流量测量仪表误差大的原因分析

流量测量仪表误差大的原因分析

流量测量仪表误差大的原因分析

摘要: 误差和错误是不同的,我遇到的情况常常是读数错误而不是误差,一般现在无论使用什幺测量工具只要按要求安装,测量系统误差在2.5% 是不难的。很多测量不正确,是由于测量错误。1、温度测量温度测量主要有热电偶和热敏电阻两类,但细分...

误差和错误是不同的,我遇到的情况常常是读数错误而不是误差,一般现在无论使用什幺测量工具只要按要求安装,测量系统误差在2.5%是不难的。很多测量不正确,是由于测量错误。

1、温度测量

温度测量主要有热电偶和热敏电阻两类,但细分就很多了。一般的温度测量仪器,内部的补偿曲线不足以满足所有温度探头的要求,比较粗糙。要保证温度测量准确必须准确了解产品的分度,选择合适的补偿曲线。WEST 温控器补偿曲线较好(欧版),我用它做过0.1C 精度的控制系统。欧陆的温控器也适合精密温度控制,RKC 可以满足一般要求(1C),但RKC 仿造较多,国产数字温控器,难得满足有严格温度控制精度要求的场合。问题不是传感器的问题,而是PID 算法的问题,试过一些调整很费劲,鲁棒性不行!

2、压力测量

主要问题是取样管路问题和压力感应片失效或回复性不行,造成变送器不准确,这是错误而不是误差,因为设计没有问题而元件失效不算误差!

3、流量测量

流量测量无论是孔板、涡街、超声波要注重原理的适应性。涉及到温度、

气体体积流量测量的温度压力补偿公式及相对误差计算

流量计示值修正(补偿)公式 我公司能源计量的流量计示值单位规定为20℃,101.325kPa 标准状态的流量,如设计选型使用了不同流量计示值单位,则根据设计的流量单位(质量流量kg/h 、0℃,101.325kPa 及20℃,101.325kPa 标准状态或工作状态)选用对应的温度、压力修正(补偿)公式;不同测量原理的流量计,应根据其流量计流量方程(公式)选用对应的温度、压力修正(补偿)公式。 1. 气体流量测量的温度、压力修正(补偿)公式: 1.1 差压式流量计的温度、压力修正(补偿)实用公式: 一般气体体积流量(标准状态20℃,101.325kPa ),根据差压式流量计流量方程,可得干气体在标准状态(20℃,101.325kPa )的积流流量: )()()()(15.273T 325.101p 15.273T 325.101p q q vN vN +'?++?+'=' (1) 式中: q'vN ——标准状态下气体实际体积流量; q vN ——标准状态下气体设计体积流量; p' ——气体实际压力,kPa ; p ——气体设计压力,kPa ; T'——气体实际温度,℃; T ——气体设计温度,20℃。 1.2 一般气体质量流量的温度、压力修正(补偿)公式:

T p T p q q m m ''=' (2) 式中: q'vN ——标准状态下气体实际体积流量; q vN ——标准状态下气体设计体积流量; p' ——气体实际压力,绝对压力; p ——气体设计压力,绝对压力; T'——气体实际温度,绝对温度; T ——气体设计温度,绝对温度。 1.3 蒸汽的温度、压力修正(补偿)公式: 根据差压式流量计流量方程,可得蒸汽的质量流量: ρρ' ='m m q q (3) 式中: q'm ——蒸汽实际质量流量; q m ——蒸汽设计质量流量; ρ' ——蒸汽实测时密度; ρ ——蒸汽设计时密度; 依据水和水蒸汽热力性质IAPWS-IF97公式其密度计算模型,工业常用范围内水蒸汽的密度为: )(1000 10 ππγγνρ+==RT

简述电磁流量计5种误差原因

简述电磁流量计5种误差原因 作为一种测量数据的仪器,丝毫的误差都会影响结果,而电磁流量计作为一种运用广泛的仪表,在废水污水的测量中,发挥着重要作用。但是由于在型号选择、安装以及后期使用中出现失误,最终可能会对最后的测试结果产生影响,使测量数据产生偏差,甚至有可能损坏仪表。既然如此,那我们就必须要了解造成电磁流量计出现误差的原因,以便找出应对措施,解决问题。电磁流量计产生的误差的有以下5种常见的原因: 1..测试液体中可能存在结晶体。电磁流量计应慎用易结晶化工物料在温度正常的情况下正常测量,由于输送流体的导管都有良好的伴热保温性,在保温工作时不会结晶。但是电磁流量传感器的测量管难以实施伴热保温,因此,流体流过测量管时易因降温而引起内壁结上一层晶体。由于改用其他原理的流量计测量也同样存在结晶问题,所以在无其他更好方法的情况下,可选用测量管长度非常短的一种“环形”(oring)电磁流量传感器,并将流量计的上游管道伴热保温予以强化。在管道连接方法上,考虑流量传感器拆装方便,在一旦结晶时能方便地拆下维护。 2.液体电导率超过允许范围引发的问题。液体导电率若接近下限值也有可能出现晃动现象。因为制造厂仪表规范(specification)规定的下限值是在各种使用条件较好状态下可测出的最低值,而实际条件不可能都很理想,于是就多次遇到低度蒸馏水或去离子水,其导电率接近电磁流量计规范规定的下限值5,使用时却出现输出晃动。通常认为能稳定测量的导电率下限值要高1~2个数量级。 3.管内液体没有充满。由于背压不足或流量传感器安装位置不良,致使测试管内液体未能充满。当管内存在很少量气体时,则会使测量结果偏离实际值,造成小误差;当有很多气体存在时,则会出现测量值不稳定,输出晃动,此时测量值误差较大,不能作为正确结果 4.被测液体中含有固体成分。当出现这种情况时,仪表通常会出现以下问题:液浆噪声,电机表面沾染污垢,衬里被磨损或被沉积物覆盖,流通截面积缩小,导电沉积层或绝缘沉积腹杆电极或衬里,若沉积层有导电物质,流量信号很有可能被短路,使仪表出现故障。 5.电极和接地环材质选择不当。因材质与被测介质不匹配而引发故障的电磁流量计与介质接触的零部件有电极与接地环,匹配失当除耐腐蚀问题外,主要是电极表面效应。电极能否可靠地检测流量信号,对流量计的性能至关重要。接地环起到与介质形成电的连接,通过接地线和零电位接通。当与传感器连接的工艺管道为塑料或内有绝缘涂层的管道时,必须安装接地环,否则会造成仪表不能正常工作。

