国内外流体力学研究机构

国内外流体力学研究机构
国内外流体力学研究机构

国内外流体力学研究机构

分类:标签:字号大中小订阅

.北京航空航天大学流体力学研究所

包括国家计算流体力学重点实验室(由李椿萱院士和张函信院士主持)和流体力学开放实验室

. 美国布朗大学流体机械研究中心

了解流体机械的诸多方面

.美国公司技术服务中心

美国一个著名的计算流体服务机构,解决计算和工程问题的专家

.英国大学研究中心

主要介绍的在各个领域的应用。

.欧洲流体湍流及燃烧研究协会(, )

领导管理欧洲的流体,湍流及燃烧方面的科研教育和工业的联合组织。

.美国国家航空和宇宙航行局

的各项动态和进展,信息很多。

. 加拿大计算流体力学学会( )

介绍计算流体力学的进展和应用

. 免费软件下载中心( )

免费软件下载()

. 美国普林斯顿大学空气动力学实验室( )

进行流体力学的前沿研究

. 澳大利亚大学湍流研究所( )

进行湍流的理论和实验研究及应用

. 美国大学超音速中心( )

介绍超音速材料,实验测量及超音速的计算

. 美国流体动力学研究中心( () )

流体力学研究中心

. 美国大学流体力学研究实验中心(教授领导)( )

主要研究涡,湍流和分离流动及其应用

. 荷兰科技大学流体力学实验室( )

流体力学和热传导的科研和教育机构,主要研究涡,湍流及空气动力学

. 美国公司()

研究流体力学,热力学,自动控制和测量设备的工业公司研究领域包括,实验,理论及流体机械设备

.瑞士机械及机械处理工程能源系统试验室( , , )

内容:研究建筑物内的空气流动,燃烧,能源和环境问题。

.瑞士机械及机械处理工程涡轮机械试验室( , , )

提供研究及人员信息的摘要。

.瑞士机械工程压力机械及流体力学实验室(, , )

介绍流体力学实验室()在方面的工作。

.瑞士机械及机械处理工程实验室( , )

流体力学,能源系统,燃烧,涡轮机械等。

.英国大学航空学院计算中心, ,

算法研究,类牛顿方法,加速收敛,跨音速激波控制,高超音速加热,激波边界层干扰,湍流模型,超音速涡流等。

提供,超级计算机或高性能机的计算软件

.美国航空软件开发公司( )

流体力学名词解释

流体力学概念总结 1.连续介质模型:在流体力学的研究中,将实际由分子组成的结构用流体微元代替。流体 微元有足够数量的分子,连续充满它所占据的空间,这就是连续介质模型。 2.质量力:处于某种力场中的流体,所有质点均受有与质量成正比的力,这个力称为质量 力。 3.表面力:指作用在所研究流体外表面上与表面积大小成正比的力。 4.流体的相对密度:某均质流体的质量与4℃同体积纯水的质量的比称为该流体的相对密 度。 5.体胀系数:当压强不变而流体温度变化1K时,其体积的相对变化率,以α表示。 6.压缩率:当流体保持温度不变,所受压强改变时,其体积的相对变化率。 7.粘性:当流体在外力作用下,流体微元间出现相对运动时,随之产生阻碍流体层间相对 运动的内摩擦力,流体产生内摩擦力的这种性质称为粘性。 8.动力粘度:单位速度梯度时内摩擦力的大小μ=τ∕(dv∕dh) 9.运动粘度:动力粘度和流体密度的比值。υ=μ/ρ 10.恩氏粘度:被测液体与水粘度的比较值。 11.理想流体:一种假想的没有粘性的流体。 12.牛顿流体:在流体力学的研究中,凡切应力与速度梯度成线性关系,即服从牛顿内摩擦 定律的流体,称为牛顿流体。 13.表面张力:引起液体自由表面欲成球形的收缩趋势的力称为表面张力。 14.静压强:当流体处于绝对静止或相对静止状态时,流体中的压强称为流体静压强。 15.有势质量力:质量力所做的功只与起点和终点的位置有关,这样的质量力称为有势质量 力。 16.力的势函数:某函数对相应坐标的偏导数,等于单位质量力在相应坐标轴上的投影,该 函数称为力的势函数。 17.等压面:在充满平衡流体的空间,连接压强相等的各点所组成的面称等压面。 18.压力体:由所研究的曲面,通过曲面周界所作的垂直柱面和流体的自由表面(或其延伸 面)所围成的封闭体积叫做压力体。 19.实压力体:当所讨论的流体作用面为压力体的内表面时,称该压力体为实压力体。 20.虚压力体:当所讨论的流体作用面为压力体的外表面时,称该压力体为虚压力体。 21.浮力:液体对潜入其中的物体的作用力称为浮力。 22.时变加速度(当地加速度):位于所观察空间的流体质点的速度随时间的变化率。 23.位变加速度(迁移加速度):流体质点所在空间位置的变化所引起的速度变化率。 24.全加速度(质点导数或随体导数):时变加速度与位变加速度的和称为全加速度。 25.恒定流动(定常流动):流场中每一空间点上的运动参数不随时间变化,这样的流动称 为恒定流动。 26.非恒定流动(非定常流动):流场中运动参数不但随位置改变而改变,而且也随时间变 化,这种流动称为非恒定流动。 27.迹线:流体质点的运动的轨迹称为迹线。 28.流线:某瞬时在流场中作一条空间曲线,该瞬时位于曲线上各点的流体质点的速度在该 点与曲线相切。 29.流管:在流场中任取一封闭曲线l(非流线),过曲线上各点作流线,所有这些流线构成一 管状曲面,称为流管。 30.流束:若在流场中取一非流面的曲面S,则过曲面上各点所作流线的总合,称为流束。 31.总流:在实际工程中,把管内流动和渠道中的流动看成是总的流束,它由无限多微小流

