一种基于AdaBoost的人脸检测算法

一种基于AdaBoost的人脸检测算法
一种基于AdaBoost的人脸检测算法

人脸识别过程和相关算法(2013)

人 脸 识 别 过 程 图1 人脸识别流程图 1. 人脸的检测和定位:检测图中有没有人脸,将人脸从背景中分割出来,获 取人脸或人脸上的某些器官在图像上的位置。 2. 特征提取:提取特征点,构造特征矢量;多个样本图像的空间序列训练出 一个模型,它的参数就是特征值;模版匹配法用相关系数做特征;而大部分神经网络方法则直接使用归一化后的灰度图像作为输入,网络的输出就是识别结果,没有专门的特征提取过程。 3. 识别:将带识别的图像或特征与人脸数据库里的特征进行匹配,进而将给 出的人脸图像与数据库中的某一个人脸图像及其名字,相关性对应起来。 人脸检测方法 基于知识的方法 a) 优点:规则简单。 视频捕获图像预处理人脸检测人脸特征提取人脸识别人脸数据库比对

b)缺点:难以将人类知识转化为明确的规则。 基于特征的方法 c)优点:可以依据面部器官的几何关系进行人脸检测。 d)缺点:光照、噪声和遮挡可能使得人脸的边界特征被弱化,从而使得算 法难以使用。 基于模版匹配的方法 e)优点:简单高效。 f)缺点:难以应对各种不同的成像条件;关于人脸模式和非人脸模式不存 在一个清晰的、明确的界限。 基于外观的方法 g)优点:通过大量的样本训练使得人脸识别的精确度高。 h)缺点:算法复杂。 基于肤色的系统 i)优点:不受人脸姿态变化的影响。 j)缺点:受光照等外在因素影响较大。

人脸识别方法 基于几何特征的识别方法 a)优点: i.符合人类识别人脸的机理,易于理解。 ii.对每幅图像只需存储一个特征矢量,存储量小。 iii.对光照变化不太敏感。 b)缺点: i.从图像中抽取稳定的几何特征比较困难,特别是特征受到遮挡时。 ii.对强烈的表情变化和姿态变化的鲁棒性较差。 iii.一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息丢失,该方法比较适合于人脸图像粗分类。基于统计的识别方法:隐马尔可夫法 c)优点:人脸识别率高。 d)缺点:算法实现复杂。 基于连接机制的方法 e)优点: i.能够根据有代表性的样本自我学习,具有鲁棒性和自适应性。 ii.以并行的方式处理信息,配以硬件实现,可以显著地提高速度。 f)缺点:算法实现复杂。

AdaBoost人脸检测原理

AdaBoost人脸检测原理 对人脸检测的研究最初可以追溯到 20 世纪 70 年代,早期的研究主要致力于模板匹配、子空间方法,变形模板匹配等。近期人脸检测的研究主要集中在基于数据驱动的学习方法,如统计模型方法,神经网络学习方法,统计知识理论和支持向量机方法,基于马尔可夫随机域的方法,以及基于肤色的人脸检测。目前在实际中应用的人脸检测方法多为基于 Adaboost 学习算法的方法。 Viola人脸检测方法是一种基于积分图、级联检测器和AdaBoost 算法的方法,方法框架可以分为以下三大部分: 第一部分,使用Harr-like特征表示人脸,使用“积分图”实现特征数值的快速计算; 第二部分,使用Adaboost算法挑选出一些最能代表人脸的矩形特征( 弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器; 第三部分,将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,级联结构能有效地提高分类器的检测速度。 Adaboost 算法是一种用来分类的方法,它的基本原理就是“三个臭皮匠,顶个诸葛亮”。它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。例如下图中, 需要用一些线段把红色的球与深蓝色的球分开,然而如果仅仅画一条线的话,是分不开的。 a b c d 使用Adaboost算法来进行划分的话,先画出一条错误率最小的线段如图 1 ,但是左下脚的深蓝色球被错误划分到红色区域,因此加重被错误球的权重,再下一次划分时,将更加考虑那些权重大的球,如 c 所示,最终得到了一个准确的划分,如下图所示。

