学函数极值法找出临界状态,然后抓住临界状态的特征,找到正确的解题方向。从以往试题的内容来看,对于物理临界问题的考查主要集中在力和运动的关系部分,对于极值问题的考查则主要集中在力学或电学等权重较大的部分。 二、常见临界状态及极值条件解答临界与极值问题的关键是寻找相关条件,为了提高解题速度,可以理解并记住一些常见的重要临界状态及极值条件: 1.雨水从水平长度一定的光滑斜面形屋顶流淌时间最短——屋面倾角 为0 45 2.从长斜面上某点平抛出的物体距离斜面最远——速度与斜面平行时 刻 3.物体以初速度沿固定斜面恰好能匀速下滑(物体冲上固定斜面时恰 好不再滑下)—μ=tgθ。 4.物体刚好滑动——静摩擦力达到最大值。

圆周运动临界问题 极值问题

圆周运动临界问题 极值问题 相关知识复习: 一、由于受静摩擦力作用 二、绳 杆等恰好无作用力或者有承受最大力 三、两个典型模型 1、绳球模型(已知绳长L ,小球质量m ,线速度V ) 1)画出小球的受力示意图 2)写出小球过最高点的动力学方程 3)若小球刚好过最高点,F =拉 ,此时 V= 2、杆球模型 (已知杆长L ,小球质量m ,线速度V ) 1)若小球刚好过最高点,杆对球的作用力F = ,方向 此时 V= 2 )若v = F = 。 3 )若v >F = ,方向 。 4 )若0v

高中物理:极值法知识点

高中物理:极值法知识点 数学的极值问题,主要是解决数学函数关系及其定义域的问题,这是由数学条件所制约的。 但是物理极值与数学极值有明显的区别。物理极值,实质是针对某一物理现象的动态范围、发展变化趋势及其极限,这是由物理条件所制约的。物理极值,经常表现为物理约束条件下的最大或最小值,这与数学极值有本质的区别。 就思维表现看,求极值过程是归纳和演绎综合运用过程。在错综复杂的变化条件中,要归纳出一般的状态表现,又要在此基础上,经演绎推理,寻求特殊的极端模型。这也是建立理想化模型,也要理想化。 显然,解极值过程是综合运用几种常规的思维方法的高层次的思维过程。另一方面,解极值过程,需要借助一些初等数学手段,靠扎实的数学基础。从所应用的数学手段来看,求极值可与为下列几种方法: (一)利用分式的性质求极值 [例1] 物体A放在水平面上,作用在A上的推力F与水平方向成30o角,如图示。使A作匀速直线运动。试问,当物体A与水平面之间的摩擦系数μ为多大时,不管F增大到多大,都可以使A在水平面上,作匀速直线运动? 解:A受力如图所示,由已知,A处于平衡状态,有:Fcosα=fFcos30o=μ(G+Fsin30o), 得F=由已知当公式的分母为零,即F→∞的匀速运动时sin30o-μcos30o=0时得μ=tg30o=0.58,则F→∞,此时都可以使A在水平面上作匀速直线运动。

(二)利用一元二次方程求根公式求极值 有些问题,通过分析列关系式,最后整理出关于一个未知量的一元二次方程。它的根就可能是要求的极值。这种方法应用是很普遍的。 (三)利用一元二次方程判别式△=b2-4ac≥O求极值 [例2] 一个质量为M的圆环,用细线悬挂着。将两个质量为m的有孔的小珠套在环上,且可沿环无摩擦滑动,如图(a)所示。今将两小珠从环的顶端由静止开始释放。证明,当m> M时,圆环能升起。 证明:取小球为研究对象,受力如图(a)。由牛顿第二定律,得所mgcosθ+N=由机械能守恒定律,得mgR(1-cosθ)=由此二式得N=2mg-3mgcosθ (1)上式中,N>0,即cosθ<以环为研究对象,受力图如(b),在竖直方向,由牛顿第二定律,有T+2N’cosθ—Mg=Ma当环恰好能上升时,a=0,可得2N’cosθ=Mg (3) 将(1)代入(3)式中,其中N’为(a)图中N的反作用力。有 2(2mg-3mgcosθ)cosθ=Mg即6mcos2θ-4mcosθ+M=0 (4)(4)式是关于cosθ的一元二次方程。cosθ为实数,则△≥0,即(4m)2-4

