二维logistic离散动力系统的参数分析

二维logistic离散动力系统的参数分析
二维logistic离散动力系统的参数分析

二维logistic离散动力系统的参数分析

【摘要】提出了一种二维logistic离散动力系统,讨论了系统参数对系统基本动力行为的影响,得到了相关的定理。同时对系统的分叉进行了分析,并通过数值示例进行仿真,对文中论述进行了强有力的验证。

【关键词】logistic映射;混沌系统;超浑沌系统;分叉

1. 引言非线性动力系统大体分为连续系统和离散系统两大类,连续系统可以根据庞克莱截面方法转换为离散系统,所以对离散混沌系统的控制问题进行研究具有普遍意义。Logistic映射[1-3]是1976年由数学生态学家R. May在英国《自然》杂志上发表的一篇后来影响深广的综述中提出的,后来经过Feigenbaum的出色研究,得出系统一旦发生倍周期分岔[4-9],必然导致混沌现象的产生。对于一维Logistic映射及其推广的形式,研究的比较早也比较详细。但是一维Logistic 映射仅有一个自由度,利用它只能产生一条直线或者曲线,为了绘制一幅图像,至少需要两个及两个以上的自由度,为此就需要构造二维及更高维的系统,分析图形与吸引子的结构特征,探讨了图形与吸引子之间的联系等。文献[4,,5]对一类三维混沌系统研究了它的hopf分叉,文献[7]对同类的共轭lorenz系统进行了控制,文献[6]对一类耦合Logistic离散动力系统进行了动力学分析,研究了相应的分叉值等。在此基础上,本文对二维Logistic离散动力系统[6]。

xn+1=axn(1-λxn)

yn+1=(b+cxn)yn(1-λyn)(1)

进行了参数动力学分析,并对通过计算机对系统的在不同参数下的分叉作了仿真。

2. 参数分析系统(1)的Jacobian矩阵为

J(x,y)=a(1-2λx)0

cy(1-λy)(b+cx)(1-2λy)(2)

由于(2)式是对角的,所以可以给出Lyapunov指数为

定理1 n∈N ,当a∈[0,4λ],x0∈[0,a4λ] ,则xn∈[0,a4λ]

定理2 n∈N ,当a∈[0,4λ] ,x0∈[0,a4λ] ,y0 ∈[0,4λb+ac16λ2],b ∈[0,4λ-ac4λ], c ∈[0,16λ2a],则yn∈[0,4λb+ac16λ2]

证明:当n=0 时,0≤y0 ≤4λb+ac16λ2,假设当n=k 时,有0≤yk ≤4λb+ac16λ2 ,下证当n=k+1 时,有0≤yk+1 ≤ 4λb+ac16λ2

因为16λ24λb+ac(b+cxk)yk(4λb+ac16λ2-yk)≥0,所以(b+cxk)yk(1- 16λ24λb+acyk)≥0,又因为00,e2 3.5699457,b=3.5 ,c=0.5 时,x和y都达到浑沌状态,即系统为超浑沌系统。从图3,图6中更能看到当a>3.5699457 ,b=4 ,c=-1 时,系统亦为超浑沌系统。

4. 结论本文在经典logistic映射的基础上,提出了一种二维logistic离散动力系统,通过对系统参数变化的讨论,得到了有关系统基本动力行为随参数变化而被影响的几个定理。同时对该离散系统的分叉进行了分析,并通过数值示例进行仿真,对文中论述进行了强有力的验证。

UML学生的信息管理系统__实验报告

面向对象分析与设计期末实验 设计题目 : 学生信息管理系统 姓名 学院:电子信息工程学院 系别: 计算机科学与技术 班级:网络工程1班

页眉内容 A部分需求分析 一、实验目的 利用所学的UML建模知识设计学生信息管理系统。由于信息技术的急 剧发展和配合管理的思想的出现,各种网络化,自动化,配合技术在各自的业界的管理实践中迅速得到应用。学生的信息的管理系统的开发非常有必要。学生的信息管理系统的目标是在学生的信息管理中,使用计算机的网络技术,通讯技术和信息处理技术,使学生的信息得到加工,依次传达及保存。 根据学生的信息管理的电子化和网络化,来实现全面改善学生信息的管理环境,提高管理效率。系统要对使用要求不同的用户群体,设置不同的权限,设置系统的不同功能。管理员能有效管理学生的信息,同时,学生可以随时大量检索查询多种信息。 二、实验仪器或设备 学生用计算机一台 三、设计原理、系统业务及功能 设计原理: 系统要对使用要求不同的用户群体,设置不同的权限,设置系统的不同 功能。管理员能有效管理学生的信息,同时,学生可以随时大量检索查 询多种信息。 设计方案及流程: 1.这个项目从结构上分。 ①管理员:通过已有学生信息仓库,管理学生的信息,还可以管理教师 的信息,管理课程的信息,管理班级的信息; ②学生:可以修改学生的信息,选择课程,检索成绩等; ③教师:修改教师的信息,检索学生的成绩,登记授课的学生状况等。 2.系统功能模块

(1)学生功能:查询课表,选课,成绩,修改学生个人信息。 (2)教师功能:录入成绩,查询教授学生状况,修改老师个人信息。 3.管理员功能模块 (1)学生管理:学生用户的追加,学生信息的浏览,修改,删除。 (2)教师管理:教师用户的追加,教师信息的浏览,修改,删除。 (3)课程管理:课程查询,添加,修改,删除,公布课表等。 (4)班级管理:班级的查询,添加,修改,删除 B部分系统UML建模 1.用况图 (1)系统用况图:

二维logistic离散动力系统的参数分析

二维logistic离散动力系统的参数分析 【摘要】提出了一种二维logistic离散动力系统,讨论了系统参数对系统基本动力行为的影响,得到了相关的定理。同时对系统的分叉进行了分析,并通过数值示例进行仿真,对文中论述进行了强有力的验证。 【关键词】logistic映射;混沌系统;超浑沌系统;分叉 1. 引言非线性动力系统大体分为连续系统和离散系统两大类,连续系统可以根据庞克莱截面方法转换为离散系统,所以对离散混沌系统的控制问题进行研究具有普遍意义。Logistic映射[1-3]是1976年由数学生态学家R. May在英国《自然》杂志上发表的一篇后来影响深广的综述中提出的,后来经过Feigenbaum的出色研究,得出系统一旦发生倍周期分岔[4-9],必然导致混沌现象的产生。对于一维Logistic映射及其推广的形式,研究的比较早也比较详细。但是一维Logistic 映射仅有一个自由度,利用它只能产生一条直线或者曲线,为了绘制一幅图像,至少需要两个及两个以上的自由度,为此就需要构造二维及更高维的系统,分析图形与吸引子的结构特征,探讨了图形与吸引子之间的联系等。文献[4,,5]对一类三维混沌系统研究了它的hopf分叉,文献[7]对同类的共轭lorenz系统进行了控制,文献[6]对一类耦合Logistic离散动力系统进行了动力学分析,研究了相应的分叉值等。在此基础上,本文对二维Logistic离散动力系统[6]。 xn+1=axn(1-λxn) yn+1=(b+cxn)yn(1-λyn)(1) 进行了参数动力学分析,并对通过计算机对系统的在不同参数下的分叉作了仿真。 2. 参数分析系统(1)的Jacobian矩阵为 J(x,y)=a(1-2λx)0 cy(1-λy)(b+cx)(1-2λy)(2) 由于(2)式是对角的,所以可以给出Lyapunov指数为 定理1 n∈N ,当a∈[0,4λ],x0∈[0,a4λ] ,则xn∈[0,a4λ] 定理2 n∈N ,当a∈[0,4λ] ,x0∈[0,a4λ] ,y0 ∈[0,4λb+ac16λ2],b ∈[0,4λ-ac4λ], c ∈[0,16λ2a],则yn∈[0,4λb+ac16λ2] 证明:当n=0 时,0≤y0 ≤4λb+ac16λ2,假设当n=k 时,有0≤yk ≤4λb+ac16λ2 ,下证当n=k+1 时,有0≤yk+1 ≤ 4λb+ac16λ2 因为16λ24λb+ac(b+cxk)yk(4λb+ac16λ2-yk)≥0,所以(b+cxk)yk(1- 16λ24λb+acyk)≥0,又因为00,e2 3.5699457,b=3.5 ,c=0.5 时,x和y都达到浑沌状态,即系统为超浑沌系统。从图3,图6中更能看到当a>3.5699457 ,b=4 ,c=-1 时,系统亦为超浑沌系统。 4. 结论本文在经典logistic映射的基础上,提出了一种二维logistic离散动力系统,通过对系统参数变化的讨论,得到了有关系统基本动力行为随参数变化而被影响的几个定理。同时对该离散系统的分叉进行了分析,并通过数值示例进行仿真,对文中论述进行了强有力的验证。

离散系统稳定性分析

实验一 离散系统稳定性分析 实验学时:2 实验类型:常规 实验要求:必作 一、实验目的: (1)掌握利用MATLAB 绘制系统零极点图的方法; (2)掌握离散时间系统的零极点分析方法; (3)掌握用MATALB 实现离散系统频率特性分析的方法; (4)掌握逆Z 变换概念及MATLAB 实现方法; (5)掌握用MATLAB 分析离散系统稳定性。 二、实验原理: 1、离散系统零极点图及零极点分析; 线性时不变离散系统可用线性常系数差分方程描述,即 ()()N M i j i j a y n i b x n j ==-= -∑∑ (8-1) 其中()y k 为系统的输出序列,()x k 为输入序列。 将式(8-1)两边进行Z 变换的 00 ()()()() () M j j j N i i i b z Y z B z H z X z A z a z -=-== = = ∑∑ (8-2) 将式(8-2)因式分解后有: 11 () ()() M j j N i i z q H z C z p ==-=- ∏∏ (8-3) 其中C 为常数,(1,2,,)j q j M = 为()H z 的M 个零点,(1,2,,)i p i N = 为()H z 的N 个极点。 系统函数()H z 的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。 因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。通过对系统函数零极点的分析,可以分析离散系统以下几个方面的特性: ● 系统单位样值响应()h n 的时域特性; ● 离散系统的稳定性;

离散系统的频率特性; 1.1、零极点图的绘制 设离散系统的系统函数为 ()()() B z H z A z = 则系统的零极点可用MA TLAB 的多项式求根函数roots()来实现,调用格式为: p=roots(A) 其中A 为待根求多项式的系数构成的行矩阵,返回向量p 则是包含多项式所有根的列向量。如多项式为231()4 8 B z z z =+ + ,则求该多项式根的MA TLAB 命令为为: A=[1 3/4 1/8]; P=roots(A) 运行结果为: P = -0.5000 -0.2500 需注意的是,在求系统函数零极点时,系统函数可能有两种形式:一种是分子、分母多项式均按z 的降幂次序排列;另一种是分子、分母多项式均按1z -的升幂次序排列。这两种方式在构造多项式系数向量时稍有不同。 (1)()H z 按z 的降幂次序排列:系数向量一定要由多项式最高次幂开始,一直到常数项,缺项要用0补齐;如 3 4 3 2 2()3221 z z H z z z z z += ++++ 其分子、分母多项式系数向量分别为A=[1 0 2 0]、B=[1 3 2 2 1]。 (2)()H z 按1z -的升幂次序排列:分子和分母多项式系数向量的维数一定要相同,不足的要用0补齐,否则0z =的零点或极点就可能被漏掉。如 1 1 2 12()11124 z H z z z ---+= + + 其分子、分母多项式系数向量分别为A=[1 2 0]、B=[1 1/2 1/4]。 用roots()求得()H z 的零极点后,就可以用plot()函数绘制出系统的零极点图。下面是求系统零极点,并绘制其零极点图的MA TLAB 实用函数ljdt(),同时还绘制出了单位圆。 function ljdt(A,B) % The function to draw the pole-zero diagram for discrete system p=roots(A); %求系统极点 q=roots(B); %求系统零点 p=p'; %将极点列向量转置为行向量