人脸检测的目的就是从图片中找出所有包含人脸的子窗口,将人脸的子窗口与非人脸的子窗口分开。大致步骤如下: (1)在一个 20*20 的图片提取一些简单的特征(称为Harr特征),如下图所示。 它的计算方法就是将白色区域内的像素和减去黑色区域,因此在人脸与非人脸图片的相同位置上,值的大小是不一样的,这些特征可以用来区分人脸和分人脸。 (2)目前的方法是使用数千张切割好的人脸图片,和上万张背景图片作为训练样本。训练图片一般归一化到 20*20 的大小。在这样大小的图片中,可供使用的haar特征数在1万个左右,然后通过机器学习算法-adaboost算法挑选数千个有效的haar特征来组成人脸检测器。 (3)学习算法训练出一个人脸检测器后,便可以在各个场合使用了。使用时,将图像按比例依次缩放,然后在缩放后的图片的 20*20 的子窗口依次判别是人脸还是非人脸。

人脸检测算法原理及OPENCV人脸检测程序分析

人脸检测算法原理及OpenCV 人脸检测程序分析 罗海风 2011-3-30 人脸检测研究背景:人脸检测 基于肤色特征基于灰度特征 启发模型统计模型 肤色区域分割方法人脸模板方法等特征空间方法PCA 、fisherfaces 方法等ANN SVM 概率模型方法 贝叶斯概率模型HMM 集成机器学习 以上所列方法中,基于统计模型的方法是目前比较流行的方法[1],具有较大的优越性。其优点有: 1.不依赖于人脸的先验知识和参数模型,可以避免不精确或不完整的知识造成的错误; 2.采用实例学习的方法获取模型的参数,统计意义上更加可靠; 3.通过增加学习的实例可以扩种检测模式范围,提高鲁棒性。 在统计模型方法中,2001年左右由Viola 和Jones 提出的基于集成机器学习的人脸检测算法相对于其他方法具有明显优势[123]。近期文献也表明目前尚未发现优于Viola &Jones 方法的其他人脸检测方法[4]。该方法不仅检测精度高,最关键的是其运算速度大大快于其他方法。Viola &Jones 人脸检测方法原理: 该方法中几个关键性概念[5]: 1.Haar-like 特征 Haar-like 型特征是Viola 等人提出的一种简单矩形特征,因为类似Haar 小波而得名。Haar

型特征的定义是黑色矩形和白色矩形在图像子窗口中对应的区域的权重灰度级总和之差。上图显示了两种最简单的特征算子。在上述图中,可以看到,在人脸特定结构处,算子计算得到较大的值。 2.积分图 算子数量庞大时上述计算量显得太大,Viola等人发明了积分图方法,使得计算速度大大加快。积分图如上所示,点1处的值为A区域的像素积分,点2处的值为AB区域的像素积分。对整张图片进行一次积分操作,便可以方便的计算出任一区域D像素积分值为4+1-2-3。 3.Adaboost训练算法 在离散Adaboost算法中,Haar-like特征算子计算结果减去某阈值,便可视为一个人脸检测器。因为其准确率不高,称为弱分类器。Adaboost算法的循环中,首先利用各种弱分类器对训练图片库进行分类,准确度最高的弱分类器保留下来,同时提高判断错误的图片的权重,进入下一循环。最终将每次循环所保留的弱分类器组合起来,成为一个准确的人脸检测器,称为强分类器。具体计算流程见[35]。 4.瀑布型级联检测器 瀑布型级联检测器是针对人脸检测速度问题提出的一种检测结构。瀑布的每一层是一个由adaboost算法训练得到的强分类器。设置每层的阈值,是的大多数人脸能够通过,在此基础上尽量抛弃反例。位置越靠后的层越复杂,具有越强的分类能力。 这样的检测器结构就想一系列筛孔大小递减的筛子,每一步都能筛除一些前面筛子楼下的反例,最终通过所有筛子的样本被接受为人脸。瀑布型检测器训练算法见[3]。 OpenCV人脸检测程序流程[6]: OpenCV的人脸检测程序采用了Viola&Jones人脸检测方法,主要是调用训练好的瀑布级联分类器cascade来进行模式匹配。 cvHaarDetectObjects,先将图像灰度化,根据传入参数判断是否进行canny边缘处理(默认不