动力学的临界和极值问题

动力学的临界和极值问题 教学目标: 教学重点、难点: 新课引入: 教学过程: 一、临界和极值 在应用牛顿定律解决动力学问题中,当物体运动的加速度不同时,物体 有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词语时,往往会有临界现象。此时要采用极限分析法,看物体在不同加速度时,会有哪些现象发生,尽快找出临界点,求出临界条件。 在某些物理情境中,物体运动状态变化的过程中,由于条件的变化,会出现两种状态的衔接,两种现象的分界,同时使某个物理量在特定状态时,具有最大值或最小值。这类问题称为临界问题。在解决临界问题时,进行正确的受力分析和运动分析,找出临界状态是解题的关键。 1、相互接触的物体,它们分离的临界条件是:它们之间的弹力0 N ,而且此时它们的速度相等,加速度相同。 【例】如图,在竖直立在水平面的轻弹簧上面固定一块质量不计的薄板,将薄板上放一重物,并用手将重物往下压,然后突然将手撤去,重物即被弹射出去,则在弹射过程中,(即重物与弹簧脱离之前),重物的运动情况是( ) A 、一直加速 B 、先减速,后加速 C 、先加速、后减速 D 、匀加速

【例】如图所示,劲度系数为k 的轻弹簧竖直固定在水平面上,上端固定一质量为0m 的托盘,托盘上有一个质量为m 的木块。用竖直向下的力将原长为0l 的弹簧压缩后突然撤去外力,则m 即将脱离0m 时的弹簧长度为( ) A 、0l B 、()k g m m l +- C 、k mg l -0 D 、k g m l 00-

【例】如图所示,一细线的一端固定于倾角为?45的光滑楔形滑块A 的顶端P 处,细线的另一端拴一质量为m 的小球。当滑块至少以加速度______=a 向的 左运动时,小球对滑块的压力等于零。当滑块以g a 2=加速度向左运动时,线的拉力大小______=F 。

高考物理复习第二章相互作用微极值问题备考练习题

17 极值问题 [方法点拨] (1)三力平衡下的极值问题,常用图解法,将力的问题转化为三角形问题,求某一边的最短值.(2)多力平衡时求极值一般用解析法,由三角函数、二次函数、不等式求解.1.(2018·姜堰中学月考)如图1所示,用细线相连的质量分别为2m、m的小球A、B在拉力F作用下,处于静止状态,且细线OA与竖直方向的夹角保持θ=30°不变,则拉力F的最小值为( ) 图1 A.33 2 mg B. 23+1 2 mg C.3+2 2 mg D. 3 2 mg 2.如图2所示,质量均为m=10 kg的A、B两物体放在粗糙的水平木板上,中间用劲度系数为k=5×102 N/m的弹簧连接,刚开始时A、B两物体处于平衡状态,弹簧的压缩量为Δx= 5 cm.已知两物体与木板间的动摩擦因数均为μ= 3 2 ,重力加速度g=10 m/s2,设最大静摩 擦力等于滑动摩擦力.现将木板的右端缓慢抬起,木板形成斜面,在木板缓慢抬起过程中,以下说法正确的是( ) 图2 A.A先开始滑动,A刚开始滑动时木板的倾角θ=30° B.A先开始滑动,A刚开始滑动时木板的倾角θ=60° C.B先开始滑动,B刚开始滑动时木板的倾角θ=30° D.B先开始滑动,B刚开始滑动时木板的倾角θ=60° 3.如图3所示,在水平板左端有一固定挡板,挡板上连接一轻质弹簧.紧贴弹簧放一质量为 m的滑块,此时弹簧处于自然长度.已知滑块与水平板的动摩擦因数为 3 3 (最大静摩擦力与 滑动摩擦力视为相等).现将板的右端缓慢抬起使板与水平面间的夹角为θ,最后直到板竖直,此过程中弹簧弹力的大小F随夹角θ的变化关系可能是( )

图3 4.如图4所示,质量为M的滑块a,置于水平地面上,质量为m的滑块b放在a上.二者接触面水平.现将一方向水平向右的力F作用在b上.让F从0缓慢增大,当F增大到某一值时,b相对a滑动,同时a与地面间摩擦力达到最大.已知a、b间的动摩擦因数为μ1,a 与地面之间的动摩擦因数为μ2,且最大静摩擦力等于滑动摩擦力,则μ1与μ2之比为( ) 图4 A.m M B. M m C. m M+m D. M+m m 5.(2018·兴化一中质检)如图5所示,质量均为m的木块A和B,用一个劲度系数为k的竖直轻质弹簧连接,最初系统静止,现在用力缓慢拉A直到B刚好离开地面,则这一过程A上升的高度为( ) 图5 A.mg k B. 2mg k C.3mg k D. 4mg k 6.如图6所示,质量为M的斜劈倾角为θ,在水平面上保持静止,当将一质量为m的木块放在斜面上时正好匀速下滑.如果用与斜面成α角的力F拉着木块沿斜面匀速上滑.

