相似三角形培优专题讲义

相似三角形培优专题讲义
相似三角形培优专题讲义

相似三角形培优专题讲义

知识点一:比例线段有关概念及性质 (1)有关概念

1、两条线段的比:选用同一长度单位量得两条线段量得AB 、CD 的长度分别是m 、n ,那

么就说这两条线段的比是AB:CD =m :n

例:已知线段AB=2.5m,线段CD=400cm ,求线段AB 与CD 的比。

2.比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即

d

c

b a =(或a :b=

c :

d ),那么,这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。(注意:在求线段

比时,线段单位要统一,单位不统一应先化成同一单位,还要注意顺序。)

例:b,a,d,c 是成比例线段,其中a=2cm,b=3cm,c=6cm,求线段d 的长度。

(2)比例性质

1.基本性质:

bc ad d c

b a =?= (两外项的积等于两内项积) 2.反比性质: c

d

a b d c b a =?= (把比的前项、后项交换)

3.更比性质(交换比例的内项或外项):

()()()a b

c d a c d c b d b a

d b

c a ?=??

?=?=???=??,

交换内项,交换外项.

同时交换内外项

4.等比性质:(分子分母分别相加,比值不变.)

如果

)0(≠++++====n f d b n

m

f e d c b a ,那么

b a n f d b m e

c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.

(2)应用等比性质时,要考虑到分母是否为零.

(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.

例:已知的值求f

d b

e c a

f d b f e d c b a +

+++≠++===),0(54

5.合比性质:

d

d

c b b a

d c b a ±=±?=(分子加(减)分母,分母不变) .

知识点二:平行线分线段成比例定理

1.平行线分线段成比例定理:

两条直线被一组平行线所截,所得的对应线段成比例。

用符号语言表示: ∵AD//BE//CF,

∴AB BC =

DE EF ,BC

AC

=EF DF ,AB AC =DE

DF

2.推论:平行于三角形一边的直线与其它两边相交,截得的对应线段成比例。

几何语言:由DE ∥BC 可得:AC

AE

AB AD EA EC AD BD EC AE DB AD =

==或或.此推论较原定理应用更加广泛,条件是平行.

例:如图,在四边形ABCD 中,AD//BC,EF//BC,AG

GC =2

3,则DF

DC =_______。

(1)是“A ”字型 (2)是“8”字型 经常考,关键在于找

知识点三:相似形多边形

1.定义:各角分别相等、各边成比列的两个多边形叫做相似多边形。

2.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边成比例。

3.判定:如果两个多边形的对应边成比列,对应角相等,那么这两个多边形相似。

(注意:判断两个多边形相似时,一要看各个角是否对应相等,二要看各条边是否对应成比列,这两个条件缺一不可。)

4.任意两个等边三角形相似,任意两个正方形相似,任意两个正n 边形相似。 例1:下列判断正确的是( )

A.两个矩形一定相似 。

B.两个平行四边形一定相似。

C.两个正方形一定相似。

D.两个菱形一定相似。

例2:小明将一张报纸对折,发现对折后的半张报纸与整张报纸相似,你能算出报纸的长与宽的比吗?

知识点四:黄金分割

(1) 定义:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC ,如果

AC

BC

AB AC =

,即AC 2=AB×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。

618.02

1

5≈-=AB AC 所以:AB AC 215-=

≈0.618AB 。AB BC 2

5

3-= 例:已知线段AB=10cm,点C 是AB 的 黄

金分割点,且AC >BC ,求AC 和BC 的长。

(2)黄金分割的几何作图:已知:线段AB.求作:点C 使C 是线段AB 的黄金分割点. 作法:①过点B 作BD ⊥AB ,使BD =1

2AB ;

②连结AD ,在DA 上截取DE=DB ;

③在AB上截取AC=AE,则点C就是所求作的线段AB的黄金分割点.黄金分割的比值为:

.

(3)黄金矩形:在矩形中,如果宽与长的比是黄金比,那么这个矩形叫做黄金矩形。

(4)黄金三角形:顶角为36。的等腰三角形叫做黄金三角形,因为该三角形的底边比上腰长等于√5?1

2

例:如图,△ABC中,∠A=36°,AB=AC,BD是角平分线.

(1)求证:AD2=CD·AC;

(2)若AC=a,求AD.

知识点五:相似三角形

1、相似三角形

(1)定义:三角对应相等,三边对应成比例的两个三角形相似。

几种特殊三角形的相似关系:两个全等三角形一定相似(相似比为1)。

两个等腰直角三角形一定相似。

两个等边三角形一定相似。

两个直角三角形和两个等腰三角形不一定相似。(2)性质:两个相似三角形中,对应角相等、对应边成比例。

(3)相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。

如△ABC与△DEF相似,记作△ABC ∽△DEF。相似比为k。

(4)判定:①定义法:对应角相等,对应边成比例的两个三角形相似。

②三角形相似的预备定理:平行于三角形一边的直线和其它两边相

交,所构成的三角形与原三角形相似。

2.三角形相似的判定定理:

判定定理1:两角对应相等的两个三角形相似。(此定理用的最多)

几何语言:在△ABC和△DEF中

如果

判定定理2:

两边成比例且夹角相等的两个三角形相似。 几何语言:(如上图)在△ABC 和△DEF F 中 如果

DE =AC

DF ,那么△ABC ∽△DEF

判定定理3:三边对应成比例的两个三角形相似。 几何语言:(如上图)在△ABC 和△DEF 中

如果AB

DE =AC

DF =

BC EF

,那么△ABC ∽△DEF

例1:如图,(1)若 AB

AE

________,则△ABC ∽△AEF ;

(2)若∠E =________,则△ABC ∽△AEF 。

直角三角形相似判定定理: ○

1.有一个锐角相等的两个直角三角形相似。 ○

2.斜边与一条直角边对应成比例的两直角三角形相似。

3.补充:直角三角形中的相似问题:

斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似. 射影定理:

CD 2=AD ·BD , AC 2=AD ·AB , BC 2=BD ·BA

(在直角三角形的计算和证明中有广泛的应用).

