参数方程的概念学案

参数方程的概念学案
参数方程的概念学案

参数方程的概念学案

第八大周 年级:高二 学科:数学(文) 主备人:张淑娜 审核人:王静

【学习目标】1.理解曲线参数方程的概念,体会实际问题中参数的意义;

2.能选取适当的参数,求简单曲线的参数方程。

【学习重点】曲线参数方程的定义及求法

【学习难点】曲线参数方程的探求。

一、【课前预习】

引例: 一架救援飞机在离灾区地面500m 高处以100m/s 的速度作水平直线飞行. 为使投放救援物资准确落于灾区指定的地面(不记空气阻力),飞行员应如何确定投放时机呢?救援物资做何运动?你能用物理知识解决这个问题吗?

思考交流:把引例中求出的物资运动轨迹的参数方程消去参数t 后,再将所得方程与原方

程进行比较,体会参数方程的作用。

二、【新知探究】

1、参数方程的概念

一般地, 在平面直角坐标系中,如果曲线上任意一点的坐标(x, y )都是某个变数t 的函数 ???

,并且对于t 的每一个允许值, 由方程组(1) 所确定的点M(x,y)都在这条曲线上, 那么方程(1) 就叫做这条曲线的_______________, 联系变数x,y 的变数t 叫做____________,简称________。

相对于参数方程而言,直接给出点的坐标间关系的方程叫做_______________。

2、关于参数几点说明:

(1)一般来说,参数的变化范围是有限制的。

(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。

3、求曲线的参数方程的一般步骤。

(1)建立直角坐标系,设曲线上任一点P 坐标为),(y x

(2)选取适当的参数

(3)根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式

(4)证明这个参数方程就是所由于的曲线的方程

三、【预习检测】

1、曲线2

1,(43x t t y t ?=+?=-?

为参数)与x 轴的交点坐标是( ) A 、(1,4) B 、25(,0)16± C 、25(,0)16

D 、(1,3)- 2、方程sin ,(cos x y θθθ=??=?

为参数)所表示的曲线上一点的坐标是( ) A 、(2,7) B 、12(,)33 C 、11(,)22

D 、(1,0)

3、已知曲线C 的参数方程是???==θ

θsin 2cos 3y x (θ为参数),当3π

θ=时,曲线上对应点的坐标 是 . 4、已知曲线C 的参数方程是???+==1

232t y t

x (t 为参数).

(1)判断点)1,0(1M ,)4,5(2M 与曲线C 的位置关系;

(2)已知点),6(3a M 在曲线C 上,求a 的值. 四、【典型例题】

【例1】已知曲线C 的参数方程是212,().x t t y at =+?∈?=?

为参数,a R ,点M(5,4)在该曲线上. (1)求常数a;(2)求曲线C 的普通方程.

【例2】动点M 作匀速直线运动,它在x 轴和y 轴方向的分速度分别为3m/s 和4m/s ,直角坐标系的长度单位是1m ,点M 的起始位置在点)1,2(0M 处,求点M 的轨迹的参数方程.

五、【课后检测】

1、物体从高处以初速度)/(0s m v 沿水平方向抛出.以抛出点

为原点,水平直线为x 轴,写出物体所经路线的参数方程.

2、已知曲线C 的参数方程是???-=+=θ

θsin 3sin 21y x (θ为参数,πθ20<<),试判断点)25,0(),3,1(B A 是否在曲线C 上.

3、在方程???+==θ

θθcos sin 2sin y x (θ为参数)所表示的曲线上的一点的坐标是( ) A .)3,1( B .)3,2( C .)2,21(- D .)2

1,43(- 4、方程sin cos 2x y θθ

=??

=?(θ为参数)所表示的曲线上的一点的坐标为( )

A .(2,7)-

B .12(,)33

C .11(,)22

D .(1,0) 5、曲线1xy =的参数方程是( ) A .1212x t y t -?=???=?

B .?????==ααsin 1sin y x

C .?????==ααcos 1cos y x

D .?????==ααtan 1tan y x 6、已知圆042

2=-+x y x ,在圆上任取一点P ,坐标原点为O ,设OP 的倾斜角为α,取α为

参数,求圆的参数方程。

. .

人教A版 参 数 方 程 学案

第二节参数方程 知识体系 必备知识 1.参数方程与普通方程 参数方程普通方程 变量间 的关系 曲线上任意点的坐标x,y都是某个 变数t的函数,t简称参数 曲线上任意点坐标x,y 间的关系 方程 表达式 F错误!未找到引用源。 =0 曲线的 方程、方 程的曲 线 (1)曲线上任意点的坐标x,y都是 参数t的函数 (2)对于t的每一个允许值确定的 点错误!未找到引用源。都在曲线 上 (1)曲线上点的坐标都 是方程的解 (2)以方程的解为坐标 的点都在曲线上 2.参数方程和普通方程的互化 (1)参数方程化普通方程:主要利用两个方程相加、减、乘、除或者代入法消去参数.