高中物理中的极值问题

物理中的极值问题 武穴育才高中 刘敬 随着高考新课程改革的深入及素质教育的全面推广,物理极值问题成为中学物理教学的一个重要内容,作为对理解、推理及运算能力都有很高要求的物理学科,如何提高提高学生思维水平,运用数学知识解决物理问题的能力,加强各学科之间的联系,本文筛选出典型范例剖析,从中进行归纳总结。 极值问题常出现如至少、最大、最短、最长等关键词,通常涉及到数学知识有:二次函数配方法,判别式法,不等式法,三角函数法,求导法,几何作图法如点到直线的垂线距离最短,圆的知识等等。 1.配方法:a b ac a b x a c bx ax 44)2(2 22 -++=++ 当a >0时,当2b x a =-时,y min =a b a c 442- 当a <0时当2b x a =-时,y max =a b a c 442- 2.判别式法:二次函数令0≥?,方程有解求极值. 3.利用均值不等式法:ab 2b a ≥+ a=b 时, y min =2ab 4.三角函数法:θθcos sin b a y +==)sin(22θ?++b a 当090=+θ?,22max b a y += 此时,b a arctan =θ 也可用求导法:b a b a y arctan 0sin cos ==-='θθθ,得令 5.求导法:对于数学中的连续函数,我们可以通过求导数的方式求函数的最大值或最小值.由二阶导数判断极值的方法.某点一阶导数为0,二阶导数大于0,说明一阶导数为增函数,判断为最小值;反之,某点一阶导数为0,二阶导数小于0,说明一阶导数为单调减函数,判断此点为最大值. 6.用图象法求极值 通过分析物理过程所遵循的物理规律,找到变量之间的函数关系,作出其图象,由图象求极值。 7.几何作图法 研究复合场中的运动,可将重力和电场力合成后,建立直角坐标系,按等效重力场处理问题。 研究力和运动合成和分解中,可选择合适参考系,将速度及加速度合成,结合矢量三角形处理问题。 例1.木块以速度v 0=12m /s 沿光滑曲面滑行,上升到顶部水平的跳板后飞出,求跳板高度h 多大时, 木块飞行的水平距离s 最大?最大水平距离s 是多少?(g=10 m /s 2)。 解:2202121mv mgh mv =+, vt s =得:22022020)4()4(22)2(g v h g v g h gh v s --=-=

极值法解决物理问题(优.选)

正确使用极值法解决物理问题 在平时的教学中,常遇到“极值”问题,但多数教师都是通过数学方法进行分析.不仅要求学生具有较好的物理基础,更需具有较高的数学应用能力,如果教师能教给学生灵活运用物理的思想和方法去解决问题,这对提升学生的物理思维和物理素养不无裨益. 一、中考原题 如图1 所示,两个完全相同的量筒里分别盛有质量 相等的水和酒精,A 、B 两点到量筒底部的距离相等,则A 、B 两点受到液体的压强A p 和B p 的大小关系是( ). A. A B p p > B. A B p p < C. A B p p = D.无法比较 学生1(常规法):假设液体的总重力都为G ,液体密度分别为A 和B ,且A B >,量筒的横截面积均为S ,A 、B 两点距量筒底的距离都为h ,图2中,A 、B 两点以上液体的重力,即阴影部分液体的重力分别为A G 和B G ,则 A A A A A A G G F G G gSh G p gh S S S S S ρρ--=====-下① B B B B B G G F G G gSh G p gh S S S S S ρρ--=====-B 下 ② 由①②两式及A B ρρ>得A B p p <. 学生2(极值法): A 、B 两点距底部的距离相同,具有随意性,可假设A 、B 两点在甲容器的液面高度上(如图3),此时0,A p =0B p >,所以A B p p <. 从以上两种方法可以看出,在解决物理问题时,当一个物理量或物理过程发生变化时,运用“极值法”对其变量作合理的延伸,把问题推向极端,往往会使问题化难为易,达到“事

