仿真机器人

仿真机器人
仿真机器人

一.简介 (3)

二. 发展历史 (3)

三.体系结构 (6)

四.仿生机器人的国内外研究现状 (9)

4.1水下仿生机器人 (10)

4.2空中仿生机器人 (10)

4.3地面仿生机器人 (11)

4.4仿人机器人 (11)

五.仿真机器人的发展趋势及技术 (12)

5.1机器人机构技术 (12)

5.2机器人控制技术 (12)

5.3数字伺服驱动技术 (13)

5.4多传感系统技术 (13)

5.5仿真机器人应用技术 (13)

5.6仿真机器人网络化、灵巧化和智能化技术 (13)

六.参考文献 (13)

一.简介

简单来说,仿生机器人就是模仿自然界中生物的外部形状或某些机能的机器人系统。从本质上来讲,所谓“仿生机器人”就是指利用各种机、电、液、光等各种无机元器件和有机功能体相配合所组建起来的在运动机理和行为方式、感知模式和信息处理、控制协调和计算推理、能量代谢和材料结构等多方面具有高级生命形态特征从而可以在未知的非结构化环境下精确地、灵活地、可靠地、高效地完成各种复杂任务的机器人系统.(摘自《仿生机器人的研究》许宏岩,付宜利,王树国,刘建国著)

二.发展历程

器人技术作为一门新兴学科,在工业飞速发展的今天扮演着非常重要的作用,而其发展与机械电子、机电一体化、控制原理等多学科的发展息息相关。仿生机器人作为机器人领域的一大分支,可以说是本世纪一个不可忽视的领域,也将是机器人日后发展的大方向。

仿生学是20世纪60年代出现的一门综合性边缘学科, 它由生命科学与工程技术科学相互渗透、相互结合而成。它在精密雷达、水中声纳、导弹制导等许多应用领域中都功不可没。仿生学将有关生物学原理应用到对工程系统的研究与设计中, 尤其对当今日益发展的机器人科学起到了巨大的推动作用。当代机器人研究的领域已经从结构环境下的定点作业中走出来, 向航空航天、星际探索、军事侦察攻击、水下地下管道、疾病检查治疗、抢险救灾等非结构环境下的自主作业方面发展. 未来的机器人将在人类不能或难以到达的已知或未知环

境里为人类工作。人们要求机器人不仅适应原来结构化的、已知的环境, 更要适应未来发展中的非结构化的、未知的环。除了传统的设计方法,人们也把目光对准了生物界, 力求从丰富多彩的动植物身上获得灵感, 将它们的运动机理和行为方式运用到对机器人运动机理和控制的研究中, 这就是仿生学在机器人科学中的应用。这一应用已经成为机器人研究领域的热点之一, 势必推动机器人研究的蓬勃展。

自然界生物的运动行为和某些机能已成为机器人学者进行机器人设计、实现其灵活控制的思考源泉,导致各类仿生机器人不断涌现。仿生机器人就是模仿自然界中生物的外部形状或某些机能的机器人系统。仿生机器人的类型很多,按其模仿特性分为仿人类肢体和仿非人生物两大类。由于仿生机器人所具有的灵巧动作对于人类的生产和科学研究活动有着极大的帮助,所以,自80年代中期以来,机器人科学家们就开始了有关仿生机器人的研究。仿人型步行机器人是目前机器人技术的前沿课题, 是具有挑战性的技术难题之一。日本本田公司和大阪大学联合推出的P2 和P9型仿人步行机器人代表了当今世界的最高水平。仿非人生物机器人的研究近二十年来一直是一个非常活跃领域, 国外很多研究机构和公司在进行这方面的研究和开发。Keisuke Arikawa等研究的TITAN-Ⅷ型四足步行机器人能够以稳定的方式在不平的地面行走, 可以以非接触方式绕过地面上的障碍, 能够向任何方向运动, 同时腿的自由度可以用于工作。以上即是仿生机器人的发展现状,关于仿生机器人的研究, 美国和日本走