(2)普通方程化参数方程:如果x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),则得曲线的参数方程错误!未找到引用源。 3.直线、圆与椭圆的普通方程和参数方程 轨迹普通方程参数方程 直线 y-y0=tan α(x-x0) (t为参数) 圆(x-a)2+(y-b)2=r2 (θ为参数) 椭圆错误!未找到引用 源。+错误!未找到 引用源。=1 (a>b>0) (φ为参数) 基础小题 1.已知直线错误!未找到引用源。(t为参数),下列说法中正确的有 ( ) ①直线经过点(7,-1);②直线的斜率为错误!未找到引用源。;③直线不过第二象限;④|t|是定点M0(3,-4)到该直线上对应点M的距离. A.①② B.②③ C.①②④ D.①②③

【解析】选D.根据题意,直线错误!未找到引用源。(t为参数),其普通方程为y+4= 错误!未找到引用源。(x-3),对于①,(-1)+4=错误!未找到引用源。(7-3),即直线经过点(7,-1),①正确;对于②,直线的普通方程为y+4=错误!未找到引用源。(x-3),其斜率k=错误!未找到引用源。,②正确;对于③,直线的普通方程为y+4=错误!未找到引用源。(x-3),不经过第二象限,③正确;对于④,直线错误!未找到引用源。(t为参数),|5t|表示定点M0(3,-4)到该直线上对应点M的距离,④错误. 2.过点A(2,3)的直线的参数方程为错误!未找到引用源。(t为参数),若此直线与直线x-y+3=0相交于点B,则|AB|=________. 【解析】把错误!未找到引用源。代入直线x-y+3=0得t=2, 则交点为(4,7), 所以|AB|=错误!未找到引用源。=2错误!未找到引用源。. 答案:2错误!未找到引用源。 3.直线l的参数方程为错误!未找到引用源。(t为参数),求直线l的斜率. 【解析】将直线l的参数方程化为普通方程为 y-2=-3(x-1),因此直线l的斜率为-3. 4.已知直线l1:错误!未找到引用源。(t为参数)与直线 l2:错误!未找到引用源。(s为参数)垂直,求k的值. 【解析】直线l1的方程为y=-错误!未找到引用源。x+错误!未找到引用源。,斜率为-错误!未找到引用源。;

高三数学一轮复习 专题 直线的参数方程导学案

第三课时 直线的参数方程 一、教学目标: 知识与技能:了解直线参数方程的条件及参数的意义 过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二重难点:教学重点:曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法:启发、诱导发现教学. 四、教学过程 (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程。 圆222r y x =+参数方程? ? ?==θθ sin cos r y r x (θ为参数) (2)圆22020)\()(r y y x x =+-参数方程为:???+=+=θ θ sin cos 00r y y r x x (θ为参数) 2.写出椭圆参数方程. 3.复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参数方程? (二)、讲解新课: 1、问题的提出:一条直线L 的倾斜角是0 30 ,并且经过点P (2,3),如何描述直线L 上任意点的位置呢? 如果已知直线L 经过两个 定点Q (1,1),P (4,3), 那么又如何描述直线L 上任意点的 位置呢? 2、教师引导学生推导直线的参数方程: (1)过定点),(00y x P 倾斜角为α的直线的 参数方程

?? ?+=+=α α sin cos 00t y y t x x (t 为参数) 【辨析直线的参数方程】:设M(x,y)为直线上的任意一点,参数t 的几何意义是指从点P 到点M 的位移,可以用有向线段PM 数量来表示。带符号. (2)、经过两个定点Q 1 1 ( ,)y x ,P 2 2 (,)y x (其中12x x ≠)的直线的参数方程为 12112 1(1){ x X y y x y λλ λλλλ++++= =≠-为参数,。其中点M(X,Y)为直线上的任意一点。这里 参数λ的几何意义与参数方程(1)中的t 显然不同,它所反映的是动点M 分有向线段QP 的 数量比QM MP 。当o λ >时,M 为内分点;当o λ<且1λ≠-时,M 为外分点;当o λ=时, 点M 与Q 重合。 例题演练: 例1、 已知直线l :10x y +-=与抛物线2 y x =相交于A,B 两点,求线段AB 的长和点 M (1,2)-到A,B 两点的距离之积。 例2、 经过点M(2,1)作直线l ,交椭圆 22 1164 x y +=于A,B 两点,如果点M 恰好为线段AB 的中点,求直线l 的方程。

2019高考数学考点突破——选考系列参数方程学案

参数方程 【考点梳理】 1.曲线的参数方程 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数 ? ?? ?? x =f t ,y =g t 并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲 线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数. 2.参数方程与普通方程的互化 通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例 如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么? ?? ?? x =f t ,y =g t 就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致. 3.常见曲线的参数方程和普通方程 点的轨迹 普通方程 参数方程 直线 y -y 0=tan α(x -x 0) ? ?? ?? x =x 0+t cos α, y =y 0+t sin α(t 为参数) 圆 x 2+y 2=r 2 ? ?? ?? x =r cos θ,y =r sin θ(θ为参数) 椭圆 x 2a 2+y 2 b 2 =1(a >b >0) ? ?? ?? x =a cos φ,y =b sin φ(φ为参数) 考点一、参数方程与普通方程的互化 【例1】已知曲线C 1:?????x =-4+cos t ,y =3+sin t (t 为参数),C 2:? ????x =8cos θ,y =3sin θ(θ为参数). (1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 1上的点P 对应的参数为t =π 2 ,Q 为C 2上的动点,求PQ 的中点M 到直线C 3:

《参数方程和普通方程的互化》导学案3

《参数方程和普通方程的互化》导学案3 1. 了解参数方程化为普通方程的意义. 2 ?理解参数方程与普通方程的互相转化与应用. 课标解读 3 .掌握参数方程化为普通方程的方法 知识梳理 参数方程与普通方程的互化 (1) 曲线的参数方程和普通方程是曲线方程的不同形式?一般地,可以通过消去参数从参数方程得到普通方程. (2) 如果知道变数x, y中的一个与参数t的关系,例如x =f(t),把它代入普通方程, |x= f t 求出另一个变数与参数的关系y= g(t),那么就是曲线的参数方程.在参数 i y= g t 方程与普通方程的互化中,必须使x, y的取值范围保持一致. 思考探究 普通方程化为参数方程,参数方程的形式是否惟一? 【提示】不一定惟一.普通方程化为参数方程,关键在于适当选择参数,如果选择的参 数不同,那么所得的参数方程的形式也不同 课堂互动 |x= a+1 cos 0 , 例题1在方程y= ?+ t sin 0, (a,b为正常数)中, (1) 当t为参数,0为常数时,方程表示何种曲线?

