阀门流量计算公式

阀门流量计算公式
阀门流量计算公式

阀门流量计算

流通能力的计算,主要指Kv值的计算

1、一般液体的Kv值计算

a.非阻塞流

计算公式:

b.阻塞流

计算公式:

2、低雷诺数修正(高粘度液体Kv值的计算)

液体粘度过高时,由于雷诺数下降,改变了流体的流动状态,在Re<2300时流体处于低速层流,这样按原来公式计算出的Kv值,误差较大,必须进行修正。此时计算公式为:

式中:――粘度修正系数,由Re查图求得。

对于单座阀、套筒阀、、角阀等只有一个流路的阀

对于双座阀、蝶阀等具有二个平行流路的阀

式中:K′v――I不考虑粘度修正时计算的流通能力;

――流体运动粘度mm2/S

F R-Rev关系图

3.气体的Kv值的计算:

a.一般气体

当P2>0.5P1时

当当P2≤0.5P1时

当P2>0.5P1时

当P2≤0.5P1时

式中:Z――气体压缩系数。

4.蒸汽的Kv值的计算

a.饱和蒸汽

当P2>0.5P1时

当P2≤0.5P1时

部分蒸汽的K值如下:

水蒸汽K=19.4 甲烷、乙烯蒸汽K=37

氨蒸汽K=25 丙烷、丙烯蒸汽K=41.5

氟里昂11K=68.5 丁烷、异丁烷蒸汽K=43.5 b.过热水蒸汽

当P2>0.5P1时

当P2≤0.5P1时

阀门流量流阻系数

阀门流量流阻系数 Revised by BLUE on the afternoon of December 12,2020.

阀门的流量系数与流阻系数 一、阀门的流量系数 流量系数即:CV值(中国工业称为:KV值)是阀门、调节阀等工业阀门的重要工艺参数和技术指标。正确计算和选择CV值是保障管道流量控制系统正常工作的重要步骤。 1、流量系数的定义 是指单位时间内、在测试条件中管道保持恒定的压力,管道介质流经阀门的体积流量,或是质量流量。即阀门的最大流通能力。流量系数值越大说明流体流过阀门时的压力损失越小。阀门的CV值须通过测试和计算确定。 2、阀门流量系数的计算 (1)一般式 C=Q√ρ/Δp 式中C—流量系数; Q—体积流量; ρ—流体密度; Δp—阀门的压力损失 (2)Kv值的计算表 Kv=Q√ρ/Δp 式中Kv—流量系数(m2); Q—体积流量(m3/h); ρ—流体密度(kg/m3);

Δp—阀门的压力损失(bar)。 (3)Cv值的计算表 Cv=Q√G/Δp 式中Cv—流量系数(Usgal/min÷(√1lbf/in2));Q—体积流量(USgal/min); ρ—水的相对密度=1; Δp—阀门的压力损失(lbf/in2)。 (4)Av值的计算表 Kv=Q√ρ/Δp 式中Kv—流量系数(m2); Q—体积流量(m3/s); ρ—流体密度(kg/m3); Δp—阀门的压力损失(Pa)。 (5)流量系数Av、Kv、Cv间的关系 Cv=1.17Kv Cv=10e6/24Av Kv=10e6/28Av 3、单位换算 Kv与Cv值的换算

国外,流量系数常以Cv表示,其定义的条件与国内不同。Cv的定义为:当调节阀全开,阀两端压差ΔP为1磅/英寸²,介质为60℉清水时每分钟流经调节阀的流量数,以加仑/分计。由于Kv与Cv定义不同,试验所测得的数值不同,它们之间的换算关系为:Cv=1.167Kv 二、阀门的流阻系数 流体通过阀门时,其流体阻力损失以阀门前后的流体压力降Δp表示。 对于紊流流态的液体: Δp=ζu2ρ/2 式中Δp—被测阀门的压力损失(Mpa); ζ—阀门的流阻系数; ρ—流体密度(kg/mm3); u—流体在管道内的平均流速(mm/s)。

堰流和闸孔出流能力计算

第七章 堰流和闸孔出流能力计算 一、选择题 1、作用水头相同时,孔口的过流量要比相同直径的管咀过流量 (1)大 (2)小 (3)相同 (4)无法确定 。 2、堰流的流量与堰顶水头的( )成正比。 (1)1/2次 (2)3/2次方 (3)2次方 (4)1次方 3、闸孔出流的流量与闸前水头( )成正比 (1)1次方 (2)2次方 (3)0.5次方 4、对WES 曲线型实用堰来说,当实际水头小于设计水头时,实用堰的实际过水能力( )设计过水能力。 (1)大于 (2)小于 (3)等于 (4)不一定 5、发生水跃是水流由 (1)缓流过渡到急流 (2)临界流过渡到急流 (3)急流过渡到急流 (4)急流过渡到缓流 6、当堰厚为δ,堰上水头为H ,那么0.67

2、何谓堰流,堰流的类型有哪些?如何判别? 3、下图中的溢流坝只是作用水头不同,其它条件完全相同,试问:流量系数哪个大?哪个小?为什么? 四、计算题 1、如图所示曲线型实用堰上的单孔平板闸孔泄流,闸门底缘斜面朝向下游,当闸门开 度e=1m 时,其泄流量Q = 24.33m /s ,闸孔宽b= 4m ,试求:堰上水头H 。 2、一曲线型实用堰,堰顶设有弧型闸门,如下图所示。已知堰顶宽度b=10m ,堰顶水头H=6m ,闸门开度e=2m ,不计行近流速,闸下游为自由出流。试求闸孔泄流量Q 。 (流量系数H e 19.0685.0-=μ) 3、有一三角形薄壁堰,堰口夹角090=θ,夹角顶高程来0.6m,溢流时上游水位为0.82m, 下游水位为0.4m ,求流量。 4、为了灌溉需要,在某河修建拦河溢流坝一座,如图所示。溢流坝采用堰顶上游为三圆弧段的WES 型 实用堰剖面。(单孔边墩为圆弧形)坝的设计洪水流量为540s m /3 ,相应上、下游设计 洪水位分别为50.7m 和48.1m 。坝址处河床高为38.5m ,坝前河道过水断面面积为5242m .根据灌溉水位要求,已确定坝顶高程为48.0m ,求:坝的溢流宽度B 。