流体力学的发展现状

流体力学的发展和现状 作为物理的一部分,流体力学在很早以前就得到发展。在19世纪,流体力学沿着两个方面发展,一方面,将流体视为无粘性的,有一大批有名的力学数学家从事理论研究,对数学物理方法和复变函数的发展,起了相当重要的作用; 另一方面,由于灌溉、给排水、造船,及各种工业中管道流体输运的需要,使得工程流体力学,特别是水力学得到高度发展。将二者统一起来的关键是本世纪初边界层理论的提出,其中心思想是在大部分区域,因流体粘性起的作用很小,流体确实可以看成是无粘的。这样,很多理想流体力学理论就有了应用的地方。但在邻近物体表面附近的一薄层中,粘性起着重要的作用而不能忽略。边界层理论则提供了一个将这两个区域结合起来的理论框架。边界层这样一个现在看来是显而易见的现象,是德国的普朗特在水槽中直接观察到的。这虽也是很多人可以观察到的,却未引起重视,普朗特的重大贡献就在于他提出了处理这种把两个物理机制不同的区域结合起来的理论方法。这一理论提出后,在经过约10年的时间,奠定了近代流体力学的基础。 流体力学又是很多工业的基础。最突出的例子是航空航天工业。可以毫不夸大地说,没有流体力学的发展,就没有今天的航空航天技术。当然,航空航天工业的需要,也是流体力学,特别是空气动力学发展的最重要的推动力。就以亚音速的民航机为例,如果坐在一架波音747飞机上,想一下这种有400多人坐在其中,总重量超过300吨,总的长宽有大半个足球场大的飞机,竟是由比鸿毛还轻的空气支托着,这是任何人都不能不惊叹流体力学的成就。更不用说今后会将出现更大、飞行速度更快的飞机。 同样,也不可能想象,没有流体力学的发展,能设计制造排水量超过50万吨的船舶,能建造长江三峡水利工程这种超大规模工程,能设计90万kW汽轮机组,能建造每台价值超过10亿美元的海上采油平台,能进行气候的中长期预报,等等。甚至天文上观测到的一些宇宙现象,如星系螺旋结构形成的机理,也通过流体力学中形成的理论得到了解释。近年来从流体力学的角度对鱼类游动原理的研究,发现了采用只是摆动尾部(指身体大部不动)来产生推进力的鱼类,最好的尾型应该是细长的月牙型。这正是经过几亿年进化而形成的鲨鱼和鲸鱼的尾型,而这些鱼类的游动能力在鱼类中是最好的。这就为生物学进化方面提供了说明,引起了生物学家的很大兴趣。 所以很明显,流体力学研究,既对整个科学的发展起了重要的作用,又对很多与国计民生有关的工业和工程,起着不可缺少的作用。它既有基础学科的性质,又有很强的应用性,是工程科学或技术科学的重要组成部分。今后流体力学的发展仍应二者并重。 本世纪的流体力学取得多方面的重大进展,特别是在本世纪下半叶,由于实验测试技术、数值计算手段和分析方法上的进步,在多种非线性流动以及力学和其他物理、化学效应相耦合的流动等方面呈现了丰富多采的发展态势。 在实验方面,已经建立了适合于研究不同马赫数、雷诺数范围典型流动的风洞、激波管、弹道靶以及水槽、水洞、转盘等实验设备,发展了热线技术、激光技术、超声技术和速度、温度、浓度及涡度的测量技术,流动显示和数字化技术的迅猛发展使得大量数据采集、处理和分析成为可能,为提供新现象和验证新理论创造了条件。 流体力学是在人类同自然界作斗争,在长期的生产实践中,逐步发展起来的。早在几千年前,劳动人民为了生存,修水利,除水害,在治河防洪,农田灌溉,河道航运,水能利用等方面总结了丰富的经验。我国秦代李冰父子根据“深淘滩,低作堰”的工程经验,修建设计的四川都江堰工程具有相当高的科学水平,反映出当时人们对明渠流和堰流的认识已经达

