EMI对策元件之差模_共模电感器

EMI对策元件之差模_共模电感器
EMI对策元件之差模_共模电感器

EMI对策元件之差模/共模电感器

电感器变压器典型应用电路——开关电源电路

EMI 滤波典型电路

差模噪声、共模噪声及差模电感器、共模电感器

输入导线之间的 EMI 电压称之为差模噪声。导线对接地端的噪声称之为共模噪声,差别见下图(以开关电源的差模干扰和共模干扰为例)。

差模噪声与共模噪声的区别

共模电感器设计

开关电源产生的共模噪声频率范围从 10kHz ~ 50MHz 甚至更高,为了对这些噪声有效的衰减,那么在这个频率范围内,共模电感器就必须提供足够高的阻抗。因此高磁导率的锰锌铁氧体和非晶材料是非常适合的。共模电感器的阻抗 Zs 由

串联感抗 Xs 和串联电阻 Rs 两部分组成, Zs 、 Xs 、 Rs 三者随频率变化的典型趋势见下图。

Zs 、 Xs 、 Rs 与频率的关系曲线

从图中我们可以看出在 750kHz 以下, Xs 在 Zs 中占主要部分, 750kHz 以上 Rs 在 Zs 中占主要部分。

对于抑制共模噪声的电感器,需要在一个磁芯上绕制两组电流方向相反的导线,并使用高磁导率的磁芯,如磁导率为5k 、 7k 、 10k 、 12k 材料和非晶磁芯等。

共模电感器命名方法

外形结构:

图 1 图 2

德恩典型产品参数表

差模电感器设计

对于抑制差模噪声的电感器,要求磁芯材料在偏磁场下仍然能够保持磁导率指标。下图中,标出了流经电感器的电流 I ,电压 V 和磁芯中的磁场强度曲线,并且画出了差模滤波器和共模滤波器在开关电源中的应用线路图。在输入端,可以是交流输入(如市电),也可以是电池供电(如 48V ,用于电信设备中)。当电池供电时,磁化电流是恒定的直流电。对于高功率因数的交流电系统,磁化电流接近正弦波波形。而低功率因数的交流电系统,其磁化电流则由一系列的交变脉冲叠加组成。

适合制作差模电感器(扼流圈)的磁心材料是具有高 Bs 值的金属磁粉心磁环和开路铁氧体磁芯,但是考虑现在的 EMI 和 EMC 的要求,使用铁镍钼、铁镍 50 、铁硅铝三种闭和磁路的金属磁粉心磁环是最合适的,因为这三种磁心材料在偏磁场下具有极好的电感量保持能力。

三种金属磁粉心材料进行比较:高磁通铁镍 50 磁粉心的性能最好,因为它在高饱和磁通密度下具有保持电感量的能力,同时它还提供在高频下所需要的阻尼衰减功能,但是由于该材料本身所具有的磁滞伸缩产生的音频噪声,致使高磁通铁镍 50 磁粉心在 50Hz 或者 60Hz 下,会产生音频噪声(嗡嗡声)。当然直流磁化电流不会产生音频噪声,所以它最适合用制作电池供电(工作电流为直流)的电源系统中的输入滤波电感器。铁镍钼、铁硅铝磁粉心都具有特别低的磁滞伸缩系数,它们都不会产生音频噪声。铁镍钼磁粉心在直流偏磁场下的磁导率变化量最小,这是它的一个优点。铁硅铝磁粉心的单位体积成本最低,因此最适合制作民用差模电感器,铁镍 50 和铁镍钼磁粉心的价格远远高于铁硅铝磁粉心更适合军用和一些对体积和性能要求高的场合。

差模电感器命名方法

外型结构图:

图 1 图 2

德恩典型产品参数表

示波器有关知识及选型方案

示波器有关知识及选型方案 此方案为北京海洋兴业科技有限公司所有,如需转载请注明出处。 示波器自从问世以来,它一直是最重要、最常用的电子测试仪器之一。由于电子技术的发展,示波器的能力在不断提升,其性能与价格也五花八门,市场参差不齐。示波器看似简单,但如何选择,也存在许多问题。本文根据多年的经验,结合北京海洋兴业科技有限公司选型指南,从几个方面告知您在选择示波器时应注意的问题: 一、了解您需要测试的信号 您要知道用示波器观察什么?您要捕捉并观察的信号其典型性能是什么?您的信号是否有复杂的特性?您的信号是重复信号还是单次信号?您要测量的信号过渡过程的带宽,或者上升时间是多大?您打算用何种信号特性来触发短脉冲、脉冲宽度、窄脉冲等?您打算同时 显示多少信号?您对测试信号作何种处理? 二、选择示波器的核心技术差异:模拟(DRT)、数字(DSO)、还是数模兼合 (DPO) 传统的观点认为模拟示波器具有熟悉的控制面板,价格低廉,因而总觉得模拟示波器“ 使用方便” 。但是随着 A/D 转换器速度逐年提高和价格不断降低,以及数字示波器不断增加的测量能力和实际上不受限制的测量功能,数字示波器已独领风骚。但是数字示波器显示具有三维的缺陷、处理连续性数据慢等缺点,需要具有数模兼合技术的示波器,例 DPO 数字荧光示波器。 三、确定测试信号带宽 带宽一般定义为正弦波输入信号幅度衰减到 -3dB 时的频率,即幅度的70.7% 。带宽决定示波器对信号的基本测量能力。如果没有足够的带宽,示波器将无法测量高频信号,幅度将出现失真,边缘将会消失,细节数据将被丢失;如果没有足够的带宽,得到的信号所有 特性,包含响铃和振鸣等都毫无意义。 一个决定您所需要的示波器带宽有效经验——“5倍经验准则”:将您要测量的信号最高频率分量乘以5,使测量结果获得高于2%的精度。