流量计类型及水表允许误差

流量计种类及流量计工作原理 用以测量管路中流体流量(单位时间内通过的流体体积)的仪表。有转子流量计、节流式流量计、细缝流量计、容积流量计、电磁流量计、超声波流量计和堰等。国家是用仪表的最大相对百分误差的绝对值作为准确度等级,其中:一级标准仪表的准确度是:0.005 0.02 0.05 二级标准仪表的准确度是:0.1 0.2 0.35 0.5 一般工业用仪表的准确度是:1. 1.5 2.5 4.0 相对百分误差=(北测参数的测量值-北侧参数的标准值)/(标尺上限值-标尺下限值)*100% 附件:水表的最大允许误差----低区值:最小流量Q1与分界流量Q2(不含)的体积差=正负5%...高区值:Q2与Q4(过载流量)的体积差=正负2%~3% 流量测量方法和仪表的种类繁多,分类方法也很多。至今为止,可供工业用的流量仪表种类达60种之多。品种如此之多的原因就在于至今还没找到一种对任何流体、任何量程、任何流动状态以及任何使用条件都适用的流量仪表。 这60多种流量仪表,每种产品都有它特定的适用性,也都有它的局限性。按测量对象划分就有封闭管道和明渠两大类;按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。 总量表测量一段时间内流过管道的流量,是以短暂时间内流过的总量除以该时间的商来表示,实际上流量计通常亦备有累积流量装置,做总量表使用,而总量表亦备有流量发讯装置。因此,以严格意义来分流量计和总量表已无实际意义。 按测量原理分有力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等。 按照目前最流行、最广泛的分类法,即分为:容积式流量计、差压式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计、质量流量计和插入式流量计、探针式流量计,来分别阐述各种流量计的原理、特点、应用概况及国内外的发展情况。 差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的几何尺寸来计算流量的仪表。 差压式流量计由一次装置(检测件)和二次装置(差压转换和流量显示仪表)组成。通常以检测件形式对差压式流量计分类,如孔板流量计、文丘里流量计、均速管流量计等。 二次装置为各种机械、电子、机电一体式差压计,差压变送器及流量显示仪表。它已发展为三化(系列化、通用化及标准化)程度很高的、种类规格庞杂的一大类仪表,它既可测量流量参数,也可测量其它参数(如压力、物位、密度等)。 差压式流量计的检测件按其作用原理可分为:节流装置、水力阻力式、离心式、动压头式、动压头增益式及射流式几大类。 检测件又可按其标准化程度分为二大类:标准的和非标准的。

气体涡轮流量计检定过程中存在的问题及措施

气体涡轮流量计检定过程中存在的问题及措施 发表时间:2019-07-19T12:23:30.977Z 来源:《基层建设》2019年第12期作者:张永贵 [导读] 摘要:天然气计量系统中,气体涡轮流量计是其重要组成部分。 巴州计量检定所新疆库尔勒 841000 摘要:天然气计量系统中,气体涡轮流量计是其重要组成部分。作为速度式流量计的一种,涡轮流量计在检定时,经常会由于各种问题导致检定工作无法正常开展。由于气体涡轮流量计经常被应用在天然气交接过程中,因此,涡轮流量计的准确性直接关系到天然气交接双方的经济利益,因此,在流量计检定过程中,要克服各种问题,尽可能缩小流量计计量误差。根据长期的工作实践,详细阐述检定涡轮流量计过程中所存在的问题,并提出相应解决方法。 关键词:气体涡轮;流量计;检定过程 1 概述 在计量科学技术中,流量计量是其重要的组成部分之一。做好流量计量工作,是提高生产效率、保证产品质量的关键因素。目前市场上有两种主要的气体涡轮流量计被使用:一种是一体式或智能式电子气体涡轮流量计,也就是不带机械计数器的涡轮流量计;另一种气体涡轮流量计为带机械计数器的。作为速度式流量计的一种,在气体流量计量中,涡轮流量计占大部分。由于气体涡轮流量计经常被应用在天然气交接过程中,因此,涡轮流量计的准确性直接关系到天然气交接双方的经济利益,因此,流量计在检定过程中,要尽可能缩小流量计计量误差。本文针对检定涡轮流量计过程中存在的一些问题,结合平时工作经验,提出相关解决对策,使检定工作正常顺利开展。 2 气体涡轮流量计检定过程中存在的问题及解决途径 涡轮流量计在检定时,经常会遇到示值误差,用仪表系数K计算时,出现不合格流量计的示值误差或者直接采集不到标准信号且可能出现直接不显示等现象。而尽管涡轮流量计出现这部分现象,也不代表流量计就不合格,因此,我们要得出最终的检定结论,就需要我们流量计检定人员认真分析这些现象。 2.1 采取仪表系数K计算的流量计示值误差不合格 涡轮流量计在检定时,由于出厂时的涡轮流量计标定都采取用水标定的方式,而在日常检定中换成用红油介质对涡轮流量计进行检定时,由于红油的黏度系数比较大,流量计采用红油介质进行检定时,检定的准确度就达不到出厂准确度。为了满足检定要求,我们就有必要提高流量计下限值或者把流量计的准确度适当降低。对于一部分具备自动修正功能的流量计来说,即便通过仪表系数K算出来的是示值误差不合格,但是通过对其分段进行修正后,流量计分段的示值误差也可满足检定准确度的要求,确保涡轮流量计检定合格。当然,前提条件是流量计重复性要合格。 2.2 信号无法被标准设备采集到 通过标准设备采集流量传感器输出的脉冲信号,并且为待检定的涡轮流量计提供12/24V直流电。当流量计的输出信号无法被检定涡轮流量计时标准设备采集到时,首先应检查是否正确连接信号线,如果信号线连接正确,就应该测试一下是否有信号从流量计输出。如果信号没有输出,就说明放大器或流量计已经损坏,检定结果是流量计不合格。如果有输出信号,首先就应对流量计信号的频率以及其幅值进行测试,然后再对标准设备控制台上的“脉冲信号放大倍数选择”和“脉冲信号幅值选择”进行调整,使其对应相应的放大倍数和幅值,直到信号被标准设备采集到为止。当信号通过调整标准设备也无法采集到时,流量计输出信号的频率可用频率计采集,然后根据K=f/q V公式,代入标准流量值及频率,计算出流量计的仪表系数。 2.3 二次仪表显示结果超差或不显示 如果检定仪表连线不正确的话,会造成二次仪表所检流量值不显示。因此,检定流量计时需要首先检查信号、电源等线路连接是否正确。如果已正确连接线路,流量值仍不能显示的话,说明二次仪表可能已经损坏。另外,检定过程中还需要正确设置仪表的系数,否则检定过程中可能会出现二次仪表显示的流量值超差的情况。当仪表具备分段修正的功能的时候,至少要根据检定的结果,每一个流量段都要输入一个仪表系数值,不要只输入一个点,务必要检定三个点。这样就能确保整个量程的流量示值误差合格。 2.4 其他 通常情况下,为降低轴承的机械摩擦力,精度高的涡轮流量计一般都采用优质轴承。同时为承受气流的压力,通常还采用坚实的叶轮。因此,检定过程中,要注意这些涡轮流量计现场保养情况,通常每个季度润滑保养一次。这主要是为了降低流量计轴承因污垢等原因造成机械摩擦力增加,从而影响流量计计量速度,产生计量误差。 3 结束语 综上所述,为使涡轮流量计工作时处于最佳状态,必须采取措施优化其流量测量的性能,以确保其计量的准确度。由于涡轮流量计的种类繁多,接线方式也各不相同,所以在检定涡轮流量计时,有些问题要根据具体情况进行分析,并个性化采取措施,确保流量计检定效果。 参考文献: [1] 苏彦勋,盛健,梁国伟.流量计量与测试[M].北京:中国计量出版社,1992. [2] 涡轮流量计检定规程.JJG 1037-2008,2008. 作者简介: 张永贵,男,1971年10月出生,单位:巴州计量检定所,国家注册质量师,机电工程师,主要从事气体流量,电学等检定校准工作。

