激光超声波可视化检测仪

激光超声波可视化检测仪
激光超声波可视化检测仪

激光超声波可视化检测

WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

「激光超声波可视化检测仪」及其应用

罗朝莉 ?王波 ?陈林

摘要:激光超声检测是超声检测发展起来的新分支,属于光、声、电等的交叉科学。与传统的超声检测技术相比,激光超声波可视化技术以其非接触地高速扫描检测,消除了传统超声检测技术中的耦合剂影响,用于各种较复杂形状工件的无损检测。加之可重复产生很窄的超声脉冲,在时间和空间均具有极高的分辨率,使之成为极具应用前景的无损检测新技术。本公司在日本筑波科技株式会社的大力协助下,成功研发了「激光超声波可视化检测仪」。应用该仪器对各种难检样件进行实际检测,其效果甚佳。

关键词:激光超声;可视化;检测技术

1.「激光超声波可视化检测仪」简介

激光超声检测技术是用强度调制激光束射入物体时发生热弹效应产生声波,通过检测该声波对金属、非金属及复合材料等表面和内部进行无损检测。目前,多数激光超声技术采用脉冲激光照射试样表面产生超声波,利用传感器或光学系统接收。采用压电传感器与试样耦合接收激光超声产生的宽带信号。如图1所示,传感器必须与试件接触,才能获得较高的灵敏度;或者利用空气超声传感器接近试件表面(距离试件不超过5mm)接收激光超声信号,一但距离加大,接收信号的灵敏度衰减甚快。

图1 ?激光激励产生超声波 ? ? ? ? ? ? ? ? ? ? ?图2 ?激光超声波可视化检测仪可视化技术是图形学的新领域,它运用图形学和图像处理技术,将计算机中的数据及计算结果转化成图像,呈现在计算机屏幕上,用图像直观地表达抽象数据所蕴含

的内容,从而使人们加深对数据的理解和利用,更好地分析和洞察内在联系,可视一些以前不能被看见的奥秘。

「激光超声波可视化检测仪」是将激光超声检测技术与可视化技术相结合,采用脉冲激光扫描产生超声波信号,通过对接收信号进行高度同步处理来实现超声波传播过程可视化,进而实现“一目了然”地发现工件的内部损伤。在检测时,用脉冲激光照射物体表面,由局部瞬间热膨胀而产生超声波并在该物体内部传播,当它到达异常部位时返回到物体表面的反射波被观察到。以此,可实时观察到物体构造及物理性能的变化对超声信号的影响,也可动态地观察超声波在物体中的实际传播过程,从而直观地检测出物体内部的损伤。「激光超声波可视化检测仪」如图2所示。

2.可视化检测实例

薄板检测

图3为检测样件照片。如图4样件尺寸为300×150×t2mm的薄铝板,铝板中间部位制作一个人工缺陷,缺陷长度8mm、宽度、深度。将「激光超声波可视化检测仪」的激光发射器能量调节到15A,中心频率2MHz,且将晶片尺寸为5×5mm的表面波传感器置于该薄板的背面。用激光对于薄板进行正面扫描,同时位于背面的传感器接收激光所产生的超声信号。将人工缺陷置于激光扫描范围之内,且位于背面(图中红色标记为缺陷位置)。设置好检测条件,对其进行检测。

图5表示各扫描点的信号波形最大值的空间分布,从该图可看出超声波在传播时的强度分布。图6是波形处理前传播图像,图像由原始接收波形重建而成,反应了超声波在薄板传播时各扫描点处的振动随时间的变化状态。在t=30μs,出现与前进波反方向的回波。图7是将图6中的超声波传播图像经单方向同步差分处理(前进波消除)后的不同时刻传播图像。该方法将具有干扰的前进波消除,从而提高了缺陷回波

的相对强度,使得缺陷回波更加清晰。图7中箭头所指出的回波为缺陷产生的回波,由此可知缺陷的位置所在。

两薄板间点焊检测

图8所示,检测样件是厚度为5mm的薄铝板与薄铝板经点焊粘接而成。用激光扫描的方式对中间部位的三个点焊区域进行可视化检测。结合最大振幅图及波形传播图像可看出点焊焊接的情况。用这种方法可以对点焊焊斑大小、形状及质量进行初步评价。

复杂形状检测

图11是汽车变速箱,为一次性铸成的复杂形状样件。采用激光扫描的方式对其内部进行可视化检测。从超声波传播的动态图像(图12及13)上可看到用红色箭头所标示的位置即损伤所在。

3.结论

「激光超声波可视化检测仪」不仅能够用于金属薄板焊接、复杂形状样件等的无损检测,而且适用于非金属材料、金属与非金属结合材料的检测与评估。它还可用于高温、剧毒等特殊环境下的检测。它解决了许多用传统超声波检测方法无法解决的难题,为无损检测领域提供了崭新的检测手段。目前,该仪器及其检测技术在国内外的重点领域、研究机构和大型企业已发挥其作用。随着激光超声技术的不断发展,该仪器及其检测方法将不断地改进和完善。在不久的将来,它会在航空航天、石油化工、核电、铁路、汽车等众多领域彰显出更大的威力。

参考文献:

[1]孟振庭.激光超声的热弹机理研究[J].西安交通大学学报,2002 ,36 (5) :548 - 550.

[2]张晓春.激光超声技术及其应用[J].大学物理,1998,17(2):40 - 42.

[3]R Earnshaw,N wiseman. An Introduction auide to Scientific Visualization.Springer-Verlag,1992.

[4]王小同,杜芳等.可视化仿真及其应用综述.计算机工程,1998,24(8)

[5] Junji Takatsubo, Bo Wang, et al. Generation Laser Scanning Method for the Visualization of Ultrasounds Propagating on a 3-D Object with an Arbitrary Shape[J].Journal of Solid Mechanics and Materials Engineering, 2007, 12: 1405-1411.

[6]王波,高坪纯治.激光超声波可视化检测仪使用说明书[M].筑波:日本筑波科技株式会社,2010.?