示波器的调节和使用

示波器的调节和使用 我们以型号为 YB4300系列的双踪示波器为例说明其一般使用方法。 波器的型号根据频率不同主要有 YB4320G YB4340G YB4360G 一、示波器的调节和使用 示波器有多种型号,面板形状也各不相同,但其结构与功能大同小异。熟练掌握示波 器的使用,首先应该了解示波器面板上各个旋钮的功能。 本书以YB4320G 型示波器为例进行 说明,如图1所示。该示波器的前面板如图 2所示,各部分功能介绍如下: 图1 YB4320G 型示波器外形结构 图2 YB4320G 型示波器操作面板示意图 1、主机电源 (9)电源开关(P0WER )将电源开关按键弹出即为“关”位置,将电源线接入,按电源 开关键,接通电源。 (8)电源指示灯:电源接通时,指示灯亮。 YB4300系列双踪示 ¥4rvd r-0 总已0 O 匚)计t 帥 尢先牛乔亠帀川…诲 CHI KI 44 ■ CC H r 口 A 财 ■ DC oo a *!' 甲o?C ffi ? ④& BL in ” L Z] :- X I Efc ■裁 OI *; :!? ' - r # ^1-- til i :二! E_ < J C J s £ ^ ---^ 7 M 百 “D 二匸巳龄■ 已Fa? g.営 2 J * i 念 ¥B^gQ<3 口 口 □ va.Tsw J I ★ - ------- =1k.. ◎ ⑥磁???? ? 竺 a 'JBLTStW ”" I ! W ?"-'-■ jliii, + (U£9

( 2)辉度控制 (INTENSITY) :顺时针方向旋转旋钮,扫描线辉度增加。 (4) 聚焦控制(FOCUS):用辉度控制钮将亮度调至合适的标准, 然后调节聚焦控制钮直 至光迹达到最清晰的程度。 虽然调节亮度时, 聚焦电路可自动调节, 但聚焦有时也会轻微变 化,如果出现这种情况,需重新调节聚焦旋钮。 (5) 基线旋转 (TRACE ROTATION) 用于调节扫描线使其和水平刻度线平行,以克服外 磁场变化带来的基线倾斜,需要使用螺丝刀调节。 ( 45)显示屏:仪器的测量显示最终端。 (3)延迟扫描辉度控制钮(B INTEN ):顺时针方向旋转此钮, 迹亮度。 ( 1 )校准信号输出端子( CAL ) 2、 垂直方向部分( VERTICAL ) ( 13)通道 1 输入端 [CH1 INPUT (X ) ] :被测信号由此输入 方式时,输入到此端的信号作为 X 轴信号。 ( 17)通道 2 输入端 [CH2 INPUT (X ) ] :被测信号由此输入 方式时,输入到此端的信号作为 丫轴信号。 (11)、(12)、(16)、(18)交流 -直流-接地( AC 、DC 、GND ): 输入信号与放大器连接方式选择开关: 交流(AC ):放大器输入端与信号连接由电容器来耦合; 接地( GND ) 输入信号与放大器断开,放大器的输入端接地。 直流( DC ) 放大器输入与信号输入端直接耦合。 ( 10)、( 15)衰减器开关( VOLTS/DIV ) 用于选择垂直偏转系数,共 12档。如果使用的是10:1的探极,计算时将幅度X - ( 14)、( 19)垂直微调旋钮( VARIBLE ) 垂直微调用于连续改变电压偏转系数, 此旋钮在正常情况下应位于顺时针方向旋到底的 位置。将旋钮逆时针旋转到底,垂直方向的灵敏度下降到 2.5 倍以上。 ( 44)断续工作方式开关 CH1 CH2二个通告按断续方式工作,断续频率为 250kHz ,适用于低扫速。 (43)、(40)垂直移位( POSITION ) 调节光迹在屏幕中的垂直位置。 (42)垂直方式工作开关 (VERTICAL MODE) 用于选择垂直偏转系统的工作方式 通道 1 选择( CH1) 屏幕上仅显示 通道 2 选择( CH2) 屏幕上仅显示 双踪选择( DUAL ) 屏幕上显示双踪, 的信号; 叠加(ADD :显示CH1和CH2输入信号的代数和。 (39) CH2极性开关(INVERT :按此开关时 CH2显示反相信号。 (48) CH1信号输出端(CH1 OUTPU )输出约100mV/div 的通道1信号。当输出端接 50Q 匹配终端时,信号衰减一半,约 50mV/div ,该功能可用于频率计显示等。 3、 水平方向部分( HORIZONTA )L (20)主扫描时间系数选择开关( TIME/DIY ) 用于选择扫描时间因数,从 0.1卩sP.5s/div 范围共20档。 ( 24)扫描微调控制键( VARIBLE ) 此旋钮以顺时方针方向旋转到底时,处于校准位置,扫描由 此旋钮以逆时方针方向旋转到底时,扫描减慢 2.5 倍以上。当按键( 21)未按入,按钮 (24)调节无效,即为校准状态。 ( 35)水平移位( POSITION ) 用于调节光迹在水平方向移动。 顺时针方向旋转该旋钮向右移动光迹, 逆时针方向旋转 向左移动光迹。 增加延迟扫描 B 显示光 y1 通道。当示波器在 X-Y y2 通道。当示波器在 X-Y 10。 CH1的信号; CH2的信号; 自动以交替或断续方式,同时显示 CH1和CH2上 Time/div 开关指示。

开关电源变压器共模电感设计方案注意事项

开关电源变压器共模电感设计注意事项 在电源变压器的设计过程中,工程师们需要严格的计算并完成共模电感设计和数值选取,这直接关系到开关电源变压器的运行精度。在今天的文章中,我们将会就开关电源变压器的共模电感设计展开简要分析,看在电源变压器共模电感设计和计算过程中,都应该注意哪些问题。 在电源变压器的设计和制作过程中,工程师所要进行的共模电感设计,其所需要的基本参数主要有三个,分别是输入电流,阻抗及频率,磁芯选取。先来看输入电流。这一参数值直接决定了绕组所需的线径。在线径的计算和选取时,电流密度通常取值为400A/cm³, 但此取值须随电感温升的变化。通常情况下,绕组使用单根导线作业,这样可削减高频噪声及趋肤效应损失。 在计算过程中,开关电源变压器共模电感的阻抗在所给的频率条件下,一般规定为最小值。串联的线性阻抗可提供一般要求的噪声衰减。但实际上,线性阻抗问题往往是最容易被人忽视的,因此设计人员经常以50W线性阻抗稳定网络仪来测试共模电感,并渐渐成为一种标准测试共模电感性能的方法。但所得的结果与实际通常有相当大的差别。实际上,共模电感在正常时角频首先会产生每八音度增加-6dB 衰减(角频是共模电感产生-3dB)的频率此角频通常很低,以便感抗能 够提供阻抗。因此,电感可以用这一公式来表达,即:Ls=Xx/2 n f

