LM2678单片集成电路及其应用

LM2678单片集成电路及其应用
LM2678单片集成电路及其应用

LM2678单片集成电路及其应用

2001-8-17 张登峰 西安华经微电子公司

1概述

LM2678单片集成电路是一种电压变换器,即 供各种功能。它通过一个低阻尼 DMOS 电源获得高效

率,

可以为3.3V 、5V 、12V 或可调输出。

这种电压转换器的内部是由很少数量的元器件组成的, 体积

小,速率高,功能强,在 DC/DC 电源设计中,选用 化设计步骤及减少元器件的个数。

LM2678系列产品具有过热保护功能,限流短路保护功能。输入、输出电流是由一个静 电流能调节到

低于 501 A 的旁路控制电流进行控制的,输出电压精度优于± 2 %,时钟频率

误差为± 11%。

2性能指标 2.1特点

a.设计简单容易。

b.120M Q DMOS 开关输出。

C.3.3V 、5V 、12V 的固定输出电压及 1.2V ?37V 的可调输出电压。

e 输出最大误差± 2 %。 f.输入电压为 8V ?40V 。 g.固有振荡频率为260kHz 。

h.工作点温度范围为—40 C ?+ 125 C 。 i.效率高。 2.2各系列技术指标 LM2678 — 3.3V

DC/DC 开关电路。可以为配电稳压块提

最大输出电流可达

5A ,输出电压

采用高频振荡技术,使该产品的

LM2678单片集成电路可以大大简 d.开关关断时的备用电流为 50A 。

输出电压 V0 VIN=8V ?40V100mAS lOUTW 5A

3.3

3.234

3.366 V

效率

n

VIN=12V IOUT=5A

8.2

%

名称 代号 测试条件 典型值 最小 最大 单位

输出电压 V0 VIN=8V ?40V100mAS IOUT < 5A

5.0

4.90

5.10 V

效率

n

VIN=12V IOUT=5A

84

%

名称 代号

测试条件

1

典型值 最小 最大 单位

输出电压 V0 VIN=15V ?40V100mAS IOUT < 5A

12

11.76

12.24 V

效率

n

VIN=24V IOUT=5A 92

%

图1LM2678外形结构图

I.:IV

图2LM2678原理框图

4方框图

5引脚定义及说明

3外型结构(见图1)

增銘补偿I ~I 偏憤城生嚣—

2k lok 2nrnH

r\vvi T 驱动电踏H I ,

13

5V4jJh.

工60 KH 捉蕩电路

R2

RI 2.5k

IChiJ -

引脚 1——开关输出 此引脚为电压输出端,

连接, 并为电感器、 输出电容器和脉冲宽度调制器等负载电路提供电源, 荡频率为260kHz ,转换开关的导通时间和断开时间

控制 以在输入电压( ON 时)和低于肖特基二极管外部电压(

引脚 2——开关输入

引脚 2 连接电源的输入电压, 它除了对负载提供能量, 供偏压,输入电压在 8V ?40V 之间以确保其正常工作特性, 特性,通常在 2 脚接一个旁路电容。

引脚 3——升压电容

在 3 脚和 1 脚之间连接一个电容器, 此电容器可以升高输入电压, 使内部开关 MOSFET 完全转换为开状态(ON ),内部损耗减小到最小,从而提高了电源的效率,一般使用情况 下此电容值为0.01卩F 。

引脚 4——接地

引脚 4 为所有电源器件的接地参考点,在快速转换、高电流的应用中,例如 的扩流应用中,为了减少电路中信号耦合,建议使用宽的接地面。

6 输入到双向高增益放大器,用于驱动 PWM 控制器。对于固定输出电流( 5V 、12V 输出),为了满足集成电路内部增益调节的要求,应将引脚

6接到输出端。对于

可调输出需接 4个外部电阻器以控制直流输出电压, 对于固定输出的电源, 一定要注意电磁 干扰。

引脚 电源输出, 极管,当高电位驱动该

引脚时,其高电位最大不能超过 关控制时,该引脚悬空。

引脚 7——开关控制端

是通过 MOSFET 开关输出, 且 MOSFET 的另一极同输入电压相 脉宽调

制器内部振 1 脚电压的输出, 1 引脚的电压可 OFF 时)之间转换。 也为 LM2678 的内部电路系统提 为了使电源开关有最好的输出 LM2678 引脚 5——空脚 引脚 6——反馈

引脚

3.3V 、

7 控制电源的输出,此引脚连接到地或任何一个低于

关断时,电流仅为

50卩A ,它的内部关断电流接近 6V , 0.8V 的电源,则可完全关断 20

卩A ,有一个7V 的稳压二 电源有

电压输出,不需要做开

: 7 UN i W---------- 1-

a czzi

on

图3典型应用电路

6LM2678的应用

6.1典型应用电路

典型应用电路见图3。

6.2外围元器件的选取

利用LM2678集成电路设计DC/DC电源,很大程度简化了设计步骤,而且所用元器件也大大减

少,给设计者带来很大的方便。在外围元器件选取上基本按照电路本身的特性及电源的标准要求而确

定。具体设计过程可按以下方法进行(见图3)

?输出电容器

输出电容器的作用是平稳直流输出电压,降低输出电压的纹波并贮存能量,

和ESR (等效串联电阻)的选择将影响输出感生电压和控制电路的稳定性。

输出电容器

在指定情况下,固定脉冲频率和输出电容量在反馈中产生两个尖峰,另外容值和

值会产生漂移,这些频率的变化以及LM2678的内部频率补偿将改变闭环系统的增益和相

移。

ESR

通常对于稳压电源,设计者希望电路有一个统一的增益带宽,即不大于控制器开关电路

的1/6,LM2678的固有频率为260kHz,输出电容器提供的增益带宽最大不超过40kHz。

必要时可利用几个电容器并联来减少输出电容器的ESR值,减少电压波动,或者提高

容值以降低整个电路的带宽增益(小于40kHz )。当需要两个电容器并联时,这两个电容器应相同。

输出电容器的漏电流和额定电压应充分考虑, 是

电源最大输出电压的1.3倍。

般情况下漏电流越小越好,额定电压应?输入电容器

和输出电容器一样以改善输出电压纹波,确定方法同输出电容器。但是在大多数情况下,

在输入端有必要增加一个陶瓷电容器,容量为0.1卩F?0.47卩F,因为电源中连接导线和印

制电路板上的线路所产生的串联电感能够在输入末端产生振荡信号,这个信号有可能扩散到输出电路和其它电路中去,从而影响整个电流的性能指标,所以在输入端接一个电容器可以防止或者限制电路中产生的振荡信号。