国内外流体力学研究机构

国内外流体力学研究机构 2008-05-08 09:08:34|分类:C FD |标签:|字号大中小订阅 1.北京航空航天大学流体力学研究所 http://www.bu https://www.360docs.net/doc/1f14827481.html,/dept5/stress.htm 包括国家计算流体力学重点实验室(由李椿萱院士和张函信院士主持)和流体力学开放实验室 2. 美国布朗大学流体机械研究中心 http://www.cfm.b https://www.360docs.net/doc/1f14827481.html, 了解流体机械的诸多方面 3.美国ssesco公司CFD技术服务中心 https://www.360docs.net/doc/1f14827481.html,/files/cfd_main.html 美国一个著名的计算流体服务机构,解决C FD计算和工程问题的专家 4.英国Cra nfield大学CFD研究中心 http://www.cra https://www.360docs.net/doc/1f14827481.html,/sme/cfd/ 主要介绍C FD的在各个领域的应用。 5.欧洲流体湍流及燃烧研究协会(Europe an Research C ommunity On Flow, Turbulence And Combustion ) http://lmfwww.epfl.ch/lmf/ERC OFTAC/ 领导管理欧洲的流体,湍流及燃烧方面的科研教育和工业的联合组织。 6.美国国家航空和宇宙航行局 http://www.nasa.go v/ NASA的各项动态和进展,信息很多。 7. 加拿大计算流体力学学会(The CFD Society of Can ada ) http://www.cfdsc.ca/english/index.html 介绍计算流体力学的进展和应用 8. CFD免费软件下载中心(CFD codes list - free softwa re) http://www.cfdsc.ca/english/index.html CFD免费软件下载(ft p) 9. 美国普林斯顿大学空气动力学实验室(the Princeton Gas Dyn amics Lab ) http://www.p https://www.360docs.net/doc/1f14827481.html,/~gasd yn/index.ht ml 进行流体力学的前沿研究 10. 澳大利亚Monash 大学湍流研究所(The Turbulence Research Laborato ry at Monash Uni versity ) https://www.360docs.net/doc/1f14827481.html,.au/~julio/TRL/ 进行湍流的理论和实验研究及应用 11. 美国Syracuse 大学超音速中心(S yracuse University cente r for h ype rsonics)

低雷诺数下板翅式换热器如何实现湍流,及其对性能的影响

板式换热器如何实现在低雷诺数下达到湍流状态,分析其流动和换热性能 田兵兵热能1101班 2011000949 1.板式换热器如何实现在低雷诺数下达到湍流状态? 板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效换热器。板片之间布满网状接触点, 流体沿着板间狭小通道流动, 其速度大小方向不断改变,形成强烈的湍流。 2.低Re下板式换热器传热器传热性能试验研究 板式换热器是一种高效、紧凑的换热设备,是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效换热器。板片之间布满网状接触点,流体沿着板问狭小通道流动,其速度大小方向不断改变,形成强烈的湍流,从而破坏边界层,减少液膜热阻。因此,它与常规的管壳式换热器相比,在相同的流动阻力和泵功率消耗情况下,其传热系数要高出很多。 板式换热器的传热和阻力性能与板面的波纹形状、尺寸及板面的组合方式都有很大的关系,在1 200≤Re≤4 000时,测定不同流道高度对换热流动阻力的影响,发现Nu随着流道高度的增加而增加,而压力梯度降低,摩擦冈数增大,换热效果降低.得出窄流道换热效果更好的结论。马学虎研究了板式换热器在低如条件下(200≤Re≤1 300)的传热性能及阻力特性,并根据实验数据回归了相应板片传热系数,阻力系数的经验关联式,计算值与实验值有较好的一致性。 通常板式换热器的最佳板问流速是o.3~0.8 m/s,然而对于某些处理量小,压降要求比较严格的工况,流体只能在低流速下运行,而低盈下的传热具有其独特性,因此在低风情况下,研究板式换热器的传热是十分必要的,但目前这方面的研究较少。本文实验测定了板式换热器在较低RP条件下(15

流体力学实验思考题解答(全)

流体力学课程实验思考题解答 (一)流体静力学实验 1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γ p Z + ,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测 压管水头线指测压管液面的连线。从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2、 当0

流体力学发展简史.

流体力学发展简史 流体力学作为经典力学的一个重要分支,其发展与数学、力学的发展密不可分。它同样是人类在长期与自然灾害作斗争的过程中逐步认识和掌握自然规律,逐渐发展形成的,是人类集体智慧的结晶。 人类最早对流体力学的认识是从治水、灌溉、航行等方面开始的。在我国水力事业的历史十分悠久。 4000多年前的大禹治水,说明我国古代已有大规模的治河工程。 秦代,在公元前256-前210年间便修建了都江堰、郑国渠、灵渠三大水利工程,特别是李冰父子领导修建的都江堰,既有利于岷江洪水的疏排,又能常年用于灌溉农田,并总结出“深淘滩,低作堰”、"遇弯截角,逢正抽心"的治水原则。说明当时对明槽水流和堰流流动规律的认识已经达到相当水平。 西汉武帝(公元前156-前87)时期,为引洛水灌溉农田,在黄土高原上修建了龙首渠,创造性地采用了井渠法,即用竖井沟通长十余里的穿山隧洞,有效地防止了黄土的塌方。 在古代,以水为动力的简单机械也有了长足的发展,例如用水轮提水,或通过简单的机械传动去碾米、磨面等。东汉杜诗任南阳太守时(公元37年)曾创造水排(水力鼓风机),利用水力,通过传动机械,使皮制鼓风囊连续开合,将空气送入冶金炉,较西欧约早了一千一百年。 古代的铜壶滴漏(铜壶刻漏)--计时工具,就是利用孔口出流

