海上风电发展防腐蚀技术

海上风电发展防腐蚀技术
海上风电发展防腐蚀技术

海上风电发展防腐蚀技术

在能源日益紧张的今天,风力发电由于高效清洁,越来越受到人们的青睐。随着国家有关部门将对海上风电的规划和建设工作部署的展开,我国海上风电发展的帷幕正式拉开。海上风电极易遭到腐蚀经过10多年的发展,世界海上风电技术日趋成熟,已经进入大规模开发阶段。而中国还处于起步阶段,有着巨大的发展空间。一方面,中国拥有十分丰富的近海风资源。有数据显示,我国近海10米水深的风能资源约1亿千瓦,近海20米水深的风能资源约3亿千瓦,近海30米水深的风能资源约4.9亿千瓦。另一方面,东部沿海地区经济发达,能源紧缺,开发丰富的海上风能资源将有效改善能源供应情况。因此,开发海上风电已经成为我国能源战略的一个重要内容。但事实上,我国尚缺乏海上风电建设经验,海上风能资源测量与评估以及海上风电机组国产化刚刚起步,海上风电建设技术规范体系也亟需建立。其中海上风电防腐蚀技术相关标准的匮乏就是一个严重问题。记者在采访中了解到,由于海上含盐分比较高,对设备腐蚀相当严重。而风电机组不同于海上钻井平台,受到腐蚀时可以随时修补,海上风电机组由于其特殊的地理环境和技术要求,维修费用极高。国家能源局可再生能源司副司长史立山认为,海上风电机组面临的最大问题就是抗腐蚀,他说:“与陆上风电相比,海上风电的运行环境更复杂,技术要求更高,施工难度更大。对于风机而言最大的问题在于抗腐蚀抗盐雾以及海上输配电。这些技术上的困难只能在实践中解决。” 钢铁研究总院青岛海洋腐蚀研究所副所长曲政认为,海上风机所处环境恶劣,海面以上部分和海面以下部分环境不同,所需防腐蚀技术也不同,因此海上风电容易遭到腐蚀,并且防腐技术比较复杂。他对记者解释说:“海上风电机组下部承托平台为钢筋混凝土结构,防腐蚀工作重在对钢筋锈蚀的保护;海面以上的部分主要受到盐雾、海洋大气、浪花飞溅的腐蚀,因此,海上风电机组的防腐蚀比较复杂,需要分部分、针对性的进行。” 防腐蚀技术整合亟待跟上曲政告诉记者,防腐蚀技术的研发周期并不太长,从单项的防腐蚀技术来看,我国的研发水平与国际水平是基本同步的。目前国内所欠缺的,是技术的整合,即如何把各种防腐技术整合到一个设备上。” 据记者了解,目前国内对于海上风电机组的防腐蚀并无相关标准或规定。曲政说:“海上风电机组防腐蚀,是一个系统的问题,对于机组的每一部分,在设计上、材料上、密闭性上,都应该考虑到防腐蚀问题。” 他认为,目前国内海上风电发展刚刚起步,因此在防腐蚀技术发展的各方面都有所欠缺。他说:“国外有统一的标准,对防腐蚀技术的各方面都有规定。国外这个系统已经比较完整了,而国内目前还缺乏。”他以汽车制造为例给记者生动的阐释了防腐蚀技术的整合。他说,在国外,如果要设计汽车,考虑到将来会销往内陆或者海边,其钢板和涂层就会相应作出不同的设计。不同设计的来源是在不同环境下钢板腐蚀情况的实验数据,根据实验数据,汽车制造商最终会选择经济又耐腐蚀的设计。这对于我国的海上风电机组防腐蚀发展,是很好的借鉴,因为我国幅员辽阔,南北方气候各有不同,因此,所要求的防腐蚀技术也不同。史立山在谈到我国海上风电技术的开发时曾说:“只有通过实践总结,才能找到政府应该怎么去管理、怎么保障安全的一些规范,现在还为时尚早。” 曲政也认为,现在要求出台海上风电防腐蚀的国家标准为时尚早。他说:“一般的标准制定肯定需要经过试用、发现问题、解决问题几个阶段,最后形成比较成熟的东西,形成标准,供大家参照。我们现在还在初期阶段。”