实验6离散时间系统的z域分析

实验6 离散时间系统的z 域分析 一、实验目的 1.掌握z 变换及其反变换的定义,并掌握MATLAB 实现方法。 2.学习和掌握离散时间系统系统函数的定义及z 域分析方法。 3.掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理 1. Z 变换 序列x(n)的z 变换定义为 ()()n n X z x n z +∞ -=-∞ = ∑ Z 反变换定义为 1 1 ()()2n r x n X z z dz j π-= ? 在MATLAB 中,可以采用符号数学工具箱的ztrans 函数和iztrans 函数计算z 变换和z 反变换: Z=ztrans(F) 求符号表达式F 的z 变换。 F=ilaplace(Z) 求符号表达式Z 的z 反变换。 2.离散时间系统的系统函数 离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换 ()()n n H z h n z +∞ -=-∞ = ∑ 此外,连续时间系统的系统函数还可以由系统输入和输出信号的z 变换之比得到 ()()/()H z Y z X z =

由上式描述的离散时间系统的系统函数可以表示为 101101()M M N N b b z b z H z a a z a z ----+++= +++…… 3.离散时间系统的零极点分析 离散时间系统的零点和极点分别指使系统函数分子多项式和分母多项式为零的点。在MATLAB 中可以通过函数roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。 此外,还可以利用MATLAB 的zplane 函数来求解和绘制离散系统的零极点分布图,zplane 函数调用格式为: zplane(b,a) b,a 为系统函数的分子、分母多项式的系数向量(行向量)。 zplane(z,p) z,p 为零极点序列(列向量)。 系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位抽样响应的变化,还可以了解系统的频率特性响应以及判断系统的稳定性: ①系统函数的极点位置决定了系统单位抽样响应h(n)的波形,系统函数零点位置只影响冲激响应的幅度和相位,不影响波形。 ②系统的频率响应取决于系统的零极点,根据系统的零极点分布情况,可以通过向量分析系统的频率响应。 ③因果的离散时间系统稳定的充要条件是H(z)的全部极点都位于单位圆内。 三、实验内容 (1)已知因果离散时间系统的系统函数分别为: ①23221()0.50.0050.3 z z H z z z z ++=--+

动力系统的概念

动力系统的概念 这一章是对于事实的调查,而且来源于应用于全书的动力系统理论。我们的主要目的是为后面的章节确定固定使用的常用符号和专业术语,并且回想一些常常在课本的前言中不被讨论的理论的一些方面。为了更容易的阅读,我们保持讨论时采用非专业术语,并尽可能地避免技术上的符号和观点。然而许多遗漏的细节可以从研究生使用的动力系统的课本的前言中找到,一些更加先进的课题仅仅在研究性的文章中涉及到。在某些情况下,我们将提供一些在更深的章节中关于这个主题的参考。另外,我们鼓励读者使用附录A 和B 作为基于不同的几何和函数分析的参考。 流量,映射,动力系统 对于任意的集合P ,一个变换群:P P t F →中的任意的一个参数t 属于实数,如果 ()x x F =0对于所有的x 属于集合P ,并且s t s t F F F ο=+对于任意的 ,t s , 属于实数都成立, 则被称为一个流。这两个属性表明t F 和它的逆t F -是不可以转化的。这一组合t (,)p F 叫做基于空间P 的一个连续的动力系统。换句话说,一个连续的动力系统包括一个可能状态集合和唯一决定将来状态)(x F t 的当前的状态函数x 的变化规则。通过x 这一点的变化轨迹是集 合)()(x F U x t R t ∈=γ。一个固定点的流是一个点x 且x x F t =)(对于任意的R t ∈都成立。 这个流的一个周期的轨迹就是通过这一点x 对于那些存在的正数T,并且满足x x F T =)(的这 样的轨迹。 如果用以上所说的映射族t F 定义只需0≥t ,且对于所有的t ,s 满足()x x F =0和s t s t F F F ο=+,则t F 叫做半流形。注:半流形通常是不可逆的,动力系统的一个典型的特征是在无穷大的空间中是确定的。 当有单独向映射P P f →:且存在()f P ,时,离散动力系统是确定的。这样的系统还有一些性质即通过f 的迭代次数可以得出唯一的当前状态决定所有的将来状态()(),...,2x f x f 。这时x 的取值范围是确定的在集合()()Y Z n n x f x ∈=γ中,其中