激光超声检测技术

1前言

激光可以实现非接触式的高灵敏度测量,但不能通过非透明材料的内部,而超声波的检测方法可以实现内部质量的检测,因此,用激光激发超声波使之通过被检测试件的内部,再用激光技术来接收这种超声波的信号,把两者结合起来,发展出一种新的检测方法-激光超声检测方法,解决常规超声检测难以解决的问题。

与常规超声检测方法比较,激光超声技术具有下列优点:激光超声不需要耦合剂,避免了耦合剂对测量范围和精度的影响;激光超声可实现远距离操作,可用于高温环境及腐蚀性强、有放射性等恶劣条件,并可以实现快速扫描,对生产现场快速运动的工件的在线检测;激光超声的盲区小于100μm,可用于测量薄工件。激光超声的频率带宽较常规的换能器宽,具有测量微小缺陷裂纹的能力;激光超声可用于表面几何形状复杂及受限制的空间,如焊缝根部小直径管道等;空间分辨率高,有利于缺陷的精确定位及尺寸量度,并可作为声源应用于理论研究。早期受到激光器件与相关学科发展的影响,激光超声自20世纪70年代提出到80年代中期成为热点之后,尚未达到人们预想的应用效果。20世纪末21世纪初,随着激光、电子、计算机和相关学科的发展,经过近10来年的技术积累,激光超声已经从方法探索步入技术研究与开发应用阶段,特别是国外一些新型的航空装备上已经开始采用这一检测新技术。我国则错过了这一个关键时期的技术积累。

2激光超声检测的原理

激光超声是利用高能量的激光脉冲与物质表面的瞬时热作用,在固体表面产生热特性区,然后利用这种小热层在材料内部向四周热膨胀扩散产生热应力,从而通过这种热应力产生超声波。激光作用在材料上产生两个热特性区:灼烧区、热弹区。

灼烧区

如图1所示,在高的能量作用下,物体的温度升高超过了其蒸发温度,原子以高速离开物体表面,产生一个动量,这种产生超声的模式称为热蚀效应。

热弹区

如图2所示,当激光器的能量不足在表面上形成腐蚀现象时,在固体表面产生热特性区,从而在物体内部产生应力波即超声波,较低的吸收率下,表面吸收的热量没有超过其融化温度,产生源是一个短暂的膨胀过程,与这个膨胀相关的压力波绝大部分低于弹性范围内,这种模式称为热弹效应。

通常所说的激光超声指的是热弹区,由于用于激励的脉冲激光器与被检测物体表面之间不需要任何机械连接和接触,因此,这种方法具有很好的工程应用潜力和前景。当采用光学方法接收激光

束在被检测材料中产生的超声波时,这种方法可以完全实现非接触的超声检测。

3激光超声检测技术

激励用激光器

激光超声系统是一个集光、机、电、算的复杂的检测系统,主要由两部分组成,即超声波的产生与接收。产生超声波的激光器目前主要有a)Nd:YAG激光器[1],该激光器产生的激光波长是

1064nm,激光器的能量为300mJ,发出的激光光斑直径是6·5mm,该激光器激励出的超声波的脉宽是5ns;b)CO2激光器[2],该激光器的光脉冲持续时间为70ns,根据制造需要,CO2激光束的形状是长方形的,光斑直径大约5mm左右; c)XeCL(308nm)激光器[3],激励出的脉宽是40ns,XeCL激光器与CO2激光器有相似的光束形状,光斑直径大约是3mm。在对碳纤维树脂基复合材料检测时,复合材料对这几种波长的激光器有不同的吸收特性和烧蚀阈值[3],选用Nd:YAG激光器比较常见。

光学接收技术

非接触的超声波接收技术较多,常用的方法有电磁声换能器(EMAT),电容换能器(MSAT)及空气换能器等,但是这些非接触光学探测方法的应用除了各自的局限性(如EMAT要求被检测样品为导体;ES2AT要求样品表面抛光;空气换能器带宽较窄等)之外,其共同的特点是虽然是非接触式的,但相隔距离不能很远(几毫米到几十个毫米),探测灵敏度随样品及换能器间的距离增大而降低。要真正实现远距离的非接触式检测只能采用光学检测技术。非干涉的刀口技术要求样品表面非常光洁,难以用于粗糙表面。所以要想实现远距离的检测,常用光学干涉技术,常用下面两种干涉方法来实

现超声波的接收:

光外差方法通常用的是迈克逊干涉仪,探测的表面是镜面,图3是外差干涉仪的原理图。

光外差方法对频率的响应受探测器截止频率影响,因此大于探测器截止频率的超声振动应该有补偿措施,用一个机电反馈回路来实现这种补偿效果。外差干涉法对表面的位移敏感,但是却无法

消除工业现场各种振动对探测的干扰,此外,这种方法对光点的尺寸大小有非常苛刻的限制,只有光点尺寸达到一个散斑大小时才能达到最佳的检测效果,因此光外差方法只能用于实验室条件下光滑表面的超声振动的检测,在外现场检测中常用的是速度干涉仪。

速度干涉仪也叫作时间延迟干涉仪,它是基于多普勒频移原理而应用的一种光学检测方法,如图4所示。

当激光照射在振动物体表面时,根据多普勒频移的原理,发射或散射光的频率发生了变化,变化的频率里加载了超声波的振动频率,干涉仪把频率的变化转变成光的强度的变化,经过一系列的处理手段,转变成电信号在示波器上显示出来,分析信号的特征就可以得到对被检测试件内部的情况。速度干涉仪对检测物体表面的速度特别敏感,对微振动有较好的检测能力。这种干涉仪有双光束干涉和多光束干涉,用的较多的是共焦的多光束干涉仪,也就是F-P干涉仪,它有突出的优于其他干涉仪的特点[4],图5所示是光线在干涉仪的传播路线及输出信号的光强与频率的关系。

采用图6所示的工作系统[5],用一个调Q Nd:YAG激光器,打在被检测的试件上面,用一个He-Ne激光器在试样另一面来接收产生的超声波,信号检测取决于携带超声的激光束频率的频移,利用多光束干涉的特点,频率的变化转变成输出光强的变化,从而实现光学方法的超声检测。L1~ L3透镜的焦距分别是2cm、-5cm、;BS:分光镜;PBS:偏振分光镜;G1:电子放大器; QW:1/4波片;PD1、PD2:灵敏光电二极管。

4在航空工业中的应用

由于激光超声检测技术有突出的优点,常用于复杂的几何形状如:楔形结构、拐角结构、V型结构、T型结构、蜂窝夹层结构等,国外在航空工业及其他领域都有较好的应用效果。

a)高温大曲面的复合材料平板的检测[6]图7是激光超声检测曲面复合材料平板的原理图。被检测材料的表面温度是1400℃,厚,大小254mm×254mm,生成C-Scan扫描图像,可以直观分析内部的缺陷,用这种方法使曲面物体的检测变得容易得多。

b)复合材料构件涂层的监测和控制系统[6]。能够对涂层的变化进行监测,及时发现影响飞行的一些变化,使事故防范于未然(图8)。

c)用于环氧树脂机身平板、机舱平板、方向舵、尾翼[7]等其他飞机结构件的检测(图9)。

此外在其他领域也有广泛的应用:可以对产品的生产过程进行监控,如利用激光脉冲的时间间隔可以在线对钢管的厚度进行测量[7],这样可以明显提高生产速度,提高钢材的产量;还可以对材料的弹性应力进行在线测量[8],便于监控产品的质量和性能,降低生产成本。目前在我国这项技术还处于试验室研究阶段,在工业生产方面还没有大规模的投入使用。