关于海上风电变压器的防腐研究

关于海上风电变压器的防腐研究 发表时间:2018-04-17T11:18:51.173Z 来源:《电力设备》2017年第33期作者:周中良罗海生苏明 [导读] 摘要:本文首先对海上风电变压器的腐蚀环境进行简单介绍,重点分析风电变压器用涂料,在此基础上深入研究海上风电升压站变压器防腐涂料,希望通过本文的研究能够更加全面的了解变压器的腐蚀环境及使用的涂料,同时也为后期为海上风电升压站变压器选择更加合适的防腐涂料提供参考。 (上海振华重工(集团)股份有限公司上海市 200120) 摘要:本文首先对海上风电变压器的腐蚀环境进行简单介绍,重点分析风电变压器用涂料,在此基础上深入研究海上风电升压站变压器防腐涂料,希望通过本文的研究能够更加全面的了解变压器的腐蚀环境及使用的涂料,同时也为后期为海上风电升压站变压器选择更加合适的防腐涂料提供参考。 关键词:海上风电;变压器;防腐涂料 1引言 近年来随着我国工业水平的不断提高,各行业不断发展,电力行业也取得巨大的发展,其中海上风电产业因其自身跟方面的优势受到社会各界的普遍关注,海上风电的开发规模也不断扩大。虽然有效扩大了电力产业的规模,但是海上环境复杂,对发电系统的运行产生较大的影响,尤其是变压器等设备的使用,容易受到严重的腐蚀,导致系统运行不稳定。因此在现阶段加强对于海上风电变压器的研究具有重要的现实意义,能够更加全面的掌握变压器的腐蚀环境,了解变压器使用的防腐涂料,针对海上风电项目的实际情况研究选择最合适的防腐涂料,保护变压器的运行,实现海上升压站变压器的长效防腐,保障海上风电项目的正常发电,实现良好的经济社会效益。 2变压器的腐蚀环境 2.1腐蚀等级的划分 如果大气或者周围环境中湿度比较大,导致金属或者图层表面表现为潮湿的状态,这些金属材质就容易受到大气腐蚀。根据表面电解质性质的不同,发生大气侵蚀、腐蚀的速度有一定的区别,主要取决于空气中悬浮颗粒的含量种类以及在金属表面发生腐蚀作用的时间长短。可以按照相关标准GB/T19292.1利用标准使用确定腐蚀等级。 在变压器运行环境中,影响腐蚀的关键因素主要包括二氧化碳等污染物的含量、空气中盐分的含量(氯化物)以及大气潮湿时间的长短三个方面,这也是划分腐蚀等级的三个关键因素。露水、融雪、下雨或者高湿度等会引起变压器表面潮湿;如果潮湿时间一定,那么影响腐蚀的关键就是空气中的盐分及氯化物含量。在城镇、工业区以及海洋环境下,这些成分含量都比较高,在海洋环境下,盐分污染最为严重。按照国标规定,可以将腐蚀等级划分为C1-C5五个等级,具体的内容如图1所示。其中海洋环境下腐蚀等级最高。 图1 2.2海上风电变压器腐蚀环境 目前建造使用的海上风电升压站属于类海上设施,大多建造在距离海岸线200m以内的海边,可以按照海洋性腐蚀环境进行研究。海洋与内陆环境存在各方面的不同,一方面是空气湿度大,在变压器等金属设备的表面容易形成水膜,而且在大气中含有大量的盐分,这两个条件共同作用就会形成液膜电介质环境,加速钢铁材料的腐蚀。根据相关统计,海洋环境下,钢铁腐蚀程度比陆地环境下高5倍左右。海洋环境下,发电系统中的散热片等设施会产生严重的腐蚀。未来真正发展海上风电产业必将面临更严峻的挑战。 3变压器用涂料分析 3.1变压器油箱内壁用涂料 图2 变压器运行中会受到内外两方面的腐蚀,在内部需要防止油浸和高温腐蚀。一般情况下可以使用耐油耐温的涂料涂刷变压器油箱内部,常用的涂料主要包括酚醛环氧涂料和环氧树脂涂料两种。环氧树脂内含有独特的醚键、羟基以及苯环,分别具备良好的耐腐蚀性能、黏结性能和耐高温性能,因此能够有效抵抗内部变压油的油浸和高温腐蚀。而酚醛环氧树脂中的环氧基数量更多,能够与各种脂肪胺发生固化反应,形成保护膜,耐高温、耐腐蚀性能更加优秀。 3.2变压器散热片及外壁涂料 根据变压器应用环境的不同以及防腐涂料性能的不同,可以将外部防腐涂料划分为以下三类。分析图2中数据可知,外部涂料的相关要求比较低,只能适用于内陆一般环境。 4海上风电升压站变压器防腐涂料 4.1性能要求 海上环境与内陆环境之间有巨大的区别,在海上风电升压站变压器中使用的防腐涂料不能简单搬用传统的防腐涂料。考虑到海上特殊的腐蚀环境以及海上风电升压站长期的运行安全,必须选择符合海上风电运行要求的重防腐涂料。海洋环境属于最高等级的C5腐蚀等级,使用脂肪族聚氨酯涂料、氟碳涂料或者高固分子环氧涂料富锌类底漆比较合适。但是变压器属于特殊的电气设备,在进行表面防腐涂抹的

【完整版】2020-2025年中国海上风电行业市场发展战略研究报告

(二零一二年十二月) 2020-2025年中国海上风电行业市场发展战略研究报告 可落地执行的实战解决方案 让每个人都能成为 战略专家 管理专家 行业专家 ……

报告目录 第一章企业市场发展战略研究概述 (7) 第一节研究报告简介 (7) 第二节研究原则与方法 (7) 一、研究原则 (7) 二、研究方法 (8) 第三节企业市场发展战略的作用、特征及与企业的关系 (10) 一、企业市场发展战略的作用 (10) 二、市场发展战略的特征 (11) 三、市场发展战略与企业战略的关系 (12) 第四节研究企业市场发展战略的重要性及意义 (13) 一、重要性 (13) 二、研究意义 (13) 第二章市场调研:2018-2019年中国海上风电行业市场深度调研 (14) 第一节海上风电概述 (14) 第二节我国海上风电行业监管体制与发展特征 (14) 一、行业主要监管部门 (14) 二、行业主要法律、法规和相关政策 (15) 三、2019年风电行业主要政策变化解读 (16) 四、行业技术水平与技术特点 (22) (一)行业技术水平现状 (22) (二)目前行业的技术特点 (22) 五、行业的周期性、区域性和季节性 (23) 六、上下游行业之间的关联性、上下游行业发展状况 (23) 七、海上风能资源分布情况 (24) 八、海上风电投资成本构成 (24) 第三节2018-2019年中国海上风电行业发展情况分析 (26) 一、我国海上风电市场发展态势 (26) 二、2018年已核准或签约的海上风电 (28) 三、中国海上风电行业主要项目分布 (31) 四、下游安装和运维市场情况 (32) 五、面临挑战 (34) 第四节重点企业分析 (34) 一、龙源电力 (34) 二、金风科技 (37) 三、泰胜风能 (37) 四、天顺风能 (38) 五、中闽能源 (39) 第五节2019-2025年我国海上风电行业发展前景及趋势预测 (39) 一、行业发展的有利因素 (39) (1)国家产业政策支持 (39) (2)国家能源结构持续优化 (40)

海上风力发电发展现状解读

海上风电发展 大纲: 一、国外海上风电发展现状及各国远景规划 二、海上风电的特点与面临的困难 三、海上风电发展的关键技术 四、国外海上风电发展现状及各国远景规划 目前已进入运营阶段的海上风电场均位于西北欧,西班牙和日本也建立了各自的首个试验性海上风电场。截至2006年6月,全球共建立了24个海上风电场,累计安装了了402台海上风机,总容量805MW,年发电量约2,800,000,000千瓦时。 西北欧地区的海上风电场布局如下图所示,红色标志由兆瓦级风机构成的运营风电场,紫红色标志由小容量风机构成的运营风电场,而灰色则标志已完成规划的在建风电场。 图1 西北欧海上风电场 已投入运营的大规模海上风电场大多集中在丹麦和英国。其中丹麦海上风电总装机容量达426.8MW,其次是英国339MW,共计现有海上风电装机容量的95%。而德国早在2004年就在北海的Emden树立了首台Enercon的4.5MW风机,西班牙也于今年在其北部港市毕尔巴鄂树立了5台Gamesa 2MW风机。美国已经规划的三个海上风电场Cape Cod,Bluewater Wind,Nai Kun正处于不同阶段的论证与评估阶段,其中Cape Cod风电场将于2009年正式投入运营。 由此可见,各风电大国都不约而同地把注意力集中到海上风电开发的技术研发与运营经验实践中,以图控制海上风电发展的制高点。 根据欧盟的预测,到2020年欧洲的海上风电场总装机容量将从现有的805兆瓦增长到40,000MW。相比之下,过去7年来欧洲海上风电装机容量的年增长率约为35%。欧盟指派的工作组预测欧洲的海上风电潜力约达140,000MW。