使铜壶的水位变化来计算时间的。说明当时对孔口出流已有相当的认识。 北宋(960-1126)时期,在运河上修建的真州船闸与十四世纪末荷兰的同类船闸相比,约早三百多年。 明朝的水利家潘季顺(1521-1595)提出了"筑堤防溢,建坝减水,以堤束水,以水攻沙"和"借清刷黄"的治黄原则,并著有《两河管见》、《两河经略》和《河防一揽》。 清朝雍正年间,何梦瑶在《算迪》一书中提出流量等于过水断面面积乘以断面平均流速的计算方法。 欧美诸国历史上有记载的最早从事流体力学现象研究的是古希腊学者 阿基米德(Archimedes,公元前287-212),在公元前250年发表学术论文《论浮体》,第一个阐明了相对密度的概念,发现了物体在流体中所受浮力的基本原理──阿基米德原理。 著名物理学家和艺术家列奥纳德达芬奇(Leonardo.da.Vinci,1452-1519)设计建造了一小型水渠,系统地研究了物体的沉浮、孔口出流、物体的运动阻力以及管道、明渠中水流等问题。 斯蒂文(S.Stevin,1548-1620)将用于研究固体平衡的凝结原理转用到流体上。 伽利略(Galileo,1564-1642)在流体静力学中应用了虚位移原理,并首先提出,运动物体的阻力随着流体介质密度的增大和速度

fluent低雷诺系数k-e模型

fluent中的低雷诺数模型 在Fluent隐藏了很多湍流模型,在GUI面板中我们只能看到三种k-e模型。但是实际上低雷诺数湍流模型我们同样可以使用。在Fluent6.2中具体操作一共有三步: 第一步,先在viscous model面板中选择k-e模型; 第二步,键入下面的命令: define/models/viscous/turbulence-expert/low-re-ke 屏幕显示: /define/models/viscous/turbulence-expert> low-re-ke Enable the low-Re k-epsilon turbulence model? [no] 输入y 在模型选择面板中我们就可以看见低雷模型low-re-ke model了。默认使用第0种低雷诺数模型。 第三步,Fluent中提供6种低雷诺数模型,使用low-re-ke-index 命令设定一种。 low-re-ke-index Select which low-Reynolds-number -k-epsilon model is to be used. Six models are available: Index Model 0 Abid 1 Lam-Bremhorst 2 Launder-Sharma 3 Yang-Shih 4 Abe-Kondoh-Nagano 5 Chang-Hsieh-Chen 经过上述操作后得到的viscous model 的面板如下: 相对于标准的K-e 模型而言,低雷诺模型的应用没有那么广泛。 引入低雷诺数模型的目的:为了让数值计算从高雷诺数区域一直进行到固体壁面上,对标准的K-e 模型进行修正从而得到具有各种形式的低雷诺模型。陶文铨老师的数值传热学书上给出了16种不同的低雷诺模型形式。在fluent中提供的这六种应该也是其中的几种。 虽然目前涉及到的模拟中很少应用到这一低雷诺模型,以后若遇到需要用这个模型的时候,相信也会知道如何下手了。

生活中的流体力学知识研究报告

工程流体力学三级项目报告multinuclear program design Experiment Report 项目名称: 班级: 姓名: 指导教师: 日期:

摘要 简要介绍了流体力学在生活中的应用,涉及到体育,工业,生活小窍门等。讨论了一些流体力学原理。许许多多的现象都与流体力学有关。为什么洗衣机老翻衣兜?倒啤酒要注意什么诀窍?高尔夫球为什么是麻脸的?本文将就以上三个问题讨论流体力学中一些简单的原理,如伯努力定律,雷诺数,边界层分离等,展现流体力学的广泛应用,证明流体力学妙趣横生。 关键字:伯努利定律;层流;湍流;空气阻力;雷诺数;高尔夫球

前言 也许,到现在你都有点不会相信,其实我们生活在一个流体的世界里。观察生活时我们总可以发现。生活离不开流体,尤其是在社会高速发展的今天。鹰击长空,鱼翔浅底;汽车飞奔,乒乓极旋,许许多多的现象都与流体力学有关。为什么洗衣机老翻衣兜?倒啤酒要注意什么诀窍?高尔夫球为什么是麻脸的?本文将就以上三个问题讨论流体力学中一些简单的原理,如伯努力定律,雷诺数,边界层分离等,展现流体力学的广泛应用,证明流体力学妙趣横生。生活中的很多事物都在经意或不经意中巧妙地掌握和运用了流体力学的原理,让其行动变得更灵活快捷。

一、麻脸的高尔夫球(用雷诺数定量解释) 不知道大家有没有发现,高尔夫球的表面做成有凹点的粗糙表面,而不是平滑光趟的表面,就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。最初,高尔夫球表面是做成光滑的,如图1—1,后来发现表面破损的旧球 图1-1光滑面1-2粗糙面 反而打的更远。原来是临界Re数不同的结果。光滑的球由于这种边界层分离得早,形成的前后压差阻力就很大,所以高尔夫球在由皮革改用塑胶后飞行距离便大大缩短了,因此人们不得不把高尔夫球做成麻脸的,即表面布满了圆形的小坑。麻脸的高尔夫球有小坑,飞行时小坑附近产生了一些小漩涡,由于这些小漩涡的吸力,高尔夫球附近的流体分子被漩涡吸引,