阀门的流量系数,流体阻力系数,压力损失

阀门的流量系数,流体阻力系数,压力损失 阀门的流量系数、流阻系数、压力损失 一、阀门的流量系数 阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大说明流体流过阀门时的压力损失越小。国外工业发达国家的阀门生产厂家大多把不同压力等级、不同类型和不同公称通径阀门的流量系数值列入产品样本,供设计部门和使用单位选用。流量系数值随阀门的尺寸、形式、结构而变化,不同类型和不同规格的阀门都要分别进行试验,才能确定该种阀门的流量系数值。 1.流量系数的定义 流量系数表示流体流经阀门产生单位压力损失时流体的流量。由于单位的不同,流量系数有几种不同的代号和量值。 2.阀门流量系数的计算 3.流量系数的典型数据及影响流量系数的因素 公称通径DN50mm的各种型式阀门的典型流量系数见表。 流量系数值随阀门的尺寸、形式、结构而变。几种典型阀门的流量系数随直径的变化如图1-9所示。 对于同样结构的阀门,流体流过阀门的方向不同。流量系数值也有变化。这种变化一般是由于压力恢复不同而造成的。如果流体流过阀门使阀瓣趋于打开,那么阀瓣和阀体形成的环形扩散通道能使压力有所恢复。当流体流过阀门使阀瓣趋于关闭时,阀座对压力恢复的影响很大。当阀瓣开度为&#+ 或更小时,阀瓣下游的扩散角使得在两个流动方向上都会有一些压力恢复。 对于图1-11所示的高压角阀,当流体的流动使阀门趋于关闭时流量系数较高,因为此时阀座的扩散锥体使流体的压力恢复。阀门内部的几何形状不同,流量系数的曲线也不同。 阀门内部压力恢复的机理,与文丘里管的收缩和扩散造成的压力损失机理一样。当阀门内部的压降相同时,若阀门内压可以恢复,流量系数值就会较大,流量也就会大些。压力恢复与阀门内腔的几何形状有关,但更主要的是取决于阀瓣、阀座的结构。 二、阀门的流阻系数 流体通过阀门时,其流体阻力损失以阀门前后的流体压力降△p表示。 1. 阀门元件的流体阻力 阀门的流阻系数! 取决于阀门产品的尺寸、结构以及内腔形状等。可以认为,阀门体腔内的每个元件都可以看作为一个产生阻力的元件系统(流体转弯、扩大、缩小、再转弯等)。所以阀门内的压力损失约等于阀门各个元件压力损失的总和。 应该指出,系统中一个元件阻力的变化会引起整个系统中阻力的变化或重新分配,也就是说介质流对各管段是相互影响的。 为了评定各元件对阀门阻力的影响,现引用一些常见的阀门元件的阻力数据,这些数据反映了阀门元件的形状和尺寸与流体阻力间的关系。

阀门流量计算

阀门流量计算方法 发表于: 2010-1-29 9:39:55 如何使用流量系数 How to use Cv 阀门流量系数(Cv)是表示阀门通过流体能力的数值。Cv越大,在给定压降下阀门能够通过的流体就越多。Cv值1表示当通过压降为1 PSI时,阀门每分钟流过1加仑15o C 的水。Cv值350表示当通过压降为1 PSI时,阀门每分钟流过350加仑15o C的水。 Valve coefficient (Cv) is a number which represents a valve's ability to pass flow. The bigger the Cv, the more flow a valve can pass with a given pressure drop. A Cv of 1 means a valve will pass 1 gallon per minute (gpm) of 60o F water with a pressure drop (dp) of 1 PSI across the valve. A Cv of 350 means a valve will pass 350 gpm of 60o F water with a dp of 1 PSI. 公式1 FORMULA 12.DN350 x DN300 x DN350,压力等级Class 900缩喉 管压力密封闸阀,其它条件与例1相同,求压降。 What is the pressure drop through a 14"x12"x14" Class 900 Venturi pressure seal gate valve with the same conditions as example 1. 解:采用公式1 Solution: Use formula 1. Cv = 6285 (来自本页) Cv = 6285 (from page 26) 3.温度900o F, 压力1200 PSI,流速500,000磅/小时的 蒸汽应用中压降小于5 PSI的压力等级Class 2500 闸阀的最小通径是多少? What is the smallest Class 2500 gate valve that will have less than a 5 PSI pressure drop in 900o F, 1200 PSI steam service at a flow rate of 500,000 lbs/hr? 解:采用公式1 Solution: Use formula 1. F = 500,000 = 0.785 (来自900o F, 1200 PSIG蒸汽表 )