例:如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,

(1)求证:AC 2=AD ·AB ;BC 2=BD ·BA ; (2)求证:CD 2=AD ·AD ; (3)求证:AC ·BC =AB ·CD .

4.相似图形中常见的基本图形:

5.相似三角形的性质

①相似三角形对应角相等、对应边成比例.

②相似三角形对应高、对应角平分线、对应中线、周长的比都等于相似比(对应边的比).

③相似三角形对应面积的比等于相似比的平方.

④两个相似三角形的相似比等于面积比的算术平方根

⑤任意两个相似多边形的周长比都等于相似比,面积比都等于相似比的平方。

例1:已知△ABC∽△DEF,BD和EG是它们的对应中线,AC

DF =3

5

,EG=10cm,求BD的长。

例2:如果两个相似三角形的面积比为16:25,那么这两个相似三角形对应边的比是_______。

例3:如图,在△ABC中,点D、E分别是AB和AC上的点,

DE//BC,AD=3BD,S⊿ABC=48 求S⊿ADE

相似的应用:位似

(1)定义:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比

又称为位似比。

需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形。

②两个位似图形的位似中心只有一个。

③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧。

④位似比就是相似比。

(2)性质:①位似图形上任意一对对应点到位似中心的距离之比等于位似比(相似比)。

②位似图形上任意位似对应点和位似中心在同一条直线上。

③位似图形上的对应线段平行或在同一条直线上。

④位似图形是特殊的相似图形,所以它具有相似图形的一切性质。

画位似图形的一般步骤:

(1)确定位似中心(位似中心可能在图形内部也可能在图形外部

也可能在图形上)

(2)确定原图形的关键点(通常是多边形的顶点)

(3)确定位似比

(4)根据位似比,找出新图形的关键点,最后将各点顺次连接。坐标变换与图形的关系:在直角坐标系中,将一个多边形每个顶点的横、纵坐标都乘以同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,他们的相似比为∣k∣。

例1:下列说法中正确的有()

(1)位似多边形一定是相似多边形。

(2)相似多边形一定是位似多边形

(3)两个位似多边形每一对对应点到位似中心的距离之比为2︰3,则两个多边形的面积之比为4︰9。

(4)两个位似多边形的对应边互相平行或在同一直线上。

例2:若△ABC与△DEF关于点O位似,其位似比是1:2,AO=5,则对应点A、D之间的距离是。

例3:在平面直角坐标系中,已知A(6,3)、B(6,0)两点,以坐标原点O为位似中心,相似比为1

,把线段AB缩短后得到线段A1B1,则A1B1,的长度等于。

3

历年中考试题练习

一、选择题

1、如图1,已知AD与BC相交于点O,AB//CD,如果∠B=40°,∠D=30°,则∠AOC的大小为()

A.60°

B.70°

C.80°

D.120°

第5题

B

C

D E A

2、如图,已知D 、E 分别是的AB 、 AC 边上的点,且

那么等于( ) A .1 : 9 B .1 : 3 C .1 : 8

D .1 :

3、如图,是由经过位似变换得到的,点是位似中心,分别

是的中点,则与的面积比是( ) A . B . C . D .

第3题图 第4题图

4、如上图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( )

A.5:3

B.3:5

C.4:3

D.3:4 5、如图,在中,、分别是、边的中点,若,则等于( ) A .5 B .4 C .3 D .2

6、已知,相似比为3,且的周长为18,则的周长为( ) A .2 B .3 C .6 D .54

7、如图,Rt △ABC 中,AB ⊥AC ,AB =3,AC =4,P 是BC 边上一点,作PE ⊥AB 于E,PD ⊥AC 于 D ,设BP =x ,则PD+PE =( )

A. B. C.

D.

8、 如图,在Rt △ABC 内有边长分别为的三个正方形,则满足的关系式是( )

ABC ?,DE BC //1ADE

DBCE S S :=:8,四边形:AE

AC

DEF △ABC △O D E F ,,OA

OB OC ,,DEF △ABC △1:61:51:41:2ABC ?D E AB AC 6BC =DE ABC DEF △∽△ABC △DEF △35

x +45

x -

72

212125

25

x x -

,,a b c ,,a b c A

B

C

D O

图1

B

A D

E

A

B

C

D

E P

A 、

B 、

C 、

D 、

9、如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影

部分的面积是△ABC 的面积的 ( )

A. B. C. D.

10、下列四个三角形,与左图中的三角形相似的是( )

二、填空题

1、如图,两点分别在的边上,与不平行,当满足 条件(写出一个即可)时,

2、如果两个相似三角形的相似比是,那么这两个三角形面积的比是 .

3、如图,在Rt △ABC 中,∠C 为直角,CD ⊥AB 于点D,

BC=3,AB=5,写出其中的一对相似三角形是 和 ; 并写出它的面积比 .

4、两个相似三角形的面积比S 1:S 2与它们对应高之比h 1:h 2之间的关系为 .

5、如图4,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那么AB=

b a

c =+b ac =222

b a

c =+22b a c ==9192319

4D E ,ABC △AB AC ,DE BC ADE ACB △∽△1:

3(第10题) A . B . C . D .

D

B

第3题图

第9题

9、如图,要测量A 、B 两点间距离,在O 点打桩,取OA 的中点 C ,OB 的中点D ,测得CD =30米,则AB =______米.