中国海上风电行业发展现状分析报告

中国海上风电行业发展现状分析在过去的十年中,风力发电在我国取得了飞速的发展,装机容量从2004年的不到75MW跃升至2015上半年的近125GW,在全国电力总装机中的比重已超过7%,成为仅次于火电、水电的第三大电力来源。 2014 年全球海上风电累计容量达到了8759MW,相比2013 年增长了24.3%。截至2014 年底全球91%(8045MW)的海上风机安装于欧洲的海域,为全球海上风电发展的中心。我国同样具备发展海上风电的基础,目前标杆电价已到位,沿海省份已完成海上风电装机规划,随着行业技术的进步、产业链优化以及开发经验的累积,我国海上风电将逐步破冰,并在“十三五”期间迎来爆发,至2020年30GW的装机目标或将一举突破。 陆上风电的单机容量以1.5MW、2MW类型为主,截止至2014年我国累计装机类型统计中,此两种机型占据了83%的比例。而海上风电的机型则以2.5~5MW为主,更长的叶片与更大的发电机,对于风能的利用率也越高。 2014年中国不同功率风电机组累计装机容量占比

2014年底中国海上风电机组累计装机容量占比 在有效利用小时数上,陆上风电一般为0~2200h,而海上风电要高出20%~30%,达到2500h以上,且随单机规模的加大而提高。更强更稳的风力以及更高的利用小时数,意味着海上风电的单位装机容量电能产出将高于陆上。 我国风电平均利用小时数及弃风率 根据中国气象局的测绘计算,我国近海水深5-50 米围,风能资源技术开发量约为500GW(扣除了航道、渔业等其他用途海域,以及强台风和超强台风经过3 次及以上的海域)。虽然在可开发总量上仅为陆上的1/5,但从可开发/已开发的比例以及单位面积可开发量上看,海上风电的发展潜力更为巨大,年均增速也将更高。

海上风电材料防护措施报告

中国航天科工集团第六研究院 内蒙古航天亿久科技发展有限责任公司 编 写 校 对 审 核 标 审 批 准 档 号: 保管期限: 编 号: 密 级: 名 称 海上风电材料防腐 措施报告

1 引言 海上风电场具有风能资源储量大、开发效率高、环境污染小、不占用耕地等优点,自1991 年世界上首座海上风电场在丹麦建成以来, 海上风力发电已经成为世界可再生能源发展的焦点领域。然而海上风电运行环境十分复杂:高温、高湿、高盐雾和长日照等, 腐蚀环境非常苛刻,对海上风电设备的腐蚀防护提出了严峻挑战,防腐蚀成为每个风电场必须考虑的突出问题, 防腐蚀设计成为海上风电场设计的重要环节之一。目前对于海上风电工程基础设施以及风机的防腐蚀措施, 主要来自于海上石油平台、破冰船以及海底管线等方面的防腐蚀经验,海上风电场的防腐尽管可以在很大程度上参考海洋平台现有的防腐经验,但是两者之间也有不同,所以直接借鉴海洋平台防腐经验实现海上风电材料防腐还有很大的困难。 2 海洋环境的腐蚀机理及区域划分 2.1 腐蚀机理 对于暴露在空气中的金属部分,因海上的潮湿空气中盐分和水分均很高,长期积累后附着在物体表面,由于其成分中有少量的碳存在,极易形成无数个原电池,进而使金属表面腐蚀而生锈。 对于浸入海水中的金属部分,表面会出现稳定的电极电势,且由于金属有晶界存在,金属表面上各部位的电势不同,形成了局部的腐蚀电池或微电池,电势较高的部位为阴极,较低的为阳极。电势较高的金属,如铁,腐蚀时阳极进行铁的氧化,释放的电子从阳极流向阴极,使氧在阴极被还原,氢氧根离子经海水介质移向阳极,与亚铁离子生成氢氧化亚铁,进而脱水形成铁锈。金属在海水中的腐蚀,影响因素很多,包括化学、物理和生物等因素,其中化学因素主要有溶解氧、盐度、酸碱度等,物理因素主要有温度、流速、潮差等。从这些机理来看,腐蚀的根源其实就是金属通过接触氧化物产生了电化学腐蚀。 2.2 腐蚀区域划分 海上风电场的钢结构风塔(图1a)按海洋腐蚀环境的特点,可以分成5个部分,海洋大气区、飞溅区、潮差区、全浸区和海泥区。钢结构在海洋环境下的腐蚀,无论是海洋环境下长钢尺的挂片试验,还是实际的生产实践中,都具有很强的规律性。图1b是钢桩在美国kureBeach(基尔海滨)中暴露5 a后的腐蚀示意图。 钢铁结构在海洋环境海洋大气与内陆大气有着明显的不同。海洋大气湿度大,易在钢铁表面形成水膜;海洋大气中盐分多,它们积存钢铁表面与水膜一起形成导电良好的液膜电解质,是电化学腐蚀的有利条件,因此海洋大气比内陆大气对钢铁的腐蚀程度要高4~5倍。 海洋飞溅区的腐蚀,除了海盐含量、湿度、温度等大气环境中的腐蚀影响因素外,还要