这里还有一个问题需要工程师需要注意,那就是在进行共模电感设计时须注意磁芯材料和所需的圈数问题。首先来看磁芯型号的选取问题,此时如果有规定电感空间,我们就按此空间来选取合适的磁芯型号,如没有规定,通常磁芯型号的随意选取。 在确定了电源变压器的磁芯型号之后,接下来的工作就是计算磁芯所能绕最大圈数。通常来说,共模电感有两绕组,一般为单层,且每绕组分布在磁芯的每一边,两绕组中间须隔开一定的距离。双层及堆积绕组亦有偶尔使用,但此种作法会提高绕组的分布电容及降低电感的高频性能。由于铜线的线径已由线性电流的大小所决定,内圆周长可以由磁芯的内圆半径减去铜线半径计算得来。故最大圈数的就可以铜线加绝缘的线径及每个绕组所占据的圆周来计算。

示波器的调节与使用

数字示波器的调节与使用 一、实验目的 1.了解示波器的结构与示波原理 2.掌握示波器的使用方法,学会用示波器观测各种电信号的波形 3.学会用示波器测正弦交流信号的电压幅值及频率 4.学会用李萨如图法,测量正弦信号频率 二、实验仪器 RIGOL DS1000E型数字存储示波器,DG1022函数波形发生器 三、实验原理 1、双踪示波器的原理: 双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电路、扫描发生器、同步电路、电源等。 Y CH1 Y CH2 图1. 双踪示波器原理方框图 其中,电子开关使两个待测电压信号YCH1和YCH2周期性地轮流作用在Y偏转板,这样在荧光屏上忽而显示YCH1信号波形,忽而显示YCH2信号波形。由于荧光屏荧光物质的余辉及人眼视觉滞留效应,荧光屏上看到的是两个波形。 如果正弦波与锯齿波电压的周期稍不同,屏上出现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的。为了获得一定数量的完整周期波形,示波器上设有“time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正

弦波形。 当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”。如果同步电路信号从仪器外部输入,则称为“外同步”。 2.示波器显示波形原理: 如果在示波器的YCH1或YCH2端口加上正弦波,在示波器的X 偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与正弦电压的变化周期相等时,则在荧光屏上将显示出完整周期的正弦波形,如图2所示。如果在示波器的YCH1、YCH2端口同时加上正弦波,在示波器的X 偏转板加上示波器内部的锯齿波,则在荧光屏上将得到两个正弦波。 图2.示波器显示正弦波形的原理 3、数字存储示波器的基本原理 数字存储示波器的基本原理框图如图3所示: AMP A/D Display Input DeMUX Acquistion Memory uP Display Memory 图3.数字存储示波器的基本原理框图

EMC滤波电路的原理与设计---整理【WENDA】

第一章开关电源电路—EMI滤波电路原理 滤波原理:阻抗失配;作为电感器就是低通(更低的频率甚至直流能通过)高阻(超过一定频率后就隔断住难于通过)(或者是损耗成热消散掉),因此电感器滤波靠的是阻抗 Z=(R^2+(2ΠfL)^2)^1/2。也就是分成两个部分,一个是R涡流损耗,频率越高越大,直接把杂波转换成热消耗掉,这种滤波最干净彻底;一个是2ΠfL 这部分是通过电感量产生的阻挡作用,把其阻挡住。实际都是两者的结合。但是要看你要滤除的杂波的频率,选择合适的阻抗曲线。因为电感器是有截止频率的,超过这个频率就变成容性,也就失去电感器的基本特性了,而这个截止频率和磁性材料的特性和分布电容关系最大,因此要滤波更高的频率的干扰,就需要更低的磁导率,更低的分布电容。因此一般我们滤除几百K以下的共模干扰,一般使用非晶做共模电感器,或者10KHZ以上的高导铁氧体来做,这样主要使用阻抗的WL这一方面的特性,主要发挥阻挡作用。电感器滤波器是通过串联在电路里实现。撒旦谁打死多少次顺风车安顺场。 因此:共模滤波电感器不是电感量越大越好主要看你要滤除的共模干扰的频率范围。先说一下共模电感器滤波原理共模电感器对共模干扰信号的衰减或者说滤除有两个原理,一是靠感抗的阻挡作用,但是到高频电感量没有了,然后靠的是磁心的损耗吸收作用;他们的综合效果是滤波的真实效果。当然在低频段靠的是电感量产生的感抗.同样的电感器磁心材料绕制成的电感器,随着电感量的增加,Z阻抗与频率曲线变化的趋势是随着你绕制的电感 器的电感量的增加,Z 阻抗峰值电时的频率就会下降,也就是说电感量越高所能滤除的共模干扰的频率越低,换句话说对低频共模干扰的滤除效果越好,对高频共模信号的滤除效果越差甚至不起作用。这就是为什么有的滤波器使用两级滤波共模电感器的原因一级是用低磁导率(磁导率7K以下铁氧体材料甚至可以使用1000的NiZn材料) 材料作成共模滤波电感器,滤出几十MHz或更高频段的共模干扰信号,另一级采用高导磁材料(如磁导率10000\15000 的铁氧体材料或着非晶体材料)来滤除1MHz以下或者几百kHz的共模干扰信号。因此首先要确认你要滤除共模干扰的频率范围然后再选择合适的滤波电感器材料. 电容的阻抗是Z=-1/2ΠfL那么也就是频率越高阻抗绝对值越小,那么就是高通低阻,就是频率越高越能通过,所以电容滤波是旁路,也就是采用并联方式,把高频的干扰通过电容旁路给疏导回去。