阀门流量系数Kv、Cv

阀门流量系数Kv 、Cv调节阀同孔板一样,是一个局部阻力元件。前者,由于节流面积可以由阀芯的移动来改变,因此是一个可变的节流元件;后者只不过孔径不能改变而已。可是,我们把调节阀模拟成孔板节流形式,见图2-1。对不可压流体,代入伯努利方程为: (1) 解出 命图2-1 调节阀节流模拟 再根据连续方程Q= AV,与上面公式连解可得: (2) 这就是调节阀的流量方程,推导中代号及单位为: V1 、V2 ——节流前后速度; V ——平均流速; P1 、P2 ——节流前后压力,100KPa; A ——节流面积,cm; Q ——流量,cm/S; ξ——阻力系数; r ——重度,Kgf/cm; g ——加速度,g = 981cm/s; 如果将上述Q、P1、P2 、r采用工程单位,即:Q ——m/ h;P1 、P2 —— 100KPa;r——gf/cm。于是公式(2)变为: (3) 再令流量Q的系数为Kv,即:Kv = 或(4)这就是流量系数Kv的来历。 从流量系数Kv的来历及含义中,我们可以推论出: (1)Kv值有两个表达式:Kv = 和 (2)用Kv公式可求阀的阻力系数ξ = (5.04A/Kv)×(5.04A/Kv);

(3),可见阀阻力越大Kv值越小; (4);所以,口径越大Kv越大。 在前面不可压流体的流量方程(3)中,令流量Q的系数为Kv,故Kv 称流量系数;另一方面,从公式(4)中知道:Kv∝Q ,即Kv 的大小反映调节阀流量Q的大小。流量系数Kv 国内习惯称为流通能力,现新国际已改称为流量系数。 2.1 流量系数定义 对不可压流体,Kv是Q、△P的函数。不同△P、r时Kv值不同。为反映不同调节阀结构,不同口径流量系数的大小,需要跟调节阀统一一个试验条件,在相同试验条件下,Kv的大小就反映了该调节阀的流量系数的大小。于是调节阀流量系数Kv的定义为:当调节阀全开,阀两端压差△P为 100KPa,流体重度r为lgf/cm (即常温水)时,每小时流经调节阀的流量数(因为此时 ),以m/h 或 t/h计。例如:有一台Kv =50的调节阀,则表示当 阀两端压差为100KPa时,每小时的水量是50m/h。 2.2 Kv与Cv值的换算 国外,流量系数常以Cv表示,其定义的条件与国内不同。Cv的定义为:当调节阀全开,阀两端压差△P为1磅/英寸2,介质为60°F清水时每分钟流经调节阀的流量数,以加仑/分计。 由于Kv与Cv定义不同,试验所测得的数值不同。 它们之间的换算关系:Cv = 1.167Kv (5) 2.3 推论 从定义中我们可以明确在应用中需要注意的两个问题: (1)流量系数Kv不完全表示为阀的流量,唯一在当介质为常温水,压差为100KPa 时,Kv才为流量Q;同样Kv 值下,r、△P不同,通过阀的流量不同。 (2)Kv是流量系数,故没单位。但是许多资料、说明书都错误地带上单位,值得改正。 --------------------------------------------------------------------------------- 根据以上定义,该阀体在同种流体条件不同压差下,可以根据Kv来计算流量Q (Q正比于压差△P的平方根) Q=Kv/sqrt(△P) △P单位为bar,Q单位为立方米/小时

流量系数与流阻系数

阀门的流量系数与流阻系数 (一)阀门的流量系数 阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大,说明流体流过阀门时的压力损失越小。流量系数值随阀门的尺寸、型式、结构而变化,不同类型和不同规格的阀门都要分别进行试验,才能确定该种阀门的流量系数值。 1、流量系数的定义 流量系数表示流体流经阀门产生单位压力损失时的流体的流量。由于单位不同,流量系数有几种不同的代号和量值。 2、阀门流量系数的计算 (1)一般式 C=Q √ρ/Δp 式中C—流量系数; Q—体积流量;ρ—流体密度; Δp—阀门的压力损失 (2)Kv值的计算表 Kv= Q √ρ/Δp 式中Kv—流量系数(m2); Q—体积流量(m3/h);ρ—流体密度(kg/ m3); Δp—阀门的压力损失(bar)。 (3)Cv值的计算表 Cv= Q √G/Δp 式中Cv—流量系数( Usgal/min÷(√1lbf/in2));Q—体积流量(USgal/min);ρ—水的相对密度=1; Δp—阀门的压力损失(lbf/ in2)。

(4)Av值的计算表 Kv= Q √ρ/Δp 式中Kv—流量系数(m2); Q—体积流量(m3/s);ρ—流体密度(kg/ m3);Δp—阀门的压力损失(Pa)。 (5)流量系数Av、Kv、Cv间的关系 Cv=1.17Kv Cv=10e6/24Av Kv=10e6/28Av 3、流量系数的典型数据及影响流量系数的因素 流量系数值随阀门的尺寸、型式、结构而变。对于同样结构的阀门,流体流过阀门的方向不同,流量系数值也有变化。阀门内部的几何形状不同,流量系数的曲线也不同。 阀门内部压力恢复的机理,与文丘里管的收缩和扩散造成的压力损失机理一样。当阀门内部的压降相同时,如阀门内压可以恢复,流量系数值就会较大,流量也就会大些。压力恢复与阀门内腔的几何形状有关,但更主要的是取决于阀塞、阀座的结构。 (二)阀门的流阻系数 流体通过阀门时,其流体阻力损失以阀门前后的流体压力降Δp表示。对于紊流流态的液体: Δp=ζu2ρ/2 式中Δp—被测阀门的压力损失(Mpa); ζ—阀门的流阻系数;ρ—流体密度(kg/mm3); u—流体在管道内的平均流速(mm/s)。