11、在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为__ ____米.

三、解答题

1、如图,在△ABC 中,BC>AC , 点D 在BC 上,且DC =AC,∠ACB 的平分线CF 交AD 于F ,

点E 是AB 的中点,连结EF. (1)求证:EF ∥BC.

(2)若四边形BDFE 的面积为6,求△ABD 的面积.

2、如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG,AE 与CG 相交于点M ,CG 与AD 相交于点N .

求证:(1);

(2)

3、如图,四边形和四边形都是平行四边形,点为的中点,分别交于点.

(1)请写出图中各对相似三角形(相似比为1除外); (2)求.

CG AE =.MN CN DN AN ?=?ABCD ACED R DE BR AC CD ,P Q ,::BP PQ QR A B

C

D E

P

O R

4

、如图,□ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,。 ⑴求证:△ABF ∽△CEB;

⑵若△DEF 的面积为2,求□ABCD 的面积。

5、如图所示,E 是正方形ABCD 的边AB 上的动点, EF ⊥DE 交BC 于点F .

(1)求证: ADE ∽BEF ;

(2)设正方形的边长为4, AE =,BF =.当取什么值时, 有最大值?并求出这个最大值.

CD DE 2

1

=

??x y x y

F

A

D

E

B C

相似三角形培优拔高题(精编文档).doc

【最新整理,下载后即可编辑】 第一讲 相似三角形 1、已知432z y x ==,且1032=+-z y x ,则z y x ++= 。 2、已知△ABC 中,AB=AC,∠BAC=120°,求AB:BC 的值。 3、若点P 在线段AB 上,点Q 在线段AB 的延长线上,AB=10, 23==BQ AQ BP AP ,求线段PQ 的长。 4、若55432+==+c b a ,且2132=+-c b a ,试求a:b:c 。 5、△ABC 为等边三角形,点E 在BA 的延长线上,点D 在BC 边上,且ED=EC 。若△ABC 的边长为4,AE=2,则BD 的长 为 。 6、点D,E 分别在△ABC 的边AB ,AC 上,DE ∥BC ,点G 在边BC 上,AG 交DE 于点H ,点O 是线段AG 的中点,若 13=DB AD ,则 =OH AO

7、在正方形ABCD 中,P 是CD 的中点,连接AP 并延长交BC 的延长线于点E ,连接DE ,取DE 的中点Q ,连接PQ ,求证: PQ=PC. 8、四边形ABCD 与四边形A 1B 1C 1D 1相似,相似比为2:3,四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2相似,相似比为5:4,则四边形ABCD 与四边形A 2B 2C 2D 2相似且相似比为 。 9、已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿 AE 将△ABE 向上折叠,使B 点落在AD 上的F 处。若 四边形EFDC 与矩形ABCD 相似,则AD= 10、已知∠1=∠2=∠3,求证:△ABC ∽△ADE 11、点C 、D 在线段AB 上,△PCD 是等边三角形

九年级培优圆与相似辅导专题训练含答案

九年级培优圆与相似辅导专题训练含答案 一、相似 1.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧). (1)求函数y=ax2+bx+c的解析式; (2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率; (3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的 Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值;若不存在,请说明理由. 【答案】(1)解:y=x2+2x+1=(x+1)2的图象沿x轴翻折,得y=﹣(x+1)2, 把y=﹣(x+1)2向右平移1个单位,再向上平移4个单位,得y=﹣x2+4, ∴所求的函数y=ax2+bx+c的解析式为y=﹣x2+4 (2)解:∵y=x2+2x+1=(x+1)2, ∴A(﹣1,0), 当y=0时,﹣x2+4=0,解得x=±2,则D(﹣2,0),C(2,0); 当x=0时,y=﹣x2+4=4,则B(0,4), 从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB, ∵AC=3,AD=1,CD=4,AB= ,BC=2 ,BD=2 , ∴△BCD为等腰三角形, ∴构造的三角形是等腰三角形的概率=

(3)解:存在, 易得BC的解析是为y=﹣2x+4,S△ABC= AC?OB= ×3×4=6, M点的坐标为(m,﹣2m+4)(0≤m≤2), ①当N点在AC上,如图1, ∴△AMN的面积为△ABC面积的, ∴(m+1)(﹣2m+4)=2,解得m1=0,m2=1, 当m=0时,M点的坐标为(0,4),N(0,0),则AN=1,MN=4, ∴tan∠MAC= =4; 当m=1时,M点的坐标为(1,2),N(1,0),则AN=2,MN=2, ∴tan∠MAC= =1; ②当N点在BC上,如图2, BC= =2 , ∵BC?AN= AC?BC,解得AN= , ∵S△AMN= AN?MN=2,

相似三角形培优训练含答案

相似三角形分类提高训练 一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动 点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C 沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作 EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒. (1)当t为何值时,AD=AB,并求出此时DE的长度; (2)当△DEG与△ACB相似时,求t的值. 2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C 移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒. (1)①当t=2.5s时,求△CPQ的面积; ②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC 于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N. (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着 AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的 速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.