摘自:中国计量测控网

超声波局部放电检测法

2超声传感器 2.1超声传感器(ultrasonic sensor)的简介与原理 定义:利用超声波检测技术,将感受的被测量转换成可用输出信号的传感器。 简介:超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。 以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,使用前必须预先了解它的性能。 超声波传感器的主要性能指标包括: (1)工作频率。工作频率就是压电晶片的共振频率。当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。 (2)工作温度。由于压电材料的居里点一般比较高,特别时诊断用超声波探头使用功率较小,所以工作温度比较低,可以长时间地工作而不产生失效。医疗用的超声探头的温度比较高,需要单独的制冷设备。 (3)灵敏度。主要取决于制造晶片本身。机电耦合系数大,灵敏度高;反之,灵敏度低。

DJUS-05非金属超声波仪

产品名称:DJUS-05非金属超声波仪 依据标准: 《超声回弹综合法检测混凝土强度技术规程》………………CECS02:2005 《超声法检测混凝土缺陷技术规程》……………………… CECS21:2000 《建筑基桩检测技术规程》…………………………………JGJ106 2003 《公路工程基桩动测技术规程》…………………… JTG/T F81-01-2004 《岩土工程勘察规范》………………………………… GB500212001《回弹法、超声回弹综合法检测泵送混凝土强度技术规程》DBJ/T01-78-2003 应用范围: DJUS-05非金属超声仪主要用于混凝土等非金属结构质量无破损检测,可用于超声透射法基桩完整性检测,综合法检测混凝土抗压强度,结构混凝土缺陷探查,非金属产品(如石材、陶瓷、耐火砖等)内在质量检测,岩体动力学参数测定。 仪器特点: 1、超大TFT彩色无按键触摸式液晶屏,Windows系统平台下专为用户设计的操作界面,易学易用。可做笔记本电脑使用。 2、快速准确的声时、波幅自动与手动判读相结合,精确显示声时波速值。充

分发挥检测人员实测经验。 3、支持电火花、超磁致伸缩换能器等外触发源。 4、无缺陷混凝土对测最大穿透厚度大于10米,电火花震源单次激励穿透距离大于50米。 5、双通道测桩系统,双向深度数值直观显示,可同步记录、实时显示换能器位置,方便复测。 6、采用工业级微处理器控制系统,突出仪器的可靠性和稳定性。 7、针对恶劣工作环境设计的抗磨工具包和专用箱,携带方便、满足野外长期工作。 1、超声回弹综合法检测砼强度软件界面(测强)

2、超声法检测砼内部缺陷位置示意图(测缺)

超声波检测仪工作原理

超声波检测仪工作原理 超声波检测仪是一种常用的检测仪器,北京布莱迪超声波检测仪具有精确 度高、稳定性好、使用灵活、携带方便、适用范围广等优点,在多个领域中都 有一定的应用。今天小编主要来介绍一下超声波检测仪工作原理,希望可以帮 助用户更好的使用超声波检测仪。超声波检测仪工作原理 如果一个容器内或管道内充满气体,当其内部压强大于外部压强时,由于内外 压差较大,一旦容器有漏孔,气体就会从漏孔冲出。当漏孔尺寸较小且雷诺数较 高时,冲出气体就会形成湍流,湍流在漏孔附近会产生一定频率的声波,声波振动 的频率与漏孔尺寸有关,漏孔较大时人耳可听到漏气声,漏孔很小且声波频率大 于20kHz 时,人耳就听不到了,但它们能在空气中传播,被称作空载超声波。超声波是高频短波信号,其强度随着传播距离的增加而迅速衰减。超声波具有指向性。利用这个这个特征,即可判断出正确的泄漏位置 超声波检测仪泄漏检测系统不同于特定气体感应器受限于它所设计来感应的 特定气体,而是以声音来检测。 任何气体通过泄漏孔都会产生涡流,会有超音波的波段的部份,使得超音波 检测仪泄漏检测系统能够感应任何种类的气体泄漏。 用超声波检测仪泄漏检测系统扫描,可从耳机听到泄漏声或看到数位信号的 变动。越接近泄漏点,越明显。若现场环境吵杂,可用橡皮管缩小接收区和遮蔽拮抗超音波。 另外超音波检测仪泄漏检测系统的频率调整能力也使得背景噪音干扰减少。 可检查气压系统,测试电信公司所用的压力电缆等。桶槽、管路、及软管都可 借加压而检测,以及真空系统,涡流排气,柴油引擎燃料吸入系统,真空舱, 船舶舱间,水密门,材料处理系统,压力容器及管道的内外气液泄漏等。

HSQ6微型台式超声波检测仪使用说明书

目录 一、仪器介绍...............................................................................................- 2 - 1、HS Q6性能特点..............................................................................- 2 - 2、HS Q6 技术参数:.........................................................................- 3 - 二、仪器的按键说明 ...................................................................................- 4 - 三、仪器各功能介绍...................................................................................- 5 - 1、全屏 .........................................................................................- 5 - 2、参数设置 .........................................................................................- 6 - 3、调校 .........................................................................................- 6 - 4、曲线制作 .........................................................................................- 7 - 5、包络 .........................................................................................- 8 - 6、工艺保存 .........................................................................................- 8 - 7、焊缝功能 .........................................................................................- 9 - 9、性能校验 ...................................................................................... - 10 - 10、频谱分析 .................................................................................... - 11 - 11、厚度测量 .................................................................................... - 11 - 12、缺陷Φ值 .................................................................................... - 11 - 四、文件管理............................................................................................ - 12 - 五、工艺文件............................................................................................ - 12 - 六、Q6外部接口使用说明 ...................................................................... - 14 - 七、仪器的安全使用、保养与维护 .........................................................- 17 -