海上风电发展防腐蚀技术

海上风电发展防腐蚀技术 在能源日益紧张的今天,风力发电由于高效清洁,越来越受到人们的青睐。随着国家有关部门将对海上风电的规划和建设工作部署的展开,我国海上风电发展的帷幕正式拉开。海上风电极易遭到腐蚀经过10多年的发展,世界海上风电技术日趋成熟,已经进入大规模开发阶段。而中国还处于起步阶段,有着巨大的发展空间。一方面,中国拥有十分丰富的近海风资源。有数据显示,我国近海10米水深的风能资源约1亿千瓦,近海20米水深的风能资源约3亿千瓦,近海30米水深的风能资源约4.9亿千瓦。另一方面,东部沿海地区经济发达,能源紧缺,开发丰富的海上风能资源将有效改善能源供应情况。因此,开发海上风电已经成为我国能源战略的一个重要内容。但事实上,我国尚缺乏海上风电建设经验,海上风能资源测量与评估以及海上风电机组国产化刚刚起步,海上风电建设技术规范体系也亟需建立。其中海上风电防腐蚀技术相关标准的匮乏就是一个严重问题。记者在采访中了解到,由于海上含盐分比较高,对设备腐蚀相当严重。而风电机组不同于海上钻井平台,受到腐蚀时可以随时修补,海上风电机组由于其特殊的地理环境和技术要求,维修费用极高。国家能源局可再生能源司副司长史立山认为,海上风电机组面临的最大问题就是抗腐蚀,他说:“与陆上风电相比,海上风电的运行环境更复杂,技术要求更高,施工难度更大。对于风机而言最大的问题在于抗腐蚀抗盐雾以及海上输配电。这些技术上的困难只能在实践中解决。” 钢铁研究总院青岛海洋腐蚀研究所副所长曲政认为,海上风机所处环境恶劣,海面以上部分和海面以下部分环境不同,所需防腐蚀技术也不同,因此海上风电容易遭到腐蚀,并且防腐技术比较复杂。他对记者解释说:“海上风电机组下部承托平台为钢筋混凝土结构,防腐蚀工作重在对钢筋锈蚀的保护;海面以上的部分主要受到盐雾、海洋大气、浪花飞溅的腐蚀,因此,海上风电机组的防腐蚀比较复杂,需要分部分、针对性的进行。” 防腐蚀技术整合亟待跟上曲政告诉记者,防腐蚀技术的研发周期并不太长,从单项的防腐蚀技术来看,我国的研发水平与国际水平是基本同步的。目前国内所欠缺的,是技术的整合,即如何把各种防腐技术整合到一个设备上。” 据记者了解,目前国内对于海上风电机组的防腐蚀并无相关标准或规定。曲政说:“海上风电机组防腐蚀,是一个系统的问题,对于机组的每一部分,在设计上、材料上、密闭性上,都应该考虑到防腐蚀问题。” 他认为,目前国内海上风电发展刚刚起步,因此在防腐蚀技术发展的各方面都有所欠缺。他说:“国外有统一的标准,对防腐蚀技术的各方面都有规定。国外这个系统已经比较完整了,而国内目前还缺乏。”他以汽车制造为例给记者生动的阐释了防腐蚀技术的整合。他说,在国外,如果要设计汽车,考虑到将来会销往内陆或者海边,其钢板和涂层就会相应作出不同的设计。不同设计的来源是在不同环境下钢板腐蚀情况的实验数据,根据实验数据,汽车制造商最终会选择经济又耐腐蚀的设计。这对于我国的海上风电机组防腐蚀发展,是很好的借鉴,因为我国幅员辽阔,南北方气候各有不同,因此,所要求的防腐蚀技术也不同。史立山在谈到我国海上风电技术的开发时曾说:“只有通过实践总结,才能找到政府应该怎么去管理、怎么保障安全的一些规范,现在还为时尚早。” 曲政也认为,现在要求出台海上风电防腐蚀的国家标准为时尚早。他说:“一般的标准制定肯定需要经过试用、发现问题、解决问题几个阶段,最后形成比较成熟的东西,形成标准,供大家参照。我们现在还在初期阶段。”

2016-2022年中国海上风力发电市场深度调查与市场全景评估报告

2016-2022年中国海上风力发电市场深度调查与市场全景评估报告

什么是行业研究报告 行业研究是通过深入研究某一行业发展动态、规模结构、竞争格局以及综合经济信息等,为企业自身发展或行业投资者等相关客户提供重要的参考依据。 企业通常通过自身的营销网络了解到所在行业的微观市场,但微观市场中的假象经常误导管理者对行业发展全局的判断和把握。一个全面竞争的时代,不但要了解自己现状,还要了解对手动向,更需要将整个行业系统的运行规律了然于胸。 行业研究报告的构成 一般来说,行业研究报告的核心内容包括以下五方面:

行业研究的目的及主要任务 行业研究是进行资源整合的前提和基础。 对企业而言,发展战略的制定通常由三部分构成:外部的行业研究、内部的企业资源评估以及基于两者之上的战略制定和设计。 行业与企业之间的关系是面和点的关系,行业的规模和发展趋势决定了企业的成长空间;企业的发展永远必须遵循行业的经营特征和规律。 行业研究的主要任务: 解释行业本身所处的发展阶段及其在国民经济中的地位 分析影响行业的各种因素以及判断对行业影响的力度 预测并引导行业的未来发展趋势 判断行业投资价值 揭示行业投资风险 为投资者提供依据

2016-2022年中国海上风力发电市场深度调查与市场全景评估报告 ?出版日期:2016年 ?报告价格:印刷版:RMB 7000 电子版:RMB 7200 印刷版+电子版:RMB 7500 ?报告来源:https://www.360docs.net/doc/1d13223607.html,/b/dianli/J68941VA3N.html ?智研数据研究中心:https://www.360docs.net/doc/1d13223607.html, 报告目录 据中国风能协会以及世界自然基金会的估算,在离海岸线100公里、中心高度100米的范围内,每秒7米以上的风力给中国带来的潜在发电能力为年均110万亿千瓦,中国风电市场潜力巨大。中国有海上风能资源,海风呼呼地吹着,而且海岸线非常长,中国对能源的需求巨大,这些都为促成海上风力发电提供了条件。海上风电时代已经到来,而且来得非常迅速。2010年2月,中国第一座海上风电场示范工程,也是亚洲第一座大型海上风电场——上海东海大桥10万千瓦海上风电场的34台机组安装完毕,随后于6月全部实现并网发电,为40万家庭提供用电。与此同时,国内首批海上风电项目特许权招标工作于5月正式启动,标志着海上风电在中国的发展进入加速期。2010年因此在许多人眼中是中国海上风力发电元年。不过,中国海上风电的发展面临着挑战。 一方面,中国的(海上)风电行业有很大的扩容潜力,能够大规模采用新的解决方案;但另一方面,中国在这个领域缺乏相关的技术和经验,而且也缺乏在海上进行大规模装机的经验。 在陆地风电连续数年高速增长之后,从2010年开始,我国的海上风电建设也将起步。2010年将把海上风电作为最重要的任务来抓,很快将组织大型海上风电特许权项目的招标。海上风电是风电产业未来发展的前沿,市场前景广阔,我国已具备一定的技术基础,力争2010年在海上风电建方面迈出实实在在的步伐。经过2004年以来的连年翻番,截至2009年年底,我国陆地风电装机已经超过2500万千瓦,位居全球第二。但在海上风电方面,由于运行环境复杂,技术要求高,施工难度大,我国还处于起步阶段,尚未启动规模化