EMI滤波电感设计

EMI滤波电感设计 EMI滤波器 正常工作的开关类电源(SMPS)会产生有害的高频噪声,它能影响连接到相同电源线上的电子设备像计算机、仪器和马达控制。用一个EMI滤波器插入电源线和SMPS之间能消除这类干扰(图1)。一个差模噪声滤波器和一个共模噪声滤波器能够串联或在许多情况下单独使用共模噪声滤波器。 图1 EMI滤波器的插入 一、共模电感设计 在一个共模滤波器内,电感的每一个绕阻和电源输入线中的任一根导线相串联。(对于电源的输入线来讲)电感绕组的接法和相位是这样的,第一个绕组产生的磁通会与第二个绕组产生的磁通相削. 于是,除了泄漏阻抗的小损耗和绕组的直流电阻以外,电感至电源输入线的插入阻抗为另。由于磁通的阻碍,SMPS 的输入电流需要功率,因此将通过滤波器,滤波器应没有任何明显的损耗。 共模噪声的定义是出现在电源输入线的一根或二根导线上的有害电流通过电感的地返回噪声源的噪声。 此电流要视共模电感的任何一个或二个绕组的全部阻抗,因为它不能被返回的电流所抵消。共模噪声电压是电感绕组上的衰减,应从有害噪声中保持电源输入线的畅通。 1.1、选择电感材料 开关电源正常工作频率20KHz以上,而电源产生的有害噪声比20KHz高,往往在100KHz~50MHz之间。 对于电感来讲,大多数选择适当和高效费比的铁氧体,因为在有害频带内能提供最高的阻抗。当看到公共参数如磁导率和损耗系数就去识别材料是困难的。图2给出铁氧体磁环J-42206-TC绕10匝后的阻抗ZS和频率的关系曲线。 图2铁氧体磁环的阻抗和频率的关系 在1~10MHz之间绕组到达最大阻抗,串联感抗XS和串联电阻RS(材料磁导率和损耗系数的函数)共同产生总阻抗Zt。

电子厂元器件基础认知

电子厂电子元器件基础认知 一、电阻器:(单位换算、功率大小辨别、色标法计算阻值与误差。) 1.碳膜电阻器 2.金属膜电阻器 3.线绕电阻器 4.氧化膜电阻器 5.压敏电阻器 6.热敏电阻器 7.湿敏电阻器 8.水泥电阻器 a.电阻器: 在电路图中用字母R表示,单位为欧姆,单位符号用Ω表示。欧姆是德国物理学家,电阻的国际单位制“欧姆”以他的名字命名。 b.电阻单位换算: 常用的电阻单位有毫欧(mΩ)、欧姆(Ω)、千欧(KΩ)、兆欧(MΩ),换算进率为1000。 1000毫欧(mΩ)=1欧姆(Ω)=0.001千欧(KΩ)=0.000001兆欧(MΩ) c.额定功率: 规定环境温度下,常见允许消耗功率有1/16W 、 1/8W 、 1/4W 、 1/2W 、 1W 、 2W 、 5W 、10W。 d.色环电阻器电阻值色标法识别:

a.国内贴片电阻的命名方法: 1、5%精度的命名:RS-05K102JT 2、1%精度的命名:RS-05K1002FT R -表示电阻 S -表示功率: 05 -表示尺寸(英寸):02表示0402、03表示0603、05表示0805、06表示1206、1210表示1210、 1812表示1812、10表示2010、12表示2512。 K -表示温度系数为100PPM。 102-5%精度阻值表示法:前两位为有效数字,第三位表示有多少零,单位Ω,102=1000Ω=1KΩ。1002-1%精度阻值表示法:前三位为有效数字,第四位表示有多少零,单位Ω,1002=10000Ω=10KΩ。J -表示精度为5% F -表示精度为1% T -表示编带包装 b.误差精度: 贴片电阻阻值误差精度有±1%、±2%、±5%、±10%精度,常规用的最多的是±1%和±5%,±5%精度的常规是用三位数来表示,例512,前面两位是有效数字,第三位数2表示有多少个零,单位Ω,这样就是5100Ω=5.1KΩ。为了区分±5%,±1%的电阻,于是±1%的电阻常规多数用4位数来表示,这样前三位是表示有效数字,第四位表示有多少个零,例如:3901,即3900Ω=3.9KΩ。 c.三种阻值标称法: 1.数字索位标称法(电阻本体上用几位数字来标明其阻值,一般矩形片状电阻采用这种标称法。) 三位表示法:第一位和第二位为有效数字,第三位表示在有效数字后面所加“0”的个数.这一位不会出现字母。 例如:“472’表示“4700Ω=4.7 KΩ”;“151”表示“150Ω”。 四位表示法:前三位表示有效数字,第4位表示倍率。例如: 2702=27000Ω=27kΩ

实验示波器的调节与使用

实验二、示波器的调整与使用 【实验目的】 (1)了解示波器的结构和工作原理。 (2)熟悉示波器各旋钮功能。 (3)掌握示波器的基本调整方法。 (4)掌握用示波器观测信号的波形,学会用示波器测量电压、周期和频率。 【示波器的原理】(注意:有下划线的) 示波器显示随时间变化的电压,将它加在电极板上,极板间形成相应的变化电场,使进入这个变化电场的电子运动情况随时间作相应地变化,从而通过电子在荧光屏上运动的轨迹反映出随时间变化的电压。 1. 示波器的结构 示波器由示波管、衰减放大输入系统、扫描信号发生器、触发同步系统和电源供给系统五个基本部分组成。 (1)示波管。示波管主要由电子枪、偏转系统和荧光屏三个部分组成。示波管是一个全密封度真空的玻璃壳管,其结构如图3.9.1所示。(要作图) ① 电子枪。电子枪由灯丝F 、阴极K 、栅极G 、 第一阳极A 1和第二阳极A 2组成。 阴极K 是一个表面涂有氧化物的金属圆筒,被点 燃灯丝F 加热后向外发射电子,产生电子流。 栅极G 是一个顶端有一小孔的金属圆筒,套在阴 极外面,它的电位比阴极低,对阴极射来的电子起控 制作用,只有速度较大的电子才能穿过栅极小孔。因 此,通过调节栅极电位,可以改变通过栅极的电子数目,即控制电子到达荧光屏上的数目,而打在荧光屏的电子数目越多,则荧光屏上的光迹越亮。示波器面板上的“辉度”调节旋钮就是起这—作用的。 阳极A 1与A 2由开有小孔的圆筒组成。阳极电位比阴极电位高得多,电子流通过该区域可获得很高的速度,同时阳极区的不均匀电场还能将由栅极过来散开的电子流聚焦成一窄细的电子束,因此改变阳极电压可以调节电子束的聚焦程度。示波器面板上的“聚焦”旋钮起这一作用。 ② 偏转系统。偏转系统由两对相互垂直的可加电压的金属平板组成,即X 偏转板和Y 偏转板。 在两对偏转板上加上电压,当电子束通过偏转板时,在电场力的作用下发生偏转,即改变光点在荧光屏上的位置。 设计时保证了荧光屏上X 方向和Y 方向光点的位移正比于两对偏转板上所加的电压。 垂直偏转板电路有两条支路:一条用于输入机外电压信号,加在Y 偏转板上;另一条用于校准仪器或观察机内方波信号,机内方波信号直接输入“Y 放大器”,经放大后加到Y 偏转板上。 水平偏转板的电路同样有两条支路:一条用于输入外界电压信号或同步信号,加在X 偏转板上;另一条用来将机内扫描信号经放大后加在X 偏转板上。 ③ 荧光屏。荧光屏位于阴极射线管前端的玻璃屏内表面,涂有发光物质。当高速运动的电子打在上面,其动能被发光物质吸收而发光,在电子轰击停止后, 发光仍维持一段时间,称为余 示波管的结构 图3.9.1 F —灯丝;K —阴极;G —控制栅极;A 1—第一阳极; A 2—第二阳极;Y —竖直偏转板;X —水平偏转板