超声波局部放电检测

超声波局部放电检测 组合电器内部产生局部放电信号的时候,在放电的区域中,分子间产生剧烈的撞击,这种撞击在宏观上表现为一种压力。由于局部放电是一连串的脉冲形式,所以由此产生的压力波也是脉冲形式的,即产生了声波。局部放电源一般较小,一般为点声源。局部放电产生的声波频率在101-107Hz数量级范围,即为超声波(声音频率超过20kHz范围的称为超声波)。 ?超声波传感器分成两种,一种为接触式(压电式)超声波传感器(AE),一种为开放式(敞开式)超声波传感器,接触式传感器是将传感器贴在电力设备表面,检测局放产生的超声波信号在电力设备表面金属板中传播所感应的振动现象,主要用于GIS、变压器、电缆等密封性电力设备的局放检测,但这种检测方式容易受到外界声音及电力设备运行过程中自身振动的干扰。 ?开放式超声波传感器是检测放电产生的超声波信号在空气中传播时的振动现象,用于检测电力设备与传感器间有空气通道(如开关柜及户外的电力设备)的局放检测,这种检测技术能够利用外差技术将超声波信号转换成人耳可听到的声音信号,通过局放的特征声音,能够更好的判断局放存在(不受干扰影响)和定位。开放式超声传感器结构图见图。 ?超声波法测量局部放电,利用的是外差法将被接收的信号转换成一个人耳可判别、可听见的声音信号,并将放电所产生的超声波大小以声压的形式显示出来,这样,测量人员便可以通过耳机听到放电声音,并能从测量仪器上查看声压信号。 ?外差法原理类似于收音机,把信号转换成人可识别的声音。主要流程是:超声波信号经过主机选频得到所需信号,然后经本地振荡器产生一个同接收频率差不多的本振信号,两者混频后产生差频,即中频信号,此信号经过中频选频

超声波桩基检测分析报告

桩基检测报告 产品名称:基桩(声波透射法) 委托单位:资质等级评审组 检测类别:委托检测 检测人:郭斌 工程质量检测有限公司 报告日期:2015年6月24日 工程质量检验有限公司 检测报告

报告编号:SXSY2012-ZJ001-001 产品名称基桩抽样地点交院实训地 受检单位四川交通职业技术学院商标/ 生产单位四川路桥产品号/ 委托单位四川宏博检测单位样品批次/ 规格型号600mm*600mm 样品等级/ 检测类别委托检测样品数量 1 检测依据JGJ106-2003 抽样基数/ 检测项目桩身完整性检测委托人/ 样品描述委托日期2015年6月22日 主要 仪器设备 非金属超声波检测 检测结论本次共对1根桩基完整性进行了检测,其中:桩身无明显缺陷,为Ⅰ类桩,合格率100%。 试验环境温度:25℃天气情况:阴转小雨 批准人李海2015年6月22日审核人孙海峰2015年6月22日 主检人2015年6月22日 备注/ 录入校对打印日期2015年6月25日1.工程及地质概况 该工程由四川路桥公司承建,位于四川交通职业技术学院桩基实验基地,桩基为人工挖孔桩,设计强度C25,设计桩径600mm,共计两根。 2.检测依据

建筑基桩检测技术规范JGJ106-2003 3.超声波检测仪器、检测方法及工作原理 3.1测试仪器 超声波检测采用RSM-SY7(W)型基桩多跨孔超声波自动循测仪。 3.2检测方法 超声波检测采用声波透射法。 3.3工作原理 在被测桩内预埋若干根竖向相互平行的声测管作为检测通道,将超声脉冲发射换能器与接收换能器置于声测管中,管中注满清水作为耦合剂,由仪器发射换能器发射超声脉冲,穿过待测的桩体混凝土,并经接收换能器被仪器所接收,判读出超声波穿过混凝土的声时、接收波首波的波幅以及接收波主频等参数。超声脉冲信号在混凝土的传播过程中因发生绕射、折射、多次反射及不同的吸收衰减,使接收信号在混凝土中传播的时间、振动幅度、波形及主频等发生变化,这样接收信号就携带 了有关传播介质(即被测桩身混凝土)的密实缺陷情况、完整程度等信息。由仪器的数据处理与判断分析软件对接收信号的各种声参量进行综合分析,即可对桩身混凝土的完整性、内部缺陷性质、位置以及桩混凝土总体均匀性等级等做出判断,完成检测工作。超声波检测的工作原理如下图。 Ho──桩身第一测点的相对标高(m) Lp──声测管外壁间的最小间距:即超声波测距(mm) Ln──测点间距(mm) 声波检测参数: 声时T——混凝土测距间声波传播时间(μs)

超声波检测仪校验

№:×××××-×共×页×××××非金属超声波检测仪校验 校验报告 ×××××××工程检测有限公司

×年×月×日 试验: 编写: 审核: 批准:

1、目的 校验检测设备,保证试验检测的准确性和稳定性。 2、校验依据 CECS21:2000《超声法检测混凝土缺陷技术规程》 3、被校仪器名称编号 ××××非金属超声波检测仪 仪器编号:×××××× 4、超声波检测仪的校验 4.1方法:超声仪声时计量检验按“时—距”法测量空气声速的实测值v s,并与空气声速标准计算值v c相比较二者之间的相对误差不大于±0.5%,即可定为合格。 图1 19℃所测空气声速的“时—距”图 4.2步骤: 4.2.1将一对平面换能器置于桌面上如图2,并在换能器下面垫以海

发射换能器 接收换能器 刻度尺 泡沫塑料 水平桌面 棉或泡沫塑料并保持两个换能器的轴线重合及辐射面相互平行,同时换能器的辐射面相互对准; 图2 换能器移动示意图 4.2.2将换能器,接于超声仪器上,并以间距为50、100、150、200、250、300、350、400、450、500mm 依次放置在空气中,在保持首波幅度一致的条件下,读取各间距所对应的声时值t1、t2、t3……tn。; 4.2.3测点数应不少于10个。 4.2.4以测距li 为纵坐标,以声时读数ti 为横坐标,绘制“时-距”坐标图(,或用回归分析法求出li 与ti 之间的回归直线方程l=a+bt (式中a 、b 为待求的回归系数)。 坐标图中直线AB 的斜率“Δl/Δt ”或直线方程的回归系数“b ”即为空气声速的实测值v s (精确至0.1m/s)。 测量空气的温度Tk (准确至0.5℃)按下式计算的空气声速标准值v c 相比较, v c =331.4Tk .00367.01 (3.3.1) 式中 331.4-0℃时空气的声速(m/s ); v c --温度为Tk 度的空气声速(m/s ); Tk--被测空气的温度(℃)

跨孔超声波检测仪TS-S1206(B)

TS-S1206(B)基桩超声波多管循测仪 主要用途 ◆基桩超声波透射法完整性检测 ◆混凝土裂缝深度检测 ◆混凝土超声回弹综合法强度检测 ◆地质勘察岩体纵波波速测试 ◆隧道岩体松动圈检测 ◆非金属材料动弹力学参数测试 产品特点 ◆连续自动提升,多通道自动循测,可满足任意剖面自由组合 ◆智能判读,首波声时、声幅判读更准确 ◆剖面测试波形增益、延迟多点触控可调 ◆专业向导式操作流程设计,步骤更优化,操作更简单,检测更高效 ◆独有人体工学超薄设计,长时间工作更轻松 ◆专有低功耗技术平台+内置高性能复充锂电池,满足超长待机时间 ◆一体化自动计数提升装置,防水、抗震设计,连接更可靠 ◆独有一体化多功能接口,软件升级、数据导出、仪器充电更便捷 ◆12.1真彩高亮触摸屏,亮度无极可调,数据、曲线清晰,适用任意工作环境