海上风机技术之争-风电设备防腐蚀成当务之急

海上风机技术之争风电设备防腐蚀成当务之急 2010/8/10/17:17来源:中国高新技术产业导报 目前正在进行的海上风电招投标将为我国未来海上风电发展打下坚实基础。到底什么类型的风机适合海上风力发电,成为业内专家讨论的热点,而各家企业也有自己不同的答案。 据悉,目前,国内风机种类大概可分为三类:直驱风机、双馈风机、半直驱风机。其中直驱风机代表企业为金风科技,双馈风机代表企业为华锐风电,半直驱风机许多企业均有涉及,但还没有成为市场主流。专家表示:“和陆上风电一样,海上风电仍将上演直驱风机、双馈风机对决。 据金风科技技术人员介绍:“直驱风机、双馈风机、半直驱风机最大区别就是有无齿轮箱。齿轮箱是目前在兆瓦级风力发电机组中属易过载和过早损坏率较高的部件,因此齿轮箱的存在也成为制约风力发电机组发展的因素之一。” 从上个世纪末开始,以德国Enercon公司为首的风电机组制造商推出了一系列无齿轮箱直驱式风力发电系统。风机叶轮直接驱动多级同步发电机的转子发电,免去齿轮箱这一传统部件。发电机采用高磁能积的永磁材料作为磁极,省去了励磁绕组产生的损耗。这就是目前直驱的机型。而双馈风力发电机是通过叶轮将风能转变为机风轮转动惯量,通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。 据悉,双馈式发电机必须配备一个齿轮箱,与其它工业齿轮箱相比,由于风电齿轮箱安装在距地面几十米甚至一百多米高的狭小机舱内,其本身的体积和重量对机舱、塔架、基础、机组风载等都有重要影响。由于是机械部件,齿轮箱也是损坏率最高的部件,导致双馈机型系统运行的可靠性和寿命大打折扣,运营维护成本升高。目前,陆上风机每年需进行12次三类保养及巡检,两次二类保养,一次一类维护。维护人员需要爬上塔筒,进入机舱进行操作。将这项维护工作从陆地移到海上,其难度可想而知,后续维护成本开支更大。如果不维护,根据国外经验,问题将会在风机运行3-5年后集中爆发。比如双馈电机中滑环和电刷之间容易产生碳粉,如果不清理,将会引起电机绝缘或短路。而直驱电机由于舍弃了齿轮箱,减少了机械磨损和能量损失,有效避免了这一问题。 金风科技董事长武钢向记者表示:“如果海上风电设备出现问题,企业需要大吨位的拖船将每台50-60吨的风机拆卸后运回陆地进行维修,然后再运回海上进行安装,不仅费时费力,还需要不菲的维修成本。一套流程下来,电场投资企业的利润将损失殆尽。” 正是技术路线的不同,导致市场更为看好金风科技在海上风电领域的市场占有率。虽然我国首座大型海上风电场上海东海大桥100兆瓦海上风电场技术均采用双馈机型,但这并不代表双馈机型对直趋机型有相对优势。业内专家表示:“从欧洲来看,技术更替趋势却很明显。比如全球风电巨头GE公司本来拥有3.6兆瓦双馈风机技术,但目前已经逐渐放弃该产品,转而推出更适合海上风电场的永磁直驱电机产品。” 华锐风电一维护人员告诉记者,虽然理论上说,直驱永磁风电机具有较多双馈风机无法具备的特点,但其技术还不是非常成熟。因此目前因技术成熟而占主流的双馈风电机在海上风电行业还具有一定优势,未来到底何种技术主导海上风电市场,“鹿死谁手”仍未可知。 值得一提的是,永磁直驱技术是我国具有自主知识产权的产品。

2018年海上风电行业深度研究报告

2018年海上风电行业深度研究报告

目录 1.风电未来空间广阔,机组大功率化是趋势 (4) 1.1全球风电投资和装机稳定增长,未来前景广阔 (5) 1.2风电装机成本不断下降,机组大功率化成趋势 (6) 1.3中国风电装机居世界首位,国内风电占比稳步提升 (8) 2.陆上风电存量消纳仍是主要目标 (9) 2.1全国电力需求稳定增长 (9) 2.2弃风率有所降低,存量消纳仍是主要工作 (9) 2.2.1国家电网多举措促进消纳,弃风率有所改善 (9) 2.2.2预计能源局四季度将核准多条特高压工程以促进消纳 (11) 2.3新增装机规模空间有限,风电建设向中东南部迁移 (12) 2.4配额制促进消纳,竞价政策加速风电平价上网 (14) 2.5陆上风电消纳为主,分散式风电尚在布局 (14) 3.海上风电有望迎来快速发展期 (15) 4.投资建议 (20) 4.1金风科技(002202) (20) 4.2天顺风能(002531) (21) 4.3东方电缆(603606) (21)

图目录 图1:风电行业产业链 (4) 图2:全球清洁能源装机和发电量占比(包含水电) (5) 图3:全球清洁能源和风电投资额(十亿美元)及风电投资占比 (5) 图4:全球风电装机容量(GW)预测及同比增速(右轴) (5) 图5:2010-2017年全球风电装机成本和LCOE变化趋势 (6) 图6:1991-2017年中国新增和累计装机的风电机组平均功率 (6) 图7:2008-2017年全国不同单机容量风电机组新增装机占比 (7) 图8:2011年以来新增风电机组平均风轮直径(m)及增速 (7) 图9:2017年新增风电机组轮毂高度分布 (7) 图10:2017年不同国家新增风电装机份额 (8) 图11:2017年不同国家累计风电装机份额 (8) 图12:风力发电设备容量及占全部发电设备容量的比重 (8) 图13:风力发电量及占全部发电量的比重 (8) 图14:全社会用电量变化趋势 (9) 图15:近年来中国弃风电量(亿千瓦时)及弃风率情况 (10) 图16:国家电网近年来风电并网容量(GW) (10) 图17:国家电网近年来特高压线路长度(万公里) (10) 图18:2010-2017年全国风电新增和累计装机容量(GW) (12) 图19:2017年与2020年底累计风电装机占比变化趋势 (13) 图20:海上风电厂主要组成部分 (16) 图21:截至2017年底我国海上风电制造企业累计装机容量(MW) (17) 图22:截至2017年底我国海上风电开发企业累计装机容量(MW) (18) 图23:截至2017年底我国海上风电不同单机容量机组累计装机容量(万千瓦) (18) 图24:截至2017年底我国沿海各省区海上风电累计装机容量(万千瓦) (19) 表目录 表1:双馈齿轮箱技术和直驱永磁技术比较 (4) 表2:国家电网2017年消纳新能源举措(不完全统计) (11) 表3:2018年以来风电行业相关政策 (11) 表4:拟核准的三条和清洁能源输送相关的特高压工程 (12) 表5:主要政策中关于风电建设规模的表述 (13) 表6:分散式风电发展低于预期的主要原因(不完全统计) (15) 表7:我国海上风资源分类 (16) 表8:2017年我国海上风电制造企业新增装机容量 (17) 表9:2018年以来核准和开工的海上风电项目(不完全统计) (19) 表10:海陆丰革命老区振兴发展近期重大项目之海上风电项目 (20)