基于神经网络的人脸检测方法

基于神经网络的人脸检测方法 摘要:自动人脸检测应用十分广泛,如安全访问控制,基于模型的视频编码或基于内容的视频索引,所以它正在成为一个非常重要的研究课题。在本文中,我们在假设不考虑内容,场景的照明条件,大小,方向和外观的前提下,提出了一种检测复杂图像和精确本地半正面人脸的方法。这就是卷积神经网络结构,这种方法不像其他系统,其他系统需要一个手工检测的阶段或特征分类阶段。卷积神经网络结构是从一个大的训练集中自动合成自己的一套特征提取方法,所以它可以直接从未预处理的照片中提取变化的人脸模型,而且可以在神经元模型中利用感受区域,共享权数和空间采样对人脸进行一定程度的旋转,缩放和变形。我们将会对我们的结构,研究策略和检测过程进行详细的描述。最后我们将证明在环境和人脸变化的情况下这种方法相当稳健,具有精确检测的能力。 1简介 因为其广泛的应用范围,人脸检测正在成为一个非常重要的的研究课题。比如在安全访问控制,基于模型的视频编码,基于内容的视频索引等方面。相对于人脸检测,脸部识别和表情分析算法已经得到学术方面的足够关注。近年来,在光线,面部表情和姿势微小变化的情况下,对人脸的识别已经取得相当大的进展。在[1]中你会发现一个现象。就是大多数的人脸识别和表情分析算法是在特定条件下得到的,要么是在同一背景下要么是出现过的图像要么直接是“人脸照片”,在这种情况下,人脸识别相对比较容易。然而,多数情况人脸检测是在复杂的场景下,这并不简单。由于面部表情,表现力和方位的改变面部模型也会呈现巨大的变化。 最近一些检测非人脸照片的技术已经得到了提高。这些方法可大致分为三大类:本地的面部特征检测,模板匹配和图像不变性。第一种方法,低层次的计算机视觉算法[3,7,13]用于检测的面部特征,如眼睛,嘴巴,鼻子,下巴和其他特征部位。第二种方法,几个相关模板用来进一步检测本地特征。这些人脸特征将被作为硬性模板(基于eigenspaces [8])或(模板 [12, 5])。这些方法有很大的缺点,就是即使是很小的约束全局条件被改变也会对人脸模型和提取特征造成强烈的影响,比如噪声,表情的变化和焦点的改变等。最后一种方法,即使在不同的成像条件下图像不变方案也假定图像存在一定空间关系,比如亮度分布,相似点,人脸模型[10]的唯一性。在场景不受限制的情况下,这些算法都不是很健壮。 肤色信息的使用是制约搜索空间的一个重要线索。在[4]中,Garcia and Tziritas提出一个快速检测到人脸的方法,即皮肤颜色过滤和概率分布方法,而所用到的统计数据是从小波包中分解提取得到的。在[5]中,Garcia 将可变的脸部模板进行扩展,从而使这种方法可以精确的定位面部特征。 对于一般灰度图像,不需要遵守人为设定的规则,事实证明,类似于[11,9]中提到的基于神经网络的方法,效果最好。在本文中,我们提出一种新的检测方法,这种方法是基于神经网络的检测方法,这种方法可以对复杂的照片即使是半正面的人脸进行准确的检测。不需要考虑场景的照明条件,人脸大小,方向和人的外貌特征等因素。

【CN109961021A】一种深度图像中人脸检测方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910164890.2 (22)申请日 2019.03.05 (71)申请人 北京超维度计算科技有限公司 地址 100142 北京市海淀区西四环北路160 号9层一区907 (72)发明人 马宁 徐杰 张颢 向志宏  杨延辉  (74)专利代理机构 北京亿腾知识产权代理事务 所(普通合伙) 11309 代理人 陈霁 (51)Int.Cl. G06K 9/00(2006.01) (54)发明名称一种深度图像中人脸检测方法(57)摘要本发明涉及一种深度图像中人脸检测方法,包括以下步骤:找出深度图像中所有有效深度值的局部最小值点;计算局部最小值点的曲率,去除曲率超出范围的点;如果此时还有剩余的局部最小值点,则在纵向剖线上用深度阈值切割出人脸廓线,去除纵向人脸廓线长度不符合真实人脸尺寸的局部极小值点;如果还有剩余的局部最小值点,则计算鼻子的深度值和纵向剖线上鼻子廓线占人脸廓线长度的比值,排除鼻子的深度值或比值超出一定范围的局部最小值点;如果还有剩余的局部最小值点,则通过深度阈值切割出可能存在的人脸,并排除切割区域尺寸小于实际人脸尺寸的局部最小值点;如果此时还有剩余的局部最小值点,则认为图像中有人脸,否则认为图像 中没有人脸。权利要求书2页 说明书3页 附图1页CN 109961021 A 2019.07.02 C N 109961021 A