半功倍”的效果.那么如何正确使用极值法呢? 二、极值法正确使用过程分析 如图4所示,甲、乙两个质量相等的均匀实心正方体放在水平地面上,已知铜的密度大于铁的密度,若沿水平方向分别截去体积相等的部分,则剩余部分对水平面的压强p 甲和p 乙的大小关系是( ) A. p p >乙甲 B. p p <乙甲 C. p p =乙甲 D.都有可能 极值法:假设将甲全部消去,则剩余部分对水平面的压强p 甲=0和0p >乙,因此,该题选择B.事实果真如此吗? 假设G G G ==乙甲,边长分别为a 和b ,且a a b <,密度分别为甲和乙,且ρρ>乙甲截去的体积均为V ,则剩余部分对水平面的压强222G gV g G p V a a a ρρ-==-甲甲甲③, 222G gV g G p V b b b ρρ-==-乙乙乙④,由22G G a b >,22g g a b ρρ>乙甲,画出③④两式的压强一截去体积图像如图6所示. 由图6来看,当截去一定的体积时,剩余部分对水平面的压强p 甲和p 乙有可能相同(M 点),即由③④两式相等2222g g G G V V a a b b ρρ-=-乙甲,解得2222 ()G b a V gb ga ρρ-=-乙甲.当截去的体积2222()G b a V gb ga ρρ-<-乙甲时,p p >乙甲.当截去的体积2222()G b a V gb ga ρρ-=-乙甲时,p p =乙甲.当

高三物理复习中的极值与临界问题专题

极值与临界问题专题 常州二中徐展 临界现象是量变质变规律在物理学上的生动体现。即在一定的条件下,当物质的运动从一种形式或性质转变为另一种形式或性质时,往往存在着一种状态向另一种状态过渡的转折点,这个转折点常称为临界点,这种现象也就称为临界现象.如:静力学中的临界平衡;机车运动中的临界速度;碰撞中的能量临界、速度临界及位移临界;电磁感应中动态问题的临界速度或加速度;光学中的临界角;带电粒子在磁场中运动的边界临界;电路中电学量的临界转折等. 解决临界问题,一般有两种方法,第一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界特殊规律和特殊解;第二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。 所谓极值问题,一般而言,就是在一定条件下求最佳结果所需满足的极值条件.求解极值问题的方法从大的角度可分为物理方法和数学方法。物理方法包括(1)利用临界条件求极值;(2)利用问题的边界条件求极值;(3)利用矢量图求极值。数学方法包括(1)用三角函数关系求极值;(2)用二次方程的判别式求极值;(3)用不等式的性质求极值。一般而言,用物理方法求极值直观、形象,对构建模型及动态分析等方面的能力要求较高,而用数学方法求极值思路严谨,对数学能力要求较高.若将二者予以融合,则将相得亦彰,对增强解题能力大有裨益。 在中学物理问题中,有一类问题具有这样的特点,如果从题中给出的条件出发,需经过较复杂的计算才能得到结果的一般形式,并且条件似乎不足,使得结果难以确定,但若我们采用极限思维的方法,将其变化过程引向极端的情况,就能把比较隐蔽的条件或临界现象暴露出来,从而有助于结论的迅速取得。 在应用牛顿运动定律解决动力学问题中,当物体运动的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词句时,往往会有临界现象。此时要用极限分析法,看物体不同加速度时,会有哪些现象发生,找出临界点,求出临界条件。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。在解决临办极值问题注意以下几点: 1.许多临界问题常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语其内含规律就能找到临界条件。 2.临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。 3.临界问题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,抓住临界状态的特征,找到正确的解题方向。 4.确定临界点一般用极端分析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。 【典型例题与练习】 运动学中的极值与临界问题: 1.一车处于静止状态,车后相距s0=25m处有一个人,当车开始起动以1m/s2的加速度前进的同时,人以6m/s速度匀速追车,能否追上?若追不上,人车间的最小距离为多少?人不可能追上车 18 m。A、B 两车停在同一点,某时刻A车以2m/s2的加速度匀加速开出,2s后B车同向以3m/s2的加速度开出。问:B车追上A车之前,在启动后多长时间两车相距最远,距离是多少?