闸孔出流计算

第八章 堰流及闸孔出流 第一节 概 述 水利工程中为了宣泄洪水以及引水灌溉、发电、给水等目的,常需要修建堰闸等泄水建筑物,以控制水库或渠道中的水位和流量。堰、闸等泄水建筑物水力设计的主要任务是研究其水流状态和过流能力。 一.堰流及闸孔出流的概念 既能壅高上游水位,又能从自身溢水的建筑物称为堰。 水流由于受到堰坎或两侧边墙的束窄阻碍,上游水位壅高,水流经过溢流堰顶下泄,其溢流水面上缘不受任何约束,而成为光滑连续的自由降落水面,这种水流现象称为堰流。 水流受到闸门或胸墙的控制,闸前水位壅高,水流由闸门底缘与闸底板之间孔口流出,过水断面受闸门开启尺寸的限制,其水面是不连续的,这种水流现象称为闸孔出流。 二.堰流与闸孔出流的水流状态比较 堰流与闸孔出流是两种不同的水流现象:堰流时,水流不受闸门或胸墙控制,水面曲线是一条光滑连续的降落曲线。而闸孔出流时,水流要受到闸门的控制,闸孔上下游水面是不连续的。 对明渠中具有闸门控制的同一过流建筑物而言,在一定边界条件下,堰流与闸孔出流是可以相互转化的,即在某一条件下为堰流,而在另一条件下可能是闸 孔出流。堰流与闸孔出流两种流态相互转化的条件除与闸门相对开度H e 有关外,还与闸底坎形式或闸门(或胸墙)的形式有关,另外,还与上游来水是涨水还是落水有关。经过大量的试验研究,一般可采用如下关系式来判别堰流及闸孔出流。 闸底坎为平顶堰 65 .0≤H e 为闸孔出流, 65 .0>H e 为堰流。 闸底坎为曲线堰 75 .0≤H e 为闸孔出流, 75 .0>H e 为堰流。

式中,H为从堰顶或闸底坎算起的闸前水深,e为闸门开度。 堰流与闸孔出流又有许多共同点:①堰流及闸孔出流都是由于堰或闸壅高了上游水位,形成了一定的作用水头,即水流具有了一定的势能。泄水过程中,都是在重力作用下将势能转化为动能的过程。②堰和闸都是局部控制性建筑物,其控制水位和流量的作用。③堰流及闸孔出流都属于明渠急变流,在较短距离内流线发生急剧弯曲,离心惯性力对建筑物表面的动水压强分布及过流能力均有一定的影响;④流动过程中的水头损失也主要是局部水头损失。 第二节堰流的类型及水力计算公式 一、堰流的类型 常见的有薄壁堰、曲线型实用堰、折线型实用堰、宽顶堰等。堰的形式不同,其水流特征也不相同。在水力计算时,并不按堰的用途分类,而是按堰坎厚度δ与堰上水头H的比值大小来划分堰流类型,即按堰的相对厚度对堰流进行分类。 (1)薄壁堰流: 67 .0 < H δ 。此时越过堰顶的水舌形状不受堰坎厚度的影响,水 舌下缘与堰顶只呈线的接触,水面为单一的降落曲线。由于薄壁堰常将堰顶做成锐缘,故薄壁堰也称为锐缘堰。 (2)实用堰流: 5.2 67 .0< ≤ H δ 。水舌下缘与堰顶呈面的接触,水舌受到堰顶的 约束和顶托,但这种影响还不是很大,越过堰顶的水流主要还是在重力作用下的自由跌落。 (3)宽顶堰流: 10 5.2< ≤ H δ 。此时堰顶厚度对水流的顶托作用已经非常明显, 进入堰顶的水流受到堰顶垂直方向的约束,过水断面减小,流速增大,加之水流进入堰顶时存在局部水头损失,因此,在进口处形成了水面跌落。然后水面几乎与堰顶保持平行,当下游水位较低时,流出堰顶的水流又会产生第二次水面跌落。 当 10 > H δ 时,沿程水头损失已不能忽略,此时的水流特性不再属于堰流, 而应该按明渠水流处理。对同一个堰而言,堰坎厚度δ是一定的,但堰上水头H 却是随水流状况变化的。 堰流的类型虽然有以上几种,但其水流的运动却有着共同的规律。比如,水流在趋近堰顶时,由于流线收缩,流速增大,溢流自由水面均有明显的降落;从作用力方面来讲,重力作用是主要的;从水流的流线变化情况来看,堰流都属于明渠急变流,离心惯性力的影响比较显著,有时还存在表面张力的影响;从能量方面讲,都是势能转换为动能,而且水流运动过程中以局部水头损失为主。既然如此,堰流问题就可以用同一个公式来描述。

阀门弯头法兰表面积计算公式

阀门弯头法兰表面积计 算公式 Document number:BGCG-0857-BTDO-0089-2022

阀门、弯头、法兰表面积计算公式【】 阀门按下面的公式计算:1.V体积(m3)=π(D=1.033δ) *2.5D*1.033δ*1.05*N D:公称直径δ:保温层厚度 N:阀门个数 和就折合到管道里面计算了 11.什么是阀们、弯头和法兰?如何计算其防腐蚀工程量? 阀们指在工艺管道上,能够灵活控制管内介质流量的装置,统称阀们或阀件。 弯头是用来改变管道的走向。常用弯头的弯曲角度为90°、45°和180°,180°弯头也https://www.360docs.net/doc/1f11677004.html,/santong.html称为U形弯管,也有用特殊角度的,但为数极少。 法兰是工艺管道上起连接作用的一种部件。这种连接形式的应用范围非常广泛,如管道与工艺设备连接,管道上法兰阀门及附件的连接。采用法兰连接既有安装拆卸的灵活性,又有可靠的密封性。 阀门、弯头、法兰表面积计算式如下。 (1)阀门表面积: S=πD×2.5DKN (1-3) 式中 D——直径; K一一系数,取1.05;