权 利 要 求 书1/2页CN 109961021 A 1.一种深度图像中人脸检测方法,其特征在于,包括以下步骤: 找出深度图像中所有有效深度值的局部最小值点; 计算局部最小值点的曲率,去除曲率超出范围的点; 如果此时没有剩余的局部最小值点,则可以判断这一张深度图像中没有人脸;如果还有剩余的局部最小值点,则在纵向剖线上用深度阈值切割出可能的人脸廓线,去除纵向人脸廓线长度不符合真实人脸尺寸的局部极小值点; 如果此时没有剩余的局部最小值点,则可以判断这一张深度图像中没有人脸;如果还有剩余的局部最小值点,则计算鼻子的深度值和纵向剖线上鼻子廓线占人脸廓线长度的比值,排除鼻子的深度值或比值超出一定范围的局部最小值点; 如果此时没有剩余的局部最小值点,则可以判断这一张深度图像中没有人脸;如果还有剩余的局部最小值点,则通过深度阈值切割出可能存在的人脸区域,并排除切割区域尺寸小于实际人脸尺寸的局部最小值点; 如果此时还有剩余的局部最小值点,则认为图像中有人脸,输出图像中所有的人脸区域位置,否则认为图像中没有人脸。 2.根据权利要求1所述的方法,其特征在于,所述找出深度图像中所有有效深度值的局部最小值点步骤,包括: 对深度相机输出的深度图像,找出深度图像中所有在局部窗口中有效深度值最小的像素点的位置,如果邻接的多个像素都为局部最小值点,则只取这几个邻接像素的中心位置为局部最小值位置。 3.根据权利要求1所述的方法,其特征在于,所述计算局部最小值点的曲率,去除曲率超出范围的点步骤,包括: 对得到的每个局部极小值点,在一定邻域范围内计算有效深度值梯度幅度的平均值,此梯度幅度平均值反映了物体表面的曲率,通过人鼻尖表面曲率的范围,可以排除一些不是鼻尖的局部最小值点。 4.根据权利要求1所述的方法,其特征在于,所述在纵向剖线上用深度阈值切割出可能的人脸廓线,去除纵向人脸廓线长度不符合真实人脸尺寸的局部极小值点步骤,包括:对于剩余的每个局部最小值点,找出深度图像中该位置的纵向廓线,由局部最小值点的深度和位置信息可以估计出该距离下真实人脸在纵向廓线上的最大范围,该范围作为人脸可能存在的范围,在该范围内,用该局部最小值点的深度值加上一个深度差值,作为深度切割的阈值,用该阈值切割出可能存在的人脸纵向廓线,并计算可能的人脸廓线的长度,由局部最小值点的深度可以估计出该距离下真实人脸廓线的长度,通过对比可以去除一些纵向剖线不符合真实人脸尺寸的局部最小值点。 5.根据权利要求1所述的方法,其特征在于,所述计算纵向剖线上鼻子廓线占人脸廓线长度的比值,排除比值超出一定范围的局部最小值点步骤,包括: 根据符合真实人脸尺寸的每个局部极小值点,计算其在人脸廓线上的梯度,如果梯度值不大于0,则继续计算其在人脸廓线上的上一个像素点的梯度;当梯度值大于0时,此时的像素点位置即为鼻子廓线的上边缘位置; 所述像素点位置的深度值与对应的局部最小值点位置的深度差值即为鼻子的高度;所述像素点位置与对应的局部最小值点位置的差值即为鼻子廓线的长度; 2

人脸识别的主要方法

1.1 人脸识别的主要方法 目前,国内外人脸识别的方法很多,并且不断有新的研究成果出现。人脸识别的方法根据研究角度的不同,有不同的分类方法。根据输入图像中人脸的角度不同,可以分为正面,侧面,倾斜的人脸图像的识别;根据图像来源的不同,可分为静态和动态的人脸识别;根据输入图像的特点,又可分为灰度图像和彩色图像的人脸识别等等。本文重点研究基于正面的、静态的灰度图像的识别方法。 对于静态的人脸识别方法从总体上看可以分为三大类:一是基于统计的识别方法,主要包括特征脸(Eigenface)方法和隐马尔科夫模型(Hidden Markov Model 简称HMM)方法等;二是基于连接机制的识别方法,包括人工神经网路(Artifical Neural Network 简称ANN)方法和弹性图匹配(Elastic Bunch Graph Matching 简称EBGM)方法等;三是一些其他的综合方法及处理非二维灰度图像的方法。下面分别进行介绍。 1.1.1 基于特征脸的方法 特征脸方法[5],又称为主成份分析法(Principal Component Analysis 简称PCA),它是20 世纪90 年代初期由Turk 和Pentland 提出的,是一种经典的算法。它根据图像的统计特征进行正交变换(即K-L 变换),以消除原有向量各个分量之间的相关性。变换得到对应特征值依次递减的特征向量,即特征脸。 特征脸方法的基本思想是将图像经过K-L 变换后由高维向量转换为低维向量,并形成低维线性向量空间,利用人脸投影到这个低维空间所得到的投影系数作为识别的特征矢量。这样,就产生了一个由“特征脸”矢量张成的子空间,称为“人脸子空间”或“特征子空间”,每一幅人脸图像向其投影都可以获得一组坐标系数,这组坐标系数表明了人脸在子空间中的位置,因此利用特征脸方法可以重建和识别人脸。 通过人脸向量向特征子空间作投影得到的向量称之为主分量或特征主分量。主分量特征

