第4章无穷级数4-7(幂级数性质 和函数 习题课)

正切函数的定义图像与性质

正切函数的定义、图像与性质 一、教学目标 1、理解并掌握正切函数图像的推导思路及画法,即“正弦函数图像类比推导法” 2、准确写出正切函数的性质,并通过练习体验正切函数基本性质的应用. 3、理解并掌握正切函数的诱导公式。 二、重点与难点 (一)教学重点:正切函数的图象和性质。 1、用类比正弦函数图像类比推导法,单位圆中的正切线作正切函数图象法,引导学生作出正切函数图像,并探索函数性质; 2、学会画正切函数的简图,体会与x轴的交点以及渐近线x=/2 +k,k Z在确定图象形状时所起的关键作用。 (二)教学难点:体验正切函数基本性质的应用, 三、教学过程 1、复习引入 (一)复习 练习:画出下列各角的正切线 (二)引入 引出正切函数、正切曲线的概念和正切函数的诱导公式,提出对正切函数性质思考,让学生能清晰的认识本节课的内容:在内容上,是研究一个具体函数的图像和性质. 2、学习新课: 提出如何研究正切函数的性质,启发学生可以“类比”研究正余弦函数图像和性质的方法。 (一)复习:如何作出正弦函数的图像? (二)探究:用正切线作正切函数图像

问题:正切函数y=tanx是否是周期函数? 设f(x)=tanx f(x+)=tan(x+)=tanx=f(x) y=tanx是周期函数,是它的一个周期。 我们先来作一个周期内的图像 根据正切函数的周期性,将上图像向左向右延伸得到正弦函数的图像 (三)研究函数性质(启发学生借助图像进行研究,培养学生数形结合的思想) (四)疑点解析

在每一个开区间 内都是增函数 (五)例题讲解及课内巩固练习 例1、比较下列每组数的大小 (1)tan167与tan173 (2)tan ( )与tan y=tanx 在(,)上是增函数, 又y=tanx 在(0,)上是增函数 说明:比较两个正切值大小,关键是相应的角化到y=tanx 的同一单调区间内,再利用y=tanx 的单调递增性解决。 例2、 观察正切曲线,写出满足下列条件的x 的值的范围 例3、求 675 tan )60tan(570tan 315tan --+的值。 四、课堂小结 通过本节课的学习,我们认识了正切函数的图象即正切曲线以及通过图象观察总结出正切函数的性质并利用性质解决了一些简单问题,要注意整体思想在其中的应用。 五、课后作业

最新对数函数及其性质练习题及答案解析

1.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 解析:选A.????? x -1>04-x ≥0 ,解得10时,y =x x log 2x =log 2x ;当x <0时,y =x -x log 2(-x )=-log 2(-x ),分别作图象可知选D. 3.(2010年高考大纲全国卷Ⅰ)已知函数f (x )=|lg x |,若a ≠b ,且f (a )=f (b ),则ab =( ) A .1 B .2 C.1 2 D.14 解析:选A.如图由f (a )=f (b ), 得|lg a |=|lg b |. 设0<a <b ,则lg a +lg b =0. ∴ab =1. 4.函数y =log a (x +2)+3(a >0且a ≠1)的图象过定点________. 解析:当x =-1时,log a (x +2)=0,y =log a (x +2)+3=3,过定点(-1,3). 答案:(-1,3) 1.下列各组函数中,定义域相同的一组是( ) A .y =a x 与y =log a x (a >0,且a ≠1) B .y =x 与y =x C .y =lg x 与y =lg x D .y =x 2与y =lg x 2 解析:选C.A.定义域分别为R 和(0,+∞),B.定义域分别为R 和[0,+∞),C.定义域都是(0,+∞),D.定义域分别为R 和x ≠0. 2.函数y =log 2x 与y =log 12x 的图象关于( ) A .x 轴对称 B .y 轴对称 C .原点对称 D .直线y =x 对称 解析:选A.y =log 12x =-log 2x . 3.已知a >0且a ≠1,则函数y =a x 与y =log a (-x )的图象可能是( )

