电力线路线损计算方法

电力线路线损计算方法
电力线路线损计算方法

电力线路线损计算方法

线路电能损耗计算方法

A1线路电能损耗计算的基本方法是均方根电流法,其代表日的损耗电量计算为:

ΔA=3Rt×10-3(kW?h)(Al-1)

Ijf=(A)(Al-2)

式中ΔA——代表日损耗电量,kW?h;

t——运行时间(对于代表日t=24),h;

Ijf——均方根电流,A;

R——线路电阻,n;

It——各正点时通过元件的负荷电流,A。

当负荷曲线以三相有功功率、无功功率表示时:

Ijf==(A)(Al-3)

式中Pt——t时刻通过元件的三相有功功率,kW;

Qt——t时刻通过元件的三相无功功率,kvar;

Ut——t时刻同端电压,kV。

A2当具备平均电流的资料时,可以利用均方根电流与平均电流的等效关系进行电能损耗计算,令均方根电流Ijf与平均电流Ipj(代表日负荷电流平均值)的等效关系为K(亦称负荷曲线形状系数),Ijf=KIpj,则代表日线路损耗电量为:

ΔA=3K2Rt×10-3(kW?h)(A2-1)

系数K2应根据负荷曲线、平均负荷率f及最小负荷率α确定。

当f>0.5时,按直线变化的持续负荷曲线计算K2:

K2=[α 1/3(1-α)2]/[1/2(1 α)]2(A2-2)

当f<0.5,且f>α时,按二阶梯持续负荷曲线计算K2:

K2=[f(1 α)-α]/f2(A2-3)

式中f——代表日平均负荷率,f=Ipj/Imax,Imax为最大负荷电流值,Ipj为平均负荷电流值;

α——代表日最小负荷率,α=Imin/Imax,Imin为最小负荷电流值。

A3当只具有最大电流的资料时,可采用均方根电流与最大电流的等效关系进行能耗计算,令均方根电流平方与最大电流的平方的比值为F(亦称损失因数),F=/,则代表日的损耗电量为:

ΔA=3FRt×10-3(kW?h)(A3-1)

式中F——损失因数;

Imax——代表日最大负荷电流,A。

F的取值根据负荷曲线、平均负荷率f和最小负荷率α确定。

当f>0.5时,按直线变化的持续负荷曲线计算F:

F=α 1/3(1-α)2(A3-2)

当f<0.5,且f>α时,按二阶梯持续负荷曲线计算:

F=f(1 α)-α(A3-3)

式中α——代表日最小负荷率;

f——代表日平均负荷率。

A4在计算过程中应考虑负荷电流引起的温升及环境温度对导线电阻的影响,具体按下式计算:

R=R20(1 β1 β2)(Ω)(A4—1)

β1=0.2(Ipj/I20)2(A4—2)

=α(Tpj-20)(A4—3)

式中R20——每相导线在20℃时的电阻值,可从手册中查得单位长度值,Ω

β1——导线温升对电阻的修正系数;

β2——环境温度对电阻的修正系数;

I20——环境温度为20℃时,导线达到容许温度时的容许持续电流,A;其值可通过有关手册查取,如手册给出的是环境温度为25℃时的容许值时,I20应乘以1.05;

Ipj——代表日(计算期)平均电流,A;

Tpj——代表日(计算期)平均气温,℃;

α——导线电阻温度系数,对铜、铝、钢芯铝线,α=0.004。

A5对于电缆线路,除按计算一般线路的方法计算线心中的电能损耗外,还应考虑绝缘介质中的电能损耗,三相电缆绝缘介质损耗电量为:

ΔAj=U2ωCtgαLt×10-3(kW?h)(A5-1)

C=ε/[18lg(γw/γn)](A5-2)

式中ΔAj——三相电缆绝缘介质损耗电量,kW?h;

U——电缆运行电压,kV;

ω——角速度,ω=2πf,f为频率,Hz;

C——电缆每相的工作电容,μF/km;

tgα——介质损失角的正切值,按表A5选取;

L——电缆长度,km;

t——计算时段,h;

ε——绝缘介质的介电常数,按表A5选取;

γw——绝缘层外半径,mm;

γn——线心半径,mm。

表A5电缆常用绝缘材料的ε和tgα值

电缆型式εtgα

油浸纸绝缘

粘性浸渍不滴流绝缘电缆

压力充油电缆4.0

3.50.0100

0.0100

O.0045

丁基橡皮绝缘电缆

聚氯乙烯绝缘电缆

聚乙烯电缆

交联聚乙烯电缆4.0

8.0

2.3

3.50.050

0.100

0.004

0.008

注:tgα值为最高允许温度和最高工作电压下的允许值。

附录A线路电能损耗计算方法

A1本条是关于在线路等元件电阻损耗计算中采用均方根电流法计算的规定。电阻元件上

的电能损耗为:

ΔA=3R∫t0dt

由于I(t)是一随机变量,一般不能以解析式表示,所以依近似积分原理,对计算期均分

为n个时段,设每个时段Δt内的负荷电流不变且等于其正点小时的电流,则:n?Δt=t。(Δt)/t=()/n=

Ijf=

式中Ijf——计算期各时段电流的均方根值。

由上可知采用均方根电流法计算,实际上考虑了计算期的负荷特性,当Δt愈小时愈符合客观实际。

A2本条是关于采用计算期平均最大电流计算时的有关问题的说明。

因为计算期(一般为一日即代表日)平均电流未能反映负荷曲线的形状,所以应以负荷曲线形状系数反映负荷曲线形状对电能损耗计算的影响。负荷形状系数应建立在概率统计方法上,根据负荷曲线的特征值,如平均负荷率、最小负荷率、功率或负荷电流的最大值、平均值、最小值等确定。对于一些难以获得每时段实测资料的情况或为了减少实测工作量,可以用计算期平均电流或最大电流来代替。

计算期平均电流和均方根电流以及最大电流之间的等效关系为:

=K2=F

K=Ijf/Ipj

F=/

式中K——负荷曲线形状系数;

F——损失因数。

又因平均负荷率为:

f=Ipj/Imax

所以,F=K2f2,将K、F的表达式代人用均方根电流计算电能损耗的表达式得:

平均电流:ΔA=3K2Rt×l0-3(kW?h)

最大电流:ΔA=3FRt×10-3(kW?h)

关于负荷曲线形状系数K2和损失因数F的确定,可将日负荷曲线概化归结为按直线变化或按二阶梯变化两种类型的负荷曲线,见图A2。

图A2中α=Imin/Imax为最小负荷率,ε为最大负荷持续时间。根据上述简化,可得出按直线变化和按二阶梯变化负荷曲线的负荷曲线形状系数K2及损失因数F的计算式。对于工业用户比重大的负荷用按直线变化的负荷曲线计算较合理;对于照明、农电、单班生产用户为主的负荷曲线,则按二阶梯变化负荷曲线计算较合理。

高压配电网理论线损的精算和速算方法

河南省电力工业局廖学琦

一、精算和速算同异

理论线损的精算和速算的表达式同为:

可变损失:

可见,线路首端负荷电流均方根值I

jf (A)和线路综合等值电阻R

d.Σ

的求取是

计算的关键,即线损理论计算根本是I

jf 、R

d.Σ

、的计算。

对于I

jf

的计算,不论是精算还是速算,其方法是相同的。并为精确简便起见,计算所用的数据,不应采用指示瞬时值仪表(如V、A、W、

等)运行数据,而应采用指示累计值仪表(如wh、varh等)运行记录数据,且这类仪表

准确级别较高,又严格的较验制度。这样,便得I

jf

计算方法如下:

I pj 为线路首端负荷电流的平均值,当装有无功电度表时,I

pj

的计算,不仅

精确度较高,而且简便易行,其算式为:

当未装无功电度表时,因平均功率因数计算繁琐,且取值不易做到足够精确,故此时对I

pj

的计算和结果不太理想的,其算式表为:

式(4)中K

X

为负荷形状系数,与负荷率,功率因数等有关,其式为:

,考虑使用方便,可根据该式制成曲线和数表。下表系表示K

X

负荷率

,力率的关系

对于R

d·∑计算,要比I

jf

繁杂得多,根据不同的计算依据,其方法可分为:

精算,近似计算,速算三种。

二、R

d.Σ

的精算(按电量求阻法)

线路综合等值电阻R

d.Σ是线路导线等值电R

d.d

阻和就压器等值电阻R

d.b

的合成,

即 R

d.Σ=R

d.d+

R

d.b (Ω);

它的精算,是以配变实用电量为依据,即以各段负荷按

配变实际用电量成正比分配为原则的一种计算,(故谓按电量求阻法)这种计算方法,要将线路按照一定的原则划分计算线段,并逐段一一进行计算,相当繁琐,但却比较确切,精确,其式为:

的近似计算(按容求阻法)

三、 R

d.Σ

这种计算与精算不同处是以配变额定容量为依据,即以各段负荷按配变容量成正比分配为原则的(故谓按容求阻法)此法当配变实际用电量与其额定容量成正比时,还是比较确切、精确的,否则只是一近似值,但计算起来要比精算稍为简便,其式表为:

的速算(按线号截面,代变容量求阻法)

四、 R

d.Σ

这种计算,与精算,近似计算不同处,一是不需将线路分段,不按段(点)计算,而是按导线型号数计算。二是线路上的负荷是以按导线截面积分配为原则,即以

时,亦不是逐台计算,而是按一台代表型导线截面积为计算依据,三是计算R

d.b

配变计算求得,可见,此法不仅有据可信,简便易行,而且比较确切,具有满足工作需要的精确度,其方法表为:

式(11)中的K

f

为负荷分布修正系数,其值按配变容量在线路上沿主干线挂接分布状况而确定,渐增取0.53,渐减取0.20,均布取0.33,向首末端渐减取0.38据有关资料介绍,引用此系数,可使计算简化,易行,所得结果与分段逐点法接近。

式(12、13)中为线路上配变总容量之平均值(KVA),即S

pj =S

e·∑/m∑

。而S

e·d

为线路上代表型配变额定容量,即设备规范表中与S

pj

最接近一配变的标称容量。

五、理论线损的曲线计算法

计算还可进一步简化,当电网结构和布局不更改变动,线路设备采用铜铝线

材时,则R

d.Σ趋近一常数,所得准确之R

d.Σ

值可永久使用,此时即有:

此式为一元二次函数,可作成数表和曲线,供今后直接查取,即根据一月一季计算求得的可查得△P

Σ,则又得△AΣ(△AΣ=△PΣ·t)。

六、最后结果的计算,

通过上述计算,求出电流,电阻后,即可求得可变损失,而固定损失由查表亦易求得,其两者之和即是线路供电的总损失,最后,即可计算出线路的理论线损率,线路上配变铁损在总损失中所占的百分数,线路的经济运行电流,其分别表为:

七、建议和结束语

线损的精算方法,不仅适用于6~10KV 配电网,亦适用于35KV 线路,即35KV 线路的线损计算,应采用精算方法,因其分支线较小、结构较简单,最后结果的精确度要求较高。线损的速算方法,对于分支线较多、结构较复杂的6~10KV 配电网的损计算,其优越性愈显著;而分支线较少、结构较简单时,应采用精算或近似计算方法。线损的速算方法还可用于电网(新建和整改)规划的线损预测。速算与精算比较,可提高工效15倍以上,曲线计算法可提高30倍以上,而误差,经大量的实例计算,一般△A L % 不超过± 1.5% ,△A L % 不超过± 3% ,Iji 不超过±4A ;故是完全能满足工作需要的。 文中符号、意义说明:(文中已说明者从略) t ——计算线损期间,线路设备实际运行时间(h ); A g·p A Gq ——线路有功供电量(KWh )、无功供电量(Kvarh );

△ P o ·k , △P k ·k ·——各台变压器的空载损耗(W ),短路损耗(W ); U pj ,U ie ——线路平均运行电压(KV ),变压器一次额定电压(KV ); T 、τ——最大负荷利用小时(h ),损耗时间(h );

A Y·K∑——凡负荷电流通过该线段之各台变压器电量之和(Kwh ); S e·K∑——凡负荷电流通过该线段之各台变压器额定容量之和(KvA ); A Y·K ——各台变压器的用电量,即二次侧总表抄见电量(Kwh); S e·K ——各台变压器的额定容量(KVA );

R b·K ——各台变压器归算到一次侧的等值电阻(Ω); S e ∑,m ∑——线路上全问变压器的总容量(KVA ),总台数; R I ——线路上最大型号导线电阻R I =r oI ·L I (Ω);

S I , S K ——线路上最大型号、其余各种型号导线的截面积(mm )2; R K ——各计算线段电阻;除R I 外其余各型导线电阻R K =rokLk (Ω); △ P ∑——线路有功功率总损失(KW)