N——阀门个数。 (2)弯头表面积: S=πD×1.5DK×2π/B×N (1-4) 式中 D——直径; K——系数,取1.05 N——弯头个数; B值取定为:90°弯头.B=4;45°弯头B=8 (3)法兰表面积: S=πD×1.5DKN (1-5) 式中 D——直径; K——系数,取1.05; N——法兰个数。 (4)设备和管道法兰翻边防腐蚀工程量计算式。 S=π(D+A)A (1-6) 式中D——直径; A——法兰翻边宽。 12.如何计算绝热工程的工程量?(1)设备简体或管道绝热、防潮和保护层计算公式:

阀门流量系数的速算方法

流量系数的速算方法 在我们的设计工作中经常要进行各式各样的计算,流量系数正是其中之一。阀门的流量系数Cv和Kv值是衡量阀门流动能力的重要参数之一,流量系数的大与小,说明了流体通过阀门时其压力损失的大与小,流量系数越大则压力损失越小阀门的流通能力也就越好。国外的阀门厂通常都把不同类型、不同口径的阀门Cv值列入产品样本中。在我国,许多用户都要求制造方在样图中例明产品的流量系数Cv值或Kv值。在新的API规范6D《管线阀门》第22版明确规定:“制造厂(商)应为买方提供流量系数Kv值”。显然流量系数对管道和阀门设计过程来说是一个非常重要的参数。 阀门的流量系数Cv值最早是由美国流体控制协会在1952年提出的,它的定义是:在通过阀门的压力降每平方英寸1磅(1bf/in2)的标准条件下,温度为15.6℃的水,每分钟流过的美制加仑数(Usgal/min)。 阀门的流量系数Cv随阀门的尺寸、形式、结构而变化,这些变化最终与阀门的压力降有关。 Cv值的计算公式为: Cv=Q(G/ΔP)0.5(1) 式中Cv——流量系数 Q——体积流量(Usgal/min) ΔP——阀门的压力降(1bf/in2) G——水的密度G=1 阀门的流量系数Cv值取决于阀门的结构,而且必须由自身的实际试 验来确定。

DN50阀门的典型流量系数 (表一) 流量系数Cv 值是“英制”的计量单位,人们依据Cv 值的技术定义制定了“米制”计量单位的阀门流量系数Kv 值。Kv 值的定义是:在通过阀门的压力降为1巴(bar )的标准条件下,温度为5-40℃的水每小时流过阀门的立方米体积流量(m 3/h ) Kv 值的计算公式: 形式Cv 截止阀40-60角式截止阀 47Y 形阀门 阀杆与管道中心线夹角为45°72阀杆与管道中心线夹角为60° 65V 形孔旋塞阀 60-80蝶阀 蝶板厚度为通道直径的7%333蝶板厚度为通道直径的35% 154常规闸阀300-310夹管阀360旋启式止回阀76隐蔽式止回阀123球阀(缩径)131球阀(全径) 440

闸门水力计算说明

水闸水力计算说明 一、过流能力计算 1.1外海进水 外海进水时,外海水面高程取5.11m ,如意湖内水面高程取1.0m 。中间三孔放空闸,底板高程为-4.0m ,两侧八孔防潮闸底板高程为2.0m ,每孔闸净宽度为10m 。 表2 内海排水时计算参数特性表 外海水位/m 湖内水位/m 5.11 1.0 1.1.1中间三孔放空闸段 a.判定堰流类型 27.511 .948 == H δ 式中δ为堰壁厚度,H 为堰上水头。 2.5<5.27<10,为宽顶堰流。 b.堰流及闸孔出流判定 11 .95 = H e =0.549≤0.65,为闸孔出流。 式中,e 为闸门开启高度,H 为堰、闸前水头。 c.自由出流及淹没出流判定 闸孔出流收缩断面水深h c=ε1e=5.0×0.650=3.25m 。 式中,e 为闸门开启高度,为5.0m ; ε 1为垂向收缩系数, 查《水利计算手册》(2006年第二版)中表3-4-1 得0.650。 收缩断面处水流速为 υc=)(20c h H g -?=)(25.311.981.9295.0-???=10.19m/s 。 式中,ψ为闸孔流速系数,查《水利计算手册》(2006年第二版)中表3-4-3,取0.95; H 0为闸前总水头,为9.11m ; hc 为收缩断面水深。

收缩断面水深hc 的共轭水深 hc”=)181(22 -+ c c c gh h ν=)125 .381.919.1081(225.32 -??+=6.83m ; 下游水深ht=5.0m <hc”=6.83m ,故为自由出流。 d.过流量计算 根据闸孔自由出流流量计算公式 Q 1=002gH be μ=11.981.92530503.0?????=1008.71m3/s 。 式中,μ0为流量系数,平板闸门流量系数可按经验公式 μ0=0.60-0.176 H e =0.60-0.176×0.549=0.503; b 为闸孔宽度,为3×10=30m 。 1.1.2两侧八孔防潮闸段 a.判定堰流类型 43.1511 .348 == H δ >10,过渡为明渠流。 式中δ为堰壁厚度,H 为堰上水头。 b .过流量计算 因泄洪闸下游与陡坡相连,水利计算可按堰流计算方法进行。 H h t =11 .31-=-0.32<0.8,为自由泄流; 式中,h t 为堰顶下游水深,H 为堰顶上游水深。 因堰顶设有闸墩,应考虑侧收缩影响,采用宽顶堰流量公式计算泄流量: Q 2=2 3 02H g mnb c σ=2 311.381.92108377.0985.0??????=721.70m3/s 。 式中,m 为流量系数,因进口为斜坡式进口,P/H=7/3.11=2.25,cot θ=30/7=4.286,查《水利计算手册》(2006年第二版)中表3-2-1取m=0.377; b 为每孔闸净宽,为10m ; n 为孔数,为8孔; H 0为堰上水头,为3.11m ; ζc 为侧收缩系数,为有底坎宽顶堰的侧收缩系数,可由别津斯基公式计算