(2) 当t为常数,0为参数时,方程表示何种曲线?

非零常数时,利用平方关系消参数 0,化成普通方程,进而判定曲线形状. x = a + t cos 0 , ① 【自主解答】 方程* (a , b 是正常数), |y = b + t sin 0 , ② (1) ①x sin 0 —②x cos 0 得 x sin 0 — y cos 0 — a sin 0 + b cos 0 = 0. ■/ cos 0、sin 0不同时为零, ???方程表示一条直线. (2) ( i )当t 为非零常数时, 即(x — a )2+ (y — b )2= t 2,它表示一个圆. (ii)当t = 0时,表示点(a , b ). 1?消去参数的常用方法 将参数方程化为普通方程, 关键是消去参数,如果参数方程是整式方程, 常用的消元法 有代入消元法、加减消元法.如果参数方程是分式方程, 在运用代入消元或加减消元之前要 做必要的变形?另外,熟悉一些常见的恒等式至关重要,如 sin 2a+ cos 2a = 1,(e X + e — x )2 2 x —x 2 1 — k 2 2k 2 -(e -e ) =4,("+ E=1 等. 2?把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普 通方程中x 及y 的取值范围的影响.本题启示我们,形式相同的方程,由于选择参数的不同, 可表示不同的曲线. 将下列参数方程分别化为普通方程,并判断方程所表示曲线的形状: x = 2cos 0 ⑴彳 (0为参数,0W 0 < n ); |y = 2s in 0 r 4 4 x = sin 0 + cos 0 ⑵f . 2 2 ( 0为参数); |y = 1 — 2sin 0 cos 0 2 2 x — a ③2+④得 —cos 0, —sin 0 . 2 y — b 2 ■=1, ④ 「X — a I t 原方程组为\ ¥

人教版数学高一必修2学案4.1.2圆的一般方程

4.1.2圆的一般方程 基础梳理 1.圆的一般方程的定义. 当D2+E2-4F>0时,二元二次方程x2+y2+Dx+Ey+F=0称为圆的一般方程. 2.方程x2+y2+Dx+Ey+F=0表示的图形. 3.由圆的一般方程判断点与圆的位置关系. 已知点M(x0,y0)和圆的方程x2+y2+Dx+Ey+F=0.则其位置关系如下表:

练习1:二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0在什么条件下表示圆的方程? 答案:A=C≠0,B=0且D2+E2-4AF>0 练习2:圆x2+y2-2x+10y-24=0的圆心为(1,-5),半径为 ?思考应用 1.圆的标准方程与圆的一般方程各有什么特点? 解析:圆的标准方程(x-a)2+(y-b)2=r2明确了圆心和半径,方程左边为平方和,右边为一个正数,且未知数的系数为1;一般方程体现了二元二次方程的特点,但未明确圆心和半径,需计算得到.当二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0中的系数A=C≠0,B=0,D2+E2-4AF>0时,二元二次方程就是圆的一般方程. 2.求圆的方程常用“待定系数法”,“待定系数法”的一般步骤是什么? 解析:(1)根据题意选择方程的形式——标准方程或一般方程; (2)根据条件列出关于a、b、r或D、E、F的方程组; (3)解出a、b、r或D、E、F,代入标准方程或一般方程.

自测自评 1.圆x 2+y 2+4x -6y -3=0的圆心和半径分别为(C ) A .(4,-6),r =16 B .(2,-3),r =4 C .(-2,3),r =4 D .(2,-3),r =16 解析:由圆的一般方程可知圆心坐标为(-2,3), 半径r =1242+(-6)2+12=4. 2.如果方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F>0)所表示的曲线关于y =x 对称,则必有(A ) A .D =E B .D =F C .F =E D .D = E = F 解析:由题知圆心? ?? ??-D 2,-E 2在直线y =x 上,即-E 2=-D 2,∴D =E. 3.若方程x 2+y 2-4x +2y +5k =0表示圆,则实数k 的取值范围是(B ) A .R B .(-∞,1) C .(-∞,1] D .[1,+∞) 解析:由D 2+E 2-4F =(-4)2+22-4×5k =20-20k >0得k <1. 4.圆心是(-3,4),经过点M (5,1)的圆的一般方程为x 2+y 2+6x -8y -48=0. 解析:圆的半径r =(-3-5)2+(4-1)2=73, ∴圆的标准方程为(x +3)2+(y -4)2=73,

直线的参数方程和应用(学案)

直线的参数方程及应用 目标点击: 1.掌握直线参数方程的标准形式和一般形式,理解参数的几何意义; 2.熟悉直线的参数方程与普通方程之间的互化; 3.利用直线的参数方程求线段的长,求距离、求轨迹、与中点有关等问题; 基础知识点击: 1、直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ???+=+=α αsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=2 21t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向)过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数, x

极坐标参数方程导学案(一)