?钳位二极管

当LM2678 的开关断开时,输出电流仍继续存在,通过二极管在开关和地之间流动,而二极管使输出电压为负值,这一负电压应大于- 1V,所以建议使用肖特基二极管。钳位二

极管的功耗将大大影响电流效率,而钳位二极管中的电流取决于开关闭合时间并等于负载电流。使用额定值大于工作值的二极管将有利于减小二极管中的压降和功率损耗。

在开关闭合期间,输入电压导通并加在二极管两端,而且导通电压值应至少是输入电压的1.3 倍多。

?增压电容器

增压电容器主要产生一个高于MOSFET 内部门电压的电压,减小开关电阻及相关功率

损耗,用以提高工作效率。在应用中一般选用0.01 F的陶瓷电容器。

?电感器

电感器是开关电路的关键部分,它在开关闭合时储存能量,开关断开时提供能量。一般选用带磁芯的电感器,电感量一般在22卩H?47卩H之间,但必须考虑电磁干扰,使其减少到最小。

数字电路芯片大全资料

芯片大全 -- 74系列芯片资料(还算可以)! 74系列芯片资料 反相器驱动器 LS04 LS05 LS06 LS07 LS125 LS240 LS244 LS245 与门与非门 LS00 LS08 LS10 LS11 LS20 LS21 LS27 LS30 LS38 或门或非门与或非门 LS02 LS32 LS51 LS64 LS65 异或门比较器 LS86 译码器 LS138 LS139 寄存器 LS74 LS175 LS373 反相器: Vcc 6A 6Y 5A 5Y 4A 4Y 六非门74LS04 ┌┴─┴─┴─┴─┴─┴─┴┐六非门(OC门) 74LS05 _ │1413 12 11 10 9 8│六非门(OC高压输出) 74LS06 Y = A )│ │ 1 2 3 4 5 6 7│ └┬─┬─┬─┬─┬─┬─┬┘ 1A 1Y 2A 2Y 3A 3Y GND 驱动器: Vcc 6A 6Y 5A 5Y 4A 4Y ┌┴─┴─┴─┴─┴─┴─┴┐ │1413 12 11 10 9 8│ Y = A )│六驱动器(OC高压输出) 74LS07 │ 1 2 3 4 5 6 7│ └┬─┬─┬─┬─┬─┬─┬┘ 1A 1Y 2A 2Y 3A 3Y GND Vcc -4C 4A 4Y -3C 3A 3Y ┌┴─┴─┴─┴─┴─┴─┴┐ _ │1413 12 11 10 9 8│

Y =A+C )│四总线三态门 74LS125 │ 1 2 3 4 5 6 7│ └┬─┬─┬─┬─┬─┬─┬┘ -1C 1A 1Y -2C 2A 2Y GND Vcc -G B1 B2 B3 B4 B8 B6 B7 B8 ┌┴─┴─┴─┴─┴─┴─┴─┴─┴─┴┐8位总线驱动器 74LS245 │20 19 18 17 16 15 14 13 12 11│ )│DIR =1 A=>B │ 1 2 3 4 5 6 7 8 9 10│DIR=0 B=>A └┬─┬─┬─┬─┬─┬─┬─┬─┬─┬┘ DIR A1 A2 A3 A4 A5 A6 A7 A8 GND 页首非门,驱动器与门,与非门或门,或非门异或门,比较器译码器寄存器 正逻辑与门,与非门: Vcc 4B 4A 4Y 3B 3A 3Y ┌┴─┴─┴─┴─┴─┴─┴┐ │1413 12 11 10 9 8│ Y = AB )│2输入四正与门 74LS08 │ 1 2 3 4 5 6 7│ └┬─┬─┬─┬─┬─┬─┬┘ 1A 1B 1Y 2A 2B 2Y GND Vcc 4B 4A 4Y 3B 3A 3Y ┌┴─┴─┴─┴─┴─┴─┴┐ __ │1413 12 11 10 9 8│ Y = AB )│2输入四正与非门 74LS00 │ 1 2 3 4 5 6 7│ └┬─┬─┬─┬─┬─┬─┬┘ 1A 1B 1Y 2A 2B 2Y GND Vcc 1C 1Y 3C 3B 3A 3Y ┌┴─┴─┴─┴─┴─┴─┴┐ ___ │1413 12 11 10 9 8│ Y = ABC )│3输入三正与非门 74LS10 │ 1 2 3 4 5 6 7│ └┬─┬─┬─┬─┬─┬─┬┘ 1A 1B 2A 2B 2C 2Y GND Vcc H G Y

常用数字芯片型号解读

常用数字芯片型号解读 逻辑电平有:TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVDS、GTL、BTL、ETL、GTLP;RS232、RS422、RS485等。 图1-1:常用逻辑系列器件 TTL:Transistor-Transistor Logic CMOS:Complementary Metal Oxide Semicondutor LVTTL:Low Voltage TTL LVCMOS:Low Voltage CMOS ECL:Emitter Coupled Logic, PECL:Pseudo/Positive Emitter Coupled Logic LVDS:Low Voltage Differential Signaling GTL:Gunning Transceiver Logic BTL:Backplane Transceiver Logic ETL:enhanced transceiver logic GTLP:Gunning Transceiver Logic Plus TI的逻辑器件系列有:74、74HC、74AC、74LVC、74LVT等 S - Schottky Logic LS - Low-Power Schottky Logic CD4000 - CMOS Logic 4000 AS - Advanced Schottky Logic 74F - Fast Logic ALS - Advanced Low-Power Schottky Logic HC/HCT - High-Speed CMOS Logic BCT - BiCMOS Technology AC/ACT - Advanced CMOS Logic FCT - Fast CMOS Technology ABT - Advanced BiCMOS Technology LVT - Low-Voltage BiCMOS Technology LVC - Low Voltage CMOS Technology LV - Low-Voltage CBT - Crossbar Technology ALVC - Advanced Low-Voltage CMOS Technology AHC/AHCT - Advanced High-Speed CMOS CBTLV - Low-Voltage Crossbar Technology ALVT - Advanced Low-Voltage BiCMOS Technology AVC - Advanced Very-Low-Voltage CMOS Logic TTL器件和CMOS器件的逻辑电平 :逻辑电平的一些概念 要了解逻辑电平的内容,首先要知道以下几个概念的含义: 1:输入高电平(Vih):保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。 2:输入低电平(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil时,则认为输入电平为低电平。 3:输出高电平(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的