【原创教案】《幂函数》公开课教案

《幂函数》教学设计 授课班级:高一(8)班 一、教学目标 1.了解幂函数的概念,会求幂函数的解析式。 2.结合幂函数y x =,2 y x =,3 y x = ,1 y x = ,1 2y x =的图像,掌握它们的性 质。 3.能利用幂函数的单调性比较指数幂的大小。 4.结合幂函数的图像,培养直观想象的数学素养。 5.借助幂函数的性质,培养逻辑推理的数学素养。 二、教学重点:常见幂函数的图像与性质。 教学难点:幂函数的单调性及比较两个幂值的大小。 三、教学方法:启发式、探究式教学法 四、教学辅助:多媒体课件、几何画板 五、教学过程 (一)复习回顾(课前准备) 1.证明:函数()f x =[0,)+∞上是增函数. 2.证明:函数3()f x x =在[0,)+∞上是增函数. (二)创设情景,引入新课 请同学们观察以下几个具体问题,分析归纳这些问题中的函数有什么共同特征? 问题1:如果张红购买了每千克1元的蔬菜x 千克,那么她需要支付y = 元; 问题2:如果正方形的边长为x ,那么正方形的面积y = ; 问题3:如果立方体的边长为x ,那么立方体的体积y = ; 问题4:如果一个正方形场地的面积为x ,那么这个正方形的边长y = ; 问题5:如果某人x s 内骑车行进了1km ,那么他骑车的平均速度 y = /km s 。 (三)概念形成

1、幂函数的概念 幂函数的定义:一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数。 思考:判断一个函数是幂函数的依据是什么? 答:底数是自变量x 、指数是常数、系数是1。 2.实践理解: 例1:下列函数为幂函数的是( ) A .42y x = B .321y x =- C .2 y x = D .2y x = 练习:(1) 已知22 ()(1)m f x m x +=+是幂函数,则m = (2)已知幂函数()y f x =的图象过点,求这个函数的解析式。 (四)常见幂函数的图像与性质 请学生在坐标系内画出下列几个熟悉的幂函数:y x =、2y x =、1y x -=的图象。对于3y x =、12 y x =这两个函数,教师在课前让学生证明他们的单调性,课堂上借助计算机《几何画板》软件,演示它们的图象。 合作探究:观察函数y x =、2 y x =、1 y x -=、3 y x =、12 y x =的图象,将发现的结论填入表格内。

幂函数经典例题

例1、下列结论中,正确的是( ) A.幂函数的图象都通过点(0,0),(1,1) B.幂函数的图象可以出现在第四象限 C.当幂指数α取1,3,1 2 时,幂函数y=xα是增函数 D.当幂指数α=-1时,幂函数y=xα在定义域上是减函数 解析当幂指数α=-1时,幂函数y=x-1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y=xα (α∈R),y>0,所以幂函数的图象不可能出现在第四象限,故选项B不正确;而当α=-1时,y=x-1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数. 答案C 例2、已知幂函数f(x)=(t3-t+1)x 1 5 (7+3t-2t2) (t∈Z)是偶函数且在(0,+ ∞)上为增函数,求实数t的值. 分析关于幂函数y=xα(α∈R,α≠0)的奇偶性问题,设p q (|p|、|q|互 质),当q为偶数时,p必为奇数,y=x p q 是非奇非偶函数;当q是奇数时,y= x p q 的奇偶性与p的值相对应. 解∵f(x)是幂函数,∴t3-t+1=1, ∴t=-1,1或0. 当t=0时,f(x)=x 7 5 是奇函数; 当t=-1时,f(x)=x 2 5 是偶函数; 当t=1时,f(x)=x 8 5 是偶函数,且 2 5 和 8 5 都大于0,在(0,+∞)上为增函数.

故t =1且f (x )=x 85或t =-1且f (x )=x 2 5 . 点评 如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件 t ∈Z 给予足够的重视. 例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( ) A .-11 D .n <-1,m >1 解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0x 1 3,求x 的取值范围. 错解 由于x 2 ≥0,x 1 3∈R ,则由x 2>x 1 3 ,可得x ∈R . 错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α 在 α>1和0<α<1两种情况下图象的分布. 正解 作出函数y=x2和y=3 1x 的图象(如右图所示),易得x<0或x>1. 例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )

正切函数的图象与性质(习题)

1 正切函数的图象与性质(习题) ? 例题示范 例1:已知sin33cos55tan35a b c =?=?=?, ,,则( ) A .a b c >> B .b c a >> C .c b a >> D .c a b >> 思路分析: 观察33°,55°,35°之间的关系,利用三角函数在区间[090]??, 上的单调性,选择合适的公式化简,转化为可比较的函数值. 由诱导公式可得, cos55cos(9035)sin35b =?=?-?=?, ∵sin y x =在区间[090]??,上单调递增,且sin 33a =?, ∴b a >, ∵sin 35tan 35cos35c ?=?= ? ,且0cos351?=, ∴c b a >>,故选C . 例2:函数23()sin cos 4f x x x =++,2π[0]3 x ∈,的值域是( ) A .[12], B .[]44-, C .[1]4 -, D .[2]4-, 思路分析: 2223()sin cos 4 31cos cos 4 7cos cos 4 f x x x x x x x =++=-++=-++由题意, 设cos t x =,2π[0]3x ∈,,由余弦函数的单调性得,12 1t -≤≤, 则原函数可化为27()4f x t t =-++,12 1t -≤≤, 由二次函数性质得,()[12]f x ∈,,故选A . ? 巩固练习