极坐标参数方程复习学案(一) 【高考要求】:(1)坐标系 ①理解坐标系的作用②了解在平面直角坐标系伸缩变换作用下平面图形的变 化情况③能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角 坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化④能在极坐标 中给出简单图形的方程,通过比较这些图形在极坐标系和平面直角坐标系中的 方程。理解用方程表示平面图形时选择适合坐标系的意义 (2)参数方程 ①了解参数方程,了解参数的意义 ②能选择适当的参数写出直线、圆和圆锥曲线的参数方程 【教学目标】: 1、知识与技能:理解极坐标的概念,会正确进行点的极坐标与直角坐标的互化,会正确将 极坐标方程化为直角坐标方程,会根据所给条件建立直线、圆锥曲线的极 坐标方程,不要求利用曲线方程或极坐标方程求两条曲线的交点。 } 2、过程与方法:在坐标系的教学中,可以引导学生自己尝试建立坐标系,说明建立坐标系 的原则,激励学生的发散思维和创新思维,并通过具体实例说明这样建立 坐标系有哪些方便之处。 3、情感、态度与价值观:体会从实际问题中抽象出数学问题的过程,培养探究数学问题的 兴趣和能力,体会数学在实际中的应用价值,提高应 用意识和实 践能力。 【自主探究】 已知直线l 的极坐标方程为sin()63πρθ-=,圆C 的参数方程为10cos 10sin x y θθ =??=?. (1)化直线l 的方程为直角坐标方程; (2)化圆的方程为普通方程; (3)求直线l 被圆截得的弦长. )

【巩固练习】 1、已知直线l 经过点(1,1)P ,倾斜角6πα=,设l 与曲线2cos 2sin x y θθ=??=?(θ为参数)交于两点,A B ,求(1)|PA||PB|,|PA|+|PB|的值; (2)弦长|AB|; (3) 弦AB 中点M 与点P 的距离。 , 、

人教版高中数学《圆的标准方程》教案导学案

圆的标准方程 一、教学目标 (一)知识教学点 使学生掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程. (二)能力训练点 通过圆的标准方程的推导,培养学生利用求曲线的方程的一般步骤解决一些实际问题的能力. (三)学科渗透点 圆基于初中的知识,同时又是初中的知识的加深,使学生懂得知识的连续性;通过圆的标准方程,可解决一些如圆拱桥的实际问题,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想教育. 二、教材分析 1.重点:(1)圆的标准方程的推导步骤;(2)根据具体条件正确写出圆的标准方程. (解决办法:(1)通过设问,消除难点,并详细讲解;(2)多多练习、讲解.) 2.难点:运用圆的标准方程解决一些简单的实际问题. (解决办法:使学生掌握分析这类问题的方法是先弄清题意,再建立适当的直角坐标系,使圆的标准方程形式简单,最后解决实际问题.) 三、活动设计 问答、讲授、设问、演板、重点讲解、归纳小结、阅读. 四、教学过程 (一)复习提问 前面,大家学习了圆的概念,哪一位同学来回答?

问题1:具有什么性质的点的轨迹称为圆? 平面内与一定点距离等于定长的点的轨迹称为圆(教师在黑板上画一个圆).问题2:图2-9中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点? 圆心C是定点,圆周上的点M是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小. 问题3:求曲线的方程的一般步骤是什么?其中哪几个步骤必不可少? 求曲线方程的一般步骤为: (1)建立适当的直角坐标系,用(x,y)表示曲线上任意点M的坐标,简称建系设点;图2-9 (2)写出适合条件P的点M的集合P={M|P(M)|},简称写点集; (3)用坐标表示条件P(M),列出方程f(x,y)=0,简称列方程; (4)化方程f(x,y)=0为最简形式,简称化简方程; (5)证明化简后的方程就是所求曲线的方程,简称证明. 其中步骤(1)(3)(4)必不可少. 下面我们用求曲线方程的一般步骤来建立圆的标准方程.

参数方程的概念学案

参数方程的概念学案 第八大周 年级:高二 学科:数学(文) 主备人:张淑娜 审核人:王静 【学习目标】1.理解曲线参数方程的概念,体会实际问题中参数的意义; 2.能选取适当的参数,求简单曲线的参数方程。 【学习重点】曲线参数方程的定义及求法 【学习难点】曲线参数方程的探求。 一、【课前预习】 引例: 一架救援飞机在离灾区地面500m 高处以100m/s 的速度作水平直线飞行. 为使投放救援物资准确落于灾区指定的地面(不记空气阻力),飞行员应如何确定投放时机呢?救援物资做何运动?你能用物理知识解决这个问题吗? 思考交流:把引例中求出的物资运动轨迹的参数方程消去参数t 后,再将所得方程与原方 程进行比较,体会参数方程的作用。 二、【新知探究】 1、参数方程的概念 一般地, 在平面直角坐标系中,如果曲线上任意一点的坐标(x, y )都是某个变数t 的函数 ??? ,并且对于t 的每一个允许值, 由方程组(1) 所确定的点M(x,y)都在这条曲线上, 那么方程(1) 就叫做这条曲线的_______________, 联系变数x,y 的变数t 叫做____________,简称________。 相对于参数方程而言,直接给出点的坐标间关系的方程叫做_______________。 2、关于参数几点说明: (1)一般来说,参数的变化范围是有限制的。 (2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。 3、求曲线的参数方程的一般步骤。 (1)建立直角坐标系,设曲线上任一点P 坐标为),(y x (2)选取适当的参数 (3)根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式 (4)证明这个参数方程就是所由于的曲线的方程 三、【预习检测】 1、曲线2 1,(43x t t y t ?=+?=-? 为参数)与x 轴的交点坐标是( ) A 、(1,4) B 、25(,0)16± C 、25(,0)16 D 、(1,3)- 2、方程sin ,(cos x y θθθ=??=? 为参数)所表示的曲线上一点的坐标是( ) A 、(2,7) B 、12(,)33 C 、11(,)22 D 、(1,0)