动力学中的临界与极值问题

考点二 动力学中的临界与极值问题 动力学中的临界问题一般有三种解法: 1.极限法 在题目中如出现“最大”“最小”“刚好”等词语时,一般隐含着临界问题,处理这类问题时,应把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,达到尽快求解的目的. 2.假设法 有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,也可能不出现临界问题,解答这类题,一般用假设法. 3.数学法 将物理过程转化为数学公式,根据数学表达式求解得出临界条件. 命题点1 接触与脱离的临界条件 3.一个弹簧测力计放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M =10.5 kg ,Q 的质量m =1.5 kg ,弹簧的质量不计,劲度系数k =800 N/m ,系统处于静止.如图所示,现给P 施加一个方向竖直向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2 s 内,F 为变力,0.2 s 以后,F 为恒力.求力F 的最大值与最小值.(取g =10 m/s 2) 【解析】 设开始时弹簧压缩量为x 1,t =0.2 s 时弹簧的压缩量为x 2,物体P 的加速度为a ,则有 kx 1=(M +m )g ① kx 2-mg =ma ② x 1-x 2=12 at 2③ 由①式得x 1=(M +m )g k =0.15 m , 由②③式得a =6 m/s 2. F min =(M +m )a =72 N ,

F max =M (g +a )=168 N. 【答案】 F max =168 N F min =72 N 命题点2 相对滑动的临界条件 4.如图所示,12个相同的木块放在水平地面上排成一条直线,相邻两木块接触但不粘连,每个木块的质量m =1.2 kg ,长度l =0.5 m .木块原来都静止,它们与地面间的动摩擦因数均为μ1=0.1,在左边第一个木块的左端放一质量M =1 kg 的小铅块(可视为质点),它与各木块间的动摩擦因数均为μ2=0.5,现突然给小铅块一个向右的初速度v 0=9 m/s ,使其在木块上滑行.设木块与地面间及小铅块与木块间的最大静摩擦力均等于滑动摩擦力,重力加速度g =10 m/s 2.求: (1)小铅块相对木块滑动时小铅块的加速度大小; (2)小铅块下的木块刚发生运动时小铅块的瞬时速度大小. 【解析】 (1)设小铅块相对木块滑动时加速度大小为a ,由牛顿第二定律可知μ2Mg =Ma 解得a =5 m/s 2. (2)设小铅块最多能带动n 个木块运动,对n 个木块整体进行受力分析,当小铅块下的n 个木块发生运动时,则有μ2Mg ≥μ1(mgn +Mg ) 解得n ≤3.33 即小铅块最多只能带动3个木块运动 设当小铅块通过前面的9个木块时的瞬时速度大小为v ,由动能定理可知-μ2Mg ×9l =12 M (v 2-v 20) 解得v =6 m/s. 【答案】 (1)5 m/s 2 (2)6 m/s 命题点3 数学方法求解极值问题 5.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33 .重力加速度g 取10 m/s 2.求:

动力学中的临界极值问题的处理讲课教案

动力学中的临界极值问题的处理

动力学中临界极值问题的处理及分析 物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、力学密切相关,综合性强。在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。 一.解决动力学中临界极值问题的基本思路 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。在解决临办极值问题 注意以下几点:○1临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。○2临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。○3许多临界问题 常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语 其内含规律就能找到临界条件。○4有时,某些临界问题中并不包含常见的临界 术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀 减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。○5临界问 题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情 景,抓住临界状态的特征,找到正确的解题方向。○6确定临界点一般用极端分 析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。 二.匀变速运动规律中与临界极值相关问题的解读 在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。 【例1】速度大小是5m/s的甲、乙两列火车,在同一直线上相向而行。当它们相隔2000m时,一只鸟以10m/s的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。问: (1)当两车头相遇时,这鸟共飞行多少时间?