A .2 π B .π C .2π D .4π C .(1)(0)(1)f f f >>- D .(0)(1)(1)f f f >-> 4. 下列函数属于奇函数的是( ) A .()tan(π)f x x =+ B .π()sin()2f x x =- C .()cos(3π)f x x =- D .π()sin()2f x x =+ 5. 已知函数()tan f x x x =+,2()=cos g x x x +,则( ) A .()f x 与()g x 都是奇函数 B .()f x 与()g x 都是偶函数 C .()f x 是奇函数,()g x 是偶函数 D .()f x 是偶函数,()g x 是奇函数 6. 函数sin()2 y x π=+在( ) A .[]22 ππ-,上是增函数 B .[0]π,上是减函数 C .[0]-π,上是减函数 D .[]-ππ,上是减函数 7. 函数()cos f x x =的一个单调递减区间是( ) A .[]44 ππ-, B .[]44π3π,

函数列与函数项级数

Ch 13 函数列与函数项级数 ( 1 2 时 ) § 1 一致收敛性( 6 时 ) 一. 函数列及极限函数:对定义在区间I 上的函数列)}({x f n ,介绍概念: 收敛点,收敛域( 注意定义域与收敛域的区别 ),极限函数等概念. 逐点收敛 ( 或称为“点态收敛” )的“N -ε”定义. 例1 对定义在) , (∞+∞-内的等比函数列)(x f n =n x , 用“N -ε”定义 验证其收敛域为] 1 , 1 (-, 且 ∞→n lim )(x f n = ∞→n lim n x =? ??=<. 1 , 1 , 1 || , 0 x x 例2 )(x f n =n nx sin . 用“N -ε”定义验证在) , (∞+∞-内∞→n lim )(x f n =0. 例3 考查以下函数列的收敛域与极限函数: ) (∞→n . ⑴ )(x f n =x x x x n n n n --+-. )(x f n →,sgn x R ∈x . ⑵ )(x f n =1 21+n x . )(x f n →,sgn x R ∈x . ⑶ 设 ,,,,21n r r r 为区间] 1 , 0 [上的全体有理数所成数列. 令 )(x f n =???≠∈=. ,,, ] 1 , 0 [ , 0, ,,, , 12121n n r r r x x r r r x 且 )(x f n →)(x D , ∈x ] 1 , 0 [. ⑷ )(x f n =2 22 2x n xe n -. )(x f n →0, R ∈x .

156 ⑸ )(x f n =?? ? ? ? ? ???≤≤<≤-<≤--+ . 121 , 0 ,2121 ,42,210 ,41 11x x x x x n n n n n n n 有)(x f n →0, ∈x ] 1 , 0 [, ) (∞→n . ( 注意 ? ≡1 1)(dx x f n .) 二. 函数列的一致收敛性: 问题: 若在数集D 上 )(x f n →)(x f , ) (∞→n . 试问: 通项)(x f n 的解析性质是否必遗传给极限函数)(x f ? 答案是否定的. 上述例1、例3⑴⑵说明连续性未能遗传,而例3⑶说明可积性未能遗传. 例3⑷⑸说明虽然可积性得到遗传, 但 ∞ →n lim () ? ?∞ →≠1 1 0)(lim )(dx x f dx x f n n n . 用函数列的极限表示函数是函数表达的一种重要手段. 特别是表达非初等函数的一 种手段. 对这种函数, ∞ →n lim )(x f n 就是其表达式.于是,由通项函数的解析性质研究极限 函数的解析性质就显得十分重要. 那末, 在什么条件下通项函数的解析性质能遗传给极 限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收敛加强为所谓 “整体收敛”的结果. 定义 ( 一致收敛 ) 一致收敛的几何意义. Th1 (一致收敛的Cauchy 准则 ) 函数列}{n f 在数集D 上一致收敛,? N , 0?>?ε, , , N n m >?? ε<-n m f f . ( 介绍另一种形式ε<-+n p n f f .) 证 )? ( 利用式 .f f f f f f n m n m -+-≤-)

(罗益龙)对数函数习题课教案

对数函数习题课教案 一、教学目标 知识目标 使学生掌握对数函数性质并能熟练应用,加深学生对函数性质的理解。 过程与方法 渗透分类讨论,归纳总结等方法,引导学生运用已学知识解决问题。 情感目标 培养学生对数学的兴趣,激发学生探索解题的积极性。二、重点难点 教学重点 对数函数及其性质的应用 教学重点 对数函数及其性质的综合应用