导学案:参数方程与普通方程的互化(可编辑修改word版)

? + = 2 课题:参数方程与普通方程的互化 【学习目标】 1. 进一步理解参数方程的概念及参数的意义。 2. 能通过消去参数将参数方程化为普通方程,由普通方程识别曲线的类型 3. 能选择适当的参数将普通方程化成参数方程 【重点、难点】 参数方程和普通方程的等价互化。 自主学习案 【问题导学】阅读课本 P24—P26,然后完成下列问题: 1. 参数方程的概念 (1) 在平面直角坐标系中,如果曲线上任意一点的坐标 x 、 y 都是某个变数t ? x = f (t ) 的函数? y = g (t ) (t ∈ D ) , 并且对于 t 的每一个允许值,由方程组所确定的点 M (x,y )都在这条曲线上,那么方程就叫这条曲线的 ,联系变数 x 、 y 的变数 t 叫做 ,简称 。相对于参数方程而言,直接给出点的坐标间关系的方程 F (x , y ) = 0 叫做 。 (2) 是联系变数 x,y 的桥梁,可以是一个有 意义或 意义的 变数,也可以是 的变数。 2、 ( 1) 圆 心 在 原 点 O , 半 径 为 r 的 圆 的 一 个 参 数 方 程 是 ; (2)圆(x - a )2 + ( y - b )2 = r 2 的一个参数方程是 . 3、指出下面的方程各表示什么样的曲线: (1)2x+y+1=0 表示 (2) y = 3x 2 + 2x +1 表示 2 (3) x y 1表示 9 4

t ? (4) ?x = cos + 3(为参数) 表示 ? y = sin 【预习自测】把下列参数方程化为普通方程,并说明它们各表示什么曲线? ?x = t +1 ?x = 2 c os 1、? y = 1- 2t (t 为参数) 2、? y = sin (为参数) ? ? 思考: 1、通过什么样的途径,能从参数方程得到普通方程? 2、在参数方程与普通方程互化中,要注意哪些方面? 合作探究案 考向一、参数方程化普通方程 例 1.把下列参数方程化为普通方程,并说明它们各表示什么曲线 (1) ??x = ? + 1 ?x = sin + cos (t 为参数) (2) ? y = 1 + sin 2 (为参数) ?? y = 1 - 2 ? 小结: t

2017参数方程学案.doc

第2讲 参数方程 【考情分析】 考查直线、圆和圆锥曲线的参数方程以及简单的应用问题. 基础梳理 1.参数方程的意义 在平面直角坐标系中,如果曲线上的任意一点的坐标x ,y 都是某个变量的函数??? x =f (t ),y =f (t ), 并且对于t 的每个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,则该方程叫曲线的参数方程,联系变数x ,y 的变数t 是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.常见曲线的参数方程的一般形式 (1)经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程为??? x =x 0+t cos α, y =y 0+t sin α(t 为参 数). 设P 是直线上的任一点,则t 表示有向线段P 0P → 的数量. (2)圆的参数方程??? x =r cos θ, y =r sin θ(θ为参数). (3)圆锥曲线的参数方程 椭圆x 2a 2+y 2 b 2=1的参数方程为??? x =a cos θ,y =b sin θ(θ为参数). 双曲线x 2a 2-y 2 b 2=1的参数方程为??? x =a sec φ,y =tan φ(φ为参数). 抛物线y 2=2px 的参数方程为??? x =2pt 2,y =2pt (t 为参数). 双基自测 1.极坐标方程ρ=cos θ和参数方程??? x =-1-t , y =2+t (t 为参数)所表示的图形分别 是( ).

A .直线、直线 B .直线、圆 C .圆、圆 D .圆、直线 解析 ∵ρcos θ=x ,∴cos θ=x ρ代入到ρ=cos θ,得ρ=x ρ,∴ρ2=x ,∴x 2+y 2=x 表示圆. 又∵??? x =-1-t ,y =2+t ,相加得x +y =1,表示直线. 答案 D 2.若直线??? x =1-2t , y =2+3t (t 为实数)与直线4x +ky =1垂直,则常数k =________. 解析 参数方程??? x =1-2t , y =2+3t ,所表示的直线方程为3x +2y =7,由此直线与直线 4x +ky =1垂直可得-32×? ???? -4k =-1,解得k =-6. 答案 -6 3.二次曲线??? x =5cos θ, y =3sin θ(θ是参数)的左焦点的坐标是________. 解析 题中二次曲线的普通方程为x 225+y 2 9=1左焦点为(-4,0). 答案 (-4,0) 4.(2011·广州调研)已知直线l 的参数方程为:??? x =2t , y =1+4t (t 为参数),圆C 的极 坐标方程为ρ=22sin θ,则直线l 与圆C 的位置关系为________. 解析 将直线l 的参数方程:??? x =2t , y =1+4t 化为普通方程得,y =1+2x ,圆ρ=22 sin θ的直角坐标方程为x 2+(y -2)2=2,圆心(0,2)到直线y =1+2x 的距离为 2-1 1+4 ,因为该距离小于圆的半径,所以直线l 与圆C 相交. 答案 相交

直线的参数方程导学案

《直线的参数方程》导学案 紫云民族高级中学高二数学组 学习目标: 1、了解直线的参数方程及参数的的意义 2、能选取适当的参数,求直线的参数方程 教学重点:联系数轴、向量等知识,写出直线的参数方程. 教学难点:通过向量法,建立参数t (数轴上的点坐标)与点在直角坐标系中的坐标,x y 之间的联系. 一、回忆旧知,做好铺垫 1.→a 与→b 共线向量的充要条件是什么?________________________ 2.直线l 的方向向量怎样表示?________________________ 3.什么是单位向量?________________________ 4.斜率存在且为k 的直线l 的方向向量怎样表示?________________________ 5.倾斜角为α的直线l 的单位方向向量怎样表示?________________________ 6直线方程的有几种形式? 二直线参数方程探究 问题1:经过点M(x0,y0),倾斜角为 ??? ??≠2παα 的直线l 的 普通方程是________________________; 合作探究:过定点0M ),(00y x ,倾斜角为α的直线l 的参数方程如何建立?