板式塔的流体力学性能的测定

板式塔的流体力学性能的测定 一、实验名称:板式塔的流体力学性能的测定 二、实验目的: 1、对板式塔的结构、立体传质塔板有一个初步认识; 2、对塔板上流体流动状态有初步认识; 3、测定塔板的流体力学性能,包括塔的干板压降、湿板压降、漏液点、雾沫夹带点等。 4、观察流体在塔板上的流动状态。 三、实验原理与流程: 实验流程见图1,来自储槽的水经过转子流量计自塔顶送入板式塔,由鼓风机送来的气体,经过孔板流量计送入塔的底部。塔内共装有三层塔板,从下至上分别是气体分布板、实验塔板、雾沫补集板。实验塔板采用U型压差计测定其压降,漏液和夹带量采用质量测量法。通过风机闸阀和玻璃转子流量计调节气体流量和液体流量,测定不同状态下塔板的流体力学参数,观察塔板上液体流动状态。 四、实验步骤: 1、测定干板压降 将液封管内充满水,启动风机,根据孔板流量计连接的压差计调节气流流量大小,测定塔的干板压降,气体流量由小至大调节。由《化工原理》查询孔流系数,并计算气体流量。测定的压降值与干板压降计算公式进行验证,并计算误差。 干板压降经验式:?d=0.051w0 C02γ v γL (1?φ2) φ-----开孔率(开孔面积/开孔区域,此处取0.2);γv-----气相密度;γL-----液相密度;

?d-----干板压降,米液柱;C0-----孔流系数;w0-----空气速;(单位如不说明均为国际单位制)(假设矩形孔和导向孔气速一致) 2、测定湿板压降和夹带、漏液 调节气体流量为一定值,打开转子流量计。固定液体流量,将气体流量由小至大调节,每次增加200Pa,直到1600Pa。每个测量点稳定30秒,读取压降,由质量法测量一定时间的漏液量和夹带量。计算每个点的漏液率和夹带率,寻找漏液点和夹带点,并计算出对应的孔气速,确定正常的操作范围。 3、观察塔板上气液接触状态 随着气速的增大,塔板之上的气液接触状态由鼓泡状态,改为泡沫状态,最终达到喷射状态。塔板之上的清液层逐渐减小,泡沫层逐渐升高,甚至达到液泛状态。如不及时打开回流泵,由于塔釜容量有限,将出现降液管液泛,并波及塔内正常操作。观察漏液过程中周期性漏液。观察泡沫层上升和夹带量的关系。 四、数据处理 计算所需参数:孔板流量计计算公式:q v=C0A02?P ρ ,气体管径d1=200mm; 孔板孔径d2=125mm;孔板流量系数C0查询《化工原理》;孔流系数C0=0.76; 立体喷射式塔板:气体为连续相,液体为分散相;矩形帽罩结构,喷射区有圆形喷射孔,上部装有填料板波纹250Y。 开孔区域面积A=0.14㎡;矩形开孔180*60mm(3个);导向孔24*3mm(78个);底隙25mm;堰高50mm;堰长350mm;塔径476mm。 数据表格: 干板压降表格 液体流量L=4m3/h 流体力学记录表格

国内外流体力学研究机构

国内外流体力学研究机构 分类:标签:字号大中小订阅 .北京航空航天大学流体力学研究所 包括国家计算流体力学重点实验室(由李椿萱院士和张函信院士主持)和流体力学开放实验室 . 美国布朗大学流体机械研究中心 了解流体机械的诸多方面 .美国公司技术服务中心 美国一个著名的计算流体服务机构,解决计算和工程问题的专家 .英国大学研究中心 主要介绍的在各个领域的应用。 .欧洲流体湍流及燃烧研究协会(, ) 领导管理欧洲的流体,湍流及燃烧方面的科研教育和工业的联合组织。 .美国国家航空和宇宙航行局 的各项动态和进展,信息很多。 . 加拿大计算流体力学学会( ) 介绍计算流体力学的进展和应用 . 免费软件下载中心( ) 免费软件下载() . 美国普林斯顿大学空气动力学实验室( ) 进行流体力学的前沿研究 . 澳大利亚大学湍流研究所( ) 进行湍流的理论和实验研究及应用 . 美国大学超音速中心( )

介绍超音速材料,实验测量及超音速的计算 . 美国流体动力学研究中心( () ) 流体力学研究中心 . 美国大学流体力学研究实验中心(教授领导)( ) 主要研究涡,湍流和分离流动及其应用 . 荷兰科技大学流体力学实验室( ) 流体力学和热传导的科研和教育机构,主要研究涡,湍流及空气动力学 . 美国公司() 研究流体力学,热力学,自动控制和测量设备的工业公司研究领域包括,实验,理论及流体机械设备 .瑞士机械及机械处理工程能源系统试验室( , , ) 内容:研究建筑物内的空气流动,燃烧,能源和环境问题。 .瑞士机械及机械处理工程涡轮机械试验室( , , ) 提供研究及人员信息的摘要。 .瑞士机械工程压力机械及流体力学实验室(, , ) 介绍流体力学实验室()在方面的工作。 .瑞士机械及机械处理工程实验室( , ) 流体力学,能源系统,燃烧,涡轮机械等。 .英国大学航空学院计算中心, , 算法研究,类牛顿方法,加速收敛,跨音速激波控制,高超音速加热,激波边界层干扰,湍流模型,超音速涡流等。 提供,超级计算机或高性能机的计算软件 .美国航空软件开发公司( )

开低雷诺数模型

可进行如下操作: 1)打开Fluent的k-e模型,这是关键。 2)在Fluent窗口中点击回车键,会出现如下信息: > adapt/ file/ report/ define/ grid/ solve/ display/ parallel/ surface/ exit plot/ view/ 3)复制其中的define并粘贴,然后回车,出现如下信息: /define> boundary-conditions/ materials/ periodic-conditions/ custom-field-functions/ mixing-planes/ profiles/ grid-interfaces/ models/ units injections/ operating-conditions/ user-defined/ 4)复制其中的models并进行和3)相同的操作,出现如下信息: /define/models> acoustics/ energy?steady/ crevice-model/ radiation/ unsteady-1st-order? dpm/ solidification-melting?unsteady-2nd-order?dynamic-mesh? solver/ viscous/ 5)复制其中的viscous并进行和3)相同的操作,出现如下信息: /define/models/viscous> detached-eddy-simulation?kw-sst?near-wall-treatment?inviscid?kw-standard?reynolds-stress-model? ke-realizable? laminar?spalart-allmaras?