三、教学过程: (一)知识回顾 1.对数函数的性质 2.指数函数与对数函数的关系 1.指数函数y=a x与对数函数y=log a x互为反函数. 2. 指数函数y=a x与对数函数y=log a x的图象在同一坐标平面内关于直线y=x对称. (二)典型范例分析 例1 设f(x)=log2x.若f(2x-x2)

∴22 2220 320 232x x x x x x ?->?->??-<-?22 (2)0302+230x x x x x --???<1,即a >1时, 5211a a <-??>?3 1a a >??? >? ,即a >3. 综上可知,a 的取值范围是(1 2 ,1)∪(3,+∞). 复合函数的概念 若函数y =f (u )与u =g (x )是两个函数,则称函数y =f (g (x ))是函数 y =f (u )与u =g (x )的复合函数. 复合函数单调性判断法则 同增异减

第十三章函数列和函数项级数

第十三章 函数列与函数项级数 目的与要求:1.掌握函数序列与函数项级数一致收敛性的定义,函数列与函数项级数一致收敛性判别的柯西收敛准则,函数项级数一致收敛性的判别法. 2. 掌握一致收敛函数序列与函数项级数的连续性、可积性、可微性的结论. 重点与难点:本章重点是函数序列与函数项级数一致收敛性的定义,判别法和性质;难点则是利克雷判别法和阿贝尔判别法. 第一节 一致收敛性 我们知道,可以用收敛数列(或级数)来表示或定义一个数,在此,将讨论如何用函数列(或函数项级数)来表示或定义一个函数. 一 函数列及其一致收敛性 设 ,,,,21n f f f (1) 是一列定义在同一数集E 上的函数,称为定义在E 上的函数列.也可简记为: }{n f 或 n f , ,2,1=n . 设E x ∈0,将0x 代入 ,,,,21n f f f 得到数列 ),(,),(),(00201x f x f x f n (2) 若数列(2)收敛,则称函数列(1)在点0x 收敛,0x 称为函数列(1)的收敛点. 若数列(2)发散,则称函数列(2)在点0x 发散. 若函数列}{n f 在数集E D ?上每一点都收敛,则称}{n f 在数集D 上收敛.

这时对于D x ∈?,都有数列)}({x f n 的一个极限值与之对应,由这个对应法则就确定了D 上的一个函数,称它为函数列}{n f 的极限函数.记作f .于是有 )()(lim x f x f n n =∞ →, D x ∈,或 )()(x f x f n →)(∞→n ,D x ∈. 函数列极限的N -ε定义是: 对每一个固定的D x ∈,对0>?ε,0>?N (注意:一般说来N 值的确定与ε和x 的值都有关),使得当N n >时,总有 ε<-)()(x f x f n . 使函数列}{n f 收敛的全体收敛点的集合,称为函数列}{n f 的收敛域. 例1 设n n x x f =)(, ,2,1=n 为定义在),(∞-∞上的函数列,证明它的收敛域是]1,1(-,且有极限函数 ? ??=<=1,11 ,0)(x x x f (3) 证明:因为定义域为),(∞-∞,所以根据数列收敛的定义可以将),(∞-∞分为四部分 (i) 10<ε(不妨设1<ε),当10<时,就有ε<-)()(x f x f n . (ii)0=x 和1=x 时,则对任何正整数n ,都有 ε<=-0)0()0(f f n ,ε<=-0)1()1(f f n . (iii) 当1>x 时,则有)(∞→+∞→n x n , (iv) 当1-=x 时,对应的数列为 ,1,1,1,1--,它显然是发散的. 这就证得{}n f 在]1,1(-上收敛,且有(3)式所表示的极限函数.所以函数列{}n x 在区

高中数学幂函数考点及经典例题题型突破

幂函数、二次函数 考纲解读 1.结合函数y =x ,y =x 2,y =x 3,y =1x ,y =x 1 2的图象解决简单的幂函数问题; 2.用待定系数法求二次函数解析式,结合图象解决二次函数问题; 3.用二次函数、方程、不等式之间的关系解决综合问题. [基础梳理] 1.幂函数 (1)定义:一般地,函数y =x α叫作幂函数,其中底数x 是自变量,α是常数. (2)幂函数的图象比较: 2.二次函数 (1)解析式: 一般式:f (x )=ax 2+bx +c (a ≠0). 顶点式:f (x )=a (x -h )2+k (a ≠0). 两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)图象与性质: (-∞,+∞) (-∞,+∞)