共模电感设计

共模电感设计 选择共模滤波电感规格不是一件困难和令人困惑的事情。用一个标准滤波器平面图可以用来实现一个相对简单直接的设计过程。预设的平面模型滤波器元件参数很容易被修改,从而,达到符合设计要求。 常规共模电感 线性滤波器防止过度的噪声从AC线传导到正在工作的电子设备。通常AC线为防护的重点。 图示-1所示,共模滤波器与AC线之间接阻抗匹配电路,后面再接开关变换器。共模噪声(大地为参考在两根线上同时产生的噪声大小相等方向相同)的方向是从负载流向滤波器,流向两条AC线上的共模噪声已经被充分地衰减了。其结果是从滤波器输出到AC线的共模噪声经过阻抗匹配电路衰减得非常微弱了。 共模滤波器的设计本质上是设计两个相同的差分滤波器,每个分别作用于同一个磁心,两边耦合的是两个极性一致的电感。对于一个差分输入电流(从(A)到(B)通过L1和从(B)到(A)通过L2),两电感间的磁通(大小相等方向相反)耦合为零。 任何电感通过差模信号时,两个扼流圈未能耦合。它们作为独立的元件,只有漏感响应差模信号:这个漏感会衰减差模信号。 当电感L1和L2,通过相对于大地方向相同的完全一样的信号(共模型号),每个扼流圈在同一个磁心上出力的是非零磁通。对于共模信号电感作为独立的元件运行相互间产生互感:互感的作用使共模信号变弱。

第一阶滤波器 最简单、最昂贵的滤波器设计是一阶滤波器。这种类型的滤波器采用单一的电抗结构存储某一频率段的能量,使这些能量未能传递出去。就一个低通共模滤波器来说,一个共模电感的电抗元件会被采用。 所要求扼流圈的电感量可以简单地采取负载电阻除以衰减频率(包含以上频率)的角频率。譬如,要衰减4000Hz以上的频率到50Ω的负载里面需要一个1.99mH(50/(2π×4000) )的电感。由此产生共模滤波器结构如图示-3: 在4000Hz的衰减将是3dB,并以6dB每倍频程增加。因为主要的电感依赖的一阶滤波器,实际变化中,扼流圈电感是必须被考虑的。例如,正常电感测量误差为±20%,那个在4000Hz频率名义上的3dB,实际衰减得频率范围从3332Hz到4999Hz。这是共模电感的典型电感值被指定的一个最低要求,从而保证这个交叉频率不被改变太高。然而,一些情况应该观察到选择扼流圈作一阶低通滤波器可能限制阻塞一些有用的衰减,因为用了一个较高于典型值或极小值的电感。 二阶滤波器 一个二阶滤波器使用了两个电抗部分。比第一阶滤波器有两个优势:⑴理论上,在截点频率以后,一个二阶滤波器有12dB每倍频程(4倍于一阶滤波器)的衰减量。⑵在电感谐振频率以上提供了更大的衰减。(参见图示-4)

示波器的调整和使用

示波器的调整和使用 【实验目的】 (1)了解示波器的结构和工作原理。 (2)熟悉示波器各旋钮功能。 (3)掌握示波器的基本调整方法。 (4)掌握用示波器观测信号的波形,学会用示波器测量电压、频率和相位。 【示波器的原理】 示波器显示随时间变化的电压,将它加在电极板上,极板间形成相应的变化电场,使进入这个变化电场的电子运动情况随时间作相应地变化,从而通过电子在荧光屏上运动的轨迹反映出随时间变化的电压。 1. 示波器的结构 示波器由示波管、衰减放大输入系统、扫描信号发生器、触发同步系统和电源供给系统五个基本部分组成。双踪示波器的结构方框图如图3.9.1所示。 示波器方框图 图3.9.1 (1)示波管。示波管主要由电子枪、偏转系统和荧光屏三个部分组成。示波管是一个全密封度真空的玻璃壳管,其结构如图3.9.2所示。 ① 电子枪。电子枪由灯丝F 、阴极K 、栅极G 、 第一阳极A 1和第二阳极A 2组成。 阴极K 是一个表面涂有氧化物的金属圆筒,被点 燃灯丝F 加热后向外发射电子。 栅极G 是一个顶端有一小孔的金属圆筒,套在阴 极外面,它的电位比阴极低,对阴极射来的电子起控 制作用,只有速度较大的电子才能穿过栅极小孔。因 此,通过调节栅极电位,可以改变通过栅极的电子数 目,即控制电子到达荧光屏上的数目,而打在荧光屏 的电子数目越多,则荧光屏上的光迹越亮。示波器面 板上的“辉度”调节旋钮就是起这—作用的。 阳极A 1与A 2由开有小孔的圆筒组成。阳极电位比阴极电位高得多,电子流通过该区域可获得很高的速度,同时阳极区的不均匀电场还能将由栅极过来散开的电子流聚焦成一窄细的电子束,因此改变阳极电压可以调节电子束的聚焦程度。示波器面板上的“聚焦”旋钮起这一作用。 ② 偏转系统。偏转系统由两对相互垂直的可加电压的金属平板组成,即X 偏转板和Y 偏 示波管的结构 图3.9.2 F —灯丝;K —阴极;G —控制栅极;A 1—第一阳极; A 2—第二阳极;Y —竖直偏转板;X —水平偏转板