中考数学备考之圆与相似压轴突破训练∶培优 易错 难题篇含答案

中考数学备考之圆与相似压轴突破训练∶培优易错难题篇含答案 一、相似 1.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC. (1)求证:BD是⊙O的切线; (2)求证:CE2=EH?EA; (3)若⊙O的半径为,sinA= ,求BH的长. 【答案】(1)证明:如图, ∵∠ODB=∠AEC,∠AEC=∠ABC, ∴∠ODB=∠ABC, ∵OF⊥BC, ∴∠BFD=90°, ∴∠ODB+∠DBF=90°, ∴∠ABC+∠DBF=90°, 即∠OBD=90°, ∴BD⊥OB, ∴BD是⊙O的切线 (2)证明:连接AC,如图2所示: ∵OF⊥BC, ∴, ∴∠CAE=∠ECB, ∵∠CEA=∠HEC,

∴△CEH∽△AEC, ∴, ∴CE2=EH?EA (3)解:连接BE,如图3所示: ∵AB是⊙O的直径, ∴∠AEB=90°, ∵⊙O的半径为,sin∠BAE= , ∴AB=5,BE=AB?sin∠BAE=5× =3, ∴EA= =4, ∵, ∴BE=CE=3, ∵CE2=EH?EA, ∴EH= , ∴在Rt△BEH中,BH= . 【解析】【分析】(1)要证BD是⊙O的切线,只需证∠OBD=90°,因为∠OBC+∠BOD=90°,所以只须证∠ODB=∠OBC即可。由圆周角定理和已知条件易得∠ODB=∠ABC,则∠OBC+∠BOD=90°=∠ODB+∠BOD,由三角形内角和定理即可得∠OBD=90°; (2)连接AC,要证CE2=EH?EA;只需证△CEH∽△AEC,已有公共角∠AEC,再根据圆周角定理可得∠CAE=∠ECB,即可证△CEH∽△AEC,可得比例式求解; (3)连接BE,解直角三角形AEB和直角三角形BEH即可求解。 2.如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.

相似三角形培优专题讲义

相似三角形培优专题讲义 知识点一:比例线段有关概念及性质 (1)有关概念 1、两条线段的比:选用同一长度单位量得两条线段量得AB 、CD 的长度分别是m 、n ,那 么就说这两条线段的比是AB:CD =m :n 例:已知线段AB=2.5m,线段CD=400cm ,求线段AB 与CD 的比。 2.比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即 d c b a =(或a :b= c : d ),那么,这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。(注意:在求线段 比时,线段单位要统一,单位不统一应先化成同一单位,还要注意顺序。) 例:b,a,d,c 是成比例线段,其中a=2cm,b=3cm,c=6cm,求线段d 的长度。 (2)比例性质 1.基本性质: bc ad d c b a =?= (两外项的积等于两内项积) 2.反比性质: c d a b d c b a =?= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项): ()()()a b c d a c d c b d b a d b c a ?=?? ?=?=???=??, 交换内项,交换外项. 同时交换内外项 4.等比性质:(分子分母分别相加,比值不变.) 如果 )0(≠++++====n f d b n m f e d c b a ,那么 b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零. (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.

相似三角形培优训练(含答案)之令狐文艳创作

相似三角形分类提高训练 令狐文艳 一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC 交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值. 2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点 到达终点时,它们都停止移动.设移动的时间为t 秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的 面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D 在边AB上运动,DE平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q 从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x 为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由. 5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB 边从A开始向点B以2cm/s的速度移动;点Q沿DA边从 点D开始向点A以1cm/s的速度移动.如果P、Q同时出 发,用t(s)表示移动的时间(0<t<6)。 (1)当t为何值时,△QAP为等腰直角三角形?(2)当t 为何值时,以点Q、A、P为顶点的三角形与△ABC相似?

相似三角形培优难题集锦(含答_案)

一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F, G是EF中点,连接DG.设点D 运动的时间为t秒. (1)当t为何值时,AD=AB,并 求出此时DE的长度; (2)当△DEG与△ACB相似时, 求t的值. 2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它 们都停止移动.设移动的时间为t 秒. (1)①当t=2.5s时,求△CPQ的 面积; ②求△CPQ的面积S(平方米)关 于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中 , ACB=90°,AC=6,BC= (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中, BA=BC=20cm,AC= 30cm,点P从A点出发, 沿着AB以每秒4cm的速 度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由. 5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P 沿AB边从A开始向点B以2cm/s的速度移动;点Q 沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t <6)。 (1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?

相似三角形培优专题

相似三角形培优专题1. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D. 求证:(1)△ACD∽△ABC; (2)AC2=AD?AB; (3)CD2=AD?DB. A 证明:(1)∵∠ACB=90°,CD⊥AB, ∴∠CDA=90°=∠ACB, ∵∠A=∠A, ∴△ACD∽△ABC. (2)∵△ACD∽△ABC, ∴AC AD AB AC =, ∴AC2=AD?AB; (3)∵CD⊥AB, ∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°, ∵∠ACB=90° ∴∠A+∠B=90° ∴∠ACD=∠B ∴△ACD∽△BCD, ∴CD AD BD CD =, ∴CD2=AD?DB.

2.如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=120°,求证: (1)△ACP∽△PDB, (2)CD2=AC?BD. 证明:(1)∵△PCD是等边三角形, ∴∠PCD=∠PDC=∠CPD=60°, ∴∠ACP=∠PDB=120°, ∵∠APB=120°, ∴∠APC+∠BPD=60°, ∵∠CAP+∠APC=60° ∴∠BPD=∠CAP, ∴△ACP∽△PDB; (2)由(1)得△ACP∽△PDB, ∴, ∵△PCD是等边三角形, ∴PC=PD=CD, ∴, ∴CD2=AC?BD.

3. 如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知△ABC 的边BC=15,高AH=10, (1)求证:△ADG∽△ABC; (2)求这个正方形的边长和面积. 解:(1)∵四边形形DEFG是正方形, ∴DG∥BC ∴△ADG∽△ABC; (2) 如图,高AH交DG于M,设正方形DEFG的边长为x,则DE=MH=x, ∴AM=AH﹣MH=10﹣x, ∵ADG∽△ABC, ∴DG AM BC AH =, ∴ 10 1510 x x - =, ∴x=6, ∴x2=36. 答:正方形DEFG的边长和面积分别为6,36.