[三基自测] 1.已知幂函数f (x )=k ·x α的图象过点????12,2 2,则k +α=( ) A.1 2 B .1 C.32 D .2 答案:C 2.已知函数f (x )=x 2+4ax 在区间(-∞,6)内单调递减,则a 的取值范围是( ) A .a ≥3 B .a ≤3 C .a <-3 D .a ≤-3 答案:D 3.幂函数f (x )=xa 2-10a +23(a ∈Z )为偶函数,且f (x )在区间(0,+∞)上是减函数,则a 等于( ) A .3 B .4 C .5 D .6 答案:C 4.(必修1·第一章复习参考题改编)若g (x )=x 2+ax +b ,则g (2)与1 2[g (1)+g (3)]的大小关 系为________. 答案:g (2)<1 2 [g (1)+g (3)] 5.(2017·高考全国卷Ⅰ改编)函数y =x 2+1 x 的增区间为__________. 答案:? ?? ??132,+∞ [考点例题] 考点一 幂函数的图象和性质|易错突破 [例1] (1)已知幂函数f (x )=,若f (a +1)

指数函数和对数函数复习课教案

指数函数与对数函数复习课 一. 复习目标 1. 掌握指数函数与对数函数的函数性质及图象特征. 2. 加深对图象法,比较法等一些常规方法的理解. 3. 体会分类讨论,数形结合等数学思想. 二.指数函数 1.指数函数定义: 地,函数x y a =(0a >且1a ≠)叫做指数函数,其中x 是自变量,函数定义域是R . 2.指数函数x y a =在底数及这两种情况下的图象和性质: 1a > 01a << 图象 性质 (1)定义域:R (2)值域:(0,)+∞ (3)过点(0,1),即0x =时1y = (4)在R 上是增函数 (4)在R 上是减函数 例1.求下列函数的定义域、值域: (1)121 8 x y -= (2)11()2x y =-(3)3x y -= (4)1(0,1)1 x x a y a a a -=>≠+ 练习1.当1a >时,证明函数1 1 x x a y a +=- 是奇函数 练习2.设a 是实数,2 ()()21 x f x a x R =- ∈+, (1)试证明:对于任意,()a f x 在R 为增函数; (2)试确定a 的值,使()f x 为奇函数。 分析:此题虽形式较为复杂,但应严格按照单调性、奇偶性的定义进行证明。还应要求学生 注意不同题型的解答方法。

三 对数函数 1.对数函数的定义:函数 x y a log =)10(≠>a a 且叫做对数函数。 2.对数函数的性质: (1)定义域、值域:对数函数x y a log =)10(≠>a a 且的定义域为),0(+∞,值域为 ),(+∞-∞. (2)图象:由于对数函数是指数函数的反函数,所以对数函数的图象只须由相应的指数 函数图象作关于x y =的对称图形,即可获得。 同样:也分1>a 与10< 01a << 性 质 (1)定义域:(0,)+∞ (2)值域:R (3)过点(1,0),即当1=x 时,0=y (4)在(0,+∞)上是增函数 (4)在(0,)+∞上是减函数 例1.求下列函数的定义域: (1)2 log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -=. 分析:此题主要利用对数函数x y a log =的定义域(0,)+∞求解。 练习1.比较下列各组数中两个值的大小: (1)2log 3.4,2log 8.5; (2)0.3log 1.8,0.3log 2.7; (3)log 5.1a ,log 5.9a . 1 1 2x y = 2log y x = y x = (图1) 1 1 1()2 x y = 12 log y x = y x = (图2) (1,0) (1,0) 1x = 1x = log a y x = log a y x =

高一数学《幂函数》公开课优秀教案(表格式,经典、完美)

高一数学《幂函数》公开课教案 ★课程标准:通过实例,了解幂函数的概念;结合函数12 1 3 2 ,,,,-=====x y x y x y x y x y 的图象, 了解它们的变化情况. 一、教学目标: 1.了解幂函数概念,会用描点法画幂函数图象,通过具体实例研究幂函数的图象和性质,并会简单应用. 2.通过对幂函数的学习,使学生进一步熟练掌握研究函数的一般思想方法. 3.通过引导学生主动参与作图、分析图象,培养学生的探索精神,并在研究函数变化的过程中体会事物的量变、质变规律,感受数学的对称美、和谐美. 二、教学重点:通过五个具体的幂函数认识概念,研究性质,体会图象的变化规律. 三、教学难点:画五个幂函数的图象并由图象概括幂函数的一般性质. 四、教学用具:实物投影仪等多媒体 五、教学过程: (一)创设情境 ①如果某人购买了每千克1 元的蔬菜w 千克,那么他需要付的钱数p (元)关于购 买的蔬菜量w (千克)的函数解析式为_____________. ②如果正方形的边长为a ,那么正方形的面积S 关于a 的函数解析式为___________. ③如果正方体的边长为a ,那么正方体的体积V 关于a 的函数解析式为___________. ④如果正方形场地面积为S ,那么正方形的边长a 关于s 的函数解析式为_________. ⑤如果某人t s 内骑车行进了1 km ,那么他骑车的速度v 关于t 的函数解析式为_________. 问题1.观察这些函数解析式,它们有什么共同的结构特征吗? 【设计意图】从特殊到一般,将实际问题转化为数学问题,经历一次发现之旅. (二)引入新知 幂函数的定义:一般地,函数α x y =叫做幂函数,其中x 是自变量,α是常数. 幂函数是一种特殊的基本初等函数. 问题2.请同学们举出一些具体的幂函数. 从引例和同学们刚才举的例子中,我们可以发现,幂指数α可以是正数、负数,也可以是0. (三)探究建构 2 1 21 2.(22)23m y m m x n m n -=+-+-若是幂函数,求、.