数字集成电路总结

数字集成电路基础学习总结

第一章数字电子技术概念 1.1 数字电子技术和模拟电子技术的区别 模拟信号:在时间上和数值上均作连续变化的电路信号。 数字信号:表示数字量的信号,一般来说数字信号是在两个稳定状态之间作阶跃式变化的信号,它有电位型和脉冲型两种表达形式:用高低不同的电位信号表示数字“1”和“0”是电位型表示法;拥有无脉冲表示数字“1”和“0”是脉冲型表示法。 数字电路包括:脉冲电路、数字逻辑电路。数字电路的特点:1)小、轻、功耗低2)抗干扰力强3)精度高 按电路组成的结构可分立元件电路 集成电路 数数字电路分类 小规模 按集成度的大小来分中规模 大规模 超大规模 双极型电路 按构成电路的半导体器件来分 单极型电路 组合逻辑电路 按电路有记忆功能来分 1.2 1.3 三极管:是一种三极(发射极E、基极B(发射结、集电结)半导体器件,他有NPN和PNP两种,可工作在截止、放大、饱和三种工作状态。 电流公式:I(E)=I(B)+I(C) 放大状态:I(C)=βI(B) 饱和状态:I(C)< βI(B) 1.4 数制,两要素基数 权 二进制,十进制,十六进制之间的转换: 二进制转换成十进制:二进制可按权相加法转化成十进制。 十进制转换成二进制:任何十进制数正数的整数部分均可用除2取余法转换成二进制数。 二进制转化成八进制:三位一组分组转换。 二进制转换成十六进制:四位一组分组转换。 八进制转换成十六进制:以二进制为桥梁进行转换。 1.5 码制 十进制数的代码表示法常用以下几种:8421BCD码、5421BCD码、余3BCD码。 8421BCD码+0011=5421BCD码 第二章逻辑代数基础及基本逻辑门电路

数字电路常用芯片应用设计

74ls138 摘要: 74LS138 为3 -8 线译码器,共有54/74S138和54/74LS138 两种线路结构型式,其中LS是指采用低功耗肖特基电路. 引脚图: 工作原理: 当一个选通端(G1)为高电平,另两个选通端(/(G2A)和/(G2B))为低电平时,可将地址端(A、B、C)的二进制编码在一个对应的输出端以低电平译出。利用G1、/(G2A)和/(G2B)可级联扩展成24 线译码器;若外接一个反相器还可级联扩展成32 线译码器。若将选通端中的一个作为数据输入端时,74LS138还可作数据分配器。 内部电路结构:

功能表真值表: 简单应用:

74ls139: 74LS139功能: 54/74LS139为2 线-4 线译码器,也可作数据分配器。其主要电特性的典型值如下:型号54LS139/74LS139 传递延迟时间22ns 功耗34mW 当选通端(G1)为高电平,可将地址端(A、B)的二进制编码在一个对应的输出端以低电平译出。若将选通端(G1)作为数据输入端时,139 还可作数据分配器。 74ls139引脚图:

引出端符号: A、B:译码地址输入端 G1、G2 :选通端(低电平有效) Y0~Y3:译码输出端(低电平有效74LS139内部逻辑图:

74LS139真值表: 74ls164: 164 为8 位移位寄存器,其主要电特性的典型值如下:54/74164 185mW 54/74LS164 80mW当清除端(CLEAR)为低电平时,输出端(QA -QH)均为低电平。串行数据输入端(A,B)可控制数据。当A、B任意一个为低电平,则禁止新数据输入,在时钟端(CLOCK)脉冲上升沿作用下Q0 为低电平。当A、B 有一个为高电平,则另一个就允许输入数据,并在CLOCK 上升沿作用下决定Q0 的状态。 引脚功能: CLOCK :时钟输入端CLEAR:同步清除输入端(低电平有效)A,B :串行数据输入端QA-QH:输出端 (图1 74LS164封装图)