初三相似三角形的判定培优同步讲义

初三相似三角形的判定培优同步讲义 学科教师辅导讲义 体系搭建 一、知识框架 二、知识概念 (一)相似三角形的概念 对应角相等,对应边之比相等的三角形叫做相似三角形. 1、相似三角形是相似多边形中的一种; 2、应结合相似多边形的性质来理解相似三角形; 3、相似三角形应满足形状一样,但大小可以不同; 4、母子型:已知∠ACB=90°,AB ⊥CD ,则△CBD ∽△ABC ∽△ACD . 5、斜交型: 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。 (有“反 A 共 角型”、“反 A 共角共边型”、 “蝶型”)b5E2RGbCAP 6、垂直型:有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂 直型”) 考点 1:三角形相似判定方法的运用 例 1、如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于点 D ,则图中相似三角形共有( ) A .1 对 B .2 对 C .3 对 D .4 对 p1EanqFDPw 例 2、如图,下列条件不能判定△ADB ∽△ABC 的是( ) A .∠ABD=∠ACB B .∠ADB=∠ABCDXDiTa9E3d C .AB 2 =AD?AC D .= 典例分析 A B C D A B C D E 12 A

A B B C C D D E E 124 1 2 E C B D A B C D E A E
( )
A D C B 例 3、已知:在梯形 ABCD 中,AD∥BC,∠ABC=90°,BC=2AD,E 是 BC 的中点,连接 AE、 AC.RTCrpUDGiT (1)点 F 是 DC 上一点,连接 EF,交 AC 于点 O(如图 1),求证:△AOE∽△COF; (2)若点 F 是 DC 的中点,连接 BD,交 AE 与点 G(如图 2),求证:四边形 EFDG 是菱形. 例 4、如图,在△ABC 中,AB=AC=1,BC=,在 AC 边上截取 AD=BC,连接 BD. (1)通过计算,判断 AD2 与 AC?CD 的大小关系; (2)求∠ABD 的度数. 考点 2:网格图中相似三角形的判定 例 1、下列四个三角形中,与图中的三角形相似的是() A.B.C.D. 实战演练 课堂狙击 1、下列命题中,是真命题的为() A.锐角三角形都相似

【2021版 九年级数学培优讲义】专题16 相似三角形的性质

专题16 相似三角形的性质 阅读与思考 相似三角形的性质有: 1. 对应角相等; 2. 对应边成比例; 3. 对应线段(中线、高、角平分线)之比等于相似比; 4. 周长之比等于相似比; 5. 面积之比等于相似比的平方. 性质3主要应用于三角形内接特殊平行四边形的问题,性质5进一步丰富了面积的有关知识,拓展了我们研究面积问题的视角. 如图,正方形EFGH 内接于△ABC ,AD ⊥BC ,设BC a =,AD h =,试用a 、h 的代数式表示正方形的边长. H G E F D C B A 例题与求解 【例1】如图,已知□ABCD 中,过点B 的直线顺次与AC ,AD 及CD 的延长线相交于E ,F ,G ,若5BE =,2EF =,则FG 的长是 . (“弘晟杯”上海市竞赛试题) 解题思路:由相似三角形建立含FG 的关系式,注意中间比的代换. G E F D C B A

【例2】如图,已知△ABC 中,DE ∥GF ∥BC ,且::1:2:3AD DF FB =, 则:ADE DFGE S S △四边形:FBCG S =四边形( ) (黑龙江省中考试题) A.1:9:36 B.1:4:9 C.1:8:27 D. 1:8:36 解题思路:△ADE ,△AFG 都与△ABC 相似,用△ABC 面积的代数式分别表示△ADE 、四边形DFGE 、四边形FBCG 的面积. G E F D C B A 【例3】如图,在△ABC 的内部选取一点P ,过P 点作三条分别与△ABC 的三边平行的直线,这样所得的三个三角形t 1,t 2,t 3的面积分别为4,9和49,求△ABC 的面积. (第二届美国数学邀请赛试题) 解题思路:由于问题条件中没有具体的线段长,所以不能用面积公式求出有关图形的面积,可考虑应用相似三角形的性质. t 1 t 2 t 3 I P H G E F D C B A 如图所示,经过三角形内一点向各边作平行线(也称剖分三角形),我们可以得到: ① △FDP ∽△IPE ∽△PHG ∽△ABC ; ② 1HG IE DF BC AC AB ++=; ③ 2DE FG HI BC AC AB ++=; ④ 2ABC S =△. 上述性质,叙述简捷,形式优美,巧妙运用它们解某些平面几何竞赛题,简明而迅速,奇特而匠心独

2020-2021九年级培优相似辅导专题训练及详细答案

2020-2021九年级培优相似辅导专题训练及详细答案 一、相似 1.如图,抛物线与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B 运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒. (1)求抛物线的解析式和对称轴; (2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由; (3)设四边形DECO的面积为s,求s关于t的函数表达式. 【答案】(1)解:把A(﹣4,0),B(1,0),点C(0,2)代入 得:,解得:, ∴抛物线的解析式为:, 对称轴为:直线x=﹣; (2)解:存在,∵AD=2t, ∴DF=AD=2t, ∴OF=4﹣4t, ∴D(2t﹣4,0), ∵直线AC的解析式为:,∴E(2t﹣4,t), ∵△EFC为直角三角形,分三种情况讨论: ①当∠EFC=90°,则△DEF∽△OFC, ∴,即,解得:t= ; ②当∠FEC=90°,