共模电感的设计

EMI滤波共模电感设计 正常工作的开关类电源(SMPS)会产生有害的高频噪声,它能影响连接到相同电源线上的电子设备像计算机、仪器和马达控制。用一个EMI滤波器插入电源线和SMPS之间能消除这类干扰(图1)。一个差模噪声滤波器和一个共模噪声滤波器能够串联或在许多情况下 单独使用共模噪声滤波器。 图1 EMI滤波器的插入 在一个共模滤波器内,电感的每一个绕阻和电源输入线中的任一根导线相串联。(对于电源的输入 线来讲)电感绕组的接法和相位是这样的,第一个绕组产生的磁通会与第二个绕组产生的磁通相削. 于是,除了泄漏阻抗的小损耗和绕组的直流电阻以外,电感至电源输入线的插入阻抗为零。由于磁 通的阻碍,SMPS的输入电流需要功率,因此将通过滤波器,滤波器应没有任何明显的损耗。 共模噪声的定义是出现在电源输入线的一根或二根导线上的有害电流通过电感的地返回噪声源的噪声。 此电流要视共模电感的任何一个或二个绕组的全部阻抗,因为它不能被返回的电流所抵消。共模噪声电压是电感绕组上的衰减,应从有害噪声中保持电源输入线的畅通。 1.1、选择电感材料 开关电源正常工作频率20KHz以上,而电源产生的有害噪声比20KHz高,往往在100KHz~50MHz之间。 对于电感来讲,大多数选择适当和高效率比的铁氧体,因为在有害频带内能提供最高的阻抗。当看到公共参数如磁导率和损耗系数就去识别材料是困难的。图2给出铁氧体磁环J-42206-TC绕10匝后的阻抗ZS和频率的关系曲线。 图2铁氧体磁环的阻抗和频率的关系

在1~10MHz之间绕组到达最大阻抗,串联感抗XS和串联电阻RS(材料磁导率和损耗系数的函数)共同产生总阻抗Zt。 图3所示为图2中铁氧体材料的磁导率和损耗系数与频率的函数关系。由于感抗引起的下降,导致磁导率在750KHz以上的下降;由于电阻取决高频的源阻抗所以损耗系数随频率而增加。 铁氧体磁环的磁导率、损耗系数和频率的关系 图3 图4给出三种不同材料的总阻抗和频率的关系 J材料在超过1~20MHz范围内具有高的总阻抗,它最广泛地应用于共模滤波器的扼流圈。在1MHz,W材料阻抗比J材料高20-50%,当低频噪声是主要问题时经常应用J材料;K材料可用于2MHz以上,因为在此频率范围内它产生的阻抗比J材料高直至100%。在2MHz 以上或以下,对于滤波器所要求的规范,J或W是优先的。图4三种不同材料的阻抗和频率的关系。 1.2、磁芯的形状 对于共模噪声滤波器环形磁芯是最普及的,他们不贵、泄漏磁通也低。环形磁芯必须 用手绕制(或在独特的环形绕线机上绕制)。正常情况要用一个非金属的分隔板放置在两 个绕组之间,以及为了和PC板连接,这个绕制器件还需环氧化在印制板的头部。具有附件

共模电感设计与案例

共模电感设计与案例 很多设计师对于共模电感的设计大多有一种感觉,那就是总觉得共模电感的设计看起来十分简单,但实际操作起来上,又有点复杂。的确共模电感的设计要考虑温度及应力等等因素。 下面我就对于共模电感的设计过程与案例结合起来简单讲讲。 一、设计过程: ①选择磁芯材料(镍锌系和锰锌系) 铁氧体是一个较好的具有成本优势的材料。 ②设定电感的阻抗 对于一个给定的要求衰减的频率,定义此频率下共模电感的感抗为 50~100 Q,即至少50%的衰减,因此有:Z=?L ③选择磁芯的形状的和尺寸

成本低漏感小的环形磁芯非常适合于共模电感,但是这种形状不容 易实现机械化绕制,一般用手工绕制。磁环尺寸的大小选取有一定 的随意性,通常基于PCB的尺寸选取合适的磁芯。为了减小共模电 感的寄生电容,共模电感通常只用单层的线圈。若单层绕制时磁芯 无法容纳所有的线圈,则选用大一号尺寸的磁环。当然也可以基于 磁芯的数据手册由LI的乘积选取。 ④计算线圈的匝数 由磁芯的电感系数AL计算共模电感的圈数:(106 )0.5 L N = L X A ⑤计算导线的线径 导线允许通过的电流密度选取为:400~800A/cm2,由此可以得到要 求的线径。 二、案例: 在工作频率为10KHZ,输入线性电流为3A(RMS)时,阻抗为100欧的共模电感。1)选取线径 铜线截面积=3A/400A/cm2=0.0075cm2 铜线线径=0.98mm 取铜线线为1.0mm 2)计算最小电感值 512翼血1 x J0000^1.S9rah 3)假如无指定空间,任取一磁芯 内径(ID)=13.72+/-0.38=13.34mm MIN 4)计算内圆周长和最大可绕圈数 内圆周长=3.14 ><13.34-1.08)=38.5mm

著名元器件厂商

著名元器件厂商 Actel 反熔丝PLD/FPGA AIC (沛亨)电源管理,模拟器件 Allegro 模拟元件 Agilent (安捷伦)射频元件,测试仪器 ALi (扬智科技)PC主板及外设芯片等 Altera CPLD/FPGA ALPHA 电源IC,模拟器件,已被SIPEX收购 ALPS 无源元件 AMCC SDH,PCI等专用芯片 AMD x86 CPU 通信IC,flash Analog Devices (AD)模拟器件,DSP Atmel 存储器,单片机,PLD A VX 高品质电容器 Benchmarq Technology 电源管理,被TI收购 BitBlitz 高速背板接口器件 Burr-Brown (BB)A/D,D/A,小信号处理,被TI收购 California Micro Device 模拟器件 Catylst 串行EEPROM C-Cube Microsystems VCD/DVD 视频芯片 Centillium ADSL方案 Cherry Semiconductor Cirrus Logic (凌云逻辑)与Crystal合并,混合信号器件,AD/DA,视频音频器件 CKcorp COSEL 电源模块 Conexant (科胜讯)通讯半导体 Crystal 混合信号器件,AD/DA,视频音频器件 Cypress Semiconductor SRAM,FIFO,DPRAM,FCT,PLD Cyrix x86 CPU,被威盛收购 Dallas Semiconductor 时钟IC,T1/E1接口,RAM,通讯IC,电源管理,被MAIXIM收购Elantec 运放,电源等模拟器件 EPSON (爱普生)晶振,时钟芯片,液晶显示器,ASIC Exar 通讯芯片 Fairchild (仙童)分立元件,MOSFET等 Fujitsu (富士通)存储器,单片机等 Galileo (伽俐略)以太网交换, 系统控制器,被Marvell收购 G.E.C. Plessy 电源 Halo 变压器 Harris Semiconductor 通用IC,通讯IC,军品很多,分立元件,已改名Intersil Hitachi (日立)分立元件,存储器,单片机,通用IC Hyundai (现代)存储器,单片机等 IBM Microelectronics CPU,专用芯片