得出结论:定点 ) ,(000y x M 倾斜角 α直线的参数方程为 观察直线的参数方程,知道那些量可以把直线的参数方程写出来? 练一练 1.写出满足下列条件直线的参数方程: (1)过点(2,3)倾斜角为4π (2)过点(4,0)倾斜角为32π

知识探究一: 由 t M 0 ,你能得到直线l 的参数方程中参数t 的几何 意义吗? 知识探究二: 如图所示:请讨论参数t 的符号; 利用t 的几何意义,如何求过M0直线上两点AB 的距离? 点A,点B 在M0同侧点A,点B 在M0异侧 e

高中数学《圆的标准方程》导学案

2.1 圆的标准方程 [学习目标] 1.会用定义推导圆的标准方程;掌握圆的标准方程的特点. 2.会根据已知条件求圆的标准方程. 3.能准确判断点与圆的位置关系. 【主干自填】 1.确定圆的条件 (1)几何特征:圆上任一点到圆心的距离等于□01定长. (2)确定圆的条件:□02圆心和□03半径. 2.圆的标准方程 (1)以C (a ,b )为圆心,半径为r □ 04(x -a )+(y -b )=r . (2)当圆心在坐标原点时,半径为r 的圆的标准方程为□05x +y =r . 3.中点坐标 A (x 1,y 1), B (x 2,y 2)的中点坐标为□06? ????x 1+x 22,y 1+y 22. 4.点与圆的位置关系 点与圆有三种位置关系,即点在圆外、点在圆上、点在圆内,判断点与圆的位置关系有两种方法: (1)几何法:将所给的点M 与圆心C 的距离跟半径r 比较: 若|CM |=r ,则点M 在□07圆上; 若|CM |>r ,则点M 在□08圆外; 若|CM |

(2)代数法:可利用圆C的标准方程(x-a)2+(y-b)2=r2来确定: 点M(m,n)在□10圆上?(m-a)2+(n-b)2=r2; 点M(m,n)在□11圆外?(m-a)2+(n-b)2>r2; 点M(m,n)在□12圆内?(m-a)2+(n-b)2

2017参数方程学案

第2讲 参数方程 【考情分析】 考查直线、圆和圆锥曲线的参数方程以及简单的应用问题. 基础梳理 1.参数方程的意义 在平面直角坐标系中,如果曲线上的任意一点的坐标x,y都是某个变量的函数并且对于t的每个允许值,由方程组所确定的点M(x,y)都在这条曲线上,则该方程叫曲线的参数方程,联系变数x,y的变数t是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.常见曲线的参数方程的一般形式 (1)经过点P0(x0,y0),倾斜角为α的直线的参数方程为(t为参数). 设P是直线上的任一点,则t表示有向线段的数量. (2)圆的参数方程(θ为参数). (3)圆锥曲线的参数方程 椭圆+=1的参数方程为(θ为参数). 双曲线-=1的参数方程为(φ为参数). 抛物线y2=2px的参数方程为(t为参数). 双基自测 1. 极坐标方程ρ=cos θ和参数方程(t为参数)所表示的图形分别是( ). A.直线、直线 B.直线、圆 C.圆、圆 D.圆、直线 解析 ∵ρcos θ=x,∴cos θ=代入到ρ=cos θ,得ρ=,∴ρ2=x,∴x2+y2=x表示圆. 又∵相加得x+y=1,表示直线. 答案 D

2.若直线(t为实数)与直线4x+ky=1垂直,则常数k=________. 解析 参数方程所表示的直线方程为3x+2y=7,由此直线与直线4x +ky=1垂直可得-×=-1,解得k=-6. 答案 -6 3.二次曲线(θ是参数)的左焦点的坐标是________. 解析 题中二次曲线的普通方程为+=1左焦点为(-4,0). 答案 (-4,0) 4.(2011·广州调研)已知直线l的参数方程为:(t为参数),圆C的极坐标方程为ρ=2sin θ,则直线l与圆C的位置关系为________. 解析 将直线l的参数方程:化为普通方程得,y=1+2x,圆ρ=2sin θ的直角坐标方程为x2+(y-)2=2,圆心(0,)到直线y=1+2x的距离为,因为该距离小于圆的半径,所以直线l与圆C相交. 答案 相交 5.(2011·广东)已知两曲线参数方程分别为(0≤θ<π)和(t∈R),它们的交点坐标为________. 解析 由(0≤θ<π)得,+y2=1(y≥0)由(t∈R)得,x=y2,∴5y4+16y2-16=0. 解得:y2=或y2=-4(舍去). 则x=y2=1又θ≥0,得交点坐标为. 答案  考向一 参数方程与普通方程的互化 【例1】?把下列参数方程化为普通方程: (1) (2) [审题视点] (1)利用平方关系消参数θ; (2)代入消元法消去t. 解 (1)由已知由三角恒等式cos2θ+sin2θ=1,