∴∠AEF=90°, ∴△AEF是等腰直角三角形, ∴DE= AF,即t=2t, ∴t=0,(舍去), ③当∠ACF=90°,则AC2+CF2=AF2,即(42+22)+[22+(4t﹣4)2]=(4t)2,解得:t= ,∴存在某一时刻t,使得△EFC为直角三角形,此时,t= 或; (3)解:∵B(1,0),C(0,2), ∴直线BC的解析式为:y=﹣2x+2, 当D在y轴的左侧时,S= (DE+OC)?OD= (t+2)?(4﹣2t)=﹣t2+4 (0<t<2); 当D在y轴的右侧时,如图2, ∵OD=4t﹣4,DE=﹣8t+10,S= (DE+OC)?OD= (﹣8t+10+2)?(4t﹣4),即 (2<t<). 综上所述: 【解析】【分析】(1)(1)利用待定系数法,将点A、B、C的坐标代入函数解析式,建立方程组求解即可。 (2)根据题意分别求出AD、DF、OF的长,表示出点D的坐标,利用待定系数法求出直线BC的函数解析式,表示出点E的坐标,再分三种情况讨论△EFC为直角三角形:①当∠EFC=90°,则△DEF∽△OFC,根据相似三角形的性质,列出关于t的方程求解即可; ②∠FEC=90°,∠AEF=90°,△AEF是等腰直角三角形求出t的值即可;③当∠ACF=90°,则AC2+CF2=AF2,建立关于t的方程求解即可,从而可得出答案。 (3)求得直线BC的解析式为:y=-2x+2,当D在y轴的左侧时,当D在y轴的右侧时,如图2,根据梯形的面积公式即可得到结论。 2.已知:如图一,抛物线与x轴正半轴交于A、B两点,与y轴交于点

初三数学 相似三角形培优练习题(含答案)

(3题图)E D C B A D B C A N M O 相似三角形练习题 1、如图1,当四边形PABN 的周长最小时,a = . 2、如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( ) A .只有1个 B .可以有2个 C .有2个以上但有限 D .有无数个 3、如图3,等腰ABC ?中,底边BC=a ,A ∠=0 36,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD 于E ,设k = DE=( ) A 、2 K a B 、3 K a C 、2a k D 、 3 a k 4、如图4,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接 OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角形 B .四边形MBON 和四边形MODN 都是菱形 C .四边形AMON 与四边形ABC D 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形 5、如图5将放置于平面直角坐标系中的三角板AOB 绕O 点顺时针旋转90°得△A′OB′.已知∠AOB =30°,∠B =90°,AB =1,则B′点的坐标为( ) A .3)22 B .3(22 C .1(22 D .1)22 x (1题图) 图 4 图 5

F E D C B A E F A D C B 6、如图小正方形的边长均为1,则下列图中的三角形(阴影部分)与AB C △相似的是( ) 7、如图7,梯形ABCD 中,AD BC ∥,点E 在BC 上,AE BE =,点F 是CD 的中点,且AF AB ⊥, 若 2.746AD AF AB ===,,,则CE 的长为 A . 1 C. 2.5 D. 2.3 (7题图) 8、如图8,在ABC △中,AB AC =,点E F 、分别在AB 和AC 上,CE 与BF 相交于点D ,若AE CF D =,为BF 的中点,AE AF :的值为___________. 9、如图9,已知ABC ?,延长BC 到D ,使CD=BC 取AB 的中点F,连接FD 交AC 于点E 。 (1)求AE AC 的值;(2)若AB=a ,FB=EC ,求AC 的长。

相似三角形的综合应用(培优提高)

相似三角形的应用 【学习目标】 1、探索相似三角形的性质,能运用性质进行有关计算. 2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【知识回顾】 一、相似三角形的性质 (1)对应边的比相等,对应角相等. (2)相似三角形的周长比等于相似比. (3)相似三角形的面积比等于相似比的平方...... . (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 二、相似三角形的应用: 1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等 3、利用三角形相似,可以解决一些不能直接测量的物体的长度.如求河的宽度、求建筑物的高度等. 【典型例题】 例1:如图,△ABC 是一块锐角三角形余料,边BC=120mm , 高AD=80mm , 要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上, (1)若这个矩形是正方形,那么边长是多少? (2)若这个矩形的长是宽的2倍,则边长是多少? 【同步练习】如图,△ABC 是一块三角形余料,AB=AC=13cm ,BC=10cm ,现在要把它加工成正方形零件,使正方形的一边在△ABC 的边上,其余两个顶点分别在三角形另外两条边上.试求正方形的边长是多少? 例2:阅读以下文字并解答问题: 在“测量物体的高度” 活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高 A B C Q M D N P E

度.在同一时刻的阳光下,他们分别做了以下工作: 小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1). 小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米. 小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米. 小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m 的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m . (1)在横线上直接填写甲树的高度为 米. (2)求出乙树的高度(画出示意图). (3)请选择丙树的高度为( ) A 、6.5米 B 、5.75米 C 、6.05米 D 、7.25米 (4)你能计算出丁树的高度吗?试试看. 【同步练习】如图,有一路灯杆AB(底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度. 图1 图2 图3 图4

相似三角形培优试题(五)