中学物理中极值问题解法种种

中学物理中极值问题解法种种 卢小柱 极值问题是中学物理中一类内容丰富、难度较大和技巧性较强的物理问题.它要求学生的基础知识和基本技能较熟练,并有较强的综合分析问题和解决问题的能力,以及能熟练地运用数学知识解答物理问题.下面对常见的极值问题的解法作一归纳,以供参考. 1.配方法 若题中物理量的变化规律可表示为二次函数y=ax 2+bx+c 的形式,则经配方有 y=a(x+b a 2)2+442ac b a -.若a>0,则当x=-b a 2时,y 有极小值y min =442 ac b a -;若a<0,则当x=- b a 2时,y 有极大值y max =442 ac b a -. 例1 甲、乙两辆汽车同方向行驶,甲在乙前50m 处以速度20m/s 作匀速直线运动, 乙车的初速度为4m/s,加速度为8m/s 2.试问什么时候甲车在前时,两车相距最远?最远距离是多少? 解: 设运动时间为ts,由运动学公式有 甲的位移为s 1=20t, 乙的位移为s 2=4t+4t 2 两车相距?s=s 1+50-s 2=50+20t -4t -4t 2=-4t 2+16t+50=-4(t -2)2+66 当t=2s 时, ?s 有极大值为 ?s max =66m. 例2 如图1所示的电路中,电源内阻为r,电动势为ε,则当变阻器电阻R 为何值时,电源输出功率最大? 解: 电源输出功率为P=I 2R=(εR r +)2R=ε2222R R Rr r ++ 分母配方后得:P= ε2 2 4(/)R r R r -+ 故当R r R =/,即R=r 时,分母最小,P 最大.P max =ε2 4r . 2.判别式法 若物理量的变化关系为二次函数,或者通过巧妙的变换能使物理量出现二次项,则可利用判别式?=b 2-4ac 来求解.当?≥0时有实根,?=0时取极值. 例3 火焰与光屏之间的距离是L,在它们中间放有一个凸透镜,其焦距为f.试证明,要使火焰在光屏上成清晰像,则L 至少要为4f. 证明:设物距为u,像距为v,则u+v=L ……① 由成像公式有:111 u v f += ……② 由①②得:u 2-Lu+Lf=0 故要成实像,则必须?=L 2-4Lf ≥0,解得L 最小为4f. 例4 如图2所示,顶角为2α的光滑圆锥置于磁感应强度为B 、方向竖直向下的匀强磁场中.现有一质量为m 、带电量为+Q 的小球沿圆锥面在水平面内作匀速圆周运动,求小球作圆周运动的最小半径. 解: 小球受力如图,建坐标.由圆周运动知识得

板块模型的临界极值问题

板块模型的临界极值问 题 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

板块模型的临界极值问题 1【经典模型】 如图甲所示,M 、m 两物块叠放在光滑的水平面上,两物块间的动摩擦因数为μ,一个恒力F 作用在物块M 上. (1)F 至少为多大,可以使M 、m 之间产生相对滑动 (2)如图乙所示,假如恒力F 作用在m 上,则F 至少为多大,可以使M 、m 之间产生相对滑动 练1、如图所示,物体A 、B 的质量分别为2kg 和1kg ,A 置于光滑的水平地面上,B 叠加在A 上。已知A 、B 间的动摩擦因数为,水平向右的拉力F 作用在B 上, A 、 B 一起相对静止开始做匀加速运动。加速度为2/s m 。 (2/10s m g =)求: (1)力F 的大小。 (2)A 受到的摩擦力大小和方向。 (3)A 、B 之间的最大静摩擦力A 能获得的最大加速度 (4)要想A 、B 一起加速(相对静止),力F 应满足什么条件 (5)要想A 、B 分离,力F 应满足什么条件 练2、物体A 放在物体B 上,物体B 放在光滑的水平面上,已知6=A m kg , 2=B m kg ,A 、B 间动摩擦因数2.0=μ,如图所示。现用一水平向右的拉力F 作用于物体A 上,则下列说法中正确的是(10=g m/s 2)( ) A .当拉力F <12N 时,A 静止不动 B .当拉力F =16N 时,A 对B 的摩擦力等于4N C .当拉力F >16N 时,A 一定相对B 滑动 D .无论拉力F 多大,A 相对B 始终静止 2、如图,物体A 叠放在物体B 上,B 置于光滑水平面上,A 、B 质量分别为m A =6 kg 、m B =2 kg ,A 、B 之间的动摩擦因数是,开始时F =10 N ,此后逐渐增加,在增大到45 N 的过程中,则( ) A .当拉力F <12 N 时,两物体均保持静止状态 B .两物体开始没有相对运动,当拉力超过12 N 时,开始相对滑动 C .两物体间从受力开始就有相对运动 D .两物体间始终没有相对运动

相关文档
最新文档