FLUENT中常用的湍流模型

The Spalart-Allmaras模型 对于解决动力漩涡粘性,Spalart-Allmaras 模型是相对简单的方程。它包含了一组新的方程,在这些方程里不必要去计算和剪应力层厚度相关的长度尺度。Spalart-Allmaras 模型是设计用于航空领域的,主要是墙壁束缚流动,而且已经显示出很好的效果。在透平机械中的应用也愈加广泛。 在原始形式中Spalart-Allmaras 模型对于低雷诺数模型是十分有效的,要求边界层中粘性影响的区域被适当的解决。在FLUENT中,Spalart-Allmaras 模型用在网格划分的不是很好时。这将是最好的选择,当精确的计算在湍流中并不是十分需要时。再有,在模型中近壁的变量梯度比在k-e模型和k-ω模型中的要小的多。这也许可以使模型对于数值的误差变得不敏感。想知道数值误差的具体情况请看5.1.2。 需要注意的是Spalart-Allmaras 模型是一种新出现的模型,现在不能断定它适用于所有的复杂的工程流体。例如,不能依靠它去预测均匀衰退,各向同性湍流。还有要注意的是,单方程的模型经常因为对长度的不敏感而受到批评,例如当流动墙壁束缚变为自由剪切流。 标准k-e模型 最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。在FLUENT中,标准k-e模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。适用范围广、经济,有合理的精度,这就是为什么它在工业流场和热交换模拟中有如此广泛的应用了。它是个半经验的公式,是从实验现象中总结出来的。 由于人们已经知道了k-e模型适用的范围,因此人们对它加以改造,出现了RNG k-e模型和带旋流修正k-e 模型。k-ε模型中的K和ε物理意义:k是紊流脉动动能(J),ε是紊流脉动动能的耗散率(%);k越大表明湍流脉动长度和时间尺度越大,ε越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。 RNG k-e模型 RNG k-e模型来源于严格的统计技术。它和标准k-e模型很相似,但是有以下改进: ?RNG模型在e方程中加了一个条件,有效的改善了精度。 ?考虑到了湍流漩涡,提高了在这方面的精度。 ?RNG理论为湍流Prandtl数提供了一个解析公式,然而标准k-e模型使用的是用户提供的常数。 ?然而标准k-e模型是一种高雷诺数的模型,RNG理论提供了一个考虑低雷诺数流动粘性的解析公式。这些公式的效用依靠正确的对待近壁区域 这些特点使得RNG k-e模型比标准k-e模型在更广泛的流动中有更高的可信度和精度。 带旋流修正的k-e模型 带旋流修正的k-e模型是近期才出现的,比起标准k-e模型来有两个主要的不同点。 ?带旋流修正的k-e模型为湍流粘性增加了一个公式。 ?为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。 术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。带旋流修正的k-e模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。带旋流修正的k-e模型和RNG k-e模型都显现出比标准k-e模型在强流线弯曲、漩涡和旋转有更好的表现。由于带旋流修正的k-e模型是新出现的模型,所以现在还没有确凿的证据表明它比RNG k-e模型有更好的表现。但是最初的研究表明带旋流修正的k-e模型在所有k-e模型中流动分离和复杂二次流有很好的作用。带旋流修正的k-e模型的一个不足是在主要计算旋转和静态流动区域时不能提供自然的湍流粘度。这是因为带旋流修正的k-e模型在定义湍流粘度时考虑了平均旋度的影响。这种额外的旋转影响已经在单一旋转参考系中得到证实,而且表现要好于标准k-e模型。由于这些修改,把它应用于多重参考系统中需要注意。 标准k-ω模型 标准k-ω模型是基于Wilcox k-ω模型,它是为考虑低雷诺数、可压缩性和剪切流传播而修改的。Wilcox k-ω模型预测了自由剪切流传播速率,像尾流、混合流动、平板绕流、圆柱绕流和放射状喷射,因而可以应用于墙壁束缚流动和自由剪切流动。标准k-e模型的一个变形是SST k-ω模型,它在FLUENT中也是可用的,将在10.2.9中介绍它。 剪切压力传输(SST)k-ω模型