九年级培优试题(五) 一.选择题: 1.下面四组线段中,不能成比例的是( ) A.a=4,b=6,c=5,d=10 B 、a=3,b=9,c=5,d=12 C 、a=2,b=2,c=6,d=3 D 、a=2,b=3,c=4,d=5 2.如图,已知AB CD EF ∥∥,那么下列结论正确的是( ) A .AD BC DF CE = B .B C DF CE AD = C .CD BC EF BE = D .CD AD EF AF = 3.如图,在△ABC 中,DE ∥BC ,AD =3,BD =2,则△ADE 与四边形DBCE 的面积比是 ( ) (A )3︰2; (B )3︰5; (C )9︰16; (D )9 ︰4. 4.如图,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论:(1)DE=1, (2)△CDE ∽△CAB ,(3)△CDE 的面积与△CAB 的面积之比为1:4.其中正确的有:( ) A .0个 B .1个 C .2个 D .3个 5.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角 B .四边形MBON 和四边形MODN 都是菱形 C .四边形AMON 与四边形ABC D 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形 6.等边三角形的中线与中位线长的比值是( ) A 、1:3 B 、2:3 C 、23:21 D 、1:3 7.如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=( ) A.1:4 B.1:3 C.2:3 D.1:2 . 8(2013?牡丹江)如图,在△ABC 中∠A=60°,BM ⊥AC 于点M , CN ⊥AB 于点N ,P 为BC 边的中点, 连接PM ,PN ,则下列结论:①PM=PN ;②;③△PMN 为等边三角形;④当∠ABC=45°时,BN=PC .其中正确的个数是( ) A,1个 B.2个 C.3个 D.4 9如图,已知:∠BAO=∠CAE=∠DCB ,则下列关系式中正确的是( ) A 、 AE BC AD A B = B 、AD B C AE AC = C 、AE BC DE AB = D 、AD AB AE AC = 10.下列四个三角形,与左图中的三角形相似的是() D B C A N M O B C A D E

相似三角形培优题

1.(2013?雅安)如图,在?ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF= 2.(2013?恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE 并延长交DC于点F,则DF:FC=() 3.(2013?自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为() 4.(2013?新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为() A. 2 B.或C.或D. 2或或 5.(2013?孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A, ∠DCE=∠CBD,∠EDF=∠DCE.则EF等于() A.B.C.D.

6.(2013安顺)在平行四边形ABCD中,E在DC上,若DE:EC=1:2,则BF:BE= . 7.(2013?牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是() A.1个B.2个C.3个D.4个 8.(2013东营中考)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值() A. 只有1个 B. 可以有2个 C. 可以有3个 D. 有无数个 9.(2013台湾、33)如图,将一张三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?() A.甲>乙,乙>丙B.甲>乙,乙<丙C.甲<乙,乙>丙D.甲<乙,乙<丙 10、(2013?黔东南州)将一副三角尺如图所示叠放在一起,则的值是. 11、(2013?牡丹江)劳技课上小敏拿出了一个腰长为8厘米,底边为6厘米的等腰三角形,她想用这个等腰三角形加工成一个边长比是1:2的平行四边形,平行四边形的一个内角恰好是这个等腰三角形的底角,平行四边形的其它顶点均在三角形的边上,则这个平行四边形的较短的边长为.

相似三角形培优题

相似三角形培优题 1、如图,在正方形ABCD 中,点P 是AB上一动点(不与A,B 重合),对角线AC ,BD 相交于点O,过点P分别作A C,BD 的垂线,分别交AC,BD 于点E ,F ,交AD,BC 于点M,N.下列结论: ①△A PE ≌△AM E;②PM+PN=AC ;③PE 2+PF 2 =PO 2;④△POF ∽△BN F;⑤当△PMN ∽△A MP 时,点P 是A B的中点. 其中正确的结论有( )A .5 B.4 C .3 D.2 2、如图,Rt △AB C中,∠A CB=90°,∠AB C=60°,BC=2cm ,D 为BC 的中点,若动点E以1c m/s 的速度从A 点出发,沿着A →B →A的方向运动,设E 点的运动时间为t 秒(0≤t<6),连接D E,当△BDE 是直角三角形时,t 的值为( ) 3、如图,△ABC 中,DE ∥BC ,DE=1,AD=2,DB =3,则BC 的长是( ) 4、如图,在?ABC D中,E 为CD上一点,连接A E、BD ,且AE 、BD 交于点F,S △DEF :S△ABF =4:25,则D E:EC =( ) A . 2:5 B. 2:3 C . 3:5 D. 3:2 5、如图,在平行四边形A BCD 中,AB=6,AD=9,∠BAD 的平分线交BC于E ,交DC 的延长线于F ,B G⊥AE 于G ,BG=,则△EFC 的周长为( ) A . 11 B . 10 C . 9 D. 8 6、如图,在?ABCD 中,E在AB 上,CE 、BD 交于F ,若AE:BE=4:3,且BF =2,则DF= .. 7、如图,DE 是△ABC 的中位线,延长DE 至F 使E F=DE ,连接CF,则S △CEF :S 四边形BCED 的值为( ) A . 1:3 B . 2:3 C . 1:4 D . 2:5 8、如图,D 是△ABC 的边BC 上一点,已知AB=4,A D=2.∠DAC=∠B,若△ABD 的面积为a,则△ACD 的面积为( ) A.a ? B. ? C. D . 9、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16 B .17?C .18?D .19 10如图,在△ABC 中,AB =AC=a ,BC=b(a >b).在△ABC 内依次作∠CBD=∠A ,∠DCE=∠CBD ,∠E DF=∠DC E.则E F等于( ) 11、如图,点A ,B,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( ) A . (6,0) B . (6,3) C . (6,5) D . (4,2) 12、如图,正方形AB CD 是一块绿化带,其中 阴影部分EO FB,GHM N都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为( ) A . B . 12 C . D . 13、如图所示,在平行四边形ABCD 中,AC与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC于点F,则DF:F C=( ) A.2 B . 2.5或3.5 C. 3.5或4.5 D . 2或3.5或4.5 A . B . C . D .