海上风电现状及发展趋势

能源与环境问题已经成为全球可持续发展所面临的主要问题,日益引起国际社会的广泛关注并寻求积极的对策.风能是一种可再生、无污染的绿色能源,是取之不尽、用之不竭的,而且储量十分丰富.据估计,全球可利用的风能总量在53 000 TW·h/年.风能的大规模开发利用,将会有效减少石化能源的使用、减少温室气体排放、保护环境.大力发展风能已经成为各国政府的重要选择[1~6]. - 在风力发电中,当风力发电机与电网并联运行时,要求风电频率和电网频率保持一致,即风电频率保持恒定,因此风力发电系统分为恒速恒频发电机系统(CSCF 系统)和变速恒频发电机系统(VSCF 系统).恒速恒频发电机系统是指在风力发电过程中保持发电机的转速不变从而得到和电网频率一致的恒频电能.恒速恒频系统一般来说比较简单,所采用的发电机主要是同步发电机和鼠笼式感应发电机,前者运行于由电机极数和频率所决定的同步转速,后者则以稍高于同步转速的速度运行.变速恒频发电机系统是指在风力发电过程中发电机的转速可以随风速变化,而通过其他的控制方式来得到和电网频率一致的恒频电能. - 1 恒速恒频发电系统- 目前,单机容量为600~750 kW 的风电机组多采用恒速运行方式,这种机组控制简单,可靠性好,大多采用制造简单,并网容易、励磁功率可直接从电网中获得的笼型异步发电机[7~9]. -恒速风电机组主要有两种类型:定桨距失速型和变桨距风力机.定桨距失速型风力机利用风轮叶片翼型的气动失速特性来限制叶片吸收过大的风能,功率调节由风轮叶片来完成,对发电机的控制要求比较简单.这种风力机的叶片结构复杂,成型工艺难度较大.而变桨距风力机则是通过风轮叶片的变桨距调节机构控制风力机的输出功率.由于采用的是笼型异步发电机,无论是定桨距还是变桨距风力发电机,并网后发电机磁场旋转速度由电网频率所固定,异步发电机转子的转速变化范围很小,转差率一般为3%~5%,属于恒速恒频风力发电机. - 1.1 定桨距失速控制- 定桨距风力发电机组的主要特点是桨叶与轮毂固定连接,当风速变化时,桨叶的迎风角度固定不变.利用桨叶翼型本身的失速特性,在高于额定风速下,气流的功角增大到失速条件,使桨叶的表面产生紊流,效率降低,达到限制功率的目的.采用这种方式的风力发电系统控制调节简单可靠,但为了产生失速效应,导致叶片重,结构复杂,机组的整体效率较低,当风速达到一定值时必须停机. - 1.2 变桨距调节方式- 在目前应用较多的恒速恒频风力发电系统中,一般情况要维持风力机转速的稳定,这在风速处于正常范围之中时可以通过电气控制而保证,而在风速过大时,输出功率继续增大可能导致电气系统和机械系统不能承受,因此需要限制输出功率并保持输出功率恒定.这时就要通过调节叶片的桨距,改变气流对叶片攻角,从而改变风力发电机组获得的空气动力转矩. - 由于变桨距调节型风机在低风速时,可使桨叶保持良好的攻角,比失速调节型风机有更好的能量输出,因此比较适合于平均风速较低的地区安装.变桨距调节的另外一个优点是在风速超速时可以逐步调节桨距角,屏蔽部分风能,避免停机,增加风机发电量.对变桨距调节的一个要求是其对阵风的反应灵敏性. - 1.3 主动失速调节- 主动失速调节方式是前两种功率调节方式的组合,吸取了被动失速和变桨距调节的优点.系统中桨叶设计采用失速特性,系统调节采用变桨距调节,从而优化了机组功率的输出.系统遭受强风达到额定功率后,桨叶节距主动向失速方向调节,将功率调整在额定值以下,限制机组最大功率输出.随着风速的不断变化,桨叶仅需微调即可维持失速状态.另外调节桨叶还可实现气动刹车.这种系统的优点是既有失速特性,又可变桨距调节,提高了机组的运行效率,减弱了机械刹车对传动系统的冲击.系统控制容易,输出功率平稳,执行机构的功率相对较小[8~13]. -恒速恒频风力发电机的主要缺点有以下几点: -

大型海上风电关键技术与装备

国家重大产业技术开发专项 大型海上风电关键技术与装备 (3MW以上海上风力发电机组研发与产业化) 一、申报单位概况 上海电气风电设备有限公司由上海电气集团股份有限公司控股,是大型风力发电机组设计、制造、销售、技术咨询、售后服务的新能源专业公司。 公司成立于2006年9月,总部位于上海紫竹高科技园区,生产基地分别位于上海闵行经济技术开发区和天津北辰科技园区。 通过技术引进并消化吸收,1.25MW风力发电机组已形成批量生产,08年将完成300MW的生产;通过与国际知名风机设计公司合作,联合设计的2MW机组今年将完成小批量生产。依靠上海电气人力资源优势和产业优势,一支结构合理、专业搭配齐全的风电工程技术团队业已形成。目前公司现有员工200余人(08年底将有400人),其中本科以上84人、硕士20人、博士1人,上海电气的风电产业正处于高速发展之中。 二、申报项目名称及主要内容 申报项目名称:3MW以上海上风力发电机组研发与产业化 主要内容:开发研制具有完全知识产权的3MW以上大型海上风力发电机组,并实现技术产业化生产,主要内容为: 1.研制海上3MW以上双馈式变速恒频海上风电机组的总体设计技术;包括气动 设计、结构设计和载荷计算; 2.大型海上风力发电机组系统集成技术;分部件接口技术; 3.海上风电机组控制策略的研究和应用; 4.海上风电机组机群远程监控技术的研究和应用; 5.大型海上风力发电机组的塔架基础设计技术研究; 6.海上风电机组在线监测、预警及故障诊断技术; 7.海上风电灾害预防及预防控制技术; 8.海上风电机组在特殊的海上气候、环境条件下,基础塔架、防腐、防潮、抗 台风等的技术解决方案和材料开发利用;