UML学生的信息管理系统 实验报告

计算机与信息技术学院综合性实验报告 专业:Java 年级/班级:10级计科1班 2010—2011学年第学2期课程名称Uml统一建模指导教师 本组成员 学号姓名 实验地点过街楼实验室实验时间第十一周 项目名称学生的信息管理系统实验类型综合性 一、实验目的 利用所学的UML建模知识设计学生信息管理系统。由于信息技术的急剧发展和配合管理的思想的出现,各种网络化,自动化,配合技术在各自的业界的管理实践中迅速得到应用。学生的信息的管理系统的开发非常有必要。学生的信息管理系统的目标是在学生的信息管理中,使用计算机的网络技术,通讯技术和信息处理技术,使学生的信息得到加工,依次传达及保存。根据学生的信息管理的电子化和网络化,来实现全面改善学生信息的管理环境,提高管理效率。系统要对使用要求不同的用户群体,设置不同的权限,设置系统的不同功能。管理员能有效管理学生的信息,同时,学生可以随时大量检索查询多种信息。 这个项目从结构上分。 ①管理员:通过已有学生信息仓库,管理学生的信息,还可以管理教师的信息,管理 课程的信息,管理班级的信息; ②学生:可以修改学生的信息,选择课程,检索成绩等; ③教师:修改教师的信息,检索学生的成绩,登记授课的学生状况等。 二、实验仪器或设备 学生用计算机一台 三、总体设计(设计原理、设计方案及流程等) 设计原理: 系统要对使用要求不同的用户群体,设置不同的权限,设置系统的不同功能。管理 员能有效管理学生的信息,同时,学生可以随时大量检索查询多种信息。 设计方案及流程: 1.这个项目从结构上分。

①管理员:通过已有学生信息仓库,管理学生的信息,还可以管理教师的信息,管 理课程的信息,管理班级的信息; ②学生:可以修改学生的信息,选择课程,检索成绩等; ③教师:修改教师的信息,检索学生的成绩,登记授课的学生状况等。 2.系统功能 (1)学生功能:查询课表,选课,成绩,修改学生个人信息。 (2)教师功能:录入成绩,查询教授学生状况,修改老师个人信息。 3.管理员功能 (1)学生管理:学生用户的追加,学生信息的浏览,修改,删除。 (2)教师管理:教师用户的追加,教师信息的浏览,修改,删除。 (3)课程管理:课程查询,添加,修改,删除,公布课表等。 (4)班级管理:班级的查询,添加,修改,删除 四、实验步骤(包括主要步骤、用例图、时序图等) 1、用例模型是把应满足用户需求的基本功能聚合起来表示的强大工具,用例反映了系 统能够完成什么样的功能,因此,用例图占据重要位置。 (1)系统用例图: 系统登录 查询课程表 选课 查询成绩 修改学生个人信息 修改教师个人信息 登记授课的学生状况 检索学生成绩 学生 老师 学生信息的管理教师信息的管理 课程信息的管理班级信息的管理 管理员 用户 该用例图中的用例分析如下:

符号动力系统简介文献综述

毕业论文文献综述 数学与应用数学 符号动力系统简介 一、前言部分: 符号动力系统的状态均可表示为有限个符号的无穷序列由任一状态点引出的运动轨道可由表示该状态的无穷序列通过简单的移位规则来确定。许多复杂动态系统均可经过变换等价于这类系统,从而可通过对比较简单的符号动力系统的分析来研究一般动力系统的行为。这种方法特别在混沌等复杂行为研究中占有重要地位。实际上,可以证明移位映射是一种混沌映射。 主要介绍符号动力系统基本概念,以及一般符号动力系统的浑沌性态,人们发现,具有有限个符号的符号动力系统在解决实际问题的时候,是有局限性的。为了研究一些复杂的不变集,必须考虑具有无限个符号的符号动力系统,于是将符号动力系统推广到一般情况。 二、主题部分 符号动力学产生于20世纪初阿达马的工作中,起源于动力系统的抽象拓扑理论的研究。三十年代莫尔斯和郝德隆进一步发展了符号动力学并将它用于变分学和微分几何中。从20世纪60年代起逐渐在应用于一维映射的研究过程中得到发展和完善。斯梅尔研究的马蹄映射就是一个可用符号动力系统很好地描述的典型。由于这种映射的迭代过程的特征使它成为经典的混沌系统,因此符号动力系统也被视为混沌系统的原型;进而还可将符号动力系统的运动特征作为混沌的描述并成为混沌的一种严格的数学定义。符号动力系统在其他领域也有广泛的应用。例如研究离散事件动态系统控制问题的代数方法就与符号动力学有密切的联系。 现将已有的文献综述如下: 文献[1]是一本类似于教材的书,他详细且全面地介绍了符号动力系统,首先他从最基础的动力系统以及子系统做了个初步的介绍X上的连续自映射序列,错误!未找到引用源。叫做“X上由连续自映射f经迭代而生成的离散拓扑半动力系统”。当f是X上的自同胚时,存在相反方向的迭代,因而得到错误!未找到引用源。。这叫做“X上由自同胚f经迭代而生成的离散拓扑动力系统”。那么什么是子系统呢?再设(X, f)是一个紧致系统,如果紧致子集