opencv adaboost人脸检测训练程序阅读笔记(LBP特征)

1、训练程序整体流程 (1)读输入参数并打印相关信息 (2)进入训练程序最外层入口classifier.train 1)读正负样本,将正负样本放入imgLiast中,先读正样本,后读负样本 2)load( dirName )判断之前是否有已训练好的xml文件,若有,不在重新训练该stage的xml文件,没有返回false,初始化参数 3)计算requiredLeafFARate = pow(maxFalseAlarm,numStages)/max_depth,该参数是stage停止条件(利用训练样本集来计算tempLeafFARate,若 tempLeafFARate小于这一参数,则退出stage训练循环); 4)Stage训练循环 5)更新训练样本集,计算tempLeafFARate(负样本被预测为正样本的个数除以读取负样本的次数,第一次没有训练之前,这个比值为1,因为没训练之前, 所有负样本都被预测成了正样本,当第一层训练好以后,负样本采集时会先 用第一层的分类器预测一次,若能分类,则不选用,选用负样本的数目是固 定的,但选用这么多负样本总共要选的次数会随着层数的增多而加大,因为 层数越大,分类器的分类能力也要求越大,说需要的样本就是前面分类器所 不恩呢该识别的,故在采集时也比较困难。) 6)判断stage是否退出训练,若tempLeafFARatetrain() a.建立训练数据data = new CvCascadeBoostTrainData(主要是一些参 数的设置,还有特征值的计算) b.初始化样本权重update_weights( 0 ); c.弱分类器训练循环 i)tree->train—》do_train ai) 根节点的初始root = data->subsample_data( _subsample_idx ); (主要是对根节点的一些参数进行初始化,parent 0,count 1, split 0,value 0,class_idx 0,maxlr 0,left = right = 0,等等) bi) CV_CALL( try_split_node(root)),根据根节点计算整颗数的各 节点的参数配置 aii) calc_node_value( node );计算节点的回归值,类似于分类 投票值sum(w*class_lable),正样本的class_lable取,负样 本的class_lable取-1;计算节点的风险值node_risk,node risk is the sum of squared errors: sum_i((Y_i - )^2) bii) 判断节点是否可以分裂(判断依据:样本值和设计的节点最 大深度);再利用node_risk与regression_accuracy,如 果这个节点的所有训练样本的节点估计值的绝对差小 于这个参数,节点不再进行分裂 cii) 找出最佳分裂best_split = find_best_split(node); aiii) 定义DTreeBestSplitFinder finder( this, node ); biii) parallel_reduce(cv::BlockedRange(0, data->var_count), finder); 此时调用DTreeBestSplitFinder类的操作符 DTreeBestSplitFinder::operator()(constBlockedRange

人脸识别主要算法原理

人脸识别主要算法原理 主流的技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他结合才能有比较好的效果; 2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。 3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是:设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的基础。 3. 特征脸方法(Eigenface或PCA)