共模、差模电源线滤波器设计

切断电磁干扰传输途径——共模、差模电源线滤波器设计 电源线干扰可以使用电源线滤波器滤除,开关电源EMI滤波器基本电路如图6所示。一个合理有效的开关电源EMI滤波器应该对电源线上差模干扰和共模干扰都有较强的抑制作用。在图6中CX1和CX2叫做差模电容,L1叫做共模电感,CY1和CY2叫做共模电容。差模滤波元件和共模滤波元件分别对差模和共模干扰有较强的衰减作用。 共模电感L1是在同一个磁环上由绕向相反、匝数相同的两个绕组构成。通常使用环形磁芯,漏磁小,效率高,但是绕线困难。当市网工频电流在两个绕组中流过时为一进一出,产生的磁场恰好抵消,使得共模电感对市网工频电流不起任何阻碍作用,可以无损耗地传输。如果市网中含有共模噪声电流通过共模电感,这种共模噪声电流是同方向的,流经两个绕组时,产生的磁场同相叠加,使得共模电感对干扰电流呈现出较大的感抗,由此起到了抑制共模干扰的作用。L1的电感量与EMI滤波器的额定电流I有关,具体关系参见表1所列。 [4] 实际使用中共模电感两个电感绕组由于绕制工艺的问题会存在电感差值,不过这种差值正好被利用作差模电感。所以,一般电路中不必再设置独立的差模电感了。共模电感的差值电感与电容CX1及CX2构成了一个∏型滤波器。这种滤波器对差模干扰有较好的衰减。 除了共模电感以外,图6中的电容CY1及CY2也是用来滤除共模干扰的。共模滤波的衰减在低频时主要由电感器起作用,而在高频时大部分由电容CY1及CY2起作用。电容CY的选择要根据实际情况来定,由于电容CY接于电源线和地线之间,承受的电压比较高,所以,需要有高耐压、低漏电流特性。计算电容CY漏电流的公式是 ID=2πfCYVcY 式中:ID为漏电流; f为电网频率。 一般装设在可移动设备上的滤波器,其交流漏电流应<1mA;若为装设在固定位置且接地的设备上的电源滤波器,其交流漏电流应<3.5mA,医疗器材规定的漏电流更小。由于考虑到漏电流的安全规范,电容CY的大小受到了限制,一般为2.2~33nF。电容类型一般为瓷片电容,使用中应注意在高频工作时电容器CY与引线电感的谐振效应。 差模干扰抑制器通常使用低通滤波元件构成,最简单的就是一只滤波电容接在两根电源线之间而形成的输入滤波电路(如图6中电容CX1),只要电容选择适当,就能对高频干扰起到抑制作用。该电容对高频干扰阻抗甚底,故两根电源线之间的高频干扰可以通过它,它对工频信号的阻抗很高,故对工频信号的传输毫无影响。该电容的选择主要考虑耐压值,只要满足功率线路的耐压等

2014全球十大电子元器件分销商排行榜

2014全球十大电子元器件分销商排榜 阅读数 72015-03-13 14:41 电子分销商是电子产业不可或缺的一环,推动着电子产业高速发展。其灵活、无孔不入的特点使得电子分销商能够渗透整个电子产业及供应链的方方面面,从全球电子分销商排名中我们可以看到,电子分销业正处于稳定发展期。下面小编带大家了解2014全球十大电子分销商。 NO.1、安富利集团(Avnet) 安富利集团(Avnet),财富500强公司,是全球最大的电子元件、计算机产品和嵌入技术分销商之一,服务于全球70多个国家的客户。安富利连接世界领先的技术提供商和超过10万的涵盖广泛领域的客户,并通过提供高性价比的增值服务和解决方案助力其合作伙伴取得成功。截止于今年7月3日的2010财年,安富利集团的财政收入达到191.6亿美元。 在全球增长最快的电子市场--亚太地区,安富利电子元件部的地位举足轻重。公司亚太区总部位于新加坡,在亚洲10个国家设有40多家销售机构,分销半导体、互连、无源和机电元件,为原始设备制造商(OEMs)、电子制造服务(EMS)供应商及中小企业等不同客户服务,提供相关的设计链和供应链支持。 基于对IT服务发展趋势的正确理解、对客户需求的准确把握和渠道共赢的发展思维,安富利(中国)科技有限公司入华刚刚满两年,就已经交上了一份华丽的成绩单,包括IB M、SUN、甲骨文、华为等在内的数百家合作伙伴已经与安富利科技中国区建立了密切的业务关系。安富利科技中国区不仅将国际上一流的产品提供商引进了中国市场,还带来了各种众多先进的IT解决方案。目前安富利(中国)科技有限公司在北京、上海、广州和成都建设了四个展示和移植中心,今后安富利科技中国区将进一步展开从东到西、从中心城市到二三级城市的覆盖,为解决日益复杂的中国市场IT需求而不断努力。 NO.2、艾睿电子(ArrowElectronics)

示波器的调节和使用

示波器的调节和使用 我们以型号为YB4300系列的双踪示波器为例说明其一般使用方法。YB4300系列双踪示 波器的型号根据频率不同主要有YB4320G 、YB4340G 、YB4360G 。 一、示波器的调节和使用 示波器有多种型号,面板形状也各不相同,但其结构与功能大同小异。熟练掌握示波 器的使用,首先应该了解示波器面板上各个旋钮的功能。本书以YB4320G 型示波器为例进行 说明,如图1所示。该示波器的前面板如图2所示,各部分功能介绍如下: 1、主机电源 (9)电源开关(POWER):将电源开关按键弹出即为“关”位置,将电源线接入,按电源 开关键,接通电源。 (8)电源指示灯:电源接通时,指示灯亮。 图1 YB4320G 型示波器外形结构 图2 YB4320G 型示波器操作面板示意图