A g ——线路供电量,即线路出口有功电度表抄见电量(Kwh ); △A U ——线路上全部配变铁损(Kwh )。

高可靠性供电系统

高可靠性供电系统 具有可靠的电力供应系统。公司生产用电属于二级负荷用电企业,设计总容量达到46000KV A,工厂的10KV开闭所共有四条进线和三十八条出线。主进线由厂内专用110KV/10KV永安变电站进行两回路双母线供电,备供即保安电源由新桥变10KV双回路进行供电,供电能力达到16000KV A,永安变电站坐落在我公司厂区,其项目是省电力公司根据我公司的实力和发展前景专项投资8000万建成的。此变电站属于我公司专供变电站。 大型循环冷却水系统 采用台湾良机公司产5*2500m3/h钢混冷却塔,加上功能先进的自控系统可以根据热负荷变化自动变频加卸载,是国内生物制药行业为数不多的系统;与之配套的软化水采用全自动运行和再生处理、循环供水系统采用大型3000m3/h水泵运行为主小型水泵全自动变频调节为辅的模式,实现了无人值守。本公司循环冷却水系统无论装置规模还是节能水平都达到国内同类医药厂家之首。 热力系统 为了保证公司生物医药生产的需要,公司专门征地100亩,投资6800万元建设示范区南区供热中心,除满足本企业用热负荷外尚可满足入区兄弟企业的用热要求。现已建成2*20t/h锅炉2台,一次建成配套的煤棚,粉煤、运煤系统,水处理系统,烟尘处理系统,除尘出渣系统等辅助设备,还将根据热负荷的增加继续投资陆续建设3*35t/h锅炉。该系统设备技术先进、运行可靠、环保节能,是示范区重点支持建设项目。 生物发酵罐系统 工厂装备了目前生物制药行业最先进的发酵罐。其结构是上海医药设计院亚达发搅拌设备有限公司(美国开米尼公司设计模型)。其结构式上海医药设计院亚达发搅拌设备有限公司(该公司为国内鲁抗西安制药厂等百余家国内企业设计制造了搅拌机)根据国外技术结合本公司产品特性专门设计的SPIDI系列产品,主要有径向流与轴向流相结合的搅拌系统、双层内外循环冷却系统等组成。 生物发酵DCS控制系统 与发酵罐相配套的发酵工艺DCS控制系统采用温度:±0.5℃;PH:0.1--0.2;补料:1%,并且具有分散性强,支持cpu、电源、通讯、I/O冗余,精度达到16

供电系统用户供电可靠性评价规程

供电系统用户供电可靠性评价规程(暂行) 1 范围 本标准规定了供电系统用户供电可靠性的统计办法和评价指标,适用于对用户供电可靠性进行统计、计算、分析和评价。 2 基本要求 2.1电力可靠性管理是电力系统和设备的全面质量管理和全过程的安全管理,是适合现代化电力行业特点的科学管理方法之一,是电力工业现代化管理的一个重要的组成部分。 供电系统用户供电可靠性,是电力可靠性管理的一项重要内容,直接体现供电系统对用户的供电能力,反映了电力工业对国民经济电能需求的满足程度,是供电系统的规划、设计、基建、施工、设备选型、生产运行、供电服务等方面的质量和管理水平的综合体现。为了使供电可靠性评价具有完整性、科学性、客观性和可比性,特制定本规程。 2.2本规程以供电系统是否对用户停电为统计评价标准,统一了用户供电可靠性的统计方法与评价指标。 按照本规程统计计算的数据和指标,应成为供电企业下列诸方面工作的决策依据: ——城市电网的规划、设计和改造; ——编制供电系统运行方式、检修计划和制定有关生产管理措施; ——制定供电可靠性标准和准则; ——选择提高供电可靠性的可行途径。 2.3供电企业应对其全部管辖范围内的供电系统用户供电可靠性进行统计、计算、分析和评价。 管辖范围内的供电系统是指本企业产权范围的全部以及产权属于用户而委托供电部门运行、维护、管理的电网及设施。 2.4与本规程配套使用的管理信息系统及相关代码,由电力可靠性管理中心组织编制,统一使用。 2.5 本规程自公布之日起实行,原《供电系统用户供电可靠性统计办法》终止执行。 2.6 本规程由电力可靠性管理中心负责解释和统一修订。 3定义及分类 3.1供电系统用户供电可靠性 供电系统用户供电可靠性--供电系统对用户持续供电的能力。 3.2供电系统及供电系统设施 3.2.1低压用户供电系统及其设施--由公用配电变压器二次侧出线套管外引线开始至低压用户的计量收费点为止范围内所构成的供电网络,其设施为连接至接户线为止的中间设施。 3.2.2中压用户供电系统及其设施--由各变电站(发电厂)10(20、6)千伏出线母线侧刀闸开始至公用配电变压器二次侧出线套管为止,及10(20、6)千伏用户的电气设备与供电企业的管界点为止范围内所构成的供电网络及其连接的中间设施。 3.2.3高压用户供电系统及其设施--由各变电站(发电厂)35千伏及以上电压出线母线侧刀闸开始至35千伏及以上电压用户变电站与供电部门的管界点为止范围内所构成的供电

闭合导线平差计算步骤

闭合导线平差计算步骤: 1、绘制计算草图。在图上填写已知数据和观测数据。 2、角度闭合差的计算与调整 (1)计算闭合差: (2)计算限差:(图根级) (3)若在限差内,则按平均分配原则,计算改正数: (4)计算改正后新的角值: 3、按新的角值,推算各边坐标方位角。 4、按坐标正算公式,计算各边坐标增量。 5、坐标增量闭合差的计算与调整 (1)计算坐标增量闭合差。有: 导线全长闭合差: 导线全长相对闭合差: (2)分配坐标增量闭合差 若 K<1/2000 (图根级),则将、以相反符号,按边长成正比分配到各坐标增量上去。并计算改正后的坐标增量。

6、坐标计算 根据起始点的已知坐标和经改正的新的坐标增量,来依次计算各导线点的坐标。 [ 例题 ] 如图所示闭合导线,试计算各导线点的坐标。 计算表格见下图:

闭合水准路线内业计算的步骤: (1) 填写观测数据 (2) 计算高差闭合差 h f =∑h ,若h f ≤容h f 时,说明符合精度要求,可以进行高差闭合差的调整;否则,将重新进行观测。 (3) 调整高差闭合差 各段高差改正数: i h i i h i L L f V n n f V ·· ∑-= ∑-= 或 各段改正高差: i i i V h h +=改 (4) 计算待定点的高程 闭合差(fh ) 水准路线中各点间高差的代数和应等于两已知水准点间的高差。若不等两者之差称为闭合差 高差闭合差的计算 .支水准路线闭合差的计算方法 .附合水准路线闭合差的计算方法 .闭合水准路线闭合差的计算方法 高差闭合差容许值 (n 为测站数,适合山地) (L 为测段长度,以公里为单位,适合平地) 水准测量中,消除闭合差的原则一般按距离或测站数成正比地改正各段的观测高差

牵引供电系统可靠性论文

提高牵引供电系统的可靠性 【摘要】自1958年建成我国第一条电气化铁路至今,我国铁路电气化建设已经走过了50多年的历程,电气化铁路的整体设计能力、材料创新、施工安装能力有了极大的提高,特别是近几年我国的高速电气化铁路建设取得了举世瞩目的成就。但就供电系统的可靠性、特别是关系到系统可靠的标准方面还需要进一步的规范和提高。 0 引言 牵引供电系统的故障一般由四个方面的原因构成:一是供电回路存在缺陷,回路的个别导流零件能力不足或不可靠,烧损设备,造成回路不通,造成断电故障。二是绝缘器件击穿,造成回路短路故障。三是受力件不可靠造成断裂等故障。四是几何尺寸不满足弓网要求(连接件松动等)造成的机械故障。 1 供电回路故障 以京局某某线为例:正线上接触网的承力索导线都为铜合金,其相加的截面积远大于供电线的截面积(供电线为铝线),这里还不包括车站间的侧线并联线路,供电线的通过电流能力与接触网不匹配;变电所的母线与变压器容量不匹配;接地系统的接地同流能力与安全保护的要求不匹配,比如没有考虑腐蚀等条件下的可靠性,接地设备与对地安全不匹配。特别是一些连接部位的可靠性有待提高,比如:变电所内软母线间的连接线夹因连接不牢靠发生多次烧损故障,穿墙套管内本身散热不如一般裸线,但其截面积远小于其连接的裸线,致使穿墙套管部位成为薄弱部位;国内生产的电缆接头部分接触面积严