第十二讲函数列与函数项级数

第十二讲函数列与函数项级数 12 . 1 函数列与函数项级数的收敛与一致收敛 一、函数列 (一)函数列的收敛与一致收敛 1 .逐点收敛 函数列(){}I x x f n ∈,,若对I x ∈?,数列(){}x f n 都收敛,则称函数列在区间 I 上逐点收敛,记 ()()I x x f x f n n ∈=∞ →,lim ,称()x f 为(){}x f n 的极限函数.简记为 ()()()I x n x f x f n ∈∞→→, 2 .逐点收敛的N -ε定义 对I x ∈? ,及 0>?ε,()0,>=?εx N N ,当N n > 时,恒有()()ε<-x f x f n 3 .一致收敛 若函数列(){}x f n 与函数()x f 都定义在区间 I 上,对 0,0>?>?N ε,当N n > 时,对一切I x ∈恒有()()ε<-x f x f n ,则称函数列(){}x f n 在区间 I 上一致收敛于()x f .记为()()()I x n x f x f n ∈∞→?, . 4 .非一致收敛 00>?ε,对N n N >?>?0,0,及I x ∈?0,使得 ()()0000ε≥-x f x f n 例 12 . 1 证明()n n x x f =在[]1,0逐点收敛,但不一致收敛. 证明:当[]1,0∈x 时,()0lim lim ==∞ →∞ →n x n n x x f ,当1=x 时,()11lim =∞ →n n f ,即极限函数 为()[)???=∈=1 ,11,0,0x x x f .但 ()x f n 非一致收敛,事实上,取031 0>=ε。对0>?N ,取 N N n >+=10,取()1,02101 0∈? ? ? ??=n x · 此时()()00002100ε>==-n x x f x f n , 即()()()[]1,0,∈∞→≠>x n x f x f n 5 .一致收敛的柯西准则 函数列(){}x f n 在 I 上一致收敛?对 0,0>?>?N ε,当 n , m > N 时,对一切I x ∈,

高一数学幂函数例题

高一数学幂函例题 解: (1)底数不同,指数相同的数比大小,可以转化为同一幕函数,不同函数值的大小问 1 1 1 题.??? y x 3在 0, 上单调递增,且 1.7 1.5 1,二 1.73 1.53 1 . 3 3 3 3 (2)底数均为负数,可以将其转化为 -.2 7 -.2 7, 7 -.3 7, 3 .57 3 3 ■ y x 7 在 0 , 上单调递增,且--5 . 3 2 3 3 3 3 3 3 5 7 .3 7 2 7,即■. 5 7 3 7 2 ?, 3 57 3 37 3 2 7 . (3)先将指数统一,底数化成正数. 例1、 幕函数y x m ( m 、n N ,且m 、n 互质)的图象在第一,二象限,且不经过原 点,则有 (A) m 、n 为奇数且m 1 n (B) m 为偶数,n 为奇数,且m 1 n (C) m 为偶数,n 为奇数,且m 1 n (D) m 奇数,n 为偶数,且m 1 n 例2、 右图为幕函数y x 在第一象限的图像,则 a,b,c,d 的大小关系是 (A)a b c d (B) b a d (C)a (D) a 解:取x 1 1 ,由图像可知: 2 c ,应选(C). 例3、 比较下列各组数的大小: (1) (3) 1 1 1.53,1.73, 2 J 3 2 , (2) 3 -.3 7 , 10 7 1.1 2 - 3 -2-2 2 一 3 -2-2 2 - 3 W- 7 2 - 3 10 一 7 2 - 3 .2 X — 4 - 3 X — X —