相似三角形培优试题

1、(本题满分7分) 如图10,四边形ABCD 、DEFG 都是正方形,连接AE 、CG ,AE 与CG 相交于点M ,CG 与AD 相交于点N . 求证:(1)CG AE =; (2).MN CN DN AN ?=? 2、(本题满分7分) 如图11,已知△ABC 的面积为3,且AB=AC ,现将△ABC 沿CA 方向平移CA 长度得到△EFA . (1)求四边形CEFB 的面积; (2)试判断AF 与BE 的位置关系,并说明理由; (3)若 15=∠BEC ,求AC 的长. 3、如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E , 连接DE ,F 为线段DE 上一点,且∠AFE =∠B. (1) 求证:△ADF ∽△DEC (2) 若AB =4,AD =33,AE =3,求AF 的长. 4、如图(4),在正方形ABCD 中,E F 、分别是边 AD CD 、上的点,1 4AE ED DF DC ==,,连结EF 并延长交BC 的延长线于点G . (1)求证:ABE DEF △∽△; (2)若正方形的边长为4,求BG 的长. 5.如图(15),在梯形ABCD 中,906DC AB A AD ∠==∥,°,厘米,4DC =厘米,BC 的坡度34i =∶,动点P 从A 出发以2厘米/秒的速度沿AB 方向向点B 运动,动点Q 从点B 出发以3厘米/秒的速度沿B C D →→方向向点D 运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t 秒. (1)求边BC 的长; (2)当t 为何值时,PC 与BQ 相互平分; (3)连结PQ ,设PBQ △的面积为y ,探求y 与t 的函数关系式,求t 为何值时,y 有最大值?最大值是多少? 6.(本题满分9分) 一块直角三角形木板的一条直角边AB 长为1.5m ,面积为1.5m 2,工人师傅要把它加工成一个面积最大的正方形桌面,请甲、乙两位同学进行设计加工方案,甲设计方案如图1,乙设计方案如图2. 你认为哪位同学设计的方案较好?试说明理由.(加工损耗忽略不计,计算结果中可保留分数) 7、如图1,O 为正方形ABCD 的中心,分别延长OA 、OE=2OD ,连接EF .将△EOF 绕点O 逆时针旋转α角得到△E1OF1(如图2). (1)探究AE1与BF1的数量关系,并给予证明; A E D F B C 图(4) C B Q P 图(5) E B D C E

相似三角形培优

相似三角形综合培优题型 基础知识点梳理: 知识点1 有关相似形的概念 (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念 (1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是 n m b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是 d c b ,,的第四比例项,那么应得比例式为:a d c b =.②()a c a b c d b d ==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、 d 的比例中项, 此时有2b ad =。 知识点3 比例的性质(注意性质立的条件:分母不能为0) (1) 基本性质: ①bc ad d c b a =?=::;②2 ::a b b c b a c =?=?. 注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项):()()()a b c d a c d c b d b a d b c a ?=???=?=???=??,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c =?=. 知识点4 比例线段的有关定理 1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边( 的延长线)所得的对应线段成比例. 由DE ∥BC 可得:AC AE AB AD EA EC AD BD EC AE DB AD ===或或 2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. B

第11讲相似三角形之类比探究培优班讲义

相似之类比探究(讲义) 一、 知识点睛 ● 类比探究是一类共性条件与特殊条件相结合,由特殊情形到一般情形(或由 简单情形到复杂情形)逐步深入,解决思想方法一脉相承的综合性题目,常以几何综合题为主. ● 解决类比探究问题的通常思路 解决类比探究问题的核心思想是类比(照搬),类比上一问的思路方法(如照搬字母,照搬辅助线等).探究变化过程中的不变特征(如常见结构),是类比的前提. ● 类比探究中的常见结构 平行结构:由比例找平行,构造A 字型或X 型; 直角结构:由斜置的直角通过作垂线构造相似三角形. 二、 精讲精练 1. 类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如 下是一个案例,请补充完整. 原题:如图1,在□ABCD 中,点E 是BC 边的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G ,若 3AF EF =,求CD CG 的值. (1)尝试探究:在图1中,过点E 作EH ∥AB 交BG 于点H , 则AB 和EH 的数量关系是_____________,CG 和EH 的数 量关系是_____________,CD CG 的值是_________. (2)类比延伸:如图2,在原题的条件下,若AF m EF =(m >0) , 则CD CG 的值是_________(用含m 的代数式表示),试写出 解答过程. 图3 B F E C D A 图2 A D E F G 图1A B C D E F G

(3)拓展迁移:如图3,在梯形ABCD 中,DC ∥AB ,点E 是BC 的延长线上一点,AE 和BD 相交于点F .若AB a CD =, BC b BE =(a >0,b >0) ,则AF EF 的值是________(用含a ,b 的代数式表示). 2. 数学课上,魏老师出示图1和下面框中条件: (1)①当点C 与点F 重合时,如图2所示,可得AM DM 的值 为___________; ②在平移过程中,AM DM 的值为___________(用含x 的代数 式表示). (2)将图2中的三角板ABC 绕点C 逆时针旋转,原题中的其他条件保持不变.当点A 落在线段DF 上时,如图3所示,请计算 AM DM 的值. (3)将图1中的三角板ABC 绕点C 逆时针旋转m 度,090m <≤, 原题中的其他条件保持不变,如图4 所示,请计算AM DM 的值(用含x 的代数式表示). 如图1,两个等腰直角三角板 ABC 和DEF 有一条边在同一条直线l 上,∠ABC =∠DEF =90°,AB =1,DE =2 .将直线EB 绕点E 逆时针旋转45°,交直线AD 于点M .将图1中的三角板ABC 沿直线l 向右平移,设C ,E 两点间的距离为x . 图2 l 图1 图4 图3 图3 F E C D A

相关文档
最新文档