离散线性时不变系统分析

实验六 离散线性时不变系统分析 一、 实验目的 1. 掌握离散LSI 系统的单位序列响应、单位阶跃响应和任意激励下响应的MATLAB 求解方法。 2. 掌握离散LSI 系统的频域分析方法; 3. 掌握离散LSI 系统的复频域分析方法; 4. 掌握离散LSI 系统的零极点分布与系统特性的关系。 二、实验原理及方法 1. 离散LSI 系统的时域分析 描述一个N 阶线性时不变离散时间系统的数学模型是线性常系统差分方程,N 阶LSI 离散系统的差分方程一般形式为 ) ()(0 i n x b k n y a M i i N k k -=-∑∑== (6.1) 也可用系统函数来表示 12001212120 () ()()() ()1M i M i i M N N k N k k b z b b z b z b z Y z b z H z X z a z a z a z a z a z ----=----=++++== == ++++∑∑ (6.2) 系统函数()H z 反映了系统响应和激励间的关系。一旦上式中k a ,i b 的数据确定了,系统的性质也就确定了。特别注意0a 必须进行归一化处理,即01a =。 对于复杂信号激励下的线性系统,可以将激励信号在时域中分解为单位序列或单位阶跃序列的线性叠加,把这些单元激励信号分别加于系统求其响应,然后把这些响应叠加,即可得到复杂信号作用于系统的零状态响应。因此,求解系统的单位序列响应和单位阶跃响应尤为重要。由图6-1可以看出一个离散LSI 系统响应与激励的关系。 () h n ()H z ()x n ()X z ()()() Y z X z H z =()()*() y n x n h n = 图6-1 离散LSI 系统响应与激励的关系 (1) 单位序列响应(单位响应) 单位响应()h n 是指离散LSI 系统在单位序列()n δ激励下的零状态响应,因此()h n 满足线性常系数差分方程(6.1)及零初始状态,即 ()() N M k i k i a h n k b n i δ==-=-∑∑, (1)(2)0h h -=-== (6.3) 按照定义,它也可表示为 ()()()h n h n n δ=* (6.4) 对于离散LSI 系统,若其输入信号为()x n ,单位响应为()h n ,则其零状态响应() zs y n

UML实验报告

本科实验报告 课程名称:系统分析与设计实验项目:《网上书店系统》实验地点: 专业班级:学号:20110 学生姓名: 指导教师: 2013年月日

实验一用例图 一、实验目的 初步掌握UML用例图的创建方法及其用例的描述。 二、实验要求 1.结合工具StartUML,熟悉UML用例图的模型元素。 2.使用StartUML工具建模网上书店系统的用例图。 三、实验主要设备:台式或笔记本计算机 四、实验内容: 根据下面给出的网上书店问题陈述,分析该系统总体需求,建模网上书店系统的用例图并提供一个主要用例的事件流文档。 网上书店陈述: 书店经理:我们原本是一个传统的实体书店,顾客要买书都是亲自到书店里来的,这样挺不方便。面且随着书店销售图书种类和数量的增加以及顾客的增长,尤其是大量顾客到书店选购图书,使得书店场地不足,工作人员也很忙碌。其实,还有一点就是,有不少人进入书店后并不买书,只是查找一些资料。有的甚至会在这呆上很长的时间直到把书免费看完。这种行为,工作人员一般是不阻止的,结果最后这些被看过的书会因为有阅读过的痕迹而影响销售。而且现在电子商务已经发展起来了,所以我们想到借助网络,让顾客通过网上书店购买图书。这样我们书店可以省掉大量的场地维护和工作人员成本支出,同时计算机可以方便的检索图书信息,让顾客可以足不出户以更优惠的价格买到需要的书。 系统分析员:能谈谈您对网上书店的要求吗? 书店经理:网上书店要能实现对外和对内的功能,对外是顾客能在网上书店订购图书,提交订单。对内,书店工作人员能够通过网上书店及时的看到这些订单,并进行处理。为了把书送到顾客手里,我们已经联系了快递公司,初步达成协议,由他们往返场客和书店之间把图书送到顾客手里。书店管理员受理订单后,就会通知快递公司送货。当然,书店的图书上架和下架也应该由网上书店完成了。 工作人员甲:实体店中,图书是按照不同种类放置的,方便顾客挑选。网上书店的图书也应该能够按照这种模式分类显示。这样,图书的信息和种类要由网上书店设置和管理。已有种类的新书或新种类的图书上架,网上书店能够保存这些信息。如果信息输入错误,能够进行修改。 工作人员乙:另外书店会搞一些促销,推出一些特价图书。以前这些特价书的信息,都是我们根据促销活动整理出来,贴在书店的醒目位置。促销活动过后,特价图书会恢复原来的价格。希望网上书店也能够管理这些特价图书。 系统分析员:能谈谈平时买书的经过吗? 顾客甲:一般都是先在书店里看看图书的简要介绍,或者先找找看有没有自己需要的书,有时是没有目标的寻找,有时直奔一类图书而去。找到我想买的书或者觉得看的书不错,就会去柜台结帐。 工作人员丙:不过有时在结帐的时候,顾客会突然改变主意,不买一些书或者又回去挑选图书了。

实验六 离散时间系统的时域分析

信号与系统实验报告 实验名:离散时间信号与系统的频域分析 实验六离散时间系统的时域分析 一、实验目的 1、掌握离散时间信号与系统的频域分析方法,从频域的角度对信号与系统的特性进行分析。 2、掌握离散时间信号傅里叶变换与傅里叶逆变换的实现方法。 3、掌握离散时间傅里叶变换的特点及应用 4、掌握离散时间傅里叶变换的数值计算方法及绘制信号频谱的方法 二、预习内容 1、离散时间信号的傅里叶变换与逆变换。 2、离散时间信号频谱的物理含义。 3、离散时间系统的频率特性。 4、离散时间系统的频域分析方法。 三、实验原理 1. 离散时间系统的频率特性

2. 离散时间信号傅里叶变换的数值计算方法 3.涉及到的Matlab 函数

四、实验内容 1、离散时间系统的时域分析 1 离散时间傅里叶变换 (1)下面参考程序是如下序列在范围?4π≤ω≤ 4π的离散时间傅里叶变换 %计算离散时间傅里叶变换的频率样本 clear all; w=-4*pi:8*pi/511:4*pi; num=[2 1]; den=[1 -0.6]; h=freqz(num,den,w); subplot(2,1,1)

plot(w/pi,real(h)); grid; title(‘实部’) xlabel(‘omega/\pi’); yl abel(‘振幅’); subplot(2,1,2) plot(w/pi, imag(h)); grid; title(‘虚部’) xlabel(‘omega/\pi’); ylabel(‘振幅’); figure; subplot(2,1,1) plot(w/pi, abs(h)); grid; title(‘幅度谱’) xlabel(‘omega/\pi’); ylabel(‘振幅’); subplot(2,1,2) plot(w/pi, angle (h)); grid; title(‘相位谱’) x label(‘omega/\pi’); ylabel(‘以弧度为单位的相位’);