重不足,发生多起烧损事故;其它还有开关引线与接触网的连接,开关引线与设备线夹的连接,供电线跳线的连接,接地装置的设置等问题。 2 受力零件故障 2012年在济局某某线验收的时候发现软定位器后边的调节部分,其连接钢绞线只有10mm的直径,当时我们不同意接收,很担心连接线会断掉,但当时厂家拿出了实验报告说是高强度钢合格的。但至今我还是很担心其可靠性,认为定位器与连接线的使用寿命不在一个数量级上。 在京局某线2006年~2014年间接触网因两线间抬高不够或间距不够,长期摩擦引起的断线多达11起。 再如:在2000年以前的设计,不论是接触网支柱还是硬横梁设计的都较小,虽然能够满足当时的容量要求,但考虑使用年限不够,比如,丰沙大线的支柱更换和某局硬横梁因使用钢材较小,多次发生过硬横梁接头处塌陷等。 3 绝缘击穿故障 在京局某某线2006年~2014年间发生最多的就是绝缘击穿和污闪故障,特别是电力机车绝缘子较短,高速运行下容易污秽,产生的击穿瓷瓶或污闪占到了绝缘故障的一半以上。 4 连接螺栓松动故障 经引进德国技术,一般接触网上的吊弦、电连接、定位器等装置的连接螺栓都有锁片装置,很好的防止了在弓网震动下的松动,但其

水准路线测量的布设及施测方法

水准路线测量的布设及施测方法 [摘要]在建筑工程项目的测量工作中,水准路线测量是其中较为关键的一部分,其布设及施测方法有一定的要求,需要测量施工人员根据一定的要求和标准进行。 [关键词]建筑工程;水准路线测量;布设即测量 水准路线测量工作主要是包括水准路线的测量、布设及施测方法和相关结果的处理方法。测量人员不仅需要在测量中,严格按照相关的技术标准施测,还需要对测量的结果进行科学合理的分析,保证测量的有效性。 一、水准路线 (一)水准点 首先根据需要,在地面上选定点位并埋设测量标志,然后用水准测量方法来测定其高程,以作为后期确定其他地面点高程的依据,这样建立的一些高程控制点称为水准点(一般用BM表示)。水准点应按照水准路线等级,根据不同性质的土壤并结合现场实际情况和需要而设立。根据使用时间的长短,一般分为永久点和临时点。 1.永久性水准点 永久性水准点由石料或混凝土制成,顶面设置半球状标志,其顶点表示水准点的高程和位置。水准点也可用混凝土制成,顶面嵌入半球状的金属标志,如图1所示。在城镇也可在稳固的建筑物的墙上设置墙上水准点。 2.临时性水准点 临时性的水准点可以选在地面突出的坚硬岩石上,也可用大木桩打入地下,再在桩顶上钉一圆头钉。建筑施工场地上的临时水准点一般是将木桩打入土中,为避免桩位移动而发生测量差错,应在桩的四周填上混凝土加以保护,桩顶上钉半球形状铁钉,作为水准点的标志点。 为方便今后的寻找和使用,埋设水准点后,应绘出能标记水准点位置的草图(称点之记),在图上要注明水准点的编号以及与周围地物的相对位置。 (二)水准路线的形式 从一个水准点到另一个水准点所经过的水准测量线路称为水准路线。水准路