软件特点 ◆智能判读,首波声时、声幅判读更准确 ◆提供数据合并功能,满足漏测和多管测试情况下的测试需求 ◆完善的剖面波形浏览编辑功能 ◆提供深度修正、管斜修正、跨距修正、缺陷操作、数据表修正等编辑功能◆支持数字滤波、声时修正、频谱细化等多种分析功能 ◆支持曲线图、波列图、数据表、灰度图等多种波形显示方式 ◆输出报表格式、内容可灵活定制,满足不同工程需要 ◆支持输出Word、Excel、BMP等多种格式 ◆支持多种检测规范 符合规范: ◆《建筑基桩检测技术规范JGJ 106-2014》 ◆《公路工程基桩动测技术规程JTG/TF81-01-2004》 ◆《铁路工程基桩检测技术规程TB 10218-2008》 ◆《广东省标准建筑地基基础检测规范DBJ-15-60-2008》 ◆《超声回弹综合法检测混凝土强度技术规程CECS02:2005》 ◆《超声法检测混凝土缺陷技术规程CECS21:2000》 ◆《铁路工程结构混凝土强度检测规程TB10426-2004》 性能参数:

第4分册 超声波局部放电检测细则

规章制度编号:国网(运检/4)***-2016 国家电网公司变电检测通用管理规定第4分册超声波局部放电检测细则 国家电网公司 二〇一六年十月

目录 前言 ...................................................................................................................................................................... II 1检测条件 (1) 1.1环境要求 (1) 1.2待测设备要求 (1) 1.3人员要求 (1) 1.4安全要求 (1) 1.5检测仪器要求 (2) 2检测准备 (2) 3检测方法 (3) 3.1检测原理图 (3) 3.2检测步骤 (3) 3.3检测验收 (4) 4检测数据分析和处理 (4) 5检测原始数据和报告 (4) 5.1原始数据 (4) 5.2检测报告 (4) 附录A(规范性附录)超声波局部放电检测报告 (5) 附录B(资料性附录)超声测试典型图谱 (6) 附录C(资料性附录)缺陷部位和缺陷类型判断依据 (15) I

前言 为进一步提升公司变电运检管理水平,实现变电管理全公司、全过程、全方位标准化,国网运检部组织26家省公司及中国电科院全面总结公司系统多年来变电设备运维检修管理经验,对现行各项管理规定进行提炼、整合、优化和标准化,以各环节工作和专业分工为对象,编制了国家电网公司变电验收、运维、检测、评价、检修通用管理规定和反事故措施(以下简称“五通一措”)。经反复征求意见,于2017年1月正式发布,用于替代国网总部及省、市公司原有相关变电运检管理规定,适用于公司系统各级单位。 本细则是依据《国家电网公司变电检测通用管理规定》编制的第4分册《超声波局部放电检测细则》,适用于35kV及以上变电站的气体绝缘金属封闭开关设备、GIL、罐式断路器、金属封闭式开关柜设备。 本细则由国家电网公司运维检修部负责归口管理和解释。 本细则起草单位:**、**。 本细则主要起草人:**、**。 II

超声波透射法检测桩基完整性报告总结.docx

**********工程第一合同段 青龙嘴小桥 (第二分册) 基桩声波透射法检测报告 编号: BG-2013-XCJ-001 ********** 二 O一三年八月 建设单位: **********交通运输局

设计单位:委托单位:监理单位:施工单位:检测单位:*********设计院有限公司***********有限公司 **********监理中心 ************有限公司 ********有限公司 检测地点:*** 主要检测人员: **** 报告编写人: 审核: 批准:

声明 尊敬的客户: 您所委托的检测任务已如约完成,在收到本报告之后,敬请认真阅读以下内容: 1、无本单位“试验检测报告专用章”无效。 2、无三级审核无效。 3、有任何改动无效。 4、未经本单位同意授权,不得部分复制本报告或用于其它用途。 5、若对本报告又异议,应于收到报告之日起10 个工作日内提出, 逾期将不予受理。 6、本试验报告正文共13 页。 单位: *** 有限公司 地址: *** 号 电话: ****** 邮编: ******

一、前言 受************** 有限公司委托,我单位—— **** 有限公司对利川至来凤公路咸丰县太平沟至杨泗坝段改建工程第一合同段青龙 嘴小桥的基桩进行超声波透射法检测,目的是检测桩身结构完整性。 本报告为端承桩的部分检测结果。 二、检测依据 《公路工程基桩动测技术规范》JGJ/T F81-01-2004 三、检测原理及方法 ZBL-U520 非金属超声波检测仪 信号输入参数设定 数据处理结果输出 计算机 电缆 柱 声测管 岩土 换能器 桩基础超声波试验示意图

超声波传感器

超声波传感器 超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。 以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功 能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。 超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,使用前必须预先了解它的性能。 组成部分 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。 性能指标

超声探头的核心是其塑料外套或者金属外套中的一块压 超声波传感器 电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,我们使用前必须预先了解它的性能。超声波传感器的主要性能指标包括: 工作频率 工作频率就是压电晶片的共振频率。当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。 工作温度 由于压电材料的居里点一般比较高,特别是诊断用超声波探头使用 超声波传感器 功率较小,所以工作温度比较低,可以长时间地工作而不失效。医疗用的超声探头的温度比较高,需要单独的制冷设备。[1] 灵敏度 主要取决于制造晶片本身。机电耦合系数大,灵敏度高;反之,灵敏度低。 主要应用 超声波传感技术应用在生产实践的不同方面,而医学应用是其