谈谈系统误差的产生原因及其消除或减少的方法

谈谈系统误差的产生原因及其消除或减少的方法 在讨论随机误差时,总是有意忽略系统误差,认为它等于零。若系统误差不存在,期望值就是真值。但是,在实际工作中系统误差是不能忽略的。所以要研究系统误差,发现和消除系统误差。 一、系统误差产生的原因 在长期的测量实践中人们发现,系统误差的产生一般的与测量仪器或装置本身的准确程度有关;与测量者本身的状况及测量时的外界条件有关。 1、在检定或测试中,标准仪器或设备的本身存在一定的误差。在进行计量检定,向下一级标准量值传递时,标准值的误差是固定不变的,属于系统误差。又称为工具误差或仪器误差。如:标称值为100g的砝码,经检定实际值为99.997g,即误差为+0.003g。用此砝码去秤量其他物体的质量,按标称值使用,则始终把被测量秤大,产生+0.003g的恒定系统误差。 某些仪器或设备,在测量前须先进行调零位,若因测量前未调零位或存在调零偏差,使得标准仪器在测量前即具有某一初始值,该初始值必然直接影响测量结果,给测量结果带来误差。这种误差,一般称零位误差,或简称零差。 某些仪器或设备,如未按要求放置,特别是某些电磁测量和无线电测量仪器或设备,未正确接地或屏蔽,或未用专用连接导线,也会给测量结果带来误差。这种误差称为装置误差。 2、测量时的客观环境条件(如温度、湿度、恒定磁场等),也会给测量结果带来误差。如,重力加速度因地点不同而异,若与重力加速度有关的某些测量,未按测量地点的不同加以适当的修正,也会给测量结果带来误差。因这种误差是由客观环境因素引起的,一般把它称为环境误差。 3、由于某些测量方法的不完善,特别是检定与测试中所使用的某些仪器或设备,在设计制造时受某些条件的限制(如元器件,制造工艺等),不得不降低某些指标,采用一些近似公式,这也会给测量结果带来误差。这种误差称方法误差或称理论误差。 4、在测量中,测量者本身生理上的某些缺陷,如听觉、视力等缺陷,也会给测量结果带来误差。此项误差又称为人员误差。 二、消除或减少系统误差的方法 mad消除或减少系统误差有两个基本方法。一是事先研究系统误差的性质和大小,以修正量的方式,从测量结果中予以修正;二是根据系统误差的性质,在测量时选择适当的测量方法,使系统误差相互抵消而不带入测量结果。