在前列,此外加拿大、英国、瑞典、挪威、澳大利亚等国也都在开展这方面的技术研究。

仿生机器人的主要研究问题很多,主要包括以下五个问题:第一,建模问题。仿生机器人的运动具有高度的灵活性和适应性, 其一般都是冗余度或超冗余度机器人, 结构复杂。运动学和动力学模型与常规机器人有很大差别,且复杂程度更大。为此, 研究建模问题, 实现机构的可控化是研究仿生机器人的关键问题之一。第二,控制优化问题。机器人的自由度越多, 机构越复杂,必将导致控制系统的复杂化。复杂巨系统的实现不能全靠子系统的堆积, 要做到“整体大于组分之和”, 同时要研究高效优化的控制算法才能使系统具有实时处理能力。第三,信息融合问题。在仿生机器人的设计开发中, 为实现对不同物体和未知环境的感知, 都装备有一定量的传感器, 多传感器的信息融合技术是实现其具有一定智能的关键. 信息融合技术把分布在不同位置的多个同类或不同类的传感器所提供的局部环境的不完整信息加以综合, 消除多传感器信息之间可能存在的冗余和矛盾, 从而提高系统决策、规划、反应的快速性和正确性。第四,机构设计问题。合理的机构设计是仿生机器人实现的基础。生物的形态经过千百万年的进化, 其结构特征极具合理性, 而要用机械来完全仿制生物体几乎是不可能的, 只有在充分研究生物肌体结构和运动特性的基础上提取其精髓进行简化, 才能开发全方位关节机构和简单关节组成高灵活性的机器人机构。最后,即是微传感和微驱动问题。微型仿生机器人有些已不是传统常规机器人的按比例

缩小, 它的开发涉及到电磁、机械、热、光、化学、生物等多学科。对于微型仿生机器人的制造, 需要解决一些工程上的问题。如动力源、驱动方式、传感集成控制以及同外界的通讯等。

生物在地球上已经生存了亿万年, 它们进化得如此完美以致于在机器人的设计中处处可见它们的踪迹。下面仅就运动机理和行为方式两个方面讨论其在机器人设计中的应用。生物运动机理在仿生机器人研究中的应用十分广泛,其应用涉及航空、军事、医学等各个领域。第一种是陆地机器人,它要求机器人在各种地形表面能以各种方式运动。第二种是水下机器人,水下机器人由于其所处的特殊环境,在机构设计上比陆地机器人难度大。在水下深度控制、深水压力、线路绝缘处理及防漏、驱动原理、周围模糊环境的识别等诸多方面的设计均需考虑。第三种是地外探险机器人,在探索地球以外其他星球的活动中, 当然少不了机器人的参与。机器人接受人的指令, 完成指定的任务。由于地外星球地貌复杂、环境恶劣, 因此, 对地外探险机器人的要求比对普通陆地机器人的要求更高。

先进制造技术的发展对仿生机器人的研究正起着积极的促进作用。随着先进制造技术的发展,工业机器人已从当初的上下材料功能高度柔性、高效率和精密装配功能转化,因此,开发面向先进制造环境的仿人机械臂及灵巧手有大量的理论与实践工作要做。目前运行的绝大多数机器人都是固定式的, 它们只能固定在某一位置上进行操作, 因而其应用范围和功能受到限制。近年来, 对移动机器人的研究受到越来越多的重视, 使机器人能够移动到固定式机器人无法达到的预

定目标, 完成设定的操作任务。移动机器人中绝大多数是仿生机器人, 包括步行机器人和爬行机器人等。仿生移动式机器人在工业、农业和国防上具有广泛的应用前景, 它们能用于卫星探测、军事侦察、危险的废料处理以及农业生产中。

科学家预言, 21世纪的尖端技术之一是微型机器人。仿生微型机器人可用于小型管道进行检测作业, 可进入人体肠道进行检查和实施治疗而不伤害人体, 也可以进入狭小的复杂环境进行作业, 因此,机器人的小型化和微型化是一个发展趋势。

三.体系结构

机器人体系结构,就是指为完成指定目标的一个或几个机器人在信息处理和控制逻辑方面的结构方式。

基于功能来分解

基于功能分解的体系结构在人工智能上属于传统的慎思式智能,在结构上体现为串行分布,在执行方式上属于异步执行,即按照“感知一规划一行动”的模式进行信息处理和控制实现。以美国国家航天局和美国国家标准局所提出的NASR人MtI〕为典型代表。这种体系结构的优点是系统的功能明了.层次清晰,实现简单。但是申行的处理方式大大延长了系统对外部事件的响应时间,环境的改变导致必须重新规划,从而降低了执行效率。因此只适合在已知的结构化环境下完成比较复杂的工作。

基于行为来分解

基于行为分解的体系结构在人工智能上属于现代的反应式智能,在结

构上体现为并行(包容)分布,在执行方式上属于同步执行,即按照“感知一行动”的模式并行进行信息处理和控制。以麻省理工的R.A.Brooks所提出的行为分层的包容式体系结构(SubsumptionArchitecture) 和Arkin提出的基于MotorSc hema的结构为典型代表。其主要优点就是执行时间短、效率高、机动能力强。但是由于缺乏整体的管理,很难适应于各种情况。因此只适用于在沐淘环境下执行比较简单的任务。