海上风电发展现状分析

海上风电发展现状分析 一、世界海上风电发展现状 1、世界海上风电发展迅猛 [慧聪机械工业网] 2009年海上风电装机容量继续增长。截至2009年底,全球共有12个国家建立了海上风电场,其中10个位于欧洲,中国和日本有小规模的安装。 截至2009年底,世界海上风电累计装机容量达2110MW,较2008年增长48.5%,占到全球风电总装机容量的1.2%。2009年世界海上风电新增装机容量达689MW,同比增幅超过100%,新增装机容量最大的前五个国家分别为英国、丹麦、中国、德国和瑞典。

2、欧洲海上风电发展令世人瞩目 欧洲是海上风电发展最快的地区。根据欧洲风能协会(EWEA)的最新统计,2009年欧洲水域的八个海上风电场总计安装199台海上风力涡轮机并实现了并网,总容量为577MW,较2008年增幅超过50%。其中,最小装机容量为2.3MW(挪威的Hywind),最大装机容量为209MW(Horns Rev 2)。另外,欧盟15个成员国和其他欧洲国家,有超过100GW的海上风力发电项目正在规划中。 在2 0 0 9年装机并网的1 9 9台风机中,西门子风机(2.3MW和3.6MW两种机型)146台,维斯塔斯风机(3MW)37台,WinWind 风机(3MW)10台,Multibrid风机(5MW)6台。除此之外,Repower 风机(5MW)6台,但尚未并网。

3、海上风电机组技术特点 目前,海上风电机组基本上是根据海上风况和运行工况,对陆地机型进行改造,其结构也是由叶片、机舱、塔架和基础组成。海上风电机组的设计强调可靠性,注重提高风机的利用率、降低维修率。当今,海上风电机组呈现大型化的趋势,国外主要风机制造商生产的海上风电机组主要集中在2~5MW,风叶直径在72~126m。

中国海上风力发电发展现状以及趋势

中国海上风力发电发展现状以及趋势【摘要】:由于具有资源丰富,对人们的生产生活影响小,以及不占用耕地等优势,近几年,我国的海上风力发电得到越来越多的关注。本文就我国近海风电的行业背景、海上风电市场区域分析、国家政策、社会效益、技术支持、发展瓶颈及建议、以及未来发展趋势等几个方面进行论述。 【关键词】:海上风力发电,发展现状,发展趋势,海上风电技术,社会效益,国家政策 前言: 相对于我国陆地风能,海上风能以其资源丰富,风速稳定,对环境负面影响小,装机容量大,且不占用耕地等优势得到了众多风电开发商的青睐。 经过连续多年的高速增长,我国风电装机容量已居世界第1位。目前我国正在大力推动海上风电发展,将从以陆上风电开发为主向陆上和海上风电全面开发转变,目标是成为海上风电大国。近年来,政府相关部门多次出台技术和管理政策,大力推动我国海上风电开发进程。 1、行业背景: 我国近海风能资源丰富。拥有18,000多公里长的大陆海岸线,可利用海域面积多达300多万平方公里,是世界上海上风能资源最丰富的国家之一。据统计,我国可开发利用的风能资源初步估算约为10亿kW,其中,海上可开发和利用的风能储量约7.5亿kW]。 目前我国已经成功并网发电的海上风电项目有:东海大桥海上风电示范项目,响水潮间带实验项目,龙源如东潮间带风电场项目,华能荣成海上风电项目等。另外有南港海上风电项目,江苏大丰200MW海上风电项目等44个项目拟建或者在建。这意味着我国的海上风电正在高速发展着。 另外,随着海上风能的高速发展,也带动着风能产业链的高速发展。我国现有海上风机供应厂家12家,其中以明阳风能以及金风科技最为卓越,在全球最佳海上风机评选中,分别位列第二和第十,这标志着我国风机制造业已经拥有国际先进水平。 据数据分析,未来的15年内,我国风电设备市场的总利润将高达1400亿至2100亿元。巨大的利润,也必将使得我国海上风机制造业得到更加快速的发展。

风电塔筒

风电塔筒 风电塔筒就是风力发电的塔杆,在风力发电机组中主要起支撑作用,同时吸收机组震动。 风电塔筒 风电塔筒的生产工艺流程一般如下:数控切割机下料,厚板需要开坡口,卷板机卷板 成型后,点焊,定位,确认后进行内外纵缝的焊接,圆度检查后,如有问题进行二次 较圆,单节筒体焊接完成后,采用液压组对滚轮架进行组对点焊后,焊接内外环缝, 直线度等公差检查后,焊接法兰后,进行焊缝无损探伤和平面度检查,喷砂,喷漆处 理后,完成内件安装和成品检验后,运输至安装现场。 风塔焊接生产线及装备 - 无锡罗尼威尔机械设备有限公司 - 无锡罗尼威尔机械设备有限公司 ---------高效自动化风塔焊接生产线及装备的引领者基于整合国内外风塔焊接生产线的成功经验和成熟技术的整厂生产工艺; 基于对风塔制造整厂各工艺环节的深刻理解和认知; 基于已经为国内外众多风塔制造商提供各类生产线及装备的成功案例; 我们可为您提供: 1、风电塔筒焊接生产线的整厂工艺流程设计规划服务; 2、风电塔筒焊接生产线的整厂设备制造安装调试培训服务;

3、风电塔筒焊接生产线的整厂设备长期完善的售后服务; 客户应用现场

风塔焊接生产线整厂工艺流程:

板材下料切割及坡口加工: 数控切割下料扇形板坡口加工板材卷制: 进口卷板机国产卷板机 单节塔筒焊接及底法兰焊接: 单节塔筒内外纵缝焊接底法兰焊接 多节塔筒组对焊接生产线:

塔筒组对焊接生产线塔筒多节组对系统 塔筒内环埋弧自动焊接塔筒外环埋弧自动焊接塔筒喷砂喷漆系统: 塔筒喷砂滚轮架塔筒喷漆滚轮架

焊接滚轮架 焊接滚轮架主要用于圆柱形筒体的焊接、打磨、衬胶及装配,有自调式、可调式及平车式、倾斜式、防窜式、移动式等多种结构形式。可根据客户的需求选择结构,也可为客户设计制造各种特制专用滚轮架。 1.自调式滚轮架 主要技术参数: 2.可调式滚轮架