桩基超声波透射法完整性检测

桩基超声波透射法完整性检测 引言 近几十年,我国工程建设蓬勃发展,桩基础在高层建筑、大型厂房、桥梁码头、海上钻井平台及核电站等重要工程中被广泛应用。由于桩基属于地下隐蔽工程,桩基施工过程中受到所处地质条件、施工技术工艺等多种因素的影响,成桩难免存在各种不足,影响成桩的质量和使用效果,比如缩径、扩径、离析、蜂窝、混凝土强度偏低或夹泥,甚至断桩等不利缺陷。如何快速、准确的评价桩身质量,是桩基检测工程一直所关注的话题。桩基无损检测方法有低应变反射波法和超声波透射法,其中低应变反射波法因其操作简单、经济合理,能较准确地发现缺陷被广泛采用。但是该方法受到桩长桩径的限制,并且不能检测出桩基顶部缺陷和多个缺陷,而超声波透射检测方法作为无损检测方法中重要的一种方法,且超声波透射法能较好地反映桩身的完整性,完全可以满足检测要求和工程需要。 技术原理 超声波透射法是通过对声测管之间混凝土的缺陷情况的检测来进行桩身完整性评价。其基本原理:在混凝土桩基内事先预埋检测管作为超声波的检测通道,并在检测管内灌注足量的清水作为试验检测的耦合剂,然后将超声波检测设备的超声波发射探头与接收探头置于声测管的两侧,通过发射探头不断发射超声脉冲波,超声波脉冲经过混凝土桩基,由接收探头接收,仪器记录了超声脉冲在混凝土桩基传播过程中的波动情况,如混凝土桩基中存在连续性差或破损等缺陷,这些缺陷面就会成为波阻抗界面而产生透射和反射现象,导致超声波脉冲能量衰减情况严重,而出现蜂窝、孔洞、松散等严重缺陷时就会出现散射和绕射现象。通过研究分析波的初至到达时间即能量衰减特征、频谱变化和波形等特征,进而可以分析评价混凝土桩基的施工质量及其缺陷所在的位置,并对桩基混凝土的强度和均匀性做出评价。利用超声波透射法进行桩基检测的原理如图1所示。 图1 超声波透射法桩基检测原理图

10kV配电线路及设备超声波局部放电检测

10kV配电线路及设备超声波局部放电检测 “四措一案” 1

2016年9月 2

目录 一、编制依据 (4) 二、组织措施 (5) 三、技术措施 (8) 四、安全措施 (14) 五、环境保护措施 (17) 六、应急预案 (18) 七、施工方案 (28) 3

一、编制依据 (1)Q/GDW 1168-2013《输变电设备状态检修试验规程》 (2)Q/GDW 643-2011 《配网设备状态检修试验规程》 (3)国家电网安质〔2014〕265号《国家电网公司电力安全工作规程(配电部分)(试行)》 (4)《电力设备带电检测仪器配置原则(试行)》(生变电〔2010〕212号)(5)《国家电网公司关于深化电网设备状态检修工作的意见》(国家电网生〔2011〕154号) (6)Q/GDW 1799.2-2013国家电网公司电力安全工作规程(线路部分) 4

二、组织措施 为了实现本次项目安全优质完成,建立施工现场组织机构体系,建立健全现场各方面的管理措施,制定以下措施。 本项目计划项目经理 1 人,项目技术负责人 1 人,项目安全负责人 1 人,项目质量负责人 1 人,资料员 1 人,施工人员18 人。 1、施工组织机构图 5

2、施工现场管理人员职责 1. 项目经理,:全面负责本项目的各项事务,并对公司经理负责,负责组织调集该项目的人力及机械资源,掌握项目的材料供应,项目进度,质量,安全,施工成本控制,协调及对外联系等。 2. 项目技术负责人,:指导督促现场人员搞好项目的质量、安全检查,参与质量事故的调查、分析及处理。全面负责项目项目施工组织设计,施工技术和质量控制工作。 3. 项目安全负责人,:负责安全技术措施的编制及安全生产的各项规章制度的落实工作。 4.项目质量负责人,:对施工质量和工艺进行监督,确保项目质量良好,工艺规范。 5.资料员,:负责记录施工全过程的各类资料的收集,采集并分类组卷,建立与竣工资料目录相符的资料档案。 3、工期进度计划及资源配置 3.1 工期计划 60个工作日内完成一次全面检测,检测完成后10个工作日内提交测试报告并配合甲方现场验收抽查。 3.2 资源配置 1. 人力资源:为了确保工期按计划完成,公司准备投入施工力量18人,组建成9个测试组。投入人员见表表2-1 6

超声波法桩基检测实施细则

超声波法桩基检测实施细则 一、适用范围 本方法适用于直径不小于800mm的混凝土灌注完整性检测,它包括跨孔透射法和单孔折射法。 二、试验前的准备工作 1、自带电源的仪器设备在检测前应及时充电,并且要保证充电的时间,避免在检测过程中出现电源电量不足。 2、检查仪器的采集系统是否接触良好、工作正常,使测试系统各部分之间匹配良好。 三、检测仪器与设备 用于超声波法检测桩基的仪器应符合JTG/T F81-01—2004《公路工程基桩动测技术规程》中P17—6.2之规定。 四、检测步骤 1、现场准备 (1)被检测桩的混凝土龄期应大于是14d; (2)声测;管内应注满清水,且保持畅通; (3)标定超声波检测仪发射至接收的系统延迟时间t0; (4)准确量测声管的内、外径和两相邻声测管外壁间的距离,量测精度为±1; (5)取芯孔的垂直度误差不应大于0.5%,检测前就进行孔内清洗。 2、数据采集与过程观察 (1)连接好主机与电源、换能器,把发射和接收换能器分别缓缓放入要

检测的两个声测管内,并根据尺寸记录桩长; (2)打开仪器,输入各参数:检测工程名称、桩号、桩径、桩长、检测日期、检测时间、校正值等; (3)按“ 采集”键,进入采集状态,进行信号采集; (3)重复1和3步骤,直至桩检测完该桩基每根声测管。 3、检测步骤应符合下列要求: (1)接收及发射换能器应在装设扶正器后置于检测管内,并能顺利提升及下降。 (2)测量时上述发射与接收换能器可置于同一标高,当发射与接收换能器置于不同标高时,其水平测角可取30°~40°。测量点距20~40cm。当发现读数异常时,应加密测量点距,以保证测点间声场可以覆盖而不至漏测。发射与接收换能器应同步升降。各测点发射与接收换能器累计相对高差不应大于2cm,并应随时校正。检测宜由检测管底部开始,发射电压值应固定,并应始终保持不变,放大器增益值也应始终固定不变。调节衰减器的衰减量,使接收信号初至波幅度在荧光屏上为2或3格。由光标确定首波初至,读取声波传播时间及衰减器衰减量,依次测取各测点的声时及波幅并进行记录。一根桩有多根检测管时,应将每2根检测管编为一组,分组进行测试。 (3)每组检测管测试完成后,测试点应随机重复抽测12%~20%。其声时相对标准差不应大于5%;波幅相对标准差不应大于12%。并对声时及波幅异常的部位应重复抽测。 五、异常情况处理