(2)辉度控制(INTENSITY):顺时针方向旋转旋钮,扫描线辉度增加。 (4)聚焦控制(FOCUS):用辉度控制钮将亮度调至合适的标准,然后调节聚焦控制钮直至光迹达到最清晰的程度。虽然调节亮度时,聚焦电路可自动调节,但聚焦有时也会轻微变化,如果出现这种情况,需重新调节聚焦旋钮。 (5)基线旋转(TRACE ROTATION):用于调节扫描线使其和水平刻度线平行,以克服外磁场变化带来的基线倾斜,需要使用螺丝刀调节。 (45)显示屏:仪器的测量显示最终端。 (3)延迟扫描辉度控制钮(B INTEN):顺时针方向旋转此钮,增加延迟扫描B显示光迹亮度。 (1)校准信号输出端子(CAL) 2、垂直方向部分(VERTICAL) (13)通道1输入端[CH1 INPUT(X)]:被测信号由此输入y1通道。当示波器在X-Y 方式时,输入到此端的信号作为X轴信号。 (17)通道2输入端[CH2 INPUT(X)]:被测信号由此输入y2通道。当示波器在X-Y 方式时,输入到此端的信号作为Y轴信号。 (11)、(12)、(16)、(18)交流-直流-接地(AC、DC、GND): 输入信号与放大器连接方式选择开关: 交流(AC):放大器输入端与信号连接由电容器来耦合; 接地(GND):输入信号与放大器断开,放大器的输入端接地。 直流(DC):放大器输入与信号输入端直接耦合。 (10)、(15)衰减器开关(VOLTS/DIV) 用于选择垂直偏转系数,共12档。如果使用的是10:1的探极,计算时将幅度×10。 (14)、(19)垂直微调旋钮(VARIBLE) 垂直微调用于连续改变电压偏转系数,此旋钮在正常情况下应位于顺时针方向旋到底的位置。将旋钮逆时针旋转到底,垂直方向的灵敏度下降到2.5倍以上。 (44)断续工作方式开关 CH1 CH2二个通告按断续方式工作,断续频率为250kHz,适用于低扫速。 (43)、(40)垂直移位(POSITION) 调节光迹在屏幕中的垂直位置。 (42)垂直方式工作开关(VERTICAL MODE) 用于选择垂直偏转系统的工作方式 通道1选择(CH1):屏幕上仅显示CH1的信号; 通道2选择(CH2):屏幕上仅显示CH2的信号; 双踪选择(DUAL):屏幕上显示双踪,自动以交替或断续方式,同时显示CH1和CH2上的信号; 叠加(ADD):显示CH1和CH2输入信号的代数和。 (39)CH2极性开关(INVERT):按此开关时CH2显示反相信号。 (48)CH1信号输出端(CH1 OUTPUT):输出约100mV/div的通道1信号。当输出端接50Ω匹配终端时,信号衰减一半,约50mV/div,该功能可用于频率计显示等。 3、水平方向部分(HORIZONTAL) (20)主扫描时间系数选择开关(TIME/DIY) 用于选择扫描时间因数,从0.1μs~0.5s/div范围共20档。 (24)扫描微调控制键(VARIBLE) 此旋钮以顺时方针方向旋转到底时,处于校准位置,扫描由Time/div开关指示。

共模滤波器设计指南

共模滤波器设计指南 简介 选择共模滤波器的元件值不需要很复杂的过程。可使用标准过滤器排列来取得相对简单和直观的设计过程,虽然这些排列可能经过修改以使用预先定义好的元件值。 概述 线路滤波器防止在电子设备和AC线路之间产生过多噪音;一般而言,重点还是对AC 线路的保护。图1显示了在AC线路(通过全阻抗匹配电路)和(噪音)电源转换器之间使用共模滤波器的情况。共模噪音(噪音在接地的两条线路上同时产生)的运动方向是从负载端进入滤波器,这样两个线路共有的噪音得到很大衰减。最后,滤波器加到AC线路(通过全阻抗匹配电路)上的输出小到可以忽略不计。 图1 通用线路滤波 设计共模滤波器必须设计两个相同的差动滤波器。其中每个滤波器分别对应两极的线路,而每一边的感应器分别耦合一个磁芯。 图2 共模感应器 对于差动输入电流(从A到B的输入是沿L1,从B到A是沿L2),两个感应器之间的耦合净磁通量为0。 任何差动信号引起的自感应是两个滤波器耦合不好引起的。滤波器作为独立元件工作,其漏感对差动信号做出响应:漏感衰减了差动信号。 当感应器L1和L2收到接地的同一电极的相同信号,它们都会在共用的磁芯中产生一个非零的净通量。两个感应器于是作为独立元件工作,其共同的自感应对共同的差动信号做出响应:共同的自感应衰减了共同的差动信号。 一阶滤波器 设计最简单、最便宜的滤波器是一阶滤波器。这种滤波器使用单个反应元件来储存波谱能量的特定波段,而不将能量传递到负载。在低通共模滤波器中,使用的反应元件是共模线圈。 滤波器的自感应值是用负载(单位:欧姆)除以信号将衰减时及超过这一水平的角频率。例如,在50欧姆的负载中,当频率达到4000HZ或以上水平时候信号开始衰减,则需要使用1.99mH(50/(2π×4000))的感应器。其相应的共模滤波器配置如下图: 图3 一阶(单极)共模滤波器 频率达到4000HZ时,衰减量为3dB,每增加8HZ,衰减6dB。由于最主要的感应器对一阶滤波器的依赖性,因此必须考虑线圈自感应的变动。例如,额定自感应值变动±20%意味着名义33dB,4000HZ的频率其实际范围在3332-4999HZ。典型做法是规定共模滤波器的自感应值为最小值,这样就保证了交叉频率不会升得太高。但是,在选择一阶低通滤波器的线圈时要加以注意,因为比典型和最小值高得多的自感应值可能限制线圈可使用的衰减波段。

相关文档
最新文档