流体力学

第十一讲流体力学 我们通常所说的流体包括了气体和液体。流体具有形状和大小可以改变的特征,这一点和弹性体是类似的,然而,流体仅仅具备何种压缩弹性,例如,用力推动活塞可以压缩密闭气缸中的气体,在撤消外力后,气体将恢复原状,将活塞推出;但流体不具备抵抗形状改变的弹性,在力的作用下,流体因流动而发生形状的改变,,撤消外力后,流体并不恢复原来的形状,流体的这种性质称为流动性。流体力学的任务在于研究流体流动的规律以及它与固体之间的相互作用。 一、理想流体 无论是气体还是流体都是可以压缩的,只不过在通常的情况下,气体较容易被压缩,而液体难以被压缩。但是,在一定的条件下,我们常常把流动着的流体看着是不可压缩的,这一点对于液体是比较好理解的,因为在对液体加压时,其何种的改变是极其微小的,是可以忽略的;我们之所以把流动着的气体也看作是不可压缩的,是因为气体的密度小,即使压力差不大,也能够迅速驱使密度较大处的气体流向密度较小的地方,使密度趋于均匀,这样使得流动的气体中各处的密度密度不随时间发生明显的变化,这样,气体的可压缩性便可以不必考虑。不过,当气流的速度接近或超过声速时,因气体的运动造成的各处的密度不均匀的差别不及消失,这时气体的可压缩性会变得非常的明显,不能再看作是不可压缩的。总之,在一定的问题中,若可不考虑气体的可压缩性,便可将它抽象为不可压缩的理想模型,反之,则需看作是可压缩的液体。 液体都的或多或少的粘性,在静止液体中,粘性无法表现,在流体流动时,,将明显地表现出粘性。所谓粘性,就是当流体流动时,层与层之间有阻碍相对运动的内摩擦力,如河流中心的水流速度较快,由于粘性,靠近河岸的水几乎不动。在研究流体时,若流体的流动性是主要的,粘性居于次要地位时,可认为流体完全没有粘性,这样的理想模型叫做非粘性流体,若粘性起着重要的作用,则需将流体看作粘性流体。 如果在流体的运动过程中,流体的可压缩性和粘性都处于极为次要的地位,就可以把流体看作是理想流体。理想流体是不可压缩又无粘性的流体。 二、静止流体内的压强 1.静止流体内一点的压强 首先,我们可以证明:在重力场中,过静止流体内一点的各不同方位无穷小的截面上的压强的大小都是相等的。这是流体内压强的一条重要的性质。基于这一点,我们对静止流体内的一点的压强作如下的定义:静止流体内的压强等于过此点任意一假想的微小截面上的压力与该截面的面积之比。 2.静止流体内压强的分布 a.在重力场中,静止流体内各等高点的压强相等。 b.沿直方向的压强的分布 在重力作用下,静止流体内的压强随流体高度的增加而减小。如果液体具有自由的表面,且自由表面处的压强为p0,则液体内部深度为h处的压强为 p=p0+ρgh (式中ρ为液体的密度) 对于气体来说,因密度很小,若高度范围不是很大,则可认为气体内各部分的压强

流体力学 难点分析

粘性切应力的计算 粘性切应力的计算常常很复杂。如果流体作一元运动,速度不太大,粘性系数比较大, 边界条件简单,则其速度分布可视为线性变化,这样由式就容易算出。例如,图(a)表示间隙为δ的两个同心圆柱体,外筒固定,内筒以角速度ω旋转。内柱表面的粘 性切应力为。图(b)表示两个同轴圆柱体,间隙为δ,内筒以速度U沿轴线 方向运动,内筒表面的粘性切应力为。 表面张力的计算 在一般工程实际问题中通常不考虑表面张力。但如果涉及到流体计量、物理化学变化等问题,则表面张力通常要加以考虑。 (1)空气中的液滴 如果不考虑重力影响,液体内部压强为常数,由式 可知 又根据对称性知,两个曲率半径相等,这时液滴必为球体,内外压强差为

如果考虑重力影响,则液滴不再是球体,越靠近下方,液滴的曲率半径越小。 (2)液体气泡 液体气泡有内表面和外表面,其半径分别为R1和R2,如图1所示。气泡内气体压强为p,外部空气压强为p0,液体的压强为p1,对于内表面和外表面分别应用式 有: , 液膜很薄,内外半径可视为相等,即R1=R2=R,上面两式相加,得 上式也可以这样推证:过球心作一切面将液体球膜分成两部分。对于其中一个半球面,压强差p-p0产生的压力应等于张力,而张力在内外表面均存在,于是: 化简后就得到上式。

(3)毛细液柱 将一根细管插入液体中,由于表面张力的影响,管内液柱将上升h,如图2所示。设液柱表面最低处的液体压强为p,外部大气压强为p0,则 由流体静力学知 因此,毛细液体上升的高度为 (4)铅直固壁上的液面 如图所示,表面张力将使液面弯曲,其爬升的最大高度为h。在弯曲液面上的任一点应用式 有: 式中,R是该点的曲率半径,

伯努利方程与雷诺数实验(精)

实验十七伯努利方程与雷诺实验 一、实验目的 二、基本原理 三、实验流程 四、实验步骤 五、注意事项

实验目的 (1)了解在不同的情况下,流动流体中各种 能量间相互转化的关系和规律; (2)观测流动流体阻力的表现。 (3)观察液体流层、湍流两种流动型态及层 流时管中流速分布情况,以建立感性认识; (4)确立“层流和湍流与Re之间有一定联系”的概念; (5)熟悉雷诺准数的测定与计算。

基本原理 1.流体在流动中具有三种机械能,即位能、动能、静压能,这三种能量是可以相互转换的,当管路条件改 变时(如为止,高低,管径,大小),它们便发生能 量转化; 2.实际流体有截然不同的两种流动型态存在:层流(滞流)和湍流(紊流)。 3.层流时,流体质点作直线运动且互相平行。 4.湍流时,流体质点紊乱地向各个方向作无规则运动,但对流体主体仍可看作向某一规则方向流动。

实验流程 图17-1 伯努利实验流程图 1,2,5,6-玻璃管(d内约为13mm); 3,4-玻璃管(d内约为24mm);12-溢流管;13-测压管;