AdaBoost算法简介

Adaboost 算法 1、AdaBoost算法简介 AdaBoost算法是Freund和Schapire根据在线分配算法提出的,他们详细分析了AdaBoost算法错误率的上界,以及为了使强分类器达到错误率,算法所需要的最多迭代次数等相关问题。与Boosting算法不同的是,adaBoost算法不需要预先知道弱学习算法学习正确率的下限即弱分类器的误差,并且最后得到的强分类器的分类精度依赖于所有弱分类器的分类精度,这样可以深入挖掘弱分类器算法的能力。 2、Adaboost 算法基本原理 Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。使用Adaboost 分类器可以排除一些不必要的训练数据特征,并将关键放在关键的训练数据上面。 AdaBoost算法中不同的训练集是通过调整每个样本对应的权重来实现的。开始时,每个样本对应的权重是相同的,即其中n 为样本个数,在此样本分布下训练出一弱分类器。对于分类错误的样本,加大其对应的权重;而对于分类正确的样本,降低其权重,这样分错的样本就被突出出来,从而得到一个新的样本分布。在新的样本分布下,再次对弱分类器进行训练,得到弱分类器。依次类推,经过T 次循环,得到T 个弱分类器,把这T 个弱分类器按一定的权重叠加(boost)起来,得到最终想要的强分类器。 AdaBoost算法的具体步骤如下: 设输入的n个训练样本为:{(x1,y1),(x2,y2),......(xn,yn)},其中xi是输入的训练样本,yi∈{0,1}分别表示正样本和负样本,其中正样本数为l,负样本数m。n=l+m,具体步骤如下: (1)初始化每个样本的权重w i,i∈D(i); (2)对每个t=1,..., T(T为弱分类器的个数) ①把权重归一化为一个概率分布 ②对每个特征f,训练一个弱分类器h j计算对应所有特征的弱分类器的加权错误率 ③选取最佳的弱分类器h t(拥有最小错误率):εt ④按照这个最佳弱分类器,调整权重 其中εi =0表示被正确地分类,εi=1,表示被错误地分类

基于matlab的人脸识别算法(PCA)

3.基于matlab的人脸识别算法 3.1 问题描述 对于一幅图像可以看作一个由像素值组成的矩阵,也可以扩展开,看成一个矢量,如一幅 N*N 象素的图像可以视为长度为N2 的矢量,这样就认为这幅图像是位于N2 维空间中的一个点,这种图像的矢量表示就是原始的图像空间,但是这个空间仅是可以表示或者检测图像的许多个空间中的一个。不管子空间的具体形式如何,这种方法用于图像识别的基本思想都是一样的,首先选择一个合适的子空间,图像将被投影到这个子空间上,然后利用对图像的这种投影间的某种度量来确定图像间的相似度,最常见的就是各种距离度量。因此,本次试题采用PCA算法并利用GUI实现。 对同一个体进行多项观察时,必定涉及多个随机变量X1,X2,…,Xp,它们都是的相关性, 一时难以综合。这时就需要借助主成分分析来概括诸多信息的主要方面。我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。 任何一个度量指标的好坏除了可靠、真实之外,还必须能充分反映个体间的变异。如果有一项指标,不同个体的取值都大同小异,那么该指标不能用来区分不同的个体。由这一点来看,一项指标在个体间的变异越大越好。因此我们把“变异大”作为“好”的标准来寻求综合指标。3.1.1 主成分的一般定义 设有随机变量X1,X2,…,Xp,其样本均数记为,,…,,样本标准差记为S1,S2,…,Sp。首先作标准化变换,我们有如下的定义: (1) 若C1=a11x1+a12x2+ … +a1pxp,…,且使 Var(C1)最大,则称C1为第一主成分; (2) 若C2=a21x1+a22x2+…+a2pxp,…,(a21,a22,…,a2p)垂直于(a11,a12,…,a1p),且使Var(C2)最大,则称C2为第二主成分; (3) 类似地,可有第三、四、五…主成分,至多有p个。 3.1.2 主成分的性质 主成分C1,C2,…,Cp具有如下几个性质: (1) 主成分间互不相关,即对任意i和j,Ci 和Cj的相关系数 Corr(Ci,Cj)=0 i j (2) 组合系数(ai1,ai2,…,aip)构成的向量为单位向量, (3) 各主成分的方差是依次递减的,即 Var(C1)≥Var(C2)≥…≥Var(Cp)