数字集成电路复习资料

第一章 数字集成电路介绍 第一个晶体管,Bell 实验室,1947 第一个集成电路,Jack Kilby ,德州仪器,1958 摩尔定律:1965年,Gordon Moore 预言单个芯片上晶体管的数目每18到24个月翻一番。(随时间呈指数增长) 抽象层次:器件、电路、门、功能模块和系统 抽象即在每一个设计层次上,一个复杂模块的内部细节可以被抽象化并用一个黑匣子或模型来代替。这一模型含有用来在下一层次上处理这一模块所需要的所有信息。 固定成本(非重复性费用)与销售量无关;设计所花费的时间和人工;受设计复杂性、设计技术难度以及设计人员产出率的影响;对于小批量产品,起主导作用。 可变成本 (重复性费用)与产品的产量成正比;直接用于制造产品的费用;包括产品所用部件的成本、组装费用以及测试费用。每个集成电路的成本=每个集成电路的可变成本+固定成本/产量。可变成本=(芯片成本+芯片测试成本+封装成本)/最终测试的成品率。 一个门对噪声的灵敏度是由噪声容限NM L (低电平噪声容限)和NM H (高电平噪声容限)来度量的。为使一个数字电路能工作,噪声容限应当大于零,并且越大越好。NM H = V OH - V IH NM L = V IL - V OL 再生性保证一个受干扰的信号在通过若干逻辑级后逐渐收敛回到额定电平中的一个。 一个门的VTC 应当具有一个增益绝对值大于1的过渡区(即不确定区),该过渡区以两个有效的区域为界,合法区域的增益应当小于1。 理想数字门 特性:在过渡区有无限大的增益;门的阈值位于逻辑摆幅的中点;高电平和低电平噪声容限均等于这一摆幅的一半;输入和输出阻抗分别为无穷大和零。 传播延时、上升和下降时间的定义 传播延时tp 定义了它对输入端信号变化的响应有多快。它表示一个信号通过一个门时所经历的延时,定义为输入和输出波形的50%翻转点之间的时间。 上升和下降时间定义为在波形的10%和90%之间。 对于给定的工艺和门的拓扑结构,功耗和延时的乘积一般为一常数。功耗-延时积(PDP)----门的每次开关事件所消耗的能量。 一个理想的门应当快速且几乎不消耗能量,所以最后的质量评价为。能量-延时积(EDP) = 功耗-延时积2 。 第三章、第四章CMOS 器件 手工分析模型 ()0 12' 2 min min ≥???? ??=GT DS GT D V V V V V L W K I 若+-λ ()DSAT DS GT V V V V ,,m in min = 寄生简化:当导线很短,导线的截面很大时或当所采用的互连材料电阻率很低时,电感的影响可 以忽略:如果导线的电阻很大(例如截面很小的长 铝导线的情形);外加信号的上升和下降时间很 慢。 当导线很短,导线的截面很大时或当所采用的互 连材料电阻率很低时,采用只含电容的模型。 当相邻导线间的间距很大时或当导线只在一段很 短的距离上靠近在一起时:导线相互间的电容可 以被忽略,并且所有的寄生电容都可以模拟成接 地电容。 平行板电容:导线的宽度明显大于绝缘材料的厚度。 边缘场电容:这一模型把导线电容分成两部分:一个平板电容以及一个边缘电容,后者模拟成一条圆柱形导线,其直径等于该导线的厚度。 多层互连结构:每条导线并不只是与接地的衬底耦合(接地电容),而且也与处在同一层及处在相 邻层上的邻近导线耦合(连线间电容)。总之,再 多层互连结构中导线间的电容已成为主要因素。这一效应对于在较高互连层中的导线尤为显著, 因为这些导线离衬底更远。 例4.5与4.8表格 电压范围 集总RC 网络 分布RC 网络 0 → 50%(t p ) 0.69 RC 0.38 RC 0 → 63%(τ) RC 0.5 RC 10% → 90%(t r ) 2.2 RC 0.9 RC 0 → 90% 2.3 RC 1.0 RC 例4.1 金属导线电容 考虑一条布置在第一层铝上的10cm 长,1μm 宽的铝线,计算总的电容值。 平面(平行板)电容: ( 0.1×106 μm2 )×30aF/μm2 = 3pF 边缘电容: 2×( 0.1×106 μm )×40aF/μm = 8pF 总电容: 11pF 现假设第二条导线布置在第一条旁边,它们之间只相隔最小允许的距离,计算其耦合电 容。 耦合电容: C inter = ( 0.1×106 μm )×95 aF/μm2 = 9.5pF 材料选择:对于长互连线,铝是优先考虑的材料;多晶应当只用于局部互连;避免采用扩散导线;先进的工艺也提供硅化的多晶和扩散层 接触电阻:布线层之间的转接将给导线带来额外的电阻。 布线策略:尽可能地使信号线保持在同一层上并避免过多的接触或通孔;使接触孔较大可以降低接触电阻(电流集聚在实际中将限制接触孔的最大尺寸)。 采电流集聚限制R C , (最小尺寸):金属或多晶至n+、p+以及金属至多晶为 5 ~ 20 Ω ;通孔(金属至金属接触)为1 ~ 5 Ω 。 例4.2 金属线的电阻 考虑一条布置在第一层铝上的10cm 长,1μm 宽的铝线。假设铝层的薄层电阻为0.075Ω/□,计算导线的总电阻: R wire =0.075Ω/□′(0.1′106 μm)/(1μm)=7.5k Ω 例4.5 导线的集总电容模型 假设电源内阻为10k Ω的一个驱动器,用来驱动一条10cm 长,1μm 宽的Al1导线。 电压范围 集总RC 网络 分布RC 网络 0 → 50%(t p ) 0.69 RC 0.38 RC 0 → 63%(τ) RC 0.5 RC 10% → 90%(t r ) 2.2 RC 0.9 RC 0 → 90% 2.3 RC 1.0 RC 使用集总电容模型,源电阻R Driver =10 k Ω,总的集总电容C lumped =11 pF t 50% = 0.69 ′ 10 k Ω ′ 11pF = 76 ns t 90% = 2.2 ′ 10 k Ω ′ 11pF = 242 ns 例4.6 树结构网络的RC 延时 节点i 的Elmore 延时: τDi = R 1C 1 + R 1C 2 + (R 1+R 3) C 3 + (R 1+R 3) C 4 + (R 1+R 3+R i ) C i 例4.7 电阻-电容导线的时间常数 总长为L 的导线被分隔成完全相同的N 段,每段的长度为L/N 。因此每段的电阻和电容分别为rL/N 和cL/N R (= rL) 和C (= cL) 是这条导线总的集总电阻 和电容()()()N N RC N N N rcL Nrc rc rc N L DN 2121 (2222) +=+=+++??? ??=τ 结论:当N 值很大时,该模型趋于分布式rc 线;一条导线的延时是它长度L 的二次函数;分布rc 线的延时是按集总RC 模型预测的延时的一半. 2 rcL 22=RC DN =τ 例4.8 铝线的RC 延时.考虑长10cm 宽、1μm 的 Al1导线,使用分布RC 模型,c = 110 aF/μm 和r = 0.075 Ω/μm t p = 0.38′RC = 0.38 ′ (0.075 Ω/μm) ′ (110 aF/μm) ′ (105 μm)2 = 31.4 ns Poly :t p = 0.38 ′ (150 Ω/μm) ′ (88+2′54 aF/μm) ′ (105 μm)2 = 112 μs Al5: t p = 0.38 ′ (0.0375 Ω/μm) ′ (5.2+2′12 aF/μm) ′ (105 μm)2 = 4.2 ns 例4.9 RC 与集总C 假设驱动门被模拟成一个电压源,它具有一定大小的电源内阻R s 。 应用Elmore 公式,总传播延时: τD = R s C w + (R w C w )/2 = R s C w + 0.5r w c w L 2 及 t p = 0.69 R s C w + 0.38 R w C w 其中,R w = r w L ,C w = c w L 假设一个电源内阻为1k Ω的驱动器驱动一条1μm 宽的Al1导线,此时L crit 为 2.67cm 第五章CMOS 反相器 静态CMOS 的重要特性:电压摆幅等于电源电压 à 高噪声容限。逻辑电平与器件的相对尺寸无关 à 晶体管可以采用最小尺寸 à 无比逻辑。稳态时在输出和V dd 或GND 之间总存在一条具有有限电阻的通路 à 低输出阻抗 (k Ω) 。输入阻抗较高 (MOS 管的栅实际上是一个完全的绝缘体) à 稳态输入电流几乎为0。在稳态工作情况下电源线和地线之间没有直接的通路(即此时输入和输出保持不变) à 没有静态功率。传播延时是晶体管负载电容和电阻的函数。 门的响应时间是由通过电阻R p 充电电容C L (电阻R n 放电电容C L )所需要的时间决定的 。 开关阈值V M 定义为V in = V out 的点(在此区域由于V DS = V GS ,PMOS 和NMOS 总是饱和的) r 是什么:开关阈值取决于比值r ,它是PMOS 和NMOS 管相对驱动强度的比 DSATn n DSATp p DD M V k V k V V = ,r r 1r +≈ 一般希望V M = V DD /2 (可以使高低噪声容限具有相近的值),为此要求 r ≈ 1 例5.1 CMOS 反相器的开关阈值 通用0.25μm CMOS 工艺实现的一个CMOS 反相器的开关阈值处于电源电压的中点处。 所用工艺参数见表3.2。假设V DD = 2.5V ,最小尺寸器件的宽长比(W/L)n 为1.5 ()()()() ()()()() V V L W V V V V k V V V V k L W L W M p DSATp Tp M DSATp p DSATn Tn M DSATn n n p 25.125.55.15.35 .320.14.025.1263.043.025.10.163.01030101152266 ==?==----?-???----=---= 分析: V M 对于器件比值的变化相对来说是不敏感的。将比值设为3、2.5和2,产生的V M 分别为1.22V 、1.18V 和 1.13V ,因此使PMOS 管的宽度小于完全对称所要求的值是可以接受的。 增加PMOS 或NMOS 宽度使V M 移向V DD 或GND 。不对称的传输特性实际上在某些设计中是所希望的。 噪声容限:根据定义,V IH 和V IL 是dV out /dV in = -1(= 增益)时反相器的工作点 逐段线性近似V IH = V M - V M /g V IL = V M + (V DD - V M )/g 过渡区可以近似为一段直线,其增益等于在开关阈值V M 处的增益g 。它与V OH 及V OL 线的交点用来定义V IH 和V IL 。点。