提高供电系统用户供电可靠性分析

提高供电系统用户供电可靠性分析 发表时间:2019-01-08T11:00:02.607Z 来源:《电力设备》2018年第24期作者:安宗成 [导读] 摘要:电力事业关乎社会民生,在现代社会的快速进步和发展背景下,对于电能的需求度不断增长,如何保证电力系统用户供电可靠性成为当前首要任务之一。 (国网四川射洪县供电有限责任公司四川遂宁 629000) 摘要:电力事业关乎社会民生,在现代社会的快速进步和发展背景下,对于电能的需求度不断增长,如何保证电力系统用户供电可靠性成为当前首要任务之一。电力系统运行中,由于系统中越来越多先进技术和设备,导致系统结构十分复杂,很容易受到客观因素影响,出现安全隐患。就提升电力系统用户供电可靠性展开分析,提出有效对策予以实践。 关键词:电力系统;供电;可靠性 引言 供电系统的可靠性反映了供电企业的供电能力,是供电企业电能质量的具体体现。随着我国经济和社会的不断发展,人们的生活发生了巨大的变化。电已经成为人们日常生活中不可缺少的重要能源。一旦停电,会严重影响人们的生活质量,甚至会给人们的生产和生活造成巨大的损失。因此,提高供电系统用户供电可靠性对我国经济社会的发展具有积极的影响。 1电力系统用户供电可靠性的影响因素 (1)电力设备自身的可靠性。主要内容包括:供电回路,多电源以及环网等结构形式、设备质量情况、设备安装情况、设备自动化情况、供电容量和裕度、继电保护以及自动装置动作准确性等等。例如配电变压器所发生的故障(主要包括铁芯局部短路、铁芯烧毁等)会造成绝缘被破坏、线圈发生短路或者断线问题会造成对地击穿情况、分接开关触头被灼烧会造成放电问题等等;10kV真空断路器也是易发生故障的重要设备,其故障问题主要包括开断无法有效执行、关合不同期、三相不同期等等。另外,配电线路的绝缘性能相对较差,一旦受到高压或者短时过电压的影响非常容易发生闪络或者击穿的问题。除此之外,开闭所和配电室也存在着各种故障隐患,主要包括电缆进出线、中间接头故障等等。电压互感器也常常会出现局部放电、绝缘劣化和接地击穿等问题,电流互感器常常会出现二次开路的问题,例如引线接头接触不良,一旦受潮绝缘下降就会造成接地击穿。 (2)配电系统不完善。配电网的供电半径较大,并且导线的截面积较小,可靠性相对较差,一旦出现停电常常是成片大面积停电。另外,配电系统相对不够完善,自动化处理事故的能力相对较低,会需要较长的时间来处理故障并恢复供电。同时,人工数据采集技术能力相对较低,管理制度较为落后。 (3)工作人员的可靠性问题。岗位人员所具有的工作能力(主要包括设备的操作能力、设备的运行能力、事故的处理能力、维修检测能力等)在很大程度上影响着供电可靠性。所以要加强岗位人员技术能力、职业素质、检测维修水平和故障排除能力方面的培养,从而保证供电的可靠性。 (4)配电系统所处的地理条件、可能发生的自然灾害以及周边环境等都可能影响到低压配电系统供电可靠性。另外,配电网络的结构情况、配电网的性能以及管理水平、电源的容量等都会对供电系统可靠性造成影响。 2提升电力系统用户供电可靠性的技术措施 2.1加强电网改造力度,提升电力系统可靠性 我国对于电网建设重视程度较高,在智能电网改革持续深化背景下,如何能够提升电力系统可靠性成为当前首要任务之一。从电力系统角度来看,提升电力系统供电可靠性,应该贯穿于电网改造规划、设计和建造全过程,优先考虑供电可靠性,最后考虑电网经济性。 2.2加强技术创新,提升供电可靠性 在当前科学技术不断创新和发展背景下,为了可以有效提升电网运行可靠性,应该大力推行状态检修模式,根据实际情况适当的采用停电检修。在当前电网改革背景下,电网检修如果长期采用停电检修,将会带来严重的经济损失,影响到人们正常生产生活,所以可以通过应用免维护和可靠性较高的电气设备,提升电力系统供电可靠性。以往的周期性计划检修局限性较大,已经无法满足新时期设备运行需要,所以应该大力推广状态检修模式,根据设备设计运行情况和试验结果,综合分析和判断设备是否需要维修,如果存在故障需要及时有效予以解决,确保电气设备处于安全运行状态。与此同时,带电作业可以在不断电的前提下进行检修和维修,技术性较强,但会对工作人员的人身安全带来一定威胁,所以需要工作人员具备较强专业能力和心理素质。 2.3建立配网自动化系统 为了提升电力系统供电可靠性,应该对现有配电网进一步改造和升级,应用现代化技术,提升配电网自动化和智能化水平,以便于出现故障问题可以及时做出反应,并将故障区域隔离,避免对正常部件产生影响。配电网自动化系统可以快速判断故障位置,缩短寻找故障时间,将故障控制在一定范围内,尽可能降低对配电网整体的影响程度。在此基础上,配备一支高素质的维修队伍,可以将故障检修和解决时间进一步缩短,为后续的状态检修提供有效依据,促使配电网灵活配置资源,提升配电网运行可靠性。 2.4提升线路绝缘性能 由于架空线路自身特性,长期暴露在野外环境下,很容易受到外界客观因素影响,导致线路绝缘性能下降,进而出现线路故障,不仅影响到正常的供电,还会加剧运营成本。所以,应该正确看待绝缘性能对于电力系统供电可靠性带来的影响,结合实际情况,尽可能提升输电线路绝缘水平,从而降低绝缘组织损坏,提升电力系统供电可靠性。 3提升电力系统用户供电可靠性的组织途径 3.1建立完善的管理网络,提升管理人员管理意识 首先,提升电力系统可靠性,首先需要建立完善的管理网络,促使管理人员可以养成良好的管理意识,严格遵循规章制度开展工作,贯穿于生产和管理全过程中。管理人员需要正确看待自身岗位,明确岗位职责,在掌握一定文化水平的同时,可以深入生产各个环节,更为充分掌握操作方法和管理软件,养成良好的职业素养。所以,应该聘用具备过硬专业能力的人才,负责可靠性管理网络的正常运行,对于电力系统供电可靠性影响较为深远。其次,电力企业内部各个部门之间是一个整体,直接关系到电力系统供电可靠性。所以,需要加强企业内部各个部门之间的互动和交流,可以及时共享信息,获得全方位的支持和配合,促使可靠性管理工作落到实处。所以,还应该选择合理有效的技术手段,营造良好的作业环境,确保可靠性管理网络得以顺利构建。最后,电力企业需要严格遵循行业标准和国家规定,建

四等水准路线测量

四等水准路线测量 1、比赛内容 (1)用四等水准测量方法完成一段不少于四站的附合水准路线高程测量(复测),并填写四等水准测量记录表格,见附件1。 (2)对高程测量结果进行计算检核及高差闭合差计算,并填写四等水准测量记录表格,见附件1。 2、比赛说明 (1)给定现场起、终水准点位置及高程(高程在水准测量外业完成后给定)。 (2)按指定附合水准路线完成四等水准测量工作,观测方法采用往测,顺序为“后-前-前-后”,测站点的选择可以使用钢卷尺,并由参赛人员完成。 (3)填写相应表格,并进行计算检核及高差闭合差的计算。 (4)严格按仪器的操作要求作业,每站要完成安置仪器、整平、照准、读数等步骤。 (5)记录、计算完整,字体工整、清洁、无错误。 (6)精度要求符合《国家三四等水准测量规范》,具体要求见表1。 表1 四等水准测量的技术要求 等级视线长度 (m) 前后视 较差 (m) 前后视 累积差(m) 视线离地 面最低高 度(m) 红黑面 读数差 (mm) 黑红面 高差较差 (mm ) 附合或环 线闭合差 (mm) 四等100 5 10 0.2 3.0 5.0 L 20 注:计算附合或环线闭合差时,L为附合或环线的路线长度(km)。 3、成绩评定 (1)分值分配 水准比赛总成绩(100分)=四等水准测量速度(40分)+观测过程(20分)+计算及检核(40分) 2)评分标准 ①测量速度(40分): 裁判宣布开始,测量计时同时开始,到仪器装箱、上交成果计时结束。以完 成任务的时间为准(以分钟计)计分,各组得分S i 计算方法:

设该项成绩满分为40分,所有参赛组中最先完成的时间为 T 1 ,最晚完成的 时间为 T n ,各组所用时间为T i ②观测过程(20分) 考核中出现下列情形,应按规定进行扣分 a.仪器搬站时奔跑,一次扣2分。 b.数据有涂改痕迹,一处扣1分。 c.记录计算有缺项(如不填写表头,不填写测点编号等),每项扣2分。 d.以上扣分合计超过20分时,则最多按20分扣分。 ③计算及闭合差检核(40分) a.测站限差及数据计算满分20分,以技术要求中所列项目为考核对象,符合规范规定限差为合格,每超限一处扣1分,扣完为止。 b.每页的计算检核正确得10分,不正确扣10分;水准路线闭合差10分,若闭合差不超限,本项得10分,若闭合差超限扣10分。 附表1: 测量技能竞赛四等水准测量考核用表范例 参赛人员: 四等水准测量记录计算表 测站编号后 尺 下丝前 尺 下丝 方向及 尺号 标尺读数 K + 黑 减 红 高差 中数 备注上丝上丝 后视距前视距 黑面红面 视距差d ∑d 后 前 后-前 后 前 后-前 后 前 后-前