孔板流量计误差原因分析与修正

孔板流量计误差原因分析与修正 差压流量计是在工业场合应用极为广泛的一种流量计量仪器,对于气体、液体和蒸汽的流量都可以测定。据数据统计,工业场合差压流量计的使用占流量仪表总数的1/3以上,此中应用最普遍的是由差压计和节流装置构成的节流式流量计。 差压流量计所采用的典型节流件主要为孔板、文丘里管、喷嘴和文丘里喷嘴等。孔板流量计上世纪初便被最先用于天然气流量的测定。截止目前,大量学者已对孔板流量计的结构设计进行深入探讨,使孔板流量计逐步趋于标准化。根据孔板流量计的测量原理,可以直接确定节流件前后差压与流量的关系,此特性是孔板流量计所独有的。 1 孔板流量计的计量原理 在管道中安装一个流通面积小于管道截面积的节流部件,节流件的变截面效应可使流体在经过节流件时产生局部收缩,流速急剧增加,压强明显变小,从而在节流件前后截面差生压差。针对某一标准节流装置,如果管道、计量装置、测压位置及流体参数均保持恒定,节流件前后截面的差压与管道流量间存在一定的函数关系。因此,可以通过直接测量节流件前后截面的压差,间接计量流量。 2 孔板流量计的误差原因分析 2.1 流体本身特性的影响 管道中流体自身的温度、压力等特性参数极易受到环境温度的影响产生波动,进而影响孔板流量计的测量精度。尽管温度等环境参数对流体粘度的影响并不明显,但仍影响孔板流量计的计量精度和准确度。经验表明,孔板流量计常用于单相流体流量的测定,针对多相流体流动,其精度将受到严重的干扰。 2.2 流量积算方式的影响 将孔板节流装置与各种二次测量仪表相结合,就形成了多种流量积算的方法。如果在流量计量过程中,测量系统不按照计量标准安装

对应的二次测量仪表,流量积算时便不能对流体压力、温度的变化进行补偿,测量精度将难以保证。针对此问题,可以采用先进的微计算机技术对流量进行精确的计算,持续地对流量进行补偿。 2.3 结构及附属仪器的影响 孔板流量计的结构也会造成很多误差,主要包括:孔板和管道的直径比改变;孔板发生变形;孔板表面粗糙度不达标等因素,都将影响孔板流量计的计量精度。同时附属仪器的影响也不可忽视。比如,如果下游引压管与流量仪表间的连接件产生漏气、堵塞等状况,会导致流量计的计量流量略大。另外,差压变送器的零点通常需要校准。 2.4 安装条件的影响 使用场地通常不能达到流量计上游最短直管段长度的要求,致使管线布置经常发生偏离。同时为了避免进口流体流动状况对流量计计量精度的影响,要求孔板流量计上游具有最短直管段长度,但在实际中一般很难满足。另外流量、流速等电子信号设备应远离存在电磁干扰的场合,保证其工作性能。 2.5 环境条件的影响 使用环境条件严重影响孔板流量计的性能,比如流体温度急剧变化将增加管道内的流体的湿度,加速腐蚀;环境温度直接决定流体的密度、粘度等物性参数;流量计的结构尺寸发生变化等。 3 提高计量精度的改进办法 3.1 设计安装应严格遵循标准 必须依照标准进行孔板节流装置的设计,根据孔板前阻力件形式配接至少30倍管徑的直管段,从而减小计量误差。在安装场地不允许的场合,必须在上游直管段上加设整流器,且孔板的侧面务必与管道中心线垂直。同时安装时应正确选择压差计的型号与量程。 3.2 避免流体脉动,保证良好的流动状况 在符合计量能力的前提下,尽量选用较小内径测量管,保证管道内流体在高雷诺数下运行,抑制脉动流的产生。采用上下游相同长度的短引压管线,抑制引压管线系统中阻力件对流动所造成的影响。消

测量误差的分类以及解决方法

测量误差的分类以及解决方法 1、系统误差 能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。系统误差越小,测量结果的准确度就越高。 2、偶然误差 偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。 系统误差和偶然误差是两类性质完全不同的误差。系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。 3、疏失误差 疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。显然,凡是含有疏失误差的测量结果都是应该摈弃的。 解决方法: 仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。 消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。所以应根据测量的要

求和两者对测量结果的影响程度,选择消除方法。一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。 1、系统误差的消除方法 (1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。 (2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。 采用特殊的测量方法如正负误差补偿法、替代法等。例如,用电流表测量电流时,考虑到外磁场对读数的影响,可以把电流表转动180度,进行两次测量。在两次测量中,必然出现一次读数偏大,而另一次读数偏小,取两次读数的平均值作为测量结果,其正负误差抵消,可以有效地消除外磁场对测量的影响。 2、偶然误差的消除方法 消除偶然误差可采用在同一条件下,对被测量进行足够多次的重复测量,取其平均值作为测量结果的方法。根据统计学原理可知,在足够多次的重复测量中,正误差和负误差出现的可能性几乎相同,因此偶然误差的平均值几乎为零。所以,在测量仪器仪表选定以后,测量次数是保证测量精密度的前提。 . 容:

流量计准确性

通过计量工作,促进压裂计量器具准确性和节能降耗 随着经济的发展和社会的进步,计量工作在我们的生产、生活和科研活动中显现出越来越重要的作用。计量技术工作作为计量工作的基础和手段,为计量管理提供技术支持和保障,这就必然要求计量技术机构提升技术水平和服务能力,而“沟通”则在技术机构的发展中充当着重要的角色。 随着社会经济的发展,对铁路运输系统提出了重载、提速、安全、高效的战略方针,我厂是我国铁路货车设计、制造、修理主导厂家,为了保证行车安全,消除安全隐患,为了企业的长远发展,制订了一系列高质量、高标准的技术要求和实施办法来保证上述目标的实现。根据国内60年的货车运行经验及国外技术资料研究发现,铁路货车重大事故的发生基本上是由于货车行走部位故障引起的,典型的是热切轴、冷切轴、自动失灵、零件裂纹等,而热切轴、自动失灵、螺母松动等事先通过红外温度检测、列检人员检查等能有效预防,但是由于裂纹、内部缺陷等引起的重大事故是无法在货车运行时检测的,所以必须在新造、厂修、段修时通过无损检测来控制和保证质量。 近年来,我国广泛采用了流量计(表)计量发(付)石油产品,改变了过去整装过磅方式的发(付)油方法,减轻了劳动强度,降低了损耗,提高了工作效率。 一、流且计的种类 通常使用的流量计分为二大类。一类以仪表本身直接显示示值的容积式流量计、刮板流量计、加流机等;另一类是将流经仪表(一次表)石油产品数量以发讯装置发出脉冲信号,通过前置放大输送给二次仪表显示示值的流量计,如涡轮流量计等。目前使用第一类流量仪表的较多。 二、流t计计t方法 这里主要介绍一下将重量换算为容量的方法。根据中国石化销售公司中规定:凡以流量计发(付)石油产品,应以下式计算石油产品的容积。 三、影响流t计准确性的因素 (一)仪表精度 流量仪表在制作时,因零部件粗糙,装配精度及磨损等原因,使流量表自身精度不高或精度下降,使发(付)的石油产品数量不准确。因此选用流量计时应选用精度较高的。目前我国要求工作用流量计的精度为土0.5%,而且在使用中更应按规定进行周期检定。