基于智能分布来分解

基于智能分布的体系结构在人工智能上属于最新的分布式智能,在结构上体现为分散分布,在执行上属于协同执行,既可以单独完成各自的局部问题求解,又能通过协作求解单个或多个全局问题。以基于多智能体的体系结构为典型代表。这种体系结构的优点是既具有“智能分布”的特点,又有统一的协调机制。但是如何在各个智能体之间合理的划分和协调仍然需要大量的研究和实践。该体系结构在许多大型的智能信息处理系统上有着广泛的应用。

除以上三类主要的体系结构之外,还有一些改进的混合式体系结构,如带反馈环节的行为分解模式、基于分布式智能的分层体系结构、基于功能分解的多智能体结构等等。但是从整体上来看,它们或是在功能模块的灵活性和扩展性上不足,或是没能很好的协调慎思式智能与反应式智能,或是各层次间的交流机制不够完善。

控制体系

仿生式体系结构的思想原理

从本质上来讲,慎思式智能、反应式智能以及分布式智能,都是对生物控制逻辑和推理方式的一种借鉴和仿生,但由于客观条件的限制和需求目的的局限,它们都只是从某一个角度和方向对生物智能的一种片面的、局部的模仿。本文的仿生式体系结构就是以前述的生物控制逻辑和行为推理为基础,充分借鉴基于慎思式智能、反应式智能和分布式智能等三种体系结构思想的优点与不足之处,针对机器人特别是未知环境下工作的移动机器人在控制体系结构方面所存在的缺点和问题,提出一种具有适应行为与进化能力的新的控制思想与理念。

借鉴分布式智能的思想,在控制体系结构中引人社会式行为控制层;借鉴生物的自适应性思想,在控制体系结构中实现本代内的由慎思式行为层到反射式行为层的学习;

借鉴生物的自进化性思想,在控制体系结构中实现多代间的由反射式行为层向本能式行为层的进化(或退化)。

所以,仿生式体系结构共有四个行为控制层组成,即本能式行为控制层、反射式行为控制层、慎思式行为控制层和社会式行为控制层,它们并行接收来自感知层的外部和内部信息,各自作出逻辑判断和反应,发出控制信息到末端执行层,通过竞争和协调来调节自身并适应外部环境,从而按照目标完成工作任务。

四.据报导,这只堪称“全球第一手”的精良仿生手系由苏格兰触摸仿生公司制造,其发明者是英国国家卫生体系苏格兰洛锡安区的复康部主管大卫·高医生,目前已经申请专利。高医生潜心研究义肢20 年,9 年前开始尝试研制仿

生手。他表示," 这是当今市场上首只指头可以像真手般活动的义肢。因此技术堪称世界一流。" 由于其材料选用类似制造汽车引擎零件的轻量化塑胶制成,完全防水,并且比真手还轻。

Touch Bionics 仿生公司宣称这是迄今能做出最细微动作的义肢。用户只要轻轻动手臂肌肉便能操纵仿生机械手,手上5根指头都可独立运作,并通过患者的思维和肌肉来控制动作任意做出打字、拨号码、用钥匙开锁等复杂动作,宛如真手一般灵活自如。发明该仿生手的医生表示,这只仿生手是目前最先进的,这是市场上首只仿生手的手指头能够像真手般活动的义肢。

“i-LIMB ”的每根手指都安装有一个微型马达,并且可由其穿戴者发出的神经脉冲加以控制。该仿生手凭手臂肌肉推动,其表面覆盖有一层类比人类皮肤的半透明人工美容皮肤,逼真度极高。只要装上仿生手,贴在穿戴者手臂的电极会将信号传送至微型马达,推动仿生手做出各种动作。不过,就手的触觉来说,这只仿生手目前只能做到利用小部份的感觉信号,经由神经系统传达到大脑,所以还有相当大的发展空间。更让人惊奇的是,这只生化电子手能和截肢者的身体完美的结合,造福伤残人士。而在这项发明中,最令我们雀跃的是神经末端和电子手部间的无线传达,为支援热插拔(hot-swap )的嵌入性手臂开创了新契机。仿生手未推出前曾作临床实验,14 名分别来自英国及美国的人装上仿生手,他们大都表示,仿生手远比一般义肢好用。