完全冗余的交叉型双母线超高可靠性供电方案

艾默生公司小容量UPS-Liebert.ITA 系列 完全冗余的交叉型双母线超高可靠性供电方案介绍 北京全路通信信号研究设计院在某铁路项目的系统设计方案中,重点强调了全系统的方案冗余度和运行可靠性,因此在供电系统中也需要应用到超高可靠性的供电方案。业界对于大容量UPS 供电方案的冗余可靠设计经验相当丰富,在供电方案和系统配置上可供选择的余地也很大。 但是,由于本项目的应用场合较为特殊,客户主要的需求是针对铁路信号设备负载提供超高可靠性不间断电源供应,负载容量并不大(大约几百W 左右),仅需要用到1-2KVA 的小容量UPS 系统。 目前为止,受历史原因影响,业界对于传统小容量UPS 在供电可靠性考虑和方案冗余度设计等方面的重视程度远远不及大容量UPS 系统,因此在小功率容量段上供电方案的可选择性并不多,较为传统的方案包括了单机运行、冗余并联运行,二选一备份简单双母线和交叉型双母线等。 在这些备选方案中,大多存在各种弊端或单点故障:单机系统由于没有备份功能运行不可靠已经成为大家的共识;大多数的业界主流小容量UPS 产品并不具备并机功能,即使具备并联功能,小容量UPS 受成本限制冗余并联功能也并不完善,存在着并机环流相互影响的致命问题;二选一备份简单双母线中的负载切换开关LTS 和输出PDU 端存在着不可避免的单点故障瓶颈(如图1-1所示),一旦出现故障后果将不堪设想。 图1-1 二选一备份简单双母线供电方案

本方案就是在上述背影下应运而生:根据客户的需求,经过仔细地斟酌,特向客户推荐艾默生公司完全冗余的交叉型双母线超高可靠性供电方案。 图1-2 艾默生小容量UPS交叉型超高可靠性供电方案 供电方案工作原理: 如图1-2所示,系统中配置了2台容量为2kVA的艾默生Liebert.ITA系列小容量高可靠性UPS标机系统,使用UPS内置的电池作为后备能源;UPS后端采用交叉接线的方式配置2台容量为10A的艾默生Liebert.LTS负载自动切换开关,可为LTS设置不同的优选源,为后端双输入重要负载或业务上双冗余的负载系统提供可靠、稳定的不间断电源供应。 系统由UPS-1和UPS-2通过LTS-1和LTS-2切换分别带载,当一台UPS有故障时,可自动切换到另一台UPS并为负载继续供电;当两台UPS同时有故障时,可经UPS 静态旁路开关转到旁路供电。 当其中一个供电母线上的任何设备或电缆需要维护或故障时,其负载可经自动切换开关切换至另一个系统供电。由此,做到了供电系统中点对点的双冗余,极大增加了整个系统的可靠性和安全性。

高差闭合差内业计算

建筑测量基本计算2水准测量内业计算一、水准测量内业的方法水准测量的内业即计算 路线的高差闭合差如其符合要求则予以调整最终推算出待定点的高程。 1 高差闭合差的计算与检核终端水准点的已知高程和经水准路线观测、推算的高程之差值称为高差闭合差。附合水准路线高差闭合差hf为hf 测h 始终HH 2-8 闭合水准路线高差闭合差为hf 测h 2-9 为了检查高差闭合差是否符合要求还应计算高差闭合差的容许值即其限差。一般水准测量该容许值规定为平地容hfL40mm 山地容hfn12mm 2-11 式中L―水准路线全长以km为单位n ―路线测站总数。 2.高差闭合差的调整若高差闭合差小于容许值说明观测成果符合要求 但应进行调整。方法是将高差闭合差反符号按与测段的长度平地或测站数山地成正比即依下 式计算各测段的高差改正数加入到测段的高差观测值中⊿ih -ihLLf 平地⊿ih -ihnnf 山地式中L―路线总长iL―第i测段长度km i1、2、3 n―测站总数in―第i测段测站数。 3.计算待定点的高程将高差观测值加上改正数即得各测段改正后高差hi改hi⊿h i i123……据此即可依次推算各待定点的高程。如上所述闭合水准路线的计算方法除高差闭合差的计算有所区别 而外其余与附合路线的计算完全相同。二、举例 1.附合水准路线算例下图1所示附合水准路线为例已知水准点A、B和待定点1、2、3将整个路线分为四个测段。图 1 附合水准路线测量成果示意图表2-2 附合水准路线计算测段号点名测站数观测高差/m 改正数/m 改正后高差/m 高程/m 备注 1 2 3 4 5 6 7 8 1 BM1 8 8.364 0.014 8.350 39.833 1 48.183 2 3 1.433 0.005 1.438 2 46.745 3 4 2.745 0.007 2.752 3 43.993 4 5 4.661 0.008 4.653 BM2 48.646 20 8.847 0.034 8.813 辅助计算hf 0.034m 容hf2012 54mm 1将点名、各测段测站数、各测段的观测 高差ih、已知高程数填入表2-2内相应栏目2、3、4、7如系平地测量则将测站数栏改为公 里数栏填入各测段公里数表内加粗字为已知数据。2进行高差闭合差计算hf 测h 始终HH 8.84748.64639.833 0.034m 由于图中标注了测段的测站数说明是山地观测因此依据总测站 数n计算高差闭合差的容许值为容hfn122012 54mm 计算的高差闭合差及其容许值填于表

水准测量的内业计算

§4-5 水准测量的内业计算 在水准测量的外业工作中,尽管对每个测站的各项限差进行了严格检核,并保证了每 个测站的精度满足限差要求,但对整个水准路线来说,还不能说明路线的精度是否满足要求。例如同一路线土质不均匀,将导致每个测站的仪器、水准尺的升降速率不同;同一转点,相 邻两站观测时,水准尺未放在同一点上,这时各站的高差计算都符合要求,但整个水准路线上却含有粗差,因此水准测量外业结束后,还需要按路线形式进行检核计算。只有当水准路线成果检核也符合精度要求后,才能按照一定的数据处理方法求出水准路线各点的高程。 一、附合水准路线 设某一附合水准路线从已知高程水准点 A 出发,经若干个待测水准点后附合于已知高程水准 点 B ,由前面可知,如果观测时没有误差存在,则各段高差之和与两已知点高程之差相等。 即有 (4-5 ) 由于测量误差的存在,实际所测各段高差之和不等于理论值,记其差值为,则 (4-6 ) 称为附合水准路线高差闭合差。 高差闭合差常用来衡量水准路线测量的总精度。如果闭合差超过容许值,则观测成果作 废,必须重测。有关闭合差容许值用表示,其规定如下: 四等水准测量(一般地区) (山地) 等外水准测量(一般地区) (山地)

上列各式中,{L} 为水准路线全长度,以公里为单位。若闭合差在容许范围内,则测量成果符合要求。对于闭合差按规定采用平差的方法,将其调整到各段高差之上,使调整后的各段高差之和等于其理论值,在精度要求不高的条件下可按下列方法进行计算: 令(4-7 ) 式中称为高差改正数,∑S 为水准线路线各段距离求和(总长),注意∑S 与Si 单位要统一。调整(平差)后的高差等于高差观测值加改正数,即 (4-8 ) (4-9 ) 也称为高差平差值。高程平差值为: 如图4-11 中,已知水准点A、B 的高程分别为48.895m 、45.835m ,则=-0.009m 。其具体计算见表4-5 。 图4-11 附合水准路线 表4-5 附合水准测量路线高程平差计算表 点号距离测站数高差中数改正数改正后高高程平差备注