常用基本数字集成电路应用设计

课程设计题目:常用基本数字集成电路应用设计 学生姓名: 学号: 院系: 专业班级: 指导教师姓名及职称: 起止时间: 课程设计评分: 常用基本数字集成电路应用设计 1.多谐振荡器概述 多谐振荡器是一种自激振荡器,它不需要输入触发信号,接通电源后就可自动输出矩形脉冲。由于矩形脉冲含有丰富的谐波分量,因此,常将矩形脉冲产生电路称为多谐振荡器。 1.1非门电路构成的多谐振荡器设计

1.1.1基本原理 门电路构成多谐振荡器 非门作为一个开关倒相器件,可用以构成各种脉冲波形的产生电路。电路的基本工作 原理是利用电容器的充放电,当输入电压达到与非门的阈值电压VT 时,门的输出状态即发生变化。因此,电路输出的脉冲波形参数直接取决于电路中阻容元件的数值。 (1)不对称多谐振荡器 非对称型多谐振荡器的输出波形是不对称的,当用TTL与非门组成时,输出脉冲宽度 tw1=RC, tw2=1.2RC, T=2.2RC 调节 R和C值,可改变输出信号的振荡频率,通常用改变C实现输出频率的粗调,改 变电位器R实现输出频率的细调。 图1为不对称多谐振荡器,为了使电路产生振荡,要求U1A和U1B两个反向器都工作在电压传输特性的转折区,即工作在放大区。 (2)对称型多谐振荡器 电路完全对称,电容器的充放电时间常数相同, 故输出为对称的方波。改变R和C的值, 可以改变输出振荡频率。非门3用于输出波形整形。 一般取R≤1KΩ?,当R1=R2=1KΩ,C1=C2=100pf~100μf时,f可在几Hz~MHz 变化。

脉冲宽度tw1=tw2=0.7RC,T=1.4RC. 图2中,U1A和U1B两个反向器之间经电容C1和C2耦合形成正反馈回路。 (3) 石英晶体稳频的多谐振荡器 当要求多谐振荡器的工作频率稳定性很高时,上述几种多谐振荡器的精度已不能满足要 求。为此常用石英晶体作为信号频率的基准。用石英晶体与门电路构成的多谐振荡器常用来 为微型计算机等提供时钟信号。 图3所示为常用的晶体稳频多谐振荡器。(a)、 (b)为TTL器件组成的晶体振荡电路;(c)、 (d)为CMOS器件组成的晶体振荡电路,一般用于电子表中,其中晶体的f0=32768Hz。 图3(c)中,门1用于振荡,门2用于缓冲整形。Rf是反馈电阻,通常在几十兆欧之 间选取,一般选22MΩ。R起稳定振荡作用,通常取十至几百千欧。C1是频率微调电容器, C2用于温度特性校正。

常用数字集成电路管脚排列及逻辑符号

常用数字集成电路管脚排列及逻辑符号
图 D-1 74LS00 四 2 输入与非门
图 D-2 74LS01 四 2 输入与非门(OC)
图 D-3 74LS02 四 2 输入或非门
图 D-4 74LS04 六反相器
图 D-5 74LS08 四 2 输入与门
图 D-6 74LS10 三 3 输入与非门
图 D-7 74LS20 双 4 输入与非门
图 D-8
R
74LS32 四 2 输入或门
S
Q
S R Q
R Q S
R
S
Q
图 D-9 74LS54 4 路 2-2-2-2 输入与或非门
图 D-10 74LS74 双上升沿 D 型触发器
图 D-11 74LS86 四 2 输入异或门
图 D-12
74LS112 双下降沿 J-K 触发器

图 D-13 74LS126 四总线缓冲器
图 D-14
74LS138 3 线-8 线译码器
图 D-15 74LS148 8 线-3 线优先编码器
图 D-16 74LS151 8 选 1 数据选择器
图 D-17 74LS153 双 4 选 1 数据选择器
图 D-18 74LS161 4 位二进制同步计数器
图 D-19 74LS194 4 位双向移位寄存器
图 D-20 74LS196 二-五-十进制计数器
图 D-21 74LS283 4 位二进制超前进位全加器
图 D-22
74LS290 二-五-十进制计数器
图 D-23
CD4011B 四 2 输入与非门
图 D-24 CD4081 四 2 输入与门