阀门流量计算方法介绍

阀门流量计算方法 如何使用流量系数 How to use Cv 阀门流量系数(Cv)是表示阀门通过流体能力的数值。Cv越大,在给定压降下阀门能够通过的流体就越多。Cv值1表示当通过压降为1 PSI时,阀门每分钟流过1加仑15o C的水。Cv值350表示当通过压降为1 PSI时,阀门每分钟流过350加仑15o C的水。 Valve coefficient (Cv) is a number which represents a valve's ability to pass flow. The bigger the Cv, the more flow a valve can pass with a given pressure drop. A Cv of 1 means a valve will pass 1 gallon per minute (gpm) of 60o F water with a pressure drop (dp) of 1 PSI across the valve. A Cv of 350 means a valve will pass 350 gpm of 60o F water with a dp of 1 PSI. 公式1 FORMULA 1 流速:磅/小时(蒸汽或水) FLOW RATE LBS/HR (Steam or Water) 在此: Where:

dp = 压降,单位:PSI dp = pressure drop in PSI F = 流速,单位:磅/小时 F = flow rate in lbs./hr. = 比容积的平方根,单位:立方英尺/磅 (阀门下游) = square root of a specific volume in ft3/lb. (downstream of valve) 公式2 FORMULA 2 流速:加伦/分钟(水或其它液体) FLOW RATE GPM (Water or other liquids) 在此: Where: dp = 压降,单位:PSI dp = pressure drop in PSI Sg = 比重 Sg = specific gravity Q = 流速,单位:加伦/分钟 Q = flow rate in GPM 局限性 LIMITATIONS 上列公式在下列条件下无效: Above formulas are not valid under the following conditions: a.对于可压缩性流体,如果压降超过进口压力的一半。 For compressible fluids, where pressure drop exceeds half the inlet pressure.

调节阀流量系数计算公式与选择数据

1、流量系数计算公式 表示调节阀流量系数的符号有C、Cv、Kv等,它们运算单位不同,定义也有不同。 C-工程单位制(MKS制)的流量系数,在国内长期使用。其定义为:温度5-40℃的水,在1kgf/cm2(0.1MPa)压降下,1小时内流过调节阀的立方米数。 Cv-英制单位的流量系数,其定义为:温度60℃F (15.6℃)的水,在1b/in2(7kpa)压降下,每分钟流过调节阀的美加仑数。 Kv-国际单位制(SI制)的流量系数,其定义为:温度5-40℃的水,在10Pa(0.1MPa)压降下,1小时流过调节阀的立方米数。 注:C、Cv、Kv之间的关系为Cv=1.17Kv,Kv=1.01C 国内调流量系数将由C系列变为Kv系列。 (1)Kv值计算公式(选自《调节阀口径计算指南》) ①不可压缩流体(液体)(表1-1) Kv值计算公式与判不式(液体) 低雷诺数修正:流经调节阀流体雷诺数Rev小于104时,其流量系数Kv需要用雷诺数修正系数修正,修正后的流

量系数为: 在求得雷诺数Rev值后可查曲线图得FR值。 计算调节阀雷诺数Rev公式如下: 关于只有一个流路的调节阀, 如单座阀、套筒阀,球阀等: 关于有五个平行流路调节阀, 如双座阀、蝶阀、偏心施转阀 等 文字符号讲明: P1--阀入口取压点测得的绝对压力,MPa; P2--阀出口取压点测得的绝对压力,MPa; △P--阀入口和出口间的压差,即(P1-P2),MPa;Pv--阀入口温度饱和蒸汽压(绝压),MPa;

Pc--热力学临界压力(绝压),MPa; F F--液体临 界压力比系数, F R--雷诺数系数,依照ReV值可计算出;F L--液体压力恢复系数 QL--液体体积流量,m3/h P L--液体密度,Kg/cm3 ν--运动粘度,10-5m2/s W L--液体质量流量,kg/h, ②可压缩流体(气体、蒸汽)(表1-2) Kv值计算公式与判不式(气体、蒸气)表1-2 文字符号讲明: X-压差与入口绝对压力之比(△P/P1);X T- 压差比系数; K-比热比; Qg-体积流量,Nm3/h

阀门保温计算公式

有换算表,用广联达软件套价时,可以选择计算公式,里边有阀门的保温计算公式,自动计算。 或你打开软件看看公式,然后手动计算。 v=3.1415926×(D+1.033×δ)×2.5×D×1.033×δ×K×N/1000000000 V-体积 D-阀门公称直径mm K=1.05 N-阀门个数 δ-保温厚度mm 例如:保温厚度40mm,直径100的阀门20个,那么保温体积为: V=3.1415926*(100+1.033*40)*2.5*100*1.033*40*1.05*20/1000000000=0.0963 立方 V=π×(D+1.033δ)×2.5D×1.033δ×1.05×N(m3) S=π×(D+2.1δ)×2.5D×1.05×N(m2) (4)阀门绝热、防潮和保护层计算公式。 V=π(D+1.033δ)×2.5D×1.033δ×1.05×N S=π(D+2.1δ)×2.5D×1.05×N 若设计要求阀门保温时,其绝热工程量和外扎保护层工程量计算公式为: V阀门=2.712*3.14*D2*δ*N S阀门=3.14(D+2.12δ)*2.5D*1.05*N V-体积 D-阀门公称直径mm K=1.05 N-阀门个数 δ-保温厚度mm 若设计文件要求法兰保温,则 V法兰=1.627*3.14*D2*δ*N S法兰=3.14(D+2.1δ)*1.5D*1.05*N 管道、阀门绝热保温工程量计算公式(含个人理解) 绝热工程量。 (1)设备筒体或管道绝热、防潮和保护层计算公式: V=π×(D+1.033δ)×1.033δ 个人理解上述体积公式的含义: D+1.033δ表示:保温层中心到中心的长度+ 单根的扎带厚度(0.033δ)= 调整后的保温层中心线长度 π×(D+1.033δ)表示:保温层中心圆的周长(可想象成长度,仅管是圆形) 1.033δ表示:保温层调整过系数的厚度(可想象成宽度) π×(D+1.033δ)×1.033δ表示:长度*宽度 S=π×(D+2.1δ+0.0082)×L 个人理解:D+2.1δ+0.0082表示:(直径+ 保温层厚度* 2.1)+0.0082 = 外表层实际直径+扎带厚度