北京理工大学信号与系统实验报告6 离散时间系统的z域分析

实验6 离散时间系统的z 域分析 (综合型实验) 一、实验目的 1) 掌握z 变换及其反变换的定义,并掌握MATLAB 实现方法。 2) 学习和掌握离散时间系统系统函数的定义及z 域分析方法。 3) 掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理与方法 1. z 变换 序列(n)x 的z 变换定义为(z)(n)z n n X x +∞ -=-∞ = ∑ (1) Z 反变换定义为11(n)(z)z 2n r x X dz j π-= ? (2) MATLAB 中可采用符号数学工具箱ztrans 函数和iztrans 函数计算z 变换和z 反变换: Z=ztrans(F)求符号表达式F 的z 变换。 F=iztrans(Z)求符号表达式Z 的z 反变换 2. 离散时间系统的系统函数 离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换 (z)(n)z n n H h +∞ -=-∞ = ∑ (3) 此外连续时间系统的系统函数还可由系统输入与输出信号z 变换之比得到 (z)(z)/X(z)H Y = (4) 由(4)式描述的离散时间系统的系统时间函数可以表示为 101101...(z)...M M N N b b z b z H a a z a z ----+++=+++ (5) 3. 离散时间系统的零极点分析 MATLAB 中可采用roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。 此外还可采用MATLAB 中zplane 函数来求解和绘制离散系统的零极点分布图,zplane 函数的调用格式为: zplane(b,a) b 、a 为系统函数分子分母多项式的系数向量(行向量) zplane(z,p) z 、p 为零极点序列(列向量) 系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位抽样响应的变化,还可以了解系统频率特性响应以及判断系统的稳定性; 系统函数的极点位置决定了系统的单位抽样响应的波形,系统函数零点位置只影响冲激响应的幅度和相位,不影响波形。 系统的频率响应取决于系统函数的零极点,根据系统的零极点分布情况,可以通过向量法分析系统的频率响应。

UML实验报告全

《系统分析与建模》实验指导书__2011__/__2012__年第__二__学期 姓名:____钱秀梅_________ 学号:__ 10030117_____ 班级:_ 10计一_______ 指导教师:___殷凯__________ 计算机科学与技术系编写

系统分析与建模实验指导书―1―计算机科学与技术系 目录 实验0 熟悉软件开发环境 (1) 实验1 用例图设计………………………………………………… 实验2 类和对象图设计 (3) 实验3 交互图设计 (7) 实验4 状态图设计 (9) 实验5 活动图设计 (12) 实验6 包图设计 (15) 实验7 物理图设计 (17) 附录考核登记表 (23)

实验0 熟悉软件开发环境 一、实验目的 学习使用EA开发环境创建模型的一般方法,理解EA界面布局和元素操作的一般技巧。 二、实验环境 软件平台:Microsoft Windows2000 /XP。软件工具:EA 7.5。 三、实验内容与要求 1.学会启动和关闭EA 7.5开发环境。 2.使用目标项目(Project)的向导创建一个项目。 3.了解EA 7.5界面的六大组成部分(菜单Menu、浏览器Browser、文档窗口Document Window、图窗口Diagram Window、日值窗口Log Window和工具栏。 4.在浏览器中实现如下操作:增加模型元素(包括角色、用例、类、组建、图等); 查看现有模型元素;查看现有模型元素之间的关系;移动模型元素;更名模型元 素;访问元素的详细规范。 5.分别在在图中增加删除图元素和在浏览器中增加删除图元素。 四、实验预习和准备 参考相关书籍,能够熟练地安装和使用EA 7.5软件建立模型。 五、实验过程与结果 读者 借书 还书 续借图0-1 用例图

实验6-离散时间系统的z域分析

一,实验目的 理解关于z变换及其反变换的定义和MATLAB实现,理解系统零极点分布与系统特性的关系。 二,实验原理 1.z变换 z变换调用函数Z=ztrans(F) z反变换调用函数F=ilaplace(Z) 2.离散时间系统的系统函数 3.离散时间系统的零极点分析 可以通过调用函数zplane: zplane(b,a):b、a为系统函数的分子、分母多项式的系数向量。 zplane(z,p):z、p为零极点序列。 三,实验内容 (1)已知因果离散时间能系统的系统函数分别为: ①H z=z 2+2z+1 z?0.5z?0.005z+0.3 ②H z=z 2+2z+1 3z+3z?z+3z?1 试采用MATLAB画出其零极点分布图,求解系统的冲击响应h(n)和频率响应H(e jΩ),并判断系统是否稳定。 ①H z=z 2+2z+1 z3?0.5z2?0.005z+0.3 MATLAB程序如下: b=[1 2 1] a=[1 -0.5 -0.005 0.3] subplot(131) zplane(b,a) subplot(132) impz(b,a,0:10) subplot(133) [H,w]=freqz(b,a) plot(w/pi,H) 程序执行结果如下:

由程序执行结果,当t趋于无穷,响应趋于0,所以该系统是稳定系统。 ②H z=z 2+2z+1 3z4+3z3?z3+3z?1 MATLAB程序如下: b=[1] a=[1 -1.2*2^(1/2) 1.44] subplot(131) zplane(b,a) subplot(132) impz(b,a,0:10) subplot(133) [H,w]=freqz(b,a) plot(w/pi,H) 程序执行结果如下:

实验六 离散控制系统Simulink仿真与状态反馈控制器的设计

实验六 离散控制系统Simulink 仿真与状态反馈控制器的设计 姓名: 学号: 一、实验题目 2.6.2 系统结构如指导书图2-6-31所示,其中T=0.2s ,用Simulink 仿真方法完成系统的单位阶跃响应试验。 2.6.1已知系统结构图如指导书图2-6-32所示,若采样周期T 由0.1至1s 范围内变化,用MATLAB 编程的方法,完成T 每增加0.3s ,系统的阶跃响应曲线的变化,分析采样周期对离散系统动态特性及稳定性的影响。 2.7.2已知一个单位反馈系统的开环传函为) 3)(2(10)(++=s s s s G ,试搭建Simulink 模型,仿真原系统的阶跃响应。再设计状态反馈控制器,配置系统的闭环极点在P1=-3,P2=-0.5+j ,P3=-0.5-j ,并用Simulink 模型进行仿真验证。 二、实验目的 掌握在Simulink 环境下以及在MTALAB 环境下,进行离散控制系统的建模、分析。观察采样周期对离散系统动态特性及稳定性的影响。学习设计状态反馈控制器,用状态反馈实现闭环极点的任意配置。 三、实验过程与结果 题2.6.2: 1、在Simulink 环境下,搭建如图1所示的模型: 图1 Simulink 环境下的采样系统建模 2、将零阶保持器的采样时间设为0.2,同时在Simulation-Configuration parameters 中把Type 选为Fixed-Step ,然后在Fixed-Step size 中输入对应的采样时间0.2。运行,观察系统单位阶跃响应。结果如图2:

图2 系统的单位阶跃响应 题2.6.1: 1、在MA TLAB环境下,在m文件中编写如下程序: n=[1];d=[1 1 0];g=tf(n,d); %求连续系统开环传函 Ti=[0.1 0.4 0.7 1]; %设置不同的采样周期 for i=1:length(Ti) T=Ti(i); g0=c2d(g,T,'zoh'); %求加入零阶保持器后开环传函 gb=feedback(g0,1); %系统闭环传函 [num,den]=tfdata(gb,'v'); %得到闭环传函的分子、分母 abs(roots(den)) %求闭环特征根,判稳 dstep(num,den) %画离散系统的单位阶跃响应曲线 hold on;grid on; %在同一张图上绘制 end legend('T=0.1','T=0.4','T=0.7','T=1') 2、运行程序,得到系统闭环特征根,以及不同采样周期时系统的单位阶跃响应曲线,结果如图3: ans = 0.9537 0.9537 ans = 0.8555 0.8555 ans = 0.8077 0.8077

图书管理系统uml实验报告.doc

面向对象分析与设计大作业 学院:计算机科学与工程学院 班级:计算机软件 3 学生姓名:陈俊伟 学号:2174 指导老师:苏锦钿 提交日期:

华南理工大学 面向对象分析与设计大作业课程实验报告 实验题目 :_____ 图书管理系统 uml 图__________________________ 姓名 :___ 陈俊伟 ________学号:_ 2174_____ 班级 : ___09 软件 3 班________ 组别 : ________ 合作者 : __________________ 指导教师 : ______ 苏锦钿 __________ 实验概述 【实验目的及要求】 一.目的 1.掌握面向对象技术的基本原理和各种相关概念; Rational Rose 2003 、 IBM 2. 熟练掌握 UML的基本知识和9 种常见的 UML图形 , 并能够利 用 Software Architecture、或trufun UML工具进行建模; 3.根据问题进行学习,拓广、深化; 4.独立完成一个应用程序的分析、设计和建模,为以后软件项目的开发打下实践基础。 【实验原理】 UML建模,就是用模型元素来组建整个系统的模型,模型元素包括系统中的类、类和类 之间的关联、类的实例相互配合实现系统的动态行为等。UML提供了多种图形可视化描 述模型元素,同一个模型元素可能会出现在多个图中对应多个图形元素,人们可以从多 个视图来考察模型。UML建模主要分为结构建模、动态建模和模型管理建模 3 个方面,第 1 个方面是从系统的内部结构和静态角度来描述系统的,在静态视图、用例视图、实施视 图和配置视图中适用,采用了类图、用例图、组件图和配置图等图形。例如类图用于描述系 统中各类的内部结构(类的属性和操作)及相互间的关联、聚合和依赖等关系, 包图用于描述系统的分层结构等;第 2 个方面是从系统中对象的动态行为和组成对象间的相互 作用、消息传递来描述系统的,在状态机视图、活动视图和交互视图中适用,采 用了状态机图、活动图、顺序图和合作图等图形,例如状态机图用于一个系统或对象从 产生到结束或从构造到清除所处的一系列不同的状态;第 3 个方面描述如何将模型自身组织到高层 单元,在模型管理视图中适用,采用的图形是类图。建模的工作集中在前两 方面,而且并非所有图形元素都适用或需要采用

实验六-信号与系统复频域研究分析

实验六-信号与系统复频域分析

————————————————————————————————作者:————————————————————————————————日期:

实验六 信号与系统复频域分析 一、实验目的 1.学会用MATLAB 进行部分分式展开; 2.学会用MATLAB 分析LTI 系统的特性; 3.学会用MATLAB 进行Laplace 正、反变换。 4.学会用MATLAB 画离散系统零极点图; 5.学会用MATLAB 分析离散系统的频率特性; 二、实验原理及内容 1.用MATLAB 进行部分分式展开 用MATLAB 函数residue 可以得到复杂有理分式F(s)的部分分式展开式,其调用格式为 [],,(,)r p k residue num den = 其中,num,den 分别为F(s)的分子和分母多项式的系数向量,r 为部分分式的系数,p 为极点,k 为F(s)中整式部分的系数,若F(s)为有理真分式,则k 为零。 例6-1 用部分分式展开法求F(s)的反变换 322 ()43s F s s s s +=++ 解:其MATLAB 程序为

format rat; num=[1,2]; den=[1,4,3,0]; [r,p]=residue(num,den) 程序中format rat 是将结果数据以分数形式显示 F(s)可展开为 2 1 0.536()13 F s s s s --=++++ 所以,F(s)的反变换为 3211()()326t t f t e e u t --?? =--???? 2.用MATLAB 分析LTI 系统的特性 系统函数H (s )通常是一个有理分式,其分子和分母均为多项式。计算H (s )的零极点可以应用MATLAB 中的roots 函数,求出分子和分母多项式的根,然后用plot 命令画图。 在MATLAB 中还有一种更简便的方法画系统函数H (s )的零极点分布图,即用pzmap 函数画图。其调用格式为 pzmap(sys) sys 表示LTI 系统的模型,要借助tf 函数获得,其调用格式为 sys=tf(b,a) 式中,b 和a 分别为系统函数H (s )的分子和分母多项式的系数向量。 如果已知系统函数H (s ),求系统的单位冲激响应h(t)和频

UML实验报告

中南民族大学管理学院学生实验报告 课程名称:UML面向对象分析与设计教程 年级: 专业:信息管理与信息系统 学号: 姓名: 指导教师: 实验地点:管理学院综合实验室 2013 学年至 2014 学年度第 2 学期

目录 实验一 UML建模基础实验二用例图 实验三 UML类图 实验四对象图 实验五包图 实验六动态模型图

实验(一) UML建模基础 实验时间: 实验目的 1.熟悉UML建模工具Rational Rose的基本菜单及操作。 2.掌握UML的三大组成部分及各部分作用。 3.掌握UML的可见性规则和构造型的作用。 实验内容 1.练习使用建模工具建立各种UML图形,并对图形进行相应编辑 和修改。 2.认识各种UML关系及可见性符号,并用工具表示出来。

分析与讨论 1.总结UML在软件工程中的作用以及使用UML建模的必要性。 答:统一建模语言(UML)是用来对软件密集系统进行可视化建模的一种语言,也是为面向对象开发系统的产品进行说明、可视化、构造和编制文档的一种语言。 UML作为一种模型语言,它使开发人员专注于建立产品的模型和结构,而不是选用什么程序语言和算法实现。当模型建立之后,模型可以被UML工具转化成指定的程序语言代码。 UML可以贯穿软件开发周期中的每一个阶段,最适于数据建模、业务建模、对象建模、组件建模。UML展现了一系列最佳工程实践,这些最佳实践在对大规模、复杂系统进行建模方面,特别是在软件架构层次方面已经被验证有效。 UML是一种功能强大的,面向对象的可视化系统分析的建模语言,它的各个模型可以帮助开发人员更好地理解业务流程,建立更可靠,更完善的系统模型,从而使用户和开发人员对问题的描述达到相同的理解,以减少语义差异,保障分析的正确性。 指导教师批阅:

实验四-离散时间系统的频域分析(附思考题程序)

实验四 离散时间系统的频域分析 1.实验目的 (1)理解和加深傅里叶变换的概念及其性质。 (2)离散时间傅里叶变换(DTFT)的计算和基本性质。 (3)离散傅里叶变换(DFT)的计算和基本性质。 2.实验原理 对离散时间信号进行频域分析,首先要对其进行傅里叶变换,通过得到的频谱函数进行分析。 离散时间傅里叶变换(DTFT ,Discrete-time Fourier Transform)是傅立叶变换的一种。它将以离散时间nT (其中,T 为采样间隔)作为变量的函数(离散时间信号)f (nT )变换到连续的频域,即产生这个离散时间信号的连续频谱()iw F e ,其频谱是连续周期的。 设连续时间信号f (t )的采样信号为:()()()sp n f t t nT f nT d ¥ =-? = -?,并且其傅里叶变 换为:()()(){}sp n iwt f t f nT t nT dt e d ¥ ¥ -? =-? --= ? òF 。 这就是采样序列f(nT)的DTFT::()()iwT inwT DTFT n F e f nT e ¥ -=-? = ?,为了方便,通常将采 样间隔T 归一化,则有:()()iw inw DTFT n F e f n e ¥ -=-? = ?,该式即为信号f(n)的离散时间傅 里叶变换。其逆变换为:()1()2iw DTFT inw F e dw f n e p p p -=ò。 离散傅里叶变换(DFT ,Discrete-time Fourier Transform )是对离散周期信号的一种傅里叶变换,对于长度为有限长信号,则相当于对其周期延拓进行变换。在频域上,DFT 的离散谱是对DTFT 连续谱的等间隔采样。 21 1 20 ()()| ()()DFT k DTFT k w N knT N N i iwT iwnT N n n F w F e f nT e f nT e p p =----==== = 邋 长度为N 的有限长信号x(n),其N 点离散傅里叶变换为: 1 ()[()]()kn N N n X k DFT x n x n W -=== ?。 X(k)的离散傅里叶逆变换为:10 1()[()]()kn N N k x n IDFT X k X k W N --===?。 DTFT 是对任意序列的傅里叶分析,它的频谱是一个连续函数;而DFT 是把有限长序列作为周期序列的一个周期,对有限长序列的傅里叶分析,DFT 的特点是无论在时域还是频域

相关文档
最新文档