案例分析:绩效考核误差产生的原因及对策

情景案例 绩效考核误差 老王是一家IT公司的项目经理,多半年以来一直带着团队在 客户的公司工作现场中做软件系统的测试和维护工作,一天到晚忙 得不亦乐乎。正在这时,到了公司的绩效考核时间,人力资源部催 促老王按期完成考核工作的电话让他感到心烦意乱。虽然当时论证 绩效考核制度的会议自己也参加了,可事到临头,看到绩效考核表 格上的那一个个的指标,老王心里还是觉得没底。 老王心想,我这一落笔,不但关系到面子,而且关系到票子, 大伙出差这么久,功劳苦劳都得记上。新婚的小李,为了赶项目进度,蜜月刚刚过了两天就跑回来工作了,多容易啊。想到这里,老 王顺手就给小李在各项评价指标上填了一串的满分5分。 秘书小孙是新招来的毕业生,她比刚辞职的小安机灵多了,什 么事情一教就会,不像小安,连用传真机都让自己手把手教了半天,所以小孙也应该给高分。 至于小赵,老王皱了皱眉头,小赵通常都是留守在公司里,很 少跟自己一起出差,也不是很清楚他在公司里都干了些什么,干得 怎么样。那就凭感觉随便填填好了。“测试报告完整准确”……,在 自己的印象中,小赵的测试报告倒是没出过大的岔子,给4分吧,“责任感强”……,老王想了想,既然没出过岔子,应该还是有责任 感的,4分?不对,记得小赵刚来的时候,有一回在客户的机房值 班时玩电脑游戏,被领导逮住了,弄得自己也没面子,想到这里, 老王又把小赵在“责任感”这一栏的得分改成了3分。 至于小朱吧,得好好考虑考虑,这小子工作不怎么样,还好高 骛远,总觉得在这个部门淹没了他的能耐,老跑到老刘那个部门去 转悠,搞的老刘还以为他很能干,前两天还透露出想调他过去的想

法,要不就给小朱打个高分算了,让老刘真以为自己捡了个宝贝, 赶紧把小朱调过去那该多好…… 绩效考核误差的危害及其解决难度上述案例中的场景是很多企业的管理者在进行绩效考核工作的过程中都有可能会遇到的现象。 事实上,如何克服绩效考核过程中存在的各种误差,是很多组织的 领导者、人力资源管理人员以及员工都非常关心的问题。这里的所 谓绩效考核误差,是指考核者在进行绩效考核的过程中,对员工的 真实绩效表现所做出的不真实甚至是歪曲性的反映。由于任何一种 涉及到人对人进行评价的“考评”和“测量”都不可避免会地存在一定的误差,所以作为人力资源管理中重要一环的绩效考核也不例外。 绩效考核中潜藏的各种误差看似是小问题,实质上却会成为一种对企业管理、组织文化以及员工关系产生腐蚀作用的“病毒”,会 在不知不觉中给组织带来很多损害。 首先,如果组织的高层管理人员基于这些存在较大误差的信息 来制定各种政策或采取相应的措施,那么,这些政策措施的效果难 免会大打折扣甚至会适得其反; 其次,绩效考核误差的存在很可能会对员工的工作积极性、工 作满意度以及敬业度,甚至整个组织的运营产生不良的影响; 再次,低效度的绩效考核结果会使得绩效改进失去正确的方向,员工会变得不知所措,甚至由于感到没有得到公平的对待而选择离职; 最后,如果考核者在对员工进行绩效考核时,本来应该拉开的 合理差距不拉开,组织采取的与绩效挂钩的薪酬政策所能够产生的 效果也会受到很大影响,这对于那些绩效优秀的员工尤其显得不公平。

孔板流量计产生误差的原因分析

孔板流量计产生误差的原因分析 1、孔板流量计安装不合理 孔板流量计的安装应符合相应的安装规范。根据GB/T 21446—2008《用标准孔板流量计测量天然气流量》,节流装置应安装在2段具有等直径的圆形横截面的直管段之间,毗邻孔板的上、下游直管段应符合一定的技术要求。一般情况下,海上油田孔板安装要求为:毗邻孔板的上游直管段长度应为10D(D为测量管内径),下游直管段长度应为5D。在实际安装的过程中基本可以满足要求,但往往一些细节问题会被忽视,也会造成安装误差,如:直管段内壁粗糙度不符合要求,引起误差;施工人员领料、用料不符合规范,实际安装管道与设计要求不符等。 2、取压与气流异常 从地层中开采出的原油进入油井计量分离器进行油气水三相分离,这一过程中,当出现天然气气液分离效果不好或分离器内部结构件(波纹板、捕雾器)故障破损时,也会产生不利的影响因素。如: (1)会使导压管路、测量腔室在长时间使用中产生积水、积油现象,严重的情况下原油中的油泥及颗粒也会进入导压管,发生堵塞,从而影响计取压的准确性,造成计量误差; (2)在冬季,环境气温较低时,有可能会使积液产生冻堵,此时流量计也不能真实地反映出孔板的前后压差,造成计量数据不准确;(3)仪表变送器经过长期使用,会发生相应的零点漂移,造成测量