7 、2 「y x 3在0,上单调递减'且10亍12 , 2 2 2 2 7 3 、2 3 1 前 7 3 2 3 4 1.21 3,即: V 1.1 3 10 2 10 2 点评:比较幕形式的两个数的大小,一般的思路是: (1) 若能化为同指数,则用幕函数的单调性; (2) 若能化为同底数,则用指数函数的单调性; (3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比 较大小. 求m 的值. 2 解:???幕函数y x m 2m 3 ( m Z )的图象与x 轴、y 轴都无交点, ? m 2 2m 3是奇数,? m 0或 m 2 . 例6设函数f (x )= x 3, (1) 求它的反函数; (2) 分别求出厂1 (x )= f (x ),厂1 (x )>f (x ),厂1 (x )v f (x )的实数x 的范围. 1 解析:(1)由y =x 3两 边同时开三次方得x = 3 y , ?「1 (x )二x?. 1 (2)v 函数f (x )= x 3和厂1 (x )= x 空的图象都经过点(0, 0)和(1, 1). ???厂1 (x )= f (x )时,x =± 1 及 0; 在同一个坐标系中画出两个函数图象,由图可知 厂1 ( x )> f ( X )时,x v — 1 或 0v X V 1 ; 1 m 2m 3 0,二 1 m 3; a 1 0 a 1 0 有三种可能: a 0 或 3 2a 0 或 3 2a 0 , a 3 2a 0 a 1 3 2a a 1 3 2a 2 x m 2m 3 ( m Z )的图象与 x 轴、y 轴都无交点,且关于原点对称, ■/ m Z , ? (m 2 2m 3) Z ,又函数图象关于原点对称, 例5?已知幕函数y

高中数学必修1公开课教案2.3.1 幂函数

2.3 幂函数 整体设计 教学分析 幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数.学生已经有了学习指数函数和对数函数的图象和性质的学习经历,幂函数概念的引入以及图象和性质的研究便水到渠成.因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习.本节通过实例,让学生认识到幂函数同样也是一种重要的函数模型,通过研究 y =x,y =x 2,y =x 3,y =x -1 ,y =x 2 1 等函数的性质和图象,让学生认识到 幂指数大于零和小于零两种情形下,幂函数的共性:当幂指数α>0时,幂函数的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增;当幂指数α<0时,幂函数的图象都经过点(1,1),且在第一象限内函数单调递减且以两坐标轴为渐近线.在方法上,我们应注意从特殊到一般地去进行类比研究幂函数的性质,并注意与指数函数进行对比学习. 将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质.其中,学生在初中已经学习了y=x,y=x 2,y=x -1等三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识.现在明确提出幂函数的概念,有助于学生形成完整的知识结构.学生已经了解了函数的基本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了基本思路和方法.因此,教材安排学习幂函数,除内容本身外,掌握研究函数的一般思想方法是另一目的,另外,应让学生了解利用信息技术来探索函数图象及性质是一个重要途径. 学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析. 三维目标 1.通过生活实例引出幂函数的概念,会画幂函数的图象,通过观察图象,了解幂函数图象的变化情况和性质,加深学生对研究函数性质的基本方法和流程的经验,培养学生概括抽象和识图能力,使学生体会到生活中处处有数学,激发学生的学习兴趣. 2.了解几个常见的幂函数的性质,通过这几个幂函数的性质,总结幂函数的性质,通过画图比较,使学生进一步体会数形结合的思想,利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望. 3.应用幂函数的图象和性质解决有关简单问题,培养学生观察分析归纳能力,了解类比法在研究问题中的作用,渗透辩证唯物主义观点和方法论,培养学生运用具体问题具体分析的方法去分析和解决问题的能力. 重点难点 教学重点:从五个具体的幂函数中认识幂函数的概念和性质. 教学难点:根据幂函数的单调性比较两个同指数的指数式的大小. 课时安排 1课时 教学过程 导入新课 思路1 1.如果张红购买了每千克1元的水果w 千克,那么她需要付的钱数p (元)和购买的水果量w (千克)之间有何关系?根据函数的定义可知,这里p 是w 的函数. 2.如果正方形的边长为a,那么正方形的面积S=a 2,这里S 是a 的函数. 3.如果正方体的边长为a,那么正方体的体积V=a 3,这里V 是a 的函数.