实验一 闭合水准路线测量

实验一闭合水准路线测量 一、目的与要求 1.了解DS3型水准仪(自动安平水准仪)各部件的名称及作用。 2.练习水准仪的安置、粗平、瞄准、精平与读数。 3.测量地面两点间的高差。 4.掌握路线水准测量的观测、记录和检核的方法。 5.掌握水准测量的闭合差调整及推求待定点高程的方法。 二、计划与设备 1.实验安排3 ~ 4学时,实验小组由4~ 5人组成。 2.实验设备为每组自动安平水准仪一台,水准尺2根,记录板1块,记录表格。 3.实验场地选定一条闭合(或附合)水准路线,其长度以安置3~6个测站为宜,中间设待定点B、C。4.从已知水准点A出发,水准测量至B、C点,然后再测至A点(或另一个水准点)。根据已知点高程(或假定高程)及各测站的观测高差,计算水准路线的高差闭合差,并检查是否超限。如外业精度符合要求,对闭合差进行调整,求出待定点B、C的高程。各测站的操作可以轮流进行,其余同学必须确认操作及读数结果,各自记录、计算在记录表中。 三、方法与步骤 1.背离已知点方向为前进方向,第1测站安置水准仪在A点与待测点之间,前、后距离大约相等,其视距约为20~40米,粗略整平水准仪。 2.操作程序是后视A点上的水准尺,精平,用中丝读取后尺A读数,记入实验表中。前视待测点1上的水准尺,精平并读数,记入表中。然后立即计算该站的高差。 3.迁至第2测站,继续上述操作程序,直到最后回到A点(或另一个已知水准点)。 4.根据已知点高程及各测站高差,计算水准路线的高差闭合差,并检查高差闭合差是否超限,其限差公式为: 平地(mm) 或山地(mm) 式中:n ——测站数 L ——水准路线的长度,以km为单位。 5.若高差闭合差在容许范围内,则对高差闭合差进行调整,计算各待定点的高程。 四、注意事项 1.在每次读数之前,要消除视差,并使符合水准气泡严格居中。 2.在已知点和待定点上不能放置尺垫,但在松软的转点必须用尺垫,在仪器迁站时,前视点的尺垫不能移动。 3.弄清每一个测站的前视点、后视点、前视读数、后视读数、转点、中间点的概念,不要混淆。

单一结点或附合的水准路线的精度评定

单一结点或附合的水准路线的精度评定 修涛 Abstract: Measure in the level is different to constitute to shut to match, attach to match because of the route testing with the form of crunode.Therefore is even bad method as well along with different.In Gao Cheng Wang, if the even bad method choice is fitting, can get the effect of half effort and double results.Only this text introduction has a crunode of three or four level routes and an illustrated manual table of level route attaching to match is even to differ.The method has a homework step simple, characteristics easily control, can also satisfy 3, 4 to etc. level to measure at the same time even bad accuracy request. Key word: Level instrument Leveling network Node Precision evaluation Analysis 摘要:在水准测量中,由于施测的路线不同可组成闭合、附合和结点的形式。因此平差方法亦随着不同.在高程网中,如果平差方法选择恰当,可以得到事半功倍的效果.本文仅介绍具有一个结点的三条或四条水准路线和附合的一条水准路线的图解平差。该方法具有作业步骤简单,容易掌握的特点,同时也能满足三、四等水准测量平差的精度要求。 关键词:水准仪水准网结点精度评定分析 一、基本原理(见图1-1) 利用水准仪提供的水平视线读取竖立于两个点上的水准尺上的读数,来测定两点间的高差,再根据已知点高程计算待定点高程。 图1-1 水准测量原理

供电系统对数据中心的可靠性研究

毕业设计(论文) 题目供电系统对数据中心的供电可靠性研究 系部自动化工程系专业电气自动化 姓名陈亚飞学号G1240805 指导教师:张海红 2015 年4月30日

摘要 随着市场经济的不断发展,我国科学技术也获得了较大的发展空间,计算机技术的发展在促进社会和经济发展方面,发挥了重要的作用,相关数据显示,企业生成的关键数据正以52%的复合年均增长率不断攀升,因此企业数据中心的规模越来越大。 数据中心是一整套复杂的设施。它不仅仅包括计算机系统和其它与之配套的设备(例如通信和存储系统),还包含冗余的数据通信连接、环境控制设备、监控设备以及各种安全装置”。而保证数据中心的正常运行的核心是供配电系统,供电系统不同于一般建筑的供配电系统,一个完整的配电房供电系统它是由高压配电系统、变压器、低压配电系统、备用机组系统、UPS系统、直流系统、后备电池系统、监控管理系统等十多个系统,成千上万的设备组成。只有供电系统工作稳定、可靠,才能保证数据中心安全可靠的为客户服务。如何保证配电房供电系统的可靠运行,已达到万无一失,是一直以来很重要的问题。其中包括保证供电系统设备的硬件质量,提高配电房值班人员的技能操作水平,供电电源的多重保护备用。研究表明,一套完整可靠的配电房供电系统必然要满足以上几点,才能安全可靠的为数据中心供电。 关键词:系统供电可靠 UPS 双电源配电

Abstract With the continuous development of market economy, science and technology in China hasobtained a bigger development space, the development of computer technology in promoting social and economic development, play an important role, the relevant data shows that the key enterprise data generated by 52% compound annual growth rate continues to rise, so the scale of enterprise data center more and more. The data center is a complex set of facilities. It not only includes the computer systems and other related equipment (such as communication and storage system), also contains the dataredundant communication connection, environmental control equipment, monitoring equipment, a variety of safety device". To ensure the normal operation of the data center andthe core of the power supply system, power supply system, power supply system is different from the general architecture, a complete distribution of the housing supply system which is composed of a high voltage power system, transformer, low voltage distribution system, the standby unit system, UPS system, direct current system, the reserve system, batterymonitoring and management system more than 10, tens of thousands of devices. Only thepower supply system is stable and reliable, in order to ensure the safety and reliability of thedata center for customer service. How to ensure the reliable operation of power distribution room of the power supply system, has reached a safe, has always been a very important issue. To ensure the power system including the hardware quality, improve the power distribution room staff on duty level skills, multiple protection standby power supply. Research shows that, a set of complete and reliable power distribution room power supply system mustmeet the above points, in order to secure and reliable data center power supply. Keywords: power system reliability UPS

闭合导线平差计算步骤

闭合导线平差计算步骤 : 1、绘制计算草图。在图上填写已知数据和观测数据。 2、角度闭合差的计算与调整 (1)计算闭合差: (2)计算限差: (图根级) (3)若在限差内,则按平均分配原则,计算改正数: (4)计算改正后新的角值: 3、按新的角值,推算各边坐标方位角。 4、按坐标正算公式,计算各边坐标增量。 5、坐标增量闭合差的计算与调整 (1)计算坐标增量闭合差。有: 导线全长闭合差: 导线全长相对闭合差: (2)分配坐标增量闭合差 若K<1/2000(图根级),则将 、 以相反符号,按边长成正比分配到各坐标增 量上去。并计算改正后的坐标增量。 6、坐标计算 根据起始点的已知坐标和经改正的新的坐标增量,来依次计算各导线点的坐标。 [例题]如图所示闭合导线,试计算各导线点的坐标。 计算表格见下图: 闭合水准路线内业计算的步骤: ???(1)填写观测数据 ???(2)计算高差闭合差 ?????? h f =∑h ,若h f ≤容h f ?时,说明符合精度要求,可以进行高差闭合差的调整;否则,将 重新进行观测。 ???(3)调整高差闭合差