桩基超声波检测操作规程

桩基超声法检测操作细则 1.总则 1.1. 本细则依据《公路工程基桩动测技术规程》(JTG/T F81-01—2004)、《建筑基桩检测技术规范》(JTG 106-2003)、《建筑地基基础检测规范》DBJ 15—60—2008及《深圳地区基桩质量检测技术规程》(SJG09-2007)编写。 2.仪器设备 2.1.超声波检测仪:符合(JTG/T F81-01-2004)、SJG09-2007、CECS21:90的有关要求。 2.2.换能器:符合(JTG/T F81-01-2004)、SJG09-2007、CECS21:90的有关要求。 3.操作步骤 3.1.检测前准备工作 3.1.1.预埋声测管应下列要求进行: 3.1.1.1.当桩径不大于1500mm时,应埋设三根管;当桩径大于1500mm时,应埋设四根管。 3.1.1.2.声测管宜采用金属管,其内径应比换能器外径大15mm,管的连接宜采用螺纹连接,且不漏水。 3.1.1.3.声测管应牢固焊接或帮扎在钢筋笼的内侧,且互相平行、定位准确,并埋设至桩底,管口宜高出桩顶面300mm以上。 3.1.1. 4.声测管管底应封闭,管口应加盖。 3.1.1.5.声测管的布置以路线前景方向的顶点为起点,按顺时针方向进行编号和分组,每两根为一组。 3.1.2.应通电检查仪器的各部分是否正常。 3.1.3.应测定检测系统发射至接收的延迟时间t0和声时修正值t′; t′=(D-d)/v t +d-d′/v w

式中:D——检测管外径(mm); d——检测管内径(mm); d′——换能器外径(mm); vt——检测管壁厚度方向声速(km/s); vw——水的声速(km/s); t′——声时修正值(us); 3.1. 4.声测管内注满清水,并采用测绳挂重物来检查声测管是否畅通。 3.1.5.测量两声测管外壁间的净距离I。 3.2.检测工作基本要求 3.2.1.调整超声检测仪参数,应使接收信号具有较高的信噪比,并且使首波波幅在显示器上的高度适中。 3.2.2.测点间距宜为200~500mm,收、发换能器应以同一高度或相差一定高度等距离同步移动,宜从下到上进行声时、波幅C及接收波频率的测量,并及时记录不正常波形;各测点发射与接收换能器累计相对高差不应大于2cm,并应随时校正。 3.2.3.应以两个声测管组成一个检测面,分别对所有测面进行检测(三管三侧面、四管六侧面)。 3.2. 4.对可疑点测点,应进行复测,宜用加密平测、斜测、双向斜测及扇形扫测的办法确定缺陷的位置和范围。 3.3.数据采集 3.3.1.根据现场条件确定用交流电,还是用内部电池,设好后面板的供电开并,连接好换能器、电源线等。 3.3.2.打开电源开关。 3.3.3.输入参数:包括工地名、桩号(文件号)、检测日期、测试方向、检测起点测度、收发间距、移动步间距、零声时等。 3.3. 4.采样:将光标移至采样标识,压入旋钮,当出现的波形理想,仪器自动判读正确时,压入旋钮,停止采样;当仪器自动判读不正确时,转动旋钮分别将光标移至读时,读幅、读频处,手动读取声时、振幅、接收波频率。 3.3.5.存贮:将光标移至存贮标识处,压入旋钮,仪器自动将当前测点的系

GIS局部放电超声波检测技术

GIS局部放电超声波检测技术 一、GIS局部放电超声波检测原理 SF6气体绝缘组合电气设备(GIS)因其具有故障低、免维护等特点而在电力系统中被广泛使用。但是GIS具有全封闭的特殊性,使得除了进行微水检测等少数试验项目外,现行的高压电气设备例行试验的大多数项目无法采用GIS,长期以来它几乎处于无维护状态。GIS设备内部出现的缺陷,不容易进行排查。随着GIS电压等级的提高和体积的缩小,GIS内部电场越来越高。GIS内部主要绝缘介质有SF6气体和环氧绝缘构件等。当绝缘存在缺陷时,内部场强分布便会发生畸变,导致局部放电而使内部绝缘受到破坏,同时往往伴随着超声信号的产生。因此目前国内外广泛采用局部放电超声波检测技术等非电量测量法来检测GIS故障。通过收集这些声信号,并根据实际经验加以分析,可以对GIS的运行状况进行评估。局部放电超声波检测原理如下图 在GIS的各类故障中,绝缘故障占有较大比例。实际运行情况表明,故障发生时常常并没有进行系统操作,也不存在过电压。导致这些绝缘故障的主要是一些晓得绝缘缺陷,如内部故障缺陷、自由颗粒、毛刺、接触不良、固体绝缘表面脏污等。随着这些微小缺陷的逐渐扩大,会使放电所产生的电荷在固体绝缘表面逐渐积累,导致电场分布的严重畸变。要及时发现这些潜在的绝缘缺陷,必须依靠局部放电超声波检测。 GIS可分为三相共体式和分相式两种。尽管GIS在结构设计上不尽相同,但内部结构基本一致,主要有SF6气体、绝缘支座、拉杆、盘式绝缘子、导电体、气室外壳等。GIS绝缘故障的发生,可能是在产品产生、现场安装以及运行操作等过程中。如下图,导致GIS产生局部放电的原因具体分为以下几种:(1)气室内导体上和金属外壳上的异常凸起。GIS在装配过程中留下的焊疤或较大的毛刺等,往往在老炼试验中无法清除,便在运行的气室内留下异常凸起点。此类缺陷危害较大,会造成气室内局部场强不均匀。当局部场强达到某一水平时,凸起点将出现尖端闪络。对于雷电或操作的快速暂态冲击,凸起点闪络将会导致绝缘击穿。一般超过1~2mm的凸起点被认为是有害的缺陷。 (2)气室内自由金属颗粒在电场作用下获得电荷,并受到静电力的作用,如果这种力超过其重力,颗粒就会从外壳上升,并在气室内运动而造成间隙性电晕放电。颗粒的形状及其位置直接影响到气室的耐压水平。颗粒越长,越接近高压导体,其危险程度就越大。如果吸附于绝缘子上,可能会导致绝缘子表面闪络受损,可能造成更大的危害。 (3)电动和机械力造成气室内零配件松动。如果屏蔽罩松脱,将直接导致电位浮悬,电气绝缘距离缩短,交流耐压水平大幅度下降。如该悬浮屏蔽接近电极,将导致屏蔽与电极见大规模放电。 (4)固体绝缘内部的空隙和缺陷。在电场作用下,固体绝缘内部的空隙和缺陷会产生局部放电或固体表面树枝状放电,长期累积效应使固体绝缘老话直接击穿,此类缺陷直接影响到GIS的使用寿命。 当GIS中的缺陷在电压作用下发生局部放电时,局放产生的能量是周围SF6气体的温度骤然升高,从而形成局部过热,所产生的扰动以压力波的形式传播,其类型包括纵波、横波和表面波。不同的电气设备、环境条件和绝缘状况产生的