实验室常用模拟集成电路

实验室常用模拟集成电路 序号型号名称 M001 2P4M 可控硅 M002 4N35 通用光电耦合器 M003 6N135 数字逻辑隔离 M004 24C01 1K/2K 5V I2C 总线串行EEPROM M005 24LC08B 8K I2C 总线串行EEPROM M006 93C46 1K 串行EEPROM M007 AD574 12-BIT,DAC 转换器 M008 BM2272 遥控译码器 M009 CA3140E 4.5MHz,BiMOS 运算放大器 M010 TLP521 可编程控制AC/DC 输入固态继电器 M011 7805 正5V 三端稳压集成电路 M012 LM7905 负5V 三端稳压集成电路 M013 LA7806 B/W 电视机同步、偏转电路,16PIN M014 7906C 负6V 三端稳压集成电路 M015 7808A 正8V 3 端稳压器,输入35V,功率20.8W M016 7908AC 正8V 3 端稳压器,输入35V,功率12W M017 LM7809 正9V 三端稳压集成电路 M018 ADS7809 正9V 三端稳压集成电路 M019 TA7810S 0.5A,3 端稳压器 M020 TDA7910N 负10V 3 端稳压器,输入-35V,1A,功率12W M021 IRF7811A N-MOSFET,功率场效应管,28V/11.4A/2.5W M022 7812A 正12V 3 端稳压器,输入35V,功率20.8W M023 LM7912 1A 3 端稳压器 M024 AD7813 2.5V-5.5V,400kSPS,8/10-BIT,采样,ADC 转换器M025 LM7815 正15V 三端稳压集成电路 M026 LM7915 负15V1A 3 端稳压器 M027 AD7819 2.7V-5.5V,200KSPS,8-BIT,采样,ADC 转换器 M028 LA7820 彩色电视机同步/偏转电路 M029 L7920C 负20V1A 3 端稳压器 M030 LC7821 模拟开关 M031 LM7824 正24V 三端稳压集成电路 M032 KA7924 负24V1A 3 端稳压器 M033 AD7825 3Vto5V、2MSPS、1/4/8 通道、8BitAD 转换器 M034 PJ7925CZ 负25V1A 3 端稳压器 M035 ADS7826 10/8/12 位取样模拟数字转换器用2.7V 的电源 M036 IRF840 功率场效应管,大功率、高速, 500V/8A/125W M037 ADC0809 8-BIT up 兼容8 通道多路复用器A/D 转换器 M038 ADC0832 2 路,8-BIT 串行输入/输出A/D 转换多路选择 M039 LM324N 四路运算放大器 M040 LM339 低功耗低失调电压四比较器 M041 LM358 低功率双运算放大器

数字集成电路的分类

数字集成电路的分类 数字集成电路有多种分类方法,以下是几种常用的分类方法。 1.按结构工艺分 按结构工艺分类,数字集成电路可以分为厚膜集成电路、薄膜集成电路、混合集成电路、半导体集成电路四大类。图如下所示。 世界上生产最多、使用最多的为半导体集成电路。半导体数字集成电路(以下简称数字集成电路)主要分为TTL、CMOS、ECL三大类。 ECL、TTL为双极型集成电路,构成的基本元器件为双极型半导体器件,其主要特点是速度快、负载能力强,但功耗较大、集成度较低。双极型集成电路主要有TTL(Transistor-Transistor Logic)电路、ECL(Emitter Coupled Logic)电路和I2L(Integrated Injection Logic)电路等类型。其中TTL电路的性能价格比最佳,故应用最广泛。

ECL,即发射极耦合逻辑电路,也称电流开关型逻辑电路。它是利用运放原理通过晶体管射极耦合实现的门电路。在所有数字电路中,它工作速度最高,其平均延迟时间tpd可小至1ns。这种门电路输出阻抗低,负载能力强。它的主要缺点是抗干扰能力差,电路功耗大。 MOS电路为单极型集成电路,又称为MOS集成电路,它采用金属-氧化物半导体场效应管(Metal Oxide Semi-conductor Field Effect Transistor,缩写为MOSFET)制造,其主要特点是结构简单、制造方便、集成度高、功耗低,但速度较慢。MOS集成电路又分为PMOS(P-channel Metal Oxide Semiconductor,P沟道金属氧化物半导体)、NMOS(N-channel Metal Oxide Semiconductor,N沟道金属氧化物半导体)和CMOS(Complement Metal Oxide Semiconductor,复合互补金属氧化物半导体)等类型。 MOS电路中应用最广泛的为CMOS电路,CMOS数字电路中,应用最广泛的为4000、4500系列,它不但适用于通用逻辑电路的设计,而且综合性能也很好,它与TTL电路一起成为数字集成电路中两大主流产品。CMOS数字集成电路电路主要分为4000(4500系列)系列、54HC/74HC系列、54HCT/74HCT系列等,实际上这三大系列之间的引脚功能、排列顺序是相同的,只是某些参数不同而已。例如,74HC4017与CD4017为功能相同、引脚排列相同的电路,前者的工作速度高,工作电源电压低。4000系列中目前最常用的是B 系列,它采用了硅栅工艺和双缓冲输出结构。 Bi-CMOS是双极型CMOS(Bipolar-CMOS)电路的简称,这种门电路的特点是逻辑部分采用CMOS结构,输出级采用双极型三极管,因此兼有CMOS电路的低功耗和双极型电路输出阻抗低的优点。 (1)TTL类型 这类集成电路是以双极型晶体管(即通常所说的晶体管)为开关元件,输入级采用多发射极晶体管形式,开关放大电路也都是由晶体管构成,所以称为晶体管-晶体管-逻辑,即Transistor-Transistor-Logic,缩写为TTL。TTL电路在速度和功耗方面,都处于现代数字集成电路的中等水平。它的品种丰富、互换性强,一般均以74(民用)或54(军用)为型号前缀。 ①74LS系列(简称LS,LSTTL等)。这是现代TTL类型的主要应用产品系列,也是逻辑集成电路的重要产品之一。其主要特点是功耗低、品种多、价格便宜。 ②74S系列(简称S,STTL等)。这是TTL的高速型,也是目前应用较多的产品之一。

数字集成电路

数字集成电路专题研究 摘要:现在的电路可以分为两个方向,一个是数字,还有一个是模拟,在此更加偏重对数字方面的研究!全文一共可以分为两部分,一部分是基本的数字电路,还有一部分为较大型的集成电路。前一部分(基本数字电路)从认识数字电路开始,其间涉及到数字电路的分析方法---函数分析方法;在数字电路中分TTL 和COMS两种电路,在此报告中提到了这两种电路的电平比较关系。因COMS电路功耗低、工作电压范围宽、扇出能力强和售价低等优点,所以着重介绍一下CMOS 电路的常用特性,以及由它构成的一些常见的数字电路!而在后半部方介绍的是集成电路,从集成电路的分类到如何做好集成电路的设计;集成电路的设计分为前端和后端设计前端是指逻辑部分,后端是指物理层的设计.前端是设计内部的逻辑.后端是指假设逻辑设计已经完成,如何做出最后的芯片,涉及到芯片内部如何分区,如何布线,模拟部分,寄生效应等等.而由于专业方向这里又着重去讨论前端设计:系统集成芯片(SoC)的IC设计。同时收集了一些集成电路的设计工具。 关键字:数字电路函数表示 COMS集成电路常