人脸识别技术的主要研究方法

人脸识别技术的主要研 究方法 The manuscript was revised on the evening of 2021

1、绪论 人脸识别是通过分析脸部器官的唯一形状和位置来进行身份鉴别。人脸识别是一种重要的生物特征识别技术,应用非常广泛。与其它身份识别方法相比,人脸识别具有直接、友好和方便等特点,因而,人脸识别问题的研究不仅有重要的应用价值,而且在模式识别中具有重要的理论意义,目前人脸识别已成为当前模式识别和人工智能领域的研究热点。本章将简单介绍几种人脸识别技术的研究方法。 关键词:人脸识别 2、人脸识别技术的主要研究方法 目前在国内和国外研究人脸识别的方法有很多,常用的方法有:基于几何特征的人脸识别方法、基于代数特征的人脸识别方法、基于连接机制的人脸识别方法以及基于三维数据的人脸识别方法。人脸识别流程图如图2.1所示: 图2.1人脸识别流程图 3、基于几何特征的人脸识别方法 基于特征的方法是一种自下而上的人脸检测方法,由于人眼可以将人脸在不此研究人员认为有一个潜在的假设:人脸或人脸的部件可能具有在各种条件下都不会改变的特征或属性,如形状、肤色、纹理、边缘信息等。基于特征的方法的目标就是寻找上述这些不变特征,并利用这些特征来定位入脸。这类方法在特定的环境下非常有效且检测速度较高,对人脸姿态、表情、旋转都不敏感。但是由于人脸部件的提取通常都借助于边缘算子,因此,这类方法对图像质量要求较高,对光照和背景等有较高的要求,因为光照、噪音、阴影都极有可能破坏人脸部件的边缘,从而影响算法的有效性。 模板匹配算法首先需要人TN作标准模板(固定模板)或将模板先行参数化(可变模板),然后在检测人脸时,计算输入图像与模板之间的相关值,这个相关值通常都是独立计算脸部轮廓、眼睛、鼻子和嘴各自的匹配程度后得出的综合描述,最后再根据相关值和预先设定的阈值来确定图像中是否存在人脸。基于可变模板的人脸检测算法比固定模板算法检测效果要好很多,但是它仍不能有效地处理人脸尺度、姿态和形状等方面的变化。 基于外观形状的方法并不对输入图像进行复杂的预处理,也不需要人工的对人脸特征进行分析或是抽取模板,而是通过使用特定的方法(如主成分分析方法(PCA)、支持向量机(SVM)、神经网络方法(ANN)等)对大量的人脸和非人脸样本组成的训练集(一般为了保证训练得到的检测器精度,非人脸样本集的容量要为人脸样本集的两倍以上)进行学习,再将学习而成的模板或者说分类器用于人脸检测。因此,这也是j种自下而上的方法。这种方法的优点是利用强大的机器学习算法快速稳定地实现了很好的检测结果,并且该方法在复杂背景下,多姿态的人脸图像中也能得到有效的检测结果。但是这种方法通常需要遍历整个图片才能得到检测结果,并且在训练过程中需要大量的人脸与非人脸样本,以及较长的训练时间。近几年来,针对该方法的人脸检测研究相对比较活跃。 4、基于代数特征的人脸识别方法

基于eigenfaces的人脸识别算法实现大学论文

河北农业大学 本科毕业论文(设计) 题目:基于Eigenfaces的人脸识别算法实现 摘要 随着科技的快速发展,视频监控技术在我们生活中有着越来越丰富的应用。在这些视频监控领域迫切需要一种远距离,非配合状态下的快速身份识别,以求能够快速识别所需要的人员信息,提前智能预警。人脸识别无疑是最佳的选择。可以通过人脸检测从视频监控中快速提取人脸,并与人脸数据库对比从而快速识别身份。这项技术可以广泛应用于国防,社会安全,银行电子商务,行政办公,还有家庭安全防务等多领域。 本文按照完整人脸识别流程来分析基于PCA(Principal Component Analysis)的人脸识 别算法实现的性能。首先使用常用的人脸图像的获取方法获取人脸图像。本文为了更好的分析基于PCA人脸识别系统的性能选用了ORL人脸数据库。然后对人脸数据库的图像进行了简单的预处理。由于ORL人脸图像质量较好,所以本文中只使用灰度处理。接着使用PCA提取人脸特征,使用奇异值分解定理计算协方差矩阵的特征值和特征向量以及使用最近邻法分类器欧几里得距离来进行人脸判别分类。 关键词:人脸识别PCA算法奇异值分解定理欧几里得距离

ABSTRACT With the rapid development of technology, video surveillance technology has become increasingly diverse applications in our lives. In these video surveillance urgent need for a long-range, with rapid identification of non-state, in order to be able to quickly identify people the information they need, advance intelligence warning. Face recognition is undoubtedly the best choice. Face detection can quickly extract human faces from video surveillance, and contrast with the face database to quickly identify identity. This technology can be widely used in national defense, social security, bank e-commerce, administrative offices, as well as home security and defense and other areas. In accordance with the full recognition process to analyze the performance of PCA-based face recognition algorithm. The first to use the method of access to commonly used face images for face images. In order to better analysis is based on the performance of the PCA face recognition system selected ORL face database. Then the image face database for a simple pretreatment. Because ORL face image quality is better, so this article uses only gray scale processing. Then use the PCA for face feature extraction using singular value decomposition theorem to calculate the covariance matrix of the eigenvalues and eigenvectors, and use the Euclidean distance of the nearest neighbor classifier to the classification of human face discrimination. KEYWORDS: face recognition PCA algorithm SVD Euclidean distance