RS-ST01C非金属超声测试仪操作规程

RS-ST01C非金属超声测试仪操作规程 一、使用前的准备工作 1.连接换能器 2.连接电源 3.开机 二、操作方法 (一)零声时测试 基桩检测的系统零声时测试方法有两种,实测法和公式推算法: 1.实测法: 1)分别将径向接收和发射换能器与声波仪器主机连接好,把两节与现场基桩预埋管同规格的钢管,等高紧靠着置于水中,将接收和发射探头分别置入钢管中间,保持等高; 2)在仪器采集软件界面右边的主菜单里选择【状态】,按下旋钮弹出状态参数对话框。将延时时间和系统声时设置为0; 3)选择主菜单的【采样】,按下旋钮弹出采样菜单,选择采样菜单的【采样】,按下旋钮开始采样,调出正确的首波(即首波的波峰或波谷超过判读门限,且不超出测点波形区域),屏幕底出现声时值即为基桩检测系统零声时 T o (为仪器系统延迟与声测管及藕合水层声时修正值之和); 4)按下旋钮,停止采样,将此声时值输入状态参数对话框中的系统声时; 5)此后所测的测点声时值将扣除系统声时,T T总T o o 2.推算法: 1)选择一个合适的水槽,如养护池,并加进适量的清水(实验用水温20C), 水深超过40cm,取一匀直的木板,在其上面以100mm为间隔等距离标注11个点,将其置于养护池相对的两条边上,并保持水平;2)将RS-ST01C型非金属声波检测仪的零声时置为0卩s,以换能器的轴线为准,沿木条依次采集收发间距 100mm~1000mm 的各点的声时值,其间应让探头远离养护池的四壁,并保持等 高;

3)数据的处理,采用的直径为d 换的径向探头,所以各点的有效收发距离为 l i (L i d 换)mm ,回归直线方程I a bt (式中a 、b 为待求的回归系数)。以 测距h 为纵坐标,以声时读数ti 为横坐标,绘制“时-距”坐标图,对该组数据采 用最小二乘法的线性回归,计算出仪器系统延迟时间 t o ; t 0 4)声测管及藕合水层声时修正值 t' t' 5) 系统零声时:T o t o t' 6) 水温降低,水中声波的速度也会有所降低,贝U t'增大;反之则t'减小。 匚)采样 1.在采样菜单条上右旋至【菜单】项,确认;这样就切换到了主菜单,光 标停留在【参数】项。 在【参数】项确认;弹出现场工作参数菜单,标题是“请输入现场工作参数”, 左旋选中【工地】项,确认;弹出一模拟键盘,输入您的工地名、日期、模式、 文件、序号、移动步距和收发间距等(只能由数字、英文字母和下划线构成), 输入完毕,保存。 2?在主菜单中右旋至【调整】项,确认;弹出一个调整菜单,光标停留在 【零声时】项,如图所示,确认;弹出模拟键盘,输入合适的零声时(一般在 18 卩s 左右),确认;返回到主菜单。 3?在“采样”项上确认,仪器进入采样状态,波形显示区上出现采样得到 的波形。左右旋转光电旋钮,会减小或增加波形的显示倍数(不影响发射和接收 能量,即声幅的大小,在波形显示区右上角有放大倍数显示) 通过对放大倍数的 调整,使首波波幅在判读门限之外,波形显示区边界以内。 4?取得的波形后,下压旋钮确认,退出采样状态,换能器停止工作,采样 菜单 弹出,光标停留在【存贮】项上。 5.在采样菜单“存贮”项上确人;在系统参数区下方弹出一个红色提示条, 告知您刚才存贮点的波速、点号,并提示您下一点的深度,光标停留在“采样” 项上。 d 钢内d 换 v 水

超声波探伤仪探伤技术

超声波探伤仪探伤技术

超声波探伤仪就是频率高于20kHz、超出人们耳朵辨别能力并且穿透性很强的声波。是一种便携式工业无损探伤仪器,它能够快速、便捷、无损伤、精确地进行工件内部多种缺陷(焊缝、裂纹、折叠、疏松、砂眼、气孔、夹杂等)的检测、定位、评估和诊断。既可以用于实验室,也可以用于工程现场。广泛应用在锅炉、压力容器、航天、航空、电力、石油、化工、海洋石油、管道、军工、船舶制造、汽车、机械制造、冶金、金属加工业、钢结构、铁路交通、核能电力、高校等行业。 超声波探伤仪原理:运用超声波反射原理对于材料中的缺陷进行无损侦测,超声波在被检测材料中传播时,材料的声学特性和内部组织的变化对超声波的传播产生一定的影响,通过对超声波受影响程度和状况的探测了解材料性能和结构变化的技术称为超声检测。 彩屏超声波探伤仪是LED显示屏是彩色的,多颜色选择,适用于不同的光线条件,电火花检漏仪 https://www.360docs.net/doc/1e8916661.html,背光连续可调,更为直观和好看. 超声波探伤仪的应用有很多,比如用超声的反射来测量距离,利用大功率超声的振动来清除附着在锅炉上面的水垢,利用高能超声做成 "超声刀"来消灭、击碎人体内的癌变、结石等,超声波探伤仪而利用超声的反射等效应和穿透力强、能够直线传播等的特性来进行检测也是其中一个很大的应用领域。超声波探伤仪的检测应用主要包括在工业上对各种材料的检测和在医疗上对人体的检测诊断,通过它人们可以探测出金属等工业材料中有没有气泡、伤痕、裂缝等缺陷,可以检测出人们身体的软组织、血流等是否正常。 那么人们是怎么样利用超声来进行检测的呢?超声波探伤仪现在通常是对被测物体(比如工业材料、人体)发射超声,然后利用其反射、多普勒效应、透射等来获取被测物体内部的信息并经过处理形成图像。超声波探伤仪其中多普勒效应法是利用超声在遇到运动的物体时发生的多普勒频移效应来得出该物体的运动方向和速度等特性;透射法则是通过分析超声穿透过被测物体之后的变化而得出物体的内部特性的,其应用目前还处于研制阶段;超声波探伤仪这里主要介绍的是目前应用最多的通过反射法来获取物体内部特性信息的方法。反射法是基于超声在通过不同声阻抗组织界面时会发生较强反射的原理工作的,正如我们所知道,声波在从一种介质传播到另外一种介质的时候在两者之间的界面处会发生反射,而且介质之间的差别越大反射就会越大,所以我们可以对一个物体发射出穿透力

相关文档
最新文档