圆和椭圆的参数方程导学案

x θ y M 圆与椭圆的参数方程导学案 教学目标: 知识与技能:了解圆与椭圆的参数方程及参数的的意义; 过程与方法:能选取适当的参数,求圆与椭圆的参数方程,利用参数方程求最值; 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识. 教学重点:圆、椭圆参数方程的定义与应用. 教学难点:选择适当的参数写出圆、椭圆的的参数方程,并利用其求最值. 问题1.回顾圆的标准方程 . 问题2.推导圆心为原点,半径为r 的圆的参数方程: 在圆上任取点(,)M x y ,试用θ表示x 与y : 其中参数θ的几何意义为: . 问题3. 怎样得到圆心在1(,)O a b ,半径为r 的圆的参数方程? 问题4.圆的参数方程的应用: 1.圆O 的半径为2,P 是圆上的动点,Q (6,0) 是x 轴上的定点,M 是PQ 的中点.当点P 绕O 作匀速圆周运动时,求点M 的轨迹的参数方程. 2. 已知(,)P x y 是圆C :2264120x y x y +--+=上的点。 (1)求x y -的最大值与最小值; (2)求22x y +的最大值与最小值. (3)求 y x 的最小值与最大值;

问题5: 你能仿照圆的参数方程猜想出椭圆 的参数方程吗? 如下图,以原点为圆心,分别以,(0)a b a b >>为半径作两个圆,点B 是大圆半径OA 与小圆的交点,过点A 作AN ⊥Ox ,垂足为N ,过点B 作BM ⊥AN ,垂足为M ,半径OA 绕点O 旋转,(1)试用半径OA 的旋转角?表示出点M 的横纵坐标x ,y ,由此得参数方程; (2)试消掉(1)中的参量?,得出点M 的轨迹方程。 问题6: 你能仿照问题5写出椭圆 (0a b >>)的参数方程吗? 问题7:椭圆 的参数方程为 的几何意义是什么? 1.在椭圆的参数方程中,常数a 、b 分别是椭圆的 和 . (其中a>b ) 2.?称为离心角,规定参数?的取值范围是 问题8:椭圆的参数方程的应用: 在椭圆2288x y +=上求一点P ,使P 到直线l :40x y -+=的距离最小.(可以选择不同的解法) ?,,b a )0(122 22>>=+b a b y a x 其中为参数)(sin cos ?? ????==b y a x )0 (12222>>=+b a b y a x O A M x y N B 122 22=+a y b x

最新椭圆及其标准方程导学案

2.2.1 椭圆及其标准方程 【学法指导】1.仔细阅读教材(P38—P41),独立完成导学案,规范书写,用 红色笔勾画出疑惑点,课上讨论交流。 2.通过动手画出椭圆图形,研究椭圆的标准方程。 【学习目标】1.掌握椭圆的定义,标准方程的两种形式及推导过程。 2.会根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆 的标准方程。 【学习重、难点】 学习重点:椭圆的定义和椭圆的标准方程. 学习难点:椭圆的标准方程的推导,椭圆的定义中常数加以限制的原因. 【预习案】 预习一:椭圆的定义(仔细阅读教材P38,回答下列问题) 1.取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 . 点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什 么曲线 在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数. 2.平面内与两个定点1F ,2F 的 的点的轨迹叫做椭圆。这两个定点叫做椭圆的 , 叫做椭圆的焦距。 3.将“大于|1F 2F |”改为“等于|1F 2F |”的常数,其他条件不变,点的轨迹 是 将“大于|1F 2F |”改为“小于|1F 2F |”的常数,其他条件不变,点的轨

迹存在吗? 结论:在椭圆上有一点P ,则|1PF |+|2PF |= (a 2>|1F 2F | )。 a 2>|1F 2F |时,点的轨迹为 ; a 2=|1F 2F |时,点的轨迹为 ; a 2<|1F 2F |时,点的轨迹 。 预习二:椭圆的标准方程(仔细阅读教材P40,回答下列问题) 结论:2x ,2y 分母的大小,哪个分母大,焦点就在哪个坐标轴上。 【探究案】 探究一、椭圆定义的应用 设P 是椭圆11625 2 2=+y x 上的任意一点,若1F 、2F 是椭圆的两个焦点,则21PF PF +等于( ) A.10 B.8 C.5 D.4 (解法指导:椭圆的标准方程找到a ,根据|1PF |+|2PF |=a 2。) 解:椭圆中=2a ,a 2= 。 由椭圆的定义知21PF PF += = 。

《抛物线的参数方程》教学案2

《抛物线的参数方程》教学案2 教学目标: 1.知识与技能: 理解抛物线的参数方程,掌握参数方程的应用. 2.过程与方法: 通过学习圆锥曲线的参数方程,得出参数方程与普通方程互化的方法. 3.情感、态度与价值观: 通过本节课的学习,体会数学的现实应用价值,从而提高学习数学的兴趣,坚定信心. 重点难点 能用抛物线的参数方程处理有关问题. 教学过程 问题引入 前面曾经得到以时刻t 作参数的抛物线的参数方程: 210015002x t y gt =???=-?? (t 为参数,且0≤t 对于一般抛物线,怎样建立相应的参数方程呢? 课堂互动 复习抛物线的标准方程的四种形式,并填空: (1) 22(0)y px p =>表示顶点在 , 焦点在 的抛物线; (2)22(0)x py p =->表示顶点在 , 焦点在 的抛物线。 典型例题