???????各段高差改正数: ?????? i h i i h i L L f V n n f V ·· ∑-=∑-=或 ??????各段改正高差: ?????? i i i V h h +=改 ????(4)计算待定点的高程 闭合差(fh ) 水准路线中各点间高差的代数和应等于两已知水准点间的高差。若不等两者之差称为闭合差 高差闭合差的计算 .支水准路线闭合差的计算方法 .附合水准路线闭合差的计算方法 .闭合水准路线闭合差的计算方法 高差闭合差容许值 (n 为测站数,适合山地) (L 为测段长度,以公里为单位,适合平地) 水准测量中,消除闭合差的原则一般按距离或测站数成正比地改正各段的观测高差 改正数 每公里改正数 各测段的改正数 每一站改正数 各测段的改正数 计算的基本步骤

三等水准附合线路测量操作步骤

三等水准附合线路测量操作步骤 抽签后,熟悉场地布置,5点,4站,步测5点之间的距离,找准中间仪器位,记好位置的参考对象。 第一站 1.预置脚架:使整个脚架齐肩高,将三脚架置于二个水准尺中间,右手握有皮带的第三脚, 没有皮带的其它二个脚与水准路线的方向平行,面向后尺(1号尺)进行整平,并记住该后尺的立尺人,以后各站就先对牢他的方向进行整平仪器。 2.预置仪器:把仪器从箱内取出,放到三脚架上,拧紧中心螺旋,调整三个脚螺旋使其适 中,留有可调节范围。 3.粗略整平:根据圆泡指示,移动有皮带的第三脚,使圆泡基本居中,将望远镜水平制动 螺丝对准一个脚螺旋,然后以相反方向同时旋转另外两个脚螺旋使圆水泡在这二个脚的方向上居中,再旋转第三个脚螺旋使圆泡居中。 4.瞄准:松开水平制动螺旋,转动望远镜,利用望远镜筒上方的缺口和准星,对准后视水 准尺,拧紧制动螺旋。旋转望远镜调焦螺旋,使水准尺看得十分清晰。转动目镜调节螺旋使十字丝看得十分清晰、稳定。用水平微动螺旋精确对准水准尺。 5.精平:调节微倾螺旋,使符合水准器的气泡两半像吻合,则气泡严格居中,其最后旋转方 向应为旋进。(自动安平仪器,进行倾斜按钮检查)。此时尺号为:后1,前2。 6.读数:①读后尺黑面的下、上、中丝读数;②对准前尺,不得调焦,但要调节微倾螺旋, 使符合水准器的气泡两半像吻合,先读取黑面的中、下、上丝读数,再读红面中丝读数; ③转过来再次对准后尺,不得调焦,直接调节微倾螺旋,使符合水准器的气泡两半像吻 合,读后尺红面中丝读数。即后黑、前黑、前红、后红 7.计算:(9)=(4)+k-(7),(10)=(3)+k-(8); (11)=(3)-(4),(12)=(8)-(7),(13)=(10)-(9);(14)=(11)+(12)±0.1; (15)=[(1)-(2)]×100,(16)=[(5)-(6)]×100; (17)=(15)-(16),(18)=(17)+上站的(18)。 第二站 1.迁移仪器,右手握有皮带的第三脚,没有皮带的其它二个脚与水准路线的方向平行,面 向前尺(1号尺)进行整平。此时尺号为:后2,前1。 2.整平后,旋转望远镜瞄准后尺(2号尺),调节微倾螺旋,使符合水准器的气泡两半像吻 合,再三步读数,后黑、前黑、前红、后红,计算。 第三站 1.第二站测量完毕时,横跨几步,快速移至第三站仪器位。注意还是对牢前尺1号尺整平。 2.因前进方向已经改变,后尺是1号尺,其位置在原第二站的前尺位置。整平仪器后,不 调转仪器,直接读后1,再读前2。 第四站 1.对牢后尺1号尺整平仪器。整平后转向瞄准后尺开始读数。 2.本站读数完后,先计算本站各项。再作后距、前距、后黑中丝读数、前黑中丝读数、后 红中丝读数、前红中丝读数、后-前、K+黑-红各项的总和及平均高差的总和等。 3.使三个脚螺旋上下位置适中,松开中心螺旋,仪器按原样放回箱内,关箱,收拢脚架, 报告完毕。

高差闭合差计算原理及公式

建筑工程测量中高差闭合差的计算与调整 摘 要:在高程控制测量中,可以通过计算高差闭合差来检核观测成果的质量。而高差闭合差这一概念,在建筑工程测量的实际应用中容易混淆。文章从高差闭合差计算、调整和高程计算三个方面入手, 给出了对高差闭合差理解的思路,以及在控制测量中高差闭合差平差的新方法。经实践验证,有益于工作效率的提高。 关键词:水准测量;高差闭合差;平差 0 前言 在建筑工程测量中,当待测点距已知点较远时,必须进行高程控制测量。高程测量的方法有多种,其中水准测量是精确测量地面点高程的主要方法,在实际工作中应用十分广泛。 沿线布设临时水准点,从已知点出发,沿闭合路线、附合路线、支路线等三种路线进行水准测量,三种水准路线的区别见表1。由于支水准路线缺乏检核条件,规定在支水准路线中必须进行往返测量。这样,在三种水准路线中,终点都是已知点。 表1 水准路线的区别 水准路线 起点 终点 起点与终点的位置 备注 闭合水准路线 BM1 BM1 相同 环线 附合水准路线 BM1 BM2 不相同 支水准路线 BM1 BM1 相同 沿原路线返回。如:BM1→1→2→3→4→3→2→1→BM1 由于仪器(工具)误差、观测误差、外界条件的影响等测量误差的存在,在水准测量中不可避免地会出现测量误差。当待测点距已知点较远时,经过多测站的观测后,在待测点上必然积累了一定的误差,这些误差的多少只有通过多余观测才可得知。 多余观测在这里体现为对终点进行观测。用终点的实测高程与终点的理论高程去进行比较,从而得知产生了多少误差,这个误差就是高差闭合差。 对水准测量的成果进行检核,当测量误差在容许范围之内就必须对产生的测量误差,即高差闭合差进行调整,这就是控制测量中的平差。 1 高差闭合差的计算 在相关书目 [1]中,高差闭合差可以定义为:在控制测量中,实测高差的总和与理论高差的总和之间的差值,表示为∑∑- = 理 测 h h f h 。 在外业时,可用该公式检验外业的质量,判断是否结束外业。三种水准路线计算高差闭合差所用的公式如下: 闭合水准路线、支水准路线:∑∑-= b a f h ;

相关文档
最新文档