数据偏差。 依据GB/T 21446—2008《用标准孔板流量计测量天然气流量》,气流通过孔板的流动应保持亚音速,是稳定或仅随时间缓慢变化的,应避免脉动气流。当不能满足孔板安装直管段的长度要求时,应安装阻流件及流动调整器,以确保气流的稳定。 3、测量范围选择不合理 在正常生产中,由于油藏属性、地层能量、开采方式等的不同,每口油井的生产状态与产量也会不同。单一开口尺寸的孔板流量计的计量范围是固定的,一般情况下常用孔板的量程比为1∶3。实际操作中,应根据油井的开发生产方案中的预测产气量或已知产气量选择与之相适应的孔板进行油井的计量。 4、人员操作及维护不当 对高产井与低产井的计量,由于其产气量的范围会超出测量范围,不可避免的工作就是更换不同孔径的孔板,以确保计量的准确性。人员的一些操作失误会直接导致计量数据不准确。对于该项操作有着相应的严格要求: (1)孔板喇叭口的朝向应为管线下游方向; (2)安装拆卸孔板不能使用蛮力或尖锐工具,避免孔板变形和工作面划伤; (3)安装密封圈应检查有无破损情况; (4)更换下来的孔板应妥善保存,防生锈、防挤压,运送途中避免

流量传感器误差来源

流量传感器误差来源 空气流量传感器种类很多,有差压式、涡街式、金属转子式、孔板式等等。每个空气流量传感器都有各自的特点,不是所有的场合都适用,流量传感器需要根据实际测量,分别加以考虑。下面举例说明一下不能测量场合流量传感器的误差来源: 1、流量传感器压缩机和鼓风机出口流体大多数都包含有一定的振动。流体振动会引起差压式流量传感器、涡街流量传感器等多种传感器示值偏高,引起金属转子流量传感器中转子上下跳动。为了消除振动带来的影响,一般会在压缩机的出口设置一只缓冲罐减小振动的幅度,而将流量传感器装在缓冲罐的后面;或是将流量传感器安装在远离振动源的地点。空气流量传感器种类很多,有差压式、涡街式、金属转子式、孔板式等等。每个空气流量传感器都有各自的特点,不是所有的场合都适用,流量传感器需要根据实际测量,分别加以考虑。 2、测量压缩空气的流量传感器,一般会安装在压缩机房和鼓风机房里,而压缩机和鼓风机所产生的振动会通过空气管道或风管传到w oj i https://www.360docs.net/doc/1f17692795.html,很远的地方。振动导致涡街流量传感器产生同振动频率相对应的干扰信号,引起流量示值大幅度偏高。空气流量传感器种类很多,有差压式、涡街式、金属转子式、孔板式等等。每个空气流量传感器都有各自的特点,不是所有的场合都适用,流量传感器需要根据实际测量,分别加以考虑。 3、压缩空气取自大气,而大气中总含有一定数量的水蒸气。流量传感器用来测量压缩空气流量的较大口径孔板流量传感器,孔板前常有积水,会影响测量的精度。引压管中常有一段水,导致差压变送器测到的差压同节流装置所产生的差压不一致。这些都是空气带水引起误差的常见原因。空气流量传感器种类很多,有差压式、涡街式、金属转子式、孔板式等等。每个空气流量传感器都有各自的特点,不是所有的场合都适用,流量传感器需要根据实际测量,分别加以考虑。 4、阿牛巴流量传感器对大口径空气流量测量具有其独有的优势,价格便宜、简单可靠、安装维修方便是其显著优点,是涡街流量传感器和节流式差压流量传感器的补充。空气流量传感器种类很多,有差压式、涡街式、金属转子式、孔板式等等。每个空气流量传感器都有各自的特点,不是所有的场合都适用,流量传感器需要根据实际测量,分别加以考虑。空气流量传感器种类很多,有差压式、涡街式、金属转子式、孔板式等等。每个空气流量传感器都有各自的特点,不是所有的场合都适用,流量传感器需要根据实际测量,分别加以考虑。

涡轮流量计干扰因素及解决方式

涡轮流量计干扰因素及解决方式 涡轮流量计的精度会受到一些外部因素的干扰而影响到测量的精准度,因此,广大客户在使用安装前一定要对涡轮流量计的干扰因素进行及时的排查,以排除干扰因素。 涡轮流量计的干扰因素: 1、介质中一般都有一些杂质,对轴承、轴要产生磨损,使两者间的间隙增大,动件的动平衡被破坏,转速下降,或者脏物进入间隙内,使运动阻力增大,转速下降。这些原因都造成仪表显示值减少,出现负误差,对流体的供方不利。 2、流体温度、压力的变化可能使管道内液体逸出所含的空气或者因管道内的压力低于流体的饱和蒸汽压、使部分液体变成蒸汽,也可能因介质的负压使外面的气体被吸入管道内,这些气体随着被测液体流动,造成仪表指示值增大,出现正误差,对流体的需方不利。 3、流体中的纤维状或粘性杂质附在流量计的转动部分,使转动阻力增大,造成仪表的指示值减少,出现负误差,对流体的供方不利。 4、工作环境比较恶劣,例如,电磁场干扰、灰尘、高温、振动、潮湿等,可能造成涡轮流量传感器的误动作或失灵,直接造成涡轮流量计的示值误差,误差是正值也可能是负值,可能不明显,也可能完全失效。对于上述现象,在比较严重时,能从流程工作状态的对比中发现问题,容易采取相应措施。但是,在问题初期,不采取特殊措施就不能发现问题。

另外,根据涡轮流量计原理和现场工作经验,建议在涡轮流量计安装初期,在流量计的上游、下游各2倍管径的管壁上增设一对测压口,需要时与差压计相连,在工作状态下,记录流量计指示值与差压计指示值之间的对比关系,如果这时一切正常,就把这个对比关系作为以后检查流量计工作是否正常的依据。比如,定期测量这个对比关系,若发现同样的差压计指示值下流量计指示值偏小,则可怀疑到流量计出现故障。 检查流量计的传感器时,可以先检查发讯器。方法是单独取下发信器,输入一个已知信号,对照输出值,即可发现问题。若故障无法短时间排除,可以换上新的。如果不是它的原因,则应当把流量计从流程管线上卸下,进一步仔细检查,对症处理。对于比较脏污的流体或者有可能产生气体的液体。 注:在安装涡轮流量计时,可以在它的上游加装过滤器或消气器、集气器,加强日常维护工作,定期清理过滤器、排除消气器、集气器里的气体或杂物,确保流量计的正常运行。