未来5年中国海上风电行业发展分析预测

未来5年中国海上风电行业发展分析预测 2019-2020年全球海上风电行业发展分析 一、2019年 中投产业研究院发布的《2020-2024年中国海上风电行业深度调研及投资前景预测报告》中显示:2019年全球海上风电行业新增装机容量超过6GW,达到创纪录的6.1GW,占全年风电新增装机的10%。总容量达到29GW。2019年的安装量比2018年增加了35.5%,安装了4.5GW。 中国海上风电新增装机超过2.3GW,创下新纪录(根据国家能源局发布的数据,2019年中国海上风电新增并网装机为 1.98GW)。作为全球海上风电累计装机最大的国家,英国位居第二,2019年新增1.8GW。德国位列第三,2019年新增装机1.1GW。 图表2015-2019年全球各国海上风电新增装机容量 数据来源:GWEC 截至2019年底,全球海上风电累计装机为29.1GW,英国以9723MW的累计容量排名第一,德国7493MW位居第二,中国6838MW名列第三(根据国家能源局发布的数据,截至2019年底中国海上风电累计并网装机为5.93GW)。

图表2019年全球海上风电累计装机国家分布 数据来源:GWEC 二、2020年 WFO发布了“2020年上半年全球海上风电报告”,统计显示,尽管受新冠疫情影响,全球上半年海上风电投产容量仍然超过250万千瓦,达到了2.535GW。 上半年共有来自英国、中国、德国、葡萄牙、比利时和美国的10座风场的海上风机投产。投产风场的平均规模为254MW,而2019年全年投产的海上风场规模为325MW。 截止到2020年上半年,从累计数据来看,全球海风装机总量接近30GW(29.839GW),有总计157座海上风场投产,其中105座位于欧洲,50座分布在亚洲,2座来自美国。 2019-2020年中国海上风电行业发展分析 一、2019年 中投产业研究院发布的《2020-2024年中国海上风电行业深度调研及投资前景预测报告》中显示:2018年中国海上风电新增装机436台,新增装机容量达到165.5万千瓦,同比增长42.7%;累计装机容量达到444.5万千瓦。 《2019全球风能发展报告》显示,2019年中国海上风电新增装机容量为2395MW,海上风电累计装机容量为6838MW。2019年,全国海上风电新增并网装机198万千瓦,到2019年底,全国海上风电累计并网装机593万千瓦。 2019年中国海上风电新增总装机量约为2.4GW,其中已并网1.98GW。中国仍然是海上风电新装机容量的领跑者,2019年新增装机容量超过2.3GW,为2.395GW。在亚洲,中国台湾以120MW的新增装机容量排在第六位,日本以3MW的新增装机容量排在第八位。到2028年,中国的风力发电预计将达到约1000TWh,太阳能发电将超过700TWh。也就是说,到2028年,技术升级将推动中国风力发电增量达到700TWh。 图表2013-2019年中国海上风电新增和累计装机容量 单位:万千瓦

海上风电设施的防腐措施[1]

海上风电设施的防腐措施 班级:风能111 姓名:陈卓学号:2011325130 摘要针对海上风力发电高温度、高盐分干湿交替、浸渍等强度腐蚀环境。结合目前国际上应用的《IOS 12944—钢结构防腐涂装规范》,为海上风电设施选择正确的防腐系统。为确保涂装系统能够达到20年以上的设计防腐年限,本文分析了海上风电设施的腐蚀原因与防腐蚀措施并且参考了NORSOK M-501和IOS 20304对海上风电的防腐系统进行了性能测试要求,以此为海上风电设备防腐系统的选择提供理论依据。 关键词海上风电防腐防腐保护防腐系统设计 NORSOK M-501 IOS 20340 风电作为快速发展的绿色可再生能源,逐渐成为许多国家可持续发展战略的重要组成部分。截止到2012年2月7日,全球海上风电场累计装机容量达到238,000MW,比上年增长了21%。世界海上风电技术日趋成熟,进入大规模开发阶段,已有国外企业开始设计和制造8-10兆瓦风电机组。欧洲风能协会最新统计显示,2009年欧洲海上风力产业营业额约为15亿欧元,预计2010年将增加1倍。在我国,尽管近年来国内的风电产业发展如火如荼,但海上风电领域仍在起步阶段。 中国气象科学研究院初步探明,我国可开发和利用的陆地上风能储量2.53亿千瓦,近海可开发和利用的风能储量有7.5亿千瓦,海上风能储量远远大于陆上,有广阔的发展空间。但与陆上风能相比,海上风电运行技术要求更高,施工难度更大并且海上风电的运行环境更为复杂:高湿度、高盐分的海风,盐雾,海水浸泡,海浪飞溅形成的干湿交替区等,从而对海上风电设备的防腐提出了更高的技术、性能要求。 经过10多年的发展,世界海上风电技术日趋成熟,已经进入大规模开发阶段。中国虽处于起步阶段,但有着巨大的发展空间。一方面,中国拥有十分丰富的近海风资源。有数据显示,我国近海10米水深的风能资源约1亿千瓦,近海30米水深的风能资源约4.9亿千瓦。另一方面,东部沿海地区经济发达,能源紧缺,开发丰富的海上风能资源将有效改善能源供应情况。因此,开发海上风电已经成为我国能源战略的一个重要内容。 据了解,海上风电场的造价约为陆上风电场的2-3倍,平均发电成本也远远高于陆上风电,海上风电场初装成本中的基础建设、并网接线盒安装等费用在总投资成本中所占的份额要比陆上风电场高,其成本占比随着风电场的离岸距离和水深程度等情况大幅变动,维修费用和折旧费用占运营成本比例远大于陆上风电场。除了要突破研发技术和高成本瓶颈,加紧研发海上风电设备防腐蚀的新技术也是当务之急。此前全国两会期间,工信部副部长苗圩曾提出对风电设备寿命的质疑。因此,与陆上风电相比,海上风电设备所需防腐技术更为复杂、要求更高。 我国海上风能资源测量与评估以及海上风电机组国产化刚刚起步,海上风电建设技术规范体系也亟需建立。而其中海上风电防腐蚀技术相关标准的匮乏就是一个严重问题。曾有相关记者在采访中了解到,由于海上含盐分比较高,对设备腐蚀相当严重。而风电机组不同于海上钻井平台,受到腐蚀时可以随时修补,海上风电机组由于其特殊的地理环境和技术要求,维修费用极高。

相关文档
最新文档