[精品]阀门的流量系数和气蚀系数是阀的主要参数

[精品]阀门的流量系数和气蚀系数是阀的主要参数, 阀门的流量系数和气蚀系数是阀的重要参数 , 评论:0 浏览:2473 发布时间:2006/11/20 , ,,,,,阀门的流量系数和气蚀系数是阀的重要参数,这在先进工业国家生产的阀门资料中一般均能提供,甚至在样本里也印出。我国生产的阀门基本上没有这方面资料,因为取得这方面的资料需要做实验才能提出,这是我国和世界先进水平的阀门差距的重要表现之一。 ,,,,,阀门的流量系数 ,,,,,阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大,说明流体流过阀门时的压力损失越小。 {TodayHot} ,,,,,按KV值计算式,,,,, ,,,,,式中:KV—流量系数 ,,,,,Q—体积流量m3/h ,,,,,ΔP—阀门的压力损失bar ,,,,,P—流体密度kg/m3 ,,,,,阀门的气蚀系数 ,,,,,用气蚀系数δ值,来选定用作控制流量时,选择什么样的阀门结构型式。 ,,,,,式中:H1—阀后(出口)压力m ,,,,,H2—大气压与其温度相对应的饱和蒸气压力之差m ,,,,,ΔP—阀门前后的压差m

,,,,,各种阀门由于构造不同,因此,允许的气蚀系数δ也不同。如图所示。如计算的气蚀系数大于容许气蚀系数,则说明可用,不会发生气蚀。如蝶阀容许气蚀系数为2.5,则: {HotTag} ,,,,,如δ,2.5,则不会发生气蚀。 ,,,,,当2.5,δ,1.5时,会发生轻微气蚀。 ,,,,,δ,1.5时,产生振动。 ,,,,,δ,0.5的情况继续使用时,则会损伤阀门和下游配管。 ,,,,,阀门的基本特性曲线和操作特性曲线,对阀门在什么时候发生气蚀是看不出来的,更指不出来在那个点上达到操作极限。通过上述计算则一目了然。所以产生气蚀,是因为液体加速流动过程中通过一段渐缩断面时,部分液体气化,产生的气泡随后在阀后开阔断面炸裂,其表现有三: ,,,,,(1)发生噪声 ,,,,,(2)振动(严重时可造成基础和相关构筑物的破坏,产生疲劳断裂) ,,,,,(3)对材料的破坏(对阀体和管道产生侵蚀) ,,,,,再从上述计算中,不难看出产生气蚀和阀后压强H1有极大关系,加大H1显然会使情况改变,改善方法: ,,,,,a.把阀门安装在管道较低点。 ,,,,,b.在阀门后管道上装孔板增加阻力。 ,,,,,c.阀门出口开放,直接蓄水池,使气泡炸裂的空间增大,气蚀减小。 ,,,,,综合上述四个方面的分析、探讨,归纳起来对闸阀、蝶阀主要特点和参数列表便于选用。 ,,,,,阀门标准必须重视 ,,,,,现在国务院成立了标准化管理委员会和标准局,标准化问题受到了国家的高度重视,是提高我国产品的重要手段,更是WTO进入的重要的应对措施。

阀门流量系数Cv值

阀门流量系数Cv 值 阀门流量系数Cv 值字体大小:大| 中| 小2014-08-03 12:53 阅读(839) 评论(0) 分类:流量系数即:C 值(欧美 标准称为Cv 值,国际标准称为:KV 值)是阀门、调节阀等值是保障管道流量控制系统正常工作的重要步骤。是指单位时间内、在测试条件中管道保持恒定的压力,管道介质流经阀门的体积流量,或是质量流量。即阀门的最大流通能力。 工业阀门的重要工艺参数和技术指标。正确计算和选择CV 流量系数值越大说明流体流过阀门时的压力损失越小。阀门的CV 值须通过测试和计算确定。阀门是流量系数是衡量阀门流通能力的指标,流量系数值越大说流体流过阀门时的压 力损失越小.上海申弘阀门有限公司主营阀门有:减压阀(气体减压阀,可调式减压阀,波纹管减压阀,活塞式减压阀,蒸汽 减压阀,先导式减压阀,空气减压阀,氮气减压阀,水用减压阀, 自力式减压阀,比例减压阀)、安全阀、保温阀、低温阀、球 阀、截止阀、闸阀、止回阀、蝶阀、过滤器、放料阀、隔膜阀、旋塞阀、柱塞阀、平衡阀、调节阀、疏水阀、管夹阀、排污阀、排气阀、排泥阀、气动阀门、电动阀门、高压阀门、中压阀门、低压阀门、水力控制阀、真空阀门、衬胶阀门、衬氟阀门。阀门系数的定义:流量系数表示流体流经阀门产生单位压力损失时流体的流量,由于单位的不同,流量系数