测量误差产生的原因

测量误差产生的原因 测量时,由于各种因素会造成少许的误差,这些因素必须去了解,并有效的解决,方可使整个测量过程中误差减至最少。测量时,造成误差的主要有系统误差和随机误差,而系统误差有下列情况:误读、误算、视差、刻度误差、磨耗误差、接触力误差、挠曲误差、余弦误差、阿贝(Abbe) 误差、热变形误差等。系统误差的大小在测量过程中是不变的,可以用计算或实验方法求得,即是可以预测,并且可以修正或调整使其减少。这些因素归纳成五大类,详细内容叙述如下: 1. 人为因素 由于人为因素所造成的误差,包括误读、误算和视差等。而误读常发生在游标尺、分厘卡等量具。游标尺刻度易造成误读一个最小读数,如在10.00 mm处常误读成10.02 mm或9.98 mm。分厘卡刻度易造成误读一个螺距的大小,如在10.20 mm常误读成10.70 mm或9.70 mm。误算常在计算错误或输入错误数据时所发生。视差常在读取测量值的方向不同或刻度面不在同一平面时所发生,两刻度面相差约在0.3~0.4 mm之间,若读取尺寸在非垂直于刻度面时,即会产生的误差量。为了消除此误差,制造量具的厂商将游尺的刻划设计成与本尺的刻划等高或接近等高,(游尺刻划有圆弧形形成与本尺刻划几近等高,游尺为凹V 形且本尺为凸V形,因此形成两刻划等高。 2. 量具因素 由于量具因素所造成的误差,包括刻度误差、磨耗误差及使用前未经校正等因素。刻度分划是否准确,必须经由较精密的仪器来校正与追溯。量具使用一段时间后会产生相当程度磨耗,因此必须经校正或送修方能再使用。 3. 力量因素 由于测量时所使用接触力或接触所造成挠曲的误差。依据虎克定律,测量尺寸时,如果以一定测量力使测轴与机件接触,则测轴与机件皆会局部或全面产生弹性变形,为防止此种弹性变形,测轴与机件应采相同材料制成。其次,依据赫兹(Hertz) 定律,若测轴与机件均采用钢时,其弹性变形所引起的误差量 应用量表测量工件时,量表固定于支持上,支架因被测量力会造成弹性变形,如图2-4-3所示,在长度的断面二次矩为,长的支柱为,纵弹性系数分别为、,因此测量力为P 时,挠曲量为。为了防止此种误差,可将支柱增大并尽量缩短测量轴线伸出的长度。除此之外,较大型量具如分厘卡、游标尺、直规和长量块等,因本身重量与负载所造成的弯曲。通常,端点标准器在两端面与垂直线平行的支点位置为0.577全长时,其两端面可保持平行,此支点称之为爱里点(Airey Points) 。线刻度标准器支点在其全长之0.5594位置,其全长弯曲误差量为最小,此处称之为贝塞尔点(Bessel Points) 4. 测量因素 测量时,因仪器设计或摆置不良等所造成的误差,包括余弦误差、阿贝误差等。余弦误差是发生在测量轴与待测表面成一定倾斜角度,如图2-4-5所示其误差量为,为实际测量长度。通常,余弦误差会发生在两个测量方向,必须特别小心。例如测量内孔时,径向测量尺寸需取最大尺寸,轴向测量需取最小尺寸。同理,测量外侧时,也需注意取其正确位置。测砧与待测工件表面必须小心选用,如待测工件表面为平面时需选用球状之测砧、工件为圆

试验检测误差产生原因及改善措施

试验检测误差产生原因及改善措施 1.概述 工程质量的评价是以各种试验检测数据为依据的,而大量实践表明:一切试验测量结果均具有误差。因此作为从事试验检测工作的专业技术人员和管理人员有必要了解误差的种类,分析这些误差产生的原因及影响因素,以便在工作过程中采取针对性的措施最大限度的加以减少和消除误差。同时应具备科学地解析检测数据的能力,确保检测结果能最大限度地反应真值,及时、准确、可靠地测定检测对象,为管理部门提供真实可靠的工程质量状况及其变化规律。 2.试验检测的误差分类及成因 根据误差产生的原因及产生性质,可以把测量误差分为系统误差、随机误差和过失误差三大类。 2.1系统误差原因分析 系统误差是由人机系统产生的误差,是由一定原因引起的在相同条件下多次重复测量同一物理量时产生的。它具有测量结果总是朝一个方向偏离,其绝对值大小和符号保持恒定,或按照一定规律变化的特点。因此系统误差有时称之为恒定误差。系统误差主要由些列原因引起: (1)仪器误差 由于测量工具、设备、仪器结构上的不完善,电路的安装、布置、调整不得当,仪器刻度不准确或刻度的零点发生变动,样品不符合要求等原因引起的误差。 (2)人为误差 指试验检测操作人员感官的最小分辨力和某些固有习惯引起的误差。例如,由于观察者的最小分辨力不同,在测量数值的估读或与界面的接触程度上,不同

观测者就有不同的判断误差。有的试验检测人员的固有习惯,如在读取仪表读数时总是把头偏向一边,也可能会引起误差。 (3)外界误差 外界误差也称环境误差,是由于测试环境,如温度、湿度等的影响而造成的误差。 (4)方法误差 由于测试者未按规定的方法进行试验检测,或测量方法的理论依据有缺点,或引用了近似的公式,或试验条件达不到理论公式所规定的要求等造成的误差。 (5)试剂误差 在材料的成分分析及某些性质的测定中,有时要用一些试剂,当试剂中含有被测成分或含有干扰杂质时,也会引起测试误差,这种误差称为试剂误差。 一般来说,系统误差的出现是有规律的,其产生原因往往是可知或可掌握的,只要仔细观察和研究各种系统误差的具体来源,就可设法消除或降低其影响。 2.2随机误差原因分析 随机误差往往是由不能预料、不能控制的原因造成的。例如试验检测人员对仪器最小分度值的估读很难每次严格相同;测量仪器的某些活动部件所指示的测量结果在重复测量时很难每次完全相同,尤其是使用年久或质量较差的仪器设备时更为明显。 无机非金属材料的许多物化性能都与温度有关。在试验检测过程中,温度应控制恒定,但温度恒定有一定的限制,在此限度内总有不规则的变动,导致测量结果发生不规则的变动。此外,测量结果与室温、气压和湿度也有一定的关系。由于上述因素的影响,在完全相同的条件下进行重复测量时,测量值或大或小,