见的数字电路集成电路分类 IC前端设计工具系统集成芯片SOC IC设计软件 VHDL/ Veriolg HDL 正文: 一.数字电路简介: 在电子设备中,通常把电路分为模拟电路和数字电路两类,前者涉及模拟信号,即连续变化的物理量,例如在24小时内某室内温度的变化量;后者涉及数字信号,即断续变化的物理量,开关K 快速通、断时,在电阻R 上就产生一连串的脉冲(电压),这就是数字信号。人们把用来传输、控制或变换数字信号的电子电路称为数字电路。数字电路工作时通常只有两种状态:高电位(又称高电平)或低电位(又称低电平)。通常把高电位用代码“1 ”表示,称为逻辑“1 ”;低电位用代码“0 ”表示,称为逻辑“0 ”(按正逻辑定义的)。注意:有关产品手册中常用“H ”代表“1 ”、“L ”代表“0 ”。实际的数字电路中,到底要求多高或多低的电位才能表示“1 ”或“0 ”,这要由具体的数字电路来定。例如一些TTL 数字电路的输出电压等于或小于0.2V,均可认为是逻辑“0 ”,等于或者大于3V,均可认为是逻辑“1 ”(即电路技术指标)。CMOS数字电路的逻辑“0 ”或“1 ”的电位值是与工作电压有关的。讨论数字电路

数字集成电路应用举例

数字集成电路应用举例

第15章数字集成电路应用举例教学重点: 1.掌握比较器的工作原理。 2.了解数据选择器工作原理。 3.掌握555时基电路的功能,了解555时基电路的应用。 4.了解各种集成电路的接口电路。 教学难点: 1.555时基集成电路的应用。 2.集成电路的接口电路。 学时分配: 序号内容学时 1 15.1 比较器与选择器 2 2 15.2 时基集成电路的应用 2 3 15.3 集成电路的接口电路 1.5 4 本章小结与习题0.5 5 本章总学时 6 15.1 比较器与选择器 15.1.1 数码比较器 数码比较器是能够比较两 136 图15.1.1 同比较器

137 个数码的逻辑电路。同比较器:只能比较两个数码是否相同的比较器; 大小比较器:可以比较两个数码的大小的比较器。 一、同比较器 1.电路构成:由四个异或门和一个或非门组成。 2.逻辑函数式: 0112233B A B A B A B A Y ⊕+⊕+⊕+⊕= 3.工作原理: Y = 1时,两个数相等;Y = 0时,两数不等。 二、大小比较器 1.电路构成:(一位二进制数的比较)两个非门和两个与门构成。 2.逻辑功能:当012 1 ====>i i i i i i A B Y B A Y B A ,,; 当102 1 ====

表15.1.1 一位大小比较器真值表 4.多位数码的比较 可采用逐位比较法,首先从最高位开始,依次比出结果。 15.1.2 多路选择器 多路选择器是从多个输入信号中,选择一个并且单个输出的电路。 图15.1.3是4选1选择器。 A1、A2、A3、A4及B1、B2、B3、B4为输入的多个信号,S为旋转开关,P为控制信号――输入选通脉冲。 功能:与一个单刀多掷开关相似。 适用场合:广泛运用于多输入、单输出的数据传输网络。也叫数据选择器。 图15.1.4为集成多路数据选择器。集成多路数据选择器的功能参见表15.1.2。 138

常用数字集成电路资料.

CD4000 双3输入端或非门+单非门TI CD4001 四2输入端或非门 HIT/NSC/TI/GOL CD4002 双4输入端或非门NSC CD4006 18位串入/串出移位寄存 器NSC CD4007 双互补对加反相器NSC CD4008 4位超前进位全加器NSC CD4009 六反相缓冲/变换器NSC CD4010 六同相缓冲/变换器NSC CD4011 四2输入端与非 门HIT/TI CD4012双4输入端与非门NSC CD4013双主-从D型触发器 FSC/NSC/TOS CD4014 8位串入/并入-串出移位寄存器NSC CD4015 双4位串入/并 出移位寄存器TI CD4016 四传输门FSC/TI CD4017 十进制计数/分配器 FSC/TI/MOT CD4018可预希9 1/N计数器NSC/MOT CD4019四与或选择器PHI CD4020 1 4级串行二进制计数/分频器FSC CD4021 08位串入/并入-串出移位寄存器 PHI/NSC CD4022 八进9计数/分配器NSC/MOT 型号器件名称厂牌备注CD4023 三3输入端与非门NSC/MOT/TI CD4024 7级二进制串行计数/分频器NSC/MOT/TI CD4025 三3输入端或非门NSC/MOT/TI CD4026 十进9计数/7段译码器 NSC/MOT/TI CD4027 双J-K 触发器NSC/MOT/TI CD4028 BCD 码十进制译码器 NSC/MOT/TI CD4029 可预置可逆计数器NSC/MOT/TI CD4030 四异或门 NSC/MOT/TI/GOL CD4031 64 位串入/串出移位存储器NSC/MOT/TI CD4032 三串行加法器NSC/TI CD4033 十进制计数/7段译码器NSC/TI CD4034 8位通用总线寄 存器NSC/MOT/TI CD4035 4 位并入/串入-并出/串出移位寄存NSC/MOT/TI CD4038 三串行加法器NSC/TI CD4040 12级二进制串行计数/分频器NSC/MOT/TI CD4041 四同相/反相缓冲器NSC/MOT/TI CD4042四锁存D型触发器NSC/MOT/TI CD4043 4三态R-S锁存触发器("1"触发NSC/MOT/TI CD4044四三态R-S锁存触发器("0"触 发NSC/MOT/TI CD4046 锁相环NSC/MOT/TI/PHI CD4047 无稳态/单稳态多谐振荡器NSC/MOT/TI 型号器件名称厂牌备注CD4048 4输入端可扩展多功能门 NSC/HIT/TI CD4049 六反相缓冲/变换器NSC/HIT/TI CD4050 六同相缓冲/变换器 NSC/MOT/TI CD4051 八选一模拟开关NSC/MOT/TI CD4052 双4选1模拟开关 NSC/MOT/TI CD4053 三组二路模拟开关NSC/MOT/TI CD4054 液晶显示驱动器 NSC/HIT/TI CD4055 BCD-7 段译码/液晶驱动器NSC/HIT/TI CD4056 液晶显示驱动器NSC/HIT/TI CD4059 “N分频计数器NSC/TI CD4060 14级二进制串行计数/分频 器NSC/TI/MOT CD4063 四位数字比较器NSC/HIT/TI CD4066 四传输门 NSC/TI/MOT CD4067 16 选1模拟开关NSC/TI CD4068 八输入端与非门/与门