人脸检测方法综述

0引言 人脸检测是模式识别的一个新近的发展方向和重要应用,人脸检测和识别在安全识别、身份鉴定、以及公安部门的稽查活动中都有广泛而重要的应用前景。 就人脸检测这一部分,它是人脸识别的首要步骤,长久以来人们都在致力于找到一个能够快速定位人脸的算法。目前人脸检测的方法主要有两种,基于启发式模型的方法和基于统计式模型的方法,而近些年,基于统计模型的模式识别方法被广泛运用,比如基于神经网络的模式识别等。本文将介绍人脸检测中遇到的一系列问题,并列举数据比较各种人脸检测方法的检测效果,以作参考。 1人脸检测和人脸识别 说到人脸检测就不能不提到人脸识别问题,人脸识别问题是指:对输入的人脸图像或者视频,首先判断其中是否存在人脸,如果存在人脸,则进一步的给出每个人脸的位置、大小和各个主要面部器官的位置信息,并依据这些信息,进一步提取每个人脸中所蕴含的身份特征,并将其与已知人脸库中的人脸进行对比,从而识别每个人脸的身份。 人脸识别的过程可以分为以下三个部分: (1)人脸检测:判断输入图像中是否存在人脸,如果有,给出每个人脸的位置,大小; (2)面部特征定位:对找到的每个人脸,检测其主要器官的位置和形状等信息; (3)人脸比对:根据面部特征定位的结果,与库中人 脸对比,判断该人脸的身份信息 人脸识别技术具有广泛的应用前景,在国家安全、军事安全和公共安全领域,智能门禁、智能视频监控、公安布控、海关身份验证、司机驾照验证等是典型的应用;在民事和经济领域,各类银行卡、金融卡、信用卡、储蓄卡的持卡人的身份验证,社会保险人的身份验证等具有重要的应用价值;在家庭娱乐等领域,人脸识别也具有一些有趣有益的应用,比如能够识别主人身份的智能玩具、家政机器人,具有真实面像的虚拟游戏玩家等等。 本文提出的人脸检测问题是人脸识别这个问题下的一个子问题,这也是人脸识别的前提。 人脸检测研究具有重要的学术价值,人脸是一类具有复杂细节变化的自然结构目标,由于人脸的特殊性,人脸检测面临如下几个难题: (1)人脸外貌、 表情、肤色的不同,造成模式的可变性; (2)人脸可能存在眼睛、 胡须等附属物;(3)人脸影像收到光照产生的阴影影响。 因此,如果能够找到解决此类问题的方法,构造人脸检测和跟踪系统,将为人脸识别以及类似的复杂模式检测问题提供重要启发。 目前国内外针对人脸检测问题的研究很多,比如著名的MIT、CMU等,国内的又清华大学、 北京工业大学、中科院计算技术研究所等,而且,MPEG7标准组织已经建立了人脸识别草案小组,人脸检测算法也是征集内容之一。随着人脸检测问题研究的深入,国际上在此项目上发表的相关论文数也大幅度增长,本文针对人脸检测 收稿日期:2005-10 作者简介:吕琳(1982-),男,同济大学嘉定校区软件学院硕士在读。 人脸检测方法综述 吕琳 (同济大学软件学院,上海201804) 摘要:随着计算机科学的发展和社会的进步,人脸检测的研究和应用越来越得到广泛的关注。但是设计快速有效的人脸检测方法仍然是一个难度很大的问题。本文将从人脸检测方法的两个主要模式出发,分析了当前人脸检测的主要问题和方法,并对这些方法进行比较。 关键词:人脸检测;启发式模型;统计式模型 中图分类号:TP391文献标识码:A文章编号:1009-3044(2005)36-0159-04 SurveyonHumanFaceDetectMethod LVLin (SchoolofSoftwareEngineering,TongjiUniversity,Shanghai201804,China) Abstract:Withthedevelopmentofcomputerscienceandthesociety,thefacedetectionresearchandapplicationdrewmoreandmoreattention.Buthowtodesignfastandefficientfacedetectionmethodisstillabigproblem.Thispa-perwillanalyzetheprimaryproblemandmethodoffacedetection,whichbasedontwoprimaryfacedetectionpatterns,andmakeacomparisonbetweenthesemethods. Keyword:Facedetection;Heuristicmodel;StatisticalModel

人脸识别主要算法原理

人脸识别主要算法原理 主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果; 2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。 3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧 面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是: 设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的 基础。 3. 特征脸方法(Eigenface或PCA)

相关文档
最新文档