有几种不同的代号和量值.一般式C=QVp/PC---流量系数 Q---体积流量p---流体密度P---阀门压力损失概述:流量特性是调节阀的一种重要技术指标和参数。在调节阀应用过程中做出正确的选型具有 非常重要的意义。固有特性(流量特 性):在经过阀门的压力降恒定时,随着截流元件(阀板)从关 闭位置运动到额定行程的过程中流量系数与截流元件(阀板) 行程之间的关系。典型地,这些特性可以绘制在曲线图上, 其水平轴用百分比行程表示,而垂直轴用百分比流量(或Cv 值)表示。由于阀门流量是阀门行程和通过阀门的压力降的函数,在恒定的压力降下进行流量特性测试提供了一种比较阀门特性类型的系统方法。用这种方法测得的典型的阀门特性 有线性、等百分比和快开(图2)。等百分比特性:一种固有流 量特性,额定行程的等量增加会理想地产生流量系数(Cv)的等百分比的改变(图2)。线性特性:一种固有流量特性,可以用一条直线在流量系数(Cv 值)相对于额定行程的长方形 图上表示出来。因此,行程的等量增加提供流量系数(Cv)的 等量增加。图2 快开特性:一种固有流量特性:在截流元件 很小的行程下可以获得很大的流量系数(图2)。额定流量下的 压力降:也是表示气动元件的流量特性之一。气动元件常常在额定流量下工作,故测定额定流量下气动元件上下游的压力降,作为该元件的流量特性指标。显然,此指标也只反映不可压缩流态下的浏览特性。阀门流量系数流量系数

阀门的流量系数

阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大说明流体流过阀门时的压力损失越小。流量系数值随阀门的尺寸、形式、结构而变化,不同类型和不同规格的阀门都要分别进行试验,才能确定该阀门的流量系数值。 1. 流量系数的定义 流量系数表示流体流经阀门产生单位压力损失时流体的流量。由于单位的不同,流量系数有几种不同的代号和量值。 阀门流量系数的计算 1)一般式 p C q V Δ/ρ= 式中 C —流量系数; V q —体积流量; ρ—流体密度; p Δ —阀门的压力损失。 2)V A 值的计算式 p q A V V Δρ= 式中 C —流量系数(2m ); V q —体积流量(s m /3 ); p Δ—阀门的压力损失(Pa ); ρ—流体密度(3/m kg )。 3)V K 值的计算式 p q K V V Δρ= 式中 V K —流量系数(2m ); V q —体积流量(h m /3 ); p Δ—阀门的压力损失(bar ); ρ—流体密度(3/m kg ) 。

4) V C 值的计算式 p G q C V V Δ= 式中 V C —流量系数2/12)/(min /in lbf USgal ; V q —体积流量(Usgal/min ); p Δ—阀门的压力损失(lbf/in 2); G —水的相对密度=1。 5) 流量系数V A 、V K 、V C 间的关系: V C =1.17V K V C v A 24106 = V K =28 106 V A 2.阀门的流阻系数 流体通过阀门时,其流体阻力损失以阀门前后的流体压力降p Δ表示。 对于紊流流态的液体: 2 ρ ζΔ2u p = 式中 p Δ—被测阀门的压力损失(MPa ); ζ—阀门的流阻系数; ρ—流体密度(kg/mm 3); u —流体在管道内的平均流速(mm/s )。

阀门的流量系数以及气蚀系数详解

阀门的流量系数以及气蚀系数详解 阀门的重要参数是阀门的流量系数和气蚀系数,这在先进工业国家生产的阀门资料中一般均能提供,甚至在样本里也印出。我国生产的阀门基本上没有这方面资料,因为取得这方面的资料需要做实验才能提出,这是我国和世界先进水平的阀门差距的重要表现之一。 一、阀门的流量系数 阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大,说明流体流过阀门时的压力损失越小。 按KV值计算式 式中:KV—流量系数Q—体积流量m3/hΔP—阀门的压力损失barP—流体密度kg/m3 二、、阀门的气蚀系数 用气蚀系数δ值,来选定用作控制流量时,选择什么样的阀门结构型式。 式中:H1—阀后(出口)压力mH2—大气压与其温度相对应的饱和蒸气压力之差mΔP—阀门前后的压差m 各种阀门由于构造不同,因此,允许的气蚀系数δ也不同。如图所示。如计算的气蚀系数大于容许气蚀系数,则说明可用,不会发生气蚀。如蝶阀容许气蚀系数为2.5,则:

如δ>2.5,则不会发生气蚀。 当2.5>δ>1.5时,会发生轻微气蚀。 δ<1.5时,产生振动。 δ<0.5的情况继续使用时,则会损伤阀门和下游配管。 阀门的基本特性曲线和操作特性曲线,对阀门在什么时候发生气蚀是看不出来的,更指不出来在那个点上达到操作极限。通过上述计算则一目了然。所以产生气蚀,是因为液体加速流动过程中通过一段渐缩断面时,部分液体气化,产生的气泡随后在阀后开阔断面炸裂,其表现有三: (1)发生噪声 (2)振动(严重时可造成基础和相关构筑物的破坏,产生疲劳断裂) (3)对材料的破坏(对阀体和管道产生侵蚀) 再从上述计算中,不难看出产生气蚀和阀后压强H1有极大关系,加大H1显然会使情况改变,改善方法: a.把阀门安装在管道较低点。 b.在阀门后管道上装孔板增加阻力。 c.阀门出口开放,直接蓄水池,使气泡炸裂的空间增大,气蚀减小。 综合上述四个方面的分析、探讨,归纳起来对闸阀、蝶阀主要特点和参数列表便于选用。两个重要参数在阀门运用中起到举足轻重的作用。

相关文档
最新文档