函数列与函数项级数

第十三章 函数列与函数项级数 §1 一致收敛性 (一) 教学目的: 掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (二) 教学内容: 函数序列与函数项级数一致收敛性的定义;函数序列与函数项级数一致收敛性判别的柯西准则;函数项级数一致收敛性的魏尔斯特拉斯判别法. 基本要求: 1)掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致 收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法. (三) 教学建议: (1) 要求学生必须掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项 级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (2) 对较好学生可要求他们掌握狄利克雷判别法和阿贝尔判别法. ———————————————————— 一 函数列及其一致收敛性 对定义在区间I 上的函数列E x x f n ∈},)({,设 E x ∈0,若数列 })({0x f n 收敛,则称函数列})({x f n 在点0x 收敛,0x 称为函数列})({x f n 收敛点;若数列 })({0x f n 发散,则称函数列})({x f n 在点0x 发散。 使函数列})({x f n 收敛的全体收敛点集合称为函数列})({x f n 收敛域( 注意定义域与收敛域的区别 )。 若函数列})({x f n 在数集E D ?上每一点都收敛,则称函数列})({x f n 在数集D 上收敛,这时D 上每一点x ,都有函数列的一个极限值

幂函数经典例题(问题详解)

幂函数的概念 例1、下列结论中,正确的是( ) A.幂函数的图象都通过点(0,0),(1,1) B.幂函数的图象可以出现在第四象限 C.当幂指数α取1,3,1 2 时,幂函数y=xα是增函数 D.当幂指数α=-1时,幂函数y=xα在定义域上是减函数 解析当幂指数α=-1时,幂函数y=x-1的图象不通过原点,故选项A不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y=xα (α∈R),y>0,所以幂函数的图象不可能出现在第四象限,故选项B不正确;而当α=-1时,y=x-1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数.答案 C 例2、已知幂函数f(x)=(t3-t+1)x 1 5 (7+3t-2t2) (t∈Z)是偶函数且在(0,+ ∞)上为增函数,数t的值. 分析关于幂函数y=xα (α∈R,α≠0)的奇偶性问题,设p q (|p|、|q|互 质),当q为偶数时,p必为奇数,y=x p q 是非奇非偶函数;当q是奇数时,y= x p q 的奇偶性与p的值相对应. 解∵f(x)是幂函数,∴t3-t+1=1, ∴t=-1,1或0. 当t=0时,f(x)=x 7 5 是奇函数; 当t=-1时,f(x)=x 2 5 是偶函数; 当t=1时,f(x)=x 8 5 是偶函数,且 2 5 和 8 5 都大于0,在(0,+∞)上为增函数. 故t=1且f(x)=x 8 5 或t=-1且f(x)=x 2 5 . 点评如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件t∈Z给予足够的重视.

例3、如图是幂函数y =x m 与y =x n 在第一象限的图象,则( ) A .-11 D .n <-1,m >1 解析 在(0,1)取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0x 1 3,求x 的取值围. 错解 由于x 2 ≥0,x 1 3∈R ,则由x 2>x 1 3 ,可得x ∈R . 错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况下图象的分布. 正解 作出函数y=x2和y=3 1x 的图象(如右图所示),易得x<0或x>1. 例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式. 分析 解答本题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m . 解 根据幂函数定义得 m 2-m -1=1,解得m =2或m =-1, 当m =2时,f (x )=x 3在(0,+∞)上是增函数; 当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3. 点评 幂函数y =x α (α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依

高中数学必修4三角函数常考题型正切函数的性质与图像

正切函数的性质与图像 【知识梳理】 1.正切函数的性质 函数 y =tan x 定义域 ??? x ??? ?? x ≠k π+π2,k ∈Z 函数 y =tan x 值域 (-∞,+∞) 周期 T =π 奇偶性 奇函数 单调性 在每个开区间? ???k π-π2,k π+π 2(k ∈Z )上都是增函数 2.(1)正切函数的图像: (2)正切函数的图像叫做正切曲线. (3)正切函数的图像特征: 正切曲线是被相互平行的直线x =π 2 +k π,k ∈Z 所隔开的无穷多支曲线组成的. 【常考题型】 题型一、正切函数的定义域、值域问题 【例1】 求下列函数的定义域和值域: (1)y =tan ??? ?x +π 4;(2)y =3-tan x . [解] (1)由x +π4≠k π+π 2(k ∈Z )得, x ≠k π+π 4 ,k ∈Z ,

所以函数y =tan ????x +π4的定义域为xx ≠k π+π 4,k ∈Z ,其值域为(-∞,+∞). (2)由3-tan x ≥0得,tan x ≤ 3. 结合y =tan x 的图像可知,在????-π2,π 2上, 满足tan x ≤3的角x 应满足-π2a 的不等式的步骤: 【对点训练】 求函数y = 1 1+tan x 的定义域. 解:要使函数有意义,则有1+tan x ≠0, ∴tan x ≠-1,∴x ≠k π-π4且x ≠k π+π 2,k ∈Z . 因此,函数y = 1 1+tan x 的定义域为 ??? x ??? ?? x ≠k π-π4且x ≠k π+π2,k ∈Z . 题型二、正切函数的单调性及应用

相关文档
最新文档