数字集成电路应用举例

第15章 数字集成电路应用举例 教学重点: 1.掌握比较器的工作原理。 2.了解数据选择器工作原理。 3.掌握555时基电路的功能,了解555时基电路的应用。 4.了解各种集成电路的接口电路。 教学难点: 1.555时基集成电路的应用。 2.集成电路的接口电路。 学时分配: 序号 容 学 时 1 15.1 比较器与选择器 2 2 15.2 时基集成电路的应用 2 3 15.3 集成电路的接口电路 1.5 4 本章小结与习题 0.5 5 本章总学时 6 15.1 比较器与选择器 15.1.1 数码比较器 数码比较器是能够比较两个数码的逻辑电路。同比较器:只能比较两个数码是否相同的比较器; 大小比较器:可以比较两个数码的大小的比较器。 一、同比较器 1.电路构成:由四个异或门和一个或非门组成。 2.逻辑函数式: 00112233B A B A B A B A Y ⊕+⊕+⊕+⊕= 3.工作原理: Y 1时,两个数相等;Y 0时,两数不等。 二、大小比较器 图15.1.1 同比较器 图15.1.2 一位大小比较器

1.电路构成:(一位二进制数的比较)两个非门和两个与门构成。 2.逻辑功能:当0121====>i i i i i i A B Y B A Y B A ,,; 当1021====

常用数字集成电路管脚图

实验室提供的常用TTL 器件如下: 附录:常用数字集成电路管脚排列及逻辑符号 1A 1B 1Y 2A 2B 2Y 4A 4B 4Y 3A 3B 3Y GND V 图D-1 74LS00四2输入与非门 图D-2 74LS01四2输入与非门(OC ) 8 9 10 11 1 2 12 13 3 14 4 5 6 7 4Y GND 4A 5Y 6A 6Y 5A V CC 1A 1Y 2A 2Y 3A 3Y 。 1。 1 。 1 。 1 。 1 。 1 图D-3 74LS02四2输入或非门 图D-4 74LS04六反相器 8 910 11 121213 314 4567GND & & & & 1A 1B 1Y 2A 2B 2Y 4A 4B 4Y 3A 3B 3Y V CC 8 9 10 11 1212 13 314 4567 1C 1Y 3C 3B 3A 3Y 1A 1B 2A 2B 2C 2Y GND Vcc 。&&&。。 图D-5 74LS08四2输入与门 图D-6 74LS10三3输入与非门 8 9 10 11 1111 2 2 3 3 4 4 5 6 7 Vcc 2D 2C 2B 2A 2Y 1A 1B 1C 1D 1Y GND 。 &。 & N N 1A 1B 2Y 2A 2B 3Y 3A 3B 4Y 4A 4B GND V CC 8 9 10 11 1111 2 2 3 3 4 4 5 6 7 1Y 1 1 1 1 ≥≥≥≥ 图D-7 74LS20双4输入与非门 图D-8 74LS32四2输入或门

8 9 10 11 1212 13 314 45 6 7 ≥1 。 A C D E F N GND N N B H G Y V CC D R S D Q 2D R 1 1D 1CP 1 1Q 1 S D Q GND D Q CP 8 9 10 11 1111 2 2 3 3 4 4567 Q O O D Q CP Q O O D R D S D D R S Vcc 2 2D 2CP 2 2Q 图D-9 74LS54 4路2-2-2-2输入与或非门 图D-10 74LS74双上升沿D 型触发器 1A 1B 2Y 2A 2B 3Y 3A 3B 4Y 4A 4B GND V CC 8 9 10 11 1111 2 2 3 3 4 4 5 6 7 1Y =1 =1 =1 =1 9 10 11 1111 2 2 3 3 4 45678 115 6 Vcc D 2R D 22K 21J 22Q 1R CP CP 1K 1J S D 11Q 1Q 2Q GND K J CP D D Q Q R S S D 。 。 。。。 。 K CP J D R D S Q Q 图D-11 74LS86四2输入异或门 图D-12 74LS112双下降沿J-K 触发器 8 9 10 11 1 2 12 13 3 14 4 5 6 7 GND 1E 1A 1Y 2E 2A 2Y 4E 4A 4Y 3E 3A 3Y V CC EN 1EN 1 EN 1 EN 1 9 10 11 111122 3 3 4 4 5 6 7 8 115 6 Y 0 Vcc Y Y Y Y Y Y 1 2 3 4 5 6 S S Y GND 3 2 1 S A A A 012 7Y 0 Y Y Y Y Y 1 2 3 45 S S Y S A A 12 71 3 2 A 0 Y 6。 。 。 。 。 。 。 。 。 。 图D-13 74LS126四总线缓冲器 图D-14 74LS138 3线-8线译码器 9 10 11 1212 13 314 4567815 16 I 4。I 0 GND V CC I 5I 6I 7I 0 I 1 I 2 I 3 Y 0 Y 1Y 2Y S Y EX S I 1 I 2 I 3 I 4 I 5 I 6 I 7 Y 0 Y 1 Y 2 Y S Y EX S(E)。。。。。。 。。。。。。。 9 10 11 111122 3 3 4 4 5 6 7 8 115 6D 4V C C D D D A A A 56 7 1 2 GND D D D 321D 4D D D A A 56701D W D D 2 1 D 3A 2S ( E ) W S (E )D 0W W 。 。 图D-15 74LS148 8线-3线优先编码器 图D-16 74LS151 8选1数据选择器 9 10 11 1 2 12 13 314 45678 15 16 1D 3GND V CC 1D 21D 11D 0A 0 A 11W 2S 2D 3 2D 2 2D 1 2D 0 2W . . 。 。 A 0 2S 2D 32D 2 2D 1 2D 02W 1D 3 1D 2 1D 1 1D 0 A 11W A 0A 1 1S 9 10 11 12 13 123 14 45678 16 15 GND CR LD CP ENT O O Q CC Q 0Q 1Q 2 Q 3 D 0D 1 D 2D 3ENP D 0D 1D 2D 3ENP V CC Q CC Q 0 Q 1 Q 2 Q 3 ENT LD CP CR 图D-17 74LS153双4选1数据选择器 图D-18 74LS161 4位二进制同步计数器 9 10 11 1212 13 314 45678 15 16 CR GND V CC D SR M 1 CP Q 4 Q 3 M 0 D L D 4Q 1 Q 2 D 3D 2D 1CR Q Q Q Q CP 1 2 3 4 S 1 S 0 D SR D D D D D L 。 1 2 3 4 8 9 10 11 111122 3 34 45 6 7 CT/LD Qc C A QA V CC Q D D B Q B Cr QD Q B QB Qc C A QA CPB GND C r CP A CP B CT /LD CP A 。 。 。 图D-19 74LS194 4位双向移位寄存器 图D-20 74LS196二-五-十进制计数器

相关文档
最新文档