图17-2 雷诺实验流程图 1-高位墨水瓶;2-进水稳流装置;3-溢流箱;4-溢流管;5-高位水槽;6-量筒;7-排水管;8-转子流量计;9-玻璃管。

1、伯努力实验 (1)实验前观察了解实验装置,(循环泵的凯、关,溢流管控制高位槽液面,出口阀A调节流量,活动弯头的转动,活动测头结构以及测压管标尺的基准等)。开动循环水泵,同时注意高位槽中液面是否稳定。 (2)观察玻璃管中有无气泡,若有气泡,可先开循环水泵,再开大出口阀让水流带出气泡,也可用拇指按住管的出口,然后突然放开,如此按数次使水流带出气泡,也可拧松活动测压头密封的压盖,以便放出测压点处的气泡。 (3)关闭出口阀A,开动循环水泵,待高位槽中的液面稳定,观察记录个测压管液面高度(测压孔同时正对或同时

KH-BLY板式塔流体力学演示实验装置

KH-BLY板式塔流体力学演示实验装置 一、装置特点: 1、整个装置美观大方,结构设计合理,整体感强,具备强烈的工程化气息,能够充分体现现代化实验室的概念。 2、设备整体为自行式框架结构,并安装有禁锢脚,便于系统的拆卸检修和搬运。 3、本实验装置塔体部分采用全透明优质有机玻璃制作,实验现象清晰,方便学生观察。 4、分别采用三种(筛板、浮阀、泡罩)不同的经典塔板,有助于开阔学生视野。 5、塔体进气位置可调,可验证不同塔板的泛塔气速。 6、装置设计可360度观察,实现全方位教学与实验。 二、装置功能: 1、了解板式塔的基本构造,观察板式塔工作时塔板上的水力状况。 2、学会识别板式塔内出现的几种操作状态,并分析这些操作状态对塔性能的影响。 3、测定不同类型板式塔(筛板、浮阀、泡罩)的水力学特性,并了解其特点。 三、设计参数: 1、常压、常温操作。

2、板式塔:筛板、浮阀、泡罩。 3、筛板、浮阀、泡罩塔板压降:1-5KPa。 4、液体流量:25-250L/h。 5、气体流量:4-40 m3/h。 四、公用设施: 1、水:装置自带水箱循环使用。 2、电:电压AC220V,功率1.0KW,标准单相三线制。每个实验室需配置1~2个接地点(安全地及信号地)。 3、气:空气来自风机(自带气源)。 4、实验物料:水---空气,外配设备:无。 五、主要设备: 1、有机玻璃塔体(筛板、浮阀、泡罩):φ200×2000mm ,板间距300mm。 2、塔底水封槽:500×400×400 mm,304不锈钢材质,水可自动放净。 3、液体转子流量计:LZB-15, 25—250 L/h。 4、气体转子流量计:LZB-40, 4—40 m3/h。 5、筛孔板:φ3mm孔,等腰三角形排列,开孔率 5.5%。 6、泡罩板:φ50 泡罩3个。 7、浮阀板:φ39标准F型浮阀3个,最小开度2.5,最大开度8.5。 8、U型型管压差计,±3000Pa。 9、鼓风机:旋涡气泵,功率 750W,最大流量72m3/h。 10、接触器、开关、漏电保护空气开关。 11、304不锈钢管路、水箱、管件及阀门。 12、304不锈钢仪表柜:测控、电器设备在实验架上。 13、304不锈钢材质框架1300*550*2200mm(长×宽×高),带脚轮及禁锢脚。

流体力学

流体力学基本练习题 一、流体力学名词解释 流体质点:流体中宏观尺寸非常小而微观尺寸又足够大的任 意一个物理实体。 流体的体膨胀系数:当压强不变时,每增加单位温度所产生的流体体 积相对变化率。 流体的等温压缩率:当温度不变时,每增加单位压强所产生的流体体 积相对变化率。 流体的体积模量:当温度不变时,每产生一个体积相对变化率所需要 的压强变化量。 流体的粘性:流体内部质点或流层间因相对运动而产生内摩擦力以及 反抗相对运动的性质。(流体运动时内部产生切 应力的性质) 理想流体:粘度为0的流体。 牛顿流体:可以用一条通过原点而非坐标轴的直线所表示的流体叫作 牛顿流体。 不可压缩流体:等温压缩率和体膨胀系数完全为零的流体。 质量力:与流体微团质量大小有关(成正比)并且集中作用在质量微

团中心上的力称为质量力。 表面力:大小与表面面积有关而且分布作用在流体表面上的力称为表 面力。 等压面:流体中压强相等各点所组成的平面或曲面称为等压面。 等势面:流体中势能相等各点所组成的平面或曲面称为等势面。 质点导数:运动中的流体质点所具有的物理量N(如速度、压强、密 度、温度、质量、动量等)对时间的变化率称为 物理量N的质点导数。 定常场:如果流场中的速度、压强、密度、温度等等物理量的分布于 与时间t无关,则称为定常场或定常流动,此时 物理量具有对时间的不变性。 均匀场:如果流场中的速度、压强、密度、温度等等物理量均与空间 坐标无关,则称为均匀场或均匀流动,此时物理 量具有对空间的不变性。 流线:流线是流场中的瞬时光滑曲线,曲线上各点的切线方向与该点 的瞬时速度方向一致。 迹线:流体质点的运动轨迹。 流管:无数流体围成的一个管状的假象表面。