气体涡轮流量计的详细资料基本参数

https://www.360docs.net/doc/1f17692795.html, 江苏荣丰自动化仪表有限公司 一、概述 气体涡轮流量传感器是吸取了国内外流量仪表先进技术经过优化设计,综合了气体力学、流体力学、电磁学等理论而自行研制开发的新一代高精度、高可靠性的气体精密计量仪表,具有出色的低压和高压计量性能,多种信号输出方式以及对流体扰动的低敏感性,广泛适用于天然气、煤制气、液化气、轻烃气等气体的计量。该类涡轮流量产品本身不具备现场显示功能,仅将流量信号以脉冲信号的方式远传输出。仪表价格低廉,集成度高,体积小巧,特别适用于与二次显示仪、PLC、DCS等计算机控制系统配合使用。该类涡轮流量计均为防爆产品,防爆等级为:ExdIIBT6。 二、产品特点 ·优质合金涡轮,具有更高的稳流和耐腐蚀作用 ·进口优质专用轴承,使用寿命长 ·计量室与通气室隔绝,保证了仪表的安全性 ·流量范围宽(Qmax/Qmin≥20:1),重复性好,精度高(可达1.0级),压力损失小,始动流量低,可 达0.6m3/h ·仪表具有防爆及防护功能,防爆标志为ExdⅡBT6、ExiaⅡCT6,防护等级为IP65 三、仪表分类 1.按仪表功能分类LWQ系列气体涡轮流量计可分为3大类,即: ①气体涡轮流量传感器/变送器 ②智能一体化气体涡轮流量计 ③智能温压补偿一体化气体涡轮流量计 2.功能说明 ■ 气体涡轮流量传感器/变送器

该类涡轮流量产品本身不具备现场显示功能, 仅将流量信号远传输出。流量信号可分为脉冲信号 或电流信号(4-20mA);仪表价格低廉,集成度高, 体积小巧,特别适用于与二次显示仪、PLC、DCS 等计算机控制系统配合使用。该类涡轮流量计均为 防爆产品,防爆等级为:ExdIIBT6。 按照不同的输出信号,该类产品可分为LWQ-N-□型和LWQ-A-□型 应用场合:可作为工况流量信号的采集仪表,将流量信号远传至上位机 ■智能一体化气体涡轮流量计 一体化智能仪表,采用双排液晶现场显示,具 有机构紧凑、读数直观清晰、可靠性高、不受外界 电源干扰、抗雷击、成本低等明显优点。 该类涡轮流量计按照供电方式、是否具备远传信号输出可分为LWQ-B-□型和LWQ-C-□型。 1.在温度、压力相对稳定的工况现场,作为工业控制仪表 2.在温度、压力相对稳定的工况现场,用户可根据仪表示值气体方程自行运算到标况流量。 ■智能温压补偿一体化气体涡轮流量计

差压式流量计误差分析

差压式流量计使用中的测量误差分析 差压式流量计在现场实际应用时,它的测量误差往往会增大,有时可达到10%--20%,特别是在采用差压式流量计作为工艺生产过程的物料(水、蒸汽、煤气及原料)的计量,进行经济核算和物料平衡时,减少测量误差尤为重要。但必须注意的是,不仅需要合理的选型、准确的设计计算和加工制造,更要注意正确安装、维护和符合使用条件等才能保证孔板流量计有足够的实际测量精度。下面分析一下几种造成测量误差的原因: 1、被测流体的工作状态变动 如果在实际应用时被测流体的工作状态(如温度、压力)以及相应的流体密度、粘度和管道粗糙度等参数,与设计时不一致,如果仍按照原有的仪表常数推算流量,将与实际流量有误差,则可根据有关计算公式加以修正或重新设计计算。 2、孔板安装不正确 我公司刚投产试车时,煤气流量计显示过小,经检查为孔板装反,而实际是孔板的尖锐一侧应迎着流体流向为入口端,呈喇叭口形的一侧为出口端,注意方向。除此之外,安装时孔板开孔中心与管道中心线不同心,也会造成测量误差,引压管堵塞及垫片等凸出物的出现也是引起误差的原因。 3、孔板入口边缘被磨损 由于孔板使用时间较长,特别是在被测介质夹杂固体颗粒等杂物情况下,或被化学腐蚀,都会造成孔板的几何形状和尺寸的变化,如果孔板的入口边缘的尖锐度由于受到介质冲击或腐蚀而变钝,这样在相等数量的流体经过时所产生的压差ΔP减小,从而引起显示值偏低。严重时需更换孔板。 4、孔板表面的结垢和流通截面积的变化 在现场使用中,孔板表面可能会沾结上一层污垢,或者由于在孔板前后角落处日久而沉积杂质,或由于强腐蚀作用都会使管道的流通截面积发生渐变,以及引压导管管路的泄露和堵塞,都会造成测量误差。我公司由于使用的煤气较脏(含焦油),造成孔板前后取压环室被堵,取压口无压差,流量计无流量显示,经拆下后清理两环室并更换导压管,流量计显示正常。 5、变送器零点漂移和量程设置不当也会引起测量误差 由于时间较长,变送器的零点会发生漂移,若是负漂移,变送器输出电流则小于标准4MA,流量则显示偏低,若是正漂移,变送器输出电流则大于标准4MA,流量则显示偏高。若量程设置较大,流量则显示偏低,量程设置较小,流量则显示偏高。

相关文档
最新文档