例1?O 是直角坐标原点,A ?B 是抛物线 22y px =(p >0)上异于顶点的两动点,且OA ⊥OB ,OM ⊥AB 并与AB 相交于点M ,求点M 的轨迹方程. 变式:设抛物线 22y px =的准线为l ,焦点为F ,顶点为O ,P 为抛物线上任一点,PQ ⊥l 与Q ,求QF 与OP 的交点M 的轨迹方程. 课堂作业 1. 若点(3,)P m 在以点F 为焦点的抛物线2 4()4x t t y t ?=?=?为参数上,则PF 等于 ( C ) A .2 B .3 C .4 D .5 2. 抛物线22x m y m =??=-?(m 为参数)的焦点坐标是 ( B ) A .(1,0)- B .(0,1)- C .(0,2)- D .(2,0)- 3. 已知曲线2 2()2x pt t p y pt ?=?=?为参数为正常数,上的两点,M N 对应的参数分别为 12t t 和,120t t +=且,那么MN = ( C ) A .1p t B .12p t C .14p t D .18p t 4. 若曲线2 22x pt y pt ?=?=?(t 为参数)上异于原点的不同的两点1M 、2M 所对应的参 数分别是1t 、2t ,求12M M 所在直线的斜率. 课后作业 书本

高考数学总复习 圆的一般方程学案

河北省二十冶综合学校高中分校高考数学总复习圆的一般方程学案【学习目标】 【学习重难点】 重点:(1)能用配方法,由圆的一般方程求出圆心坐标和半径; (2)能用待定系数法,由已知条件导出圆的方程. 难点:圆的一般方程的特点. 【学习过程】 (一)检查预习、交流展示 写出圆的标准方程,并指出圆心和半径。 (二)合作探究、精讲精练 探究一:圆的一般方程的定义 1.分析方程x+y+Dx+Ey+F=0表示的轨迹 将方程x+y+Dx+Ey+F=0左边配方得: (1) (1)当D+E-4F>0时,方程(1)与标准方程比较,可以看出方程 半径的圆; (3)当D+E-4F<0时,方程x+y+Dx+Ey+F=0没有实数解,因而它不表示任何图形. 2.引出圆的一般方程的定义 当D+E-4F>0时,方程x+y+Dx+Ey+F=0称为圆的一般方程. 探究二:圆的一般方程的特点

当二元二次方程 Ax+Bxy+Cy+Dx+Ey+F=0具有条件: (1)x和y的系数相同,不等于零,即A=C≠0 (2)没有xy项,即B=0; (3)D+E-4AF>0. 它才表示圆.条件(3)通过将方程同除以A或C配方不难得出. 强调指出: (1)条件(1)、(2)是二元二次方程(2)表示圆的必要条件,但不是充分条件; (2)条件(1)、(2)和(3)合起来是二元二次方程(2)表示圆的充要条件. 例1 求下列圆的半径和圆心坐标: (1)x+y-8x+6y=0,(2)x+y+2by=0. 练习:下列方程各表示什么图形? 例2求过三点O(0,0)、A(1,1)、B(4,2)的圆的方程. (三)课堂小结: 1.圆的一般方程的特点. 2.能用待定系数法,由已知条件导出圆的方程.

参数方程学案

选修系列4-4参数方程导学案 心学习目标 1.了解直线的参数方程以及参数t的几何的意义. 2.熟练掌握参数方程和普通方程的互化. 3.会利用直线参数方程中参数的几何意义解决有关距离问题. 4.会利用圆、椭圆的参数方程,解决有关的最值问题 一、课前学案基础盘点: 1、参数方程的概念 般地,在平面直角坐标系中,如果曲线上任意一点的坐标X, y都是某个变数t的函数[x —f t)①,并且对于t的每一个允许值, L y —g(t) 由方程组①所确定的点M(x , y)都在这条曲线上,那么方程①就叫做 这条曲线的,联系变数x, y的叫做参变数,简,相对于参数方程而言,直接给出点的坐标间关系的方程叫 2、圆的参数方程 圆心在坐标原点半径为r的圆x2+y2=r2的参数方程为 f x= rcos 0 i . A ( 0为参数).圆心为(a, b),半径为r的圆l y= rsin 0 (x —a)2+ (y —b)2= r2的参数方程为:_ . 3、椭圆的参数方程 以坐标原点0为中心,焦点在x轴上的椭圆的标准方程的标准

f x = acos 6 (a >b >0) )其参数方程为l y ^bsin 6 ( 6 为参数),其中 f x = bcos 6 b >0) ,其参数方程为b^asin 6( 6 为参数) ,其中参数6 为离心角, 通常规定参数?的范围为?€ [0,2 n.) 4、直线的参数方程 方程中参数t 的几何意义: 二. 课堂探究考点突破 考点一.参数方程化普通方程。 【例1】把下列参数方程化为普通方程,并说明它们各表示什么曲线: (X = 5cos? 〔X = 1 - 3t 叫y = 4sin?严参数);叫y=4t 考点二.直线参数方程的有关应用 【例2】已知直线I 经过点P (1,1),倾斜角a (1)写出直线I 的参数方程; (2)设l 与圆X 2 +y 2 =4相交于两点A 、B ,求〔AB] r 1 X = 1 + — t , 2 (t 为参数),曲线 V 3 + X 2 t . 方程 参数?称为离心角;焦点在y 轴上的椭圆的标准方程是 (a > 经过点M (x 0, y o ),倾斜角为 I 的普通方程是y —y o = tan — x o ),它的参数方程为 .直线的参数 (t 为参数) 【例2的变式训练】:已知直线G : <

相关文档
最新文档