四.仿生机器人的国内外研究现状

水下机器人由于其所处的特殊环境,在机构设计上比陆地机器人难度大。在水下深度控制、深水压力、线路绝缘处理及防漏、驱动原理、周围模糊环境的识别等诸多方面的设计均需考虑。以往的水下机器人采用的都是鱼雷状的外形,用涡轮机驱动,具有坚硬的外壳以抵抗水压。鱼类的推进方式已成为人们研制新型高速、低噪音、机动灵活的柔体潜水器模仿的对象。仿鱼推进器效率可达到70% ~90% ,与水的相对速度比螺旋桨推进器小得多,有效地解决了噪音问题水下机器鱼和机器蟹的灵活性远远高于现有的潜艇,几乎可以达到水下任何区域,由人遥控,它可轻而易举地进入海底深处的海沟和洞穴,可用于测绘海洋地图,检测水下污染,拍摄海洋生物,也可以悄悄地溜进敌方的港口,进行侦察而不被发觉,作为军用侦察和科学探索的工具,其发展和应用的前景十分广阔。

4.2空中仿生机器人

空中机器人即具有自主导航能力,无人驾驶的飞行器。这类机器人活动空间广阔、运动速度快,居高临下而不受地形限制,在军事、森林火灾以及灾难搜救中,前景极好。其飞行原理分为:固定翼飞行、旋翼飞行和扑翼飞行。目前国内外广泛关注的微型飞行器侧重于扑翼机的研究,它模仿鸟类或昆虫的扑翼飞行原理,将举升、悬停和推进功能集于一个扑翼系统,可以用很小的能量做长距离飞行,同时具有较强的机动性,适合于长时间无能源补给及远距离条件下执行任务。.

可以攀爬管道的蛇形机器人,这种蛇形机器人大部分由轻质的铝或塑料组成,最大也只有成人手臂大小,机器人配有摄像机和电子传感器,可以接受遥控指挥。蛇形机器人可以成功上下一根塑料管道,并可以跨越废墟碎片间的巨大空隙以及在草丛中来去自由,让蛇形机器人在坍塌废墟中穿梭,能更快地找到幸存者,为灾难救援工作带来了技术突破。

4.4仿人机器人

自1983年以来,美国研制出一系列7自由度拟人单臂和双臂一体机器人,并已用于空间站实验.1986年美国犹他州大学工程设计中心研制成功了著名的UTAHM IT灵巧手,该手有4指,拇指2关节,其余3指各有3关节,手指关节绳索驱动并设有张力传感器。1990年由贝尔实验室完成了灵巧手的软硬件控制系统,并模拟人手的拿、夹、抓、握物体等多种动作进行了实验.1992年日本进行多指仿人手臂真实作业的研究,系统由主从手臂及传感控制系统组成,其灵巧手有4指,每指有3个关节,手具有14个自由度。随着多指灵巧手研究的发展,具有灵巧手的仿人臂及其系统的研究愈来愈受到重视。日本本田公司和大阪大学联合推出的P1、P2和P3型仿人步行机器人,将仿人机器人的研究推向一个崭新的度。在P3的基础上本田公司又研制了“Asimo”智能机器人,如图 6 所示.“Asimo”机器人高 1.2m ,体重43kg ,它可以爬楼梯,以6km /h 的速度奔跑,可以识别各种各样的声音,还能够通过头部照相机捕捉到的画面和事

先设计好的程序识别人类的各种手势运动以及10种不同的脸型,可以和人手拉着手走路,使用手推车搬运物品等。国内一些科研院所也进行了仿人机器人的研究。北京航空航天大学机器人研究所在国家" 863" 智能机器人主题支持下,研制出了能实现简单抓持和操作作业的3指9自由度灵巧手。哈尔滨工业大学机器人研究所研制了高灵活性的仿人手臂及拟人双足步行机器人,其仿人手臂具有工作空间大、关节无奇异姿态、结构紧凑等特点,通过软件控制可实现避障、回避关节极限和优化动力学性能等。双足步行机器人为关节式结构,具有12个自由度,可以完成仿人步行的动作。

五.仿真机器人的发展趋势与技术

仿真人机器人技术正在向智能机器和智能系统的方向发展,其现状及发展趋势与技术主要体现在以下几个方面:

5.1机器人机构技术

目前研究重点是机器人新的结构、功能及可实现性,其目的是使机器功能更强、柔性更大、满足不同目的的需求。另外研究机器人一些新的设计方法,探索新的高强度轻质材料,进一步提高负载/自重比。同时机器人机构向着模块化、可重构方向发展。

5.2机器人控制技术

现已实现了机器人的全数字化控制,控制能力可达20-30轴的协调运动控制;基于传感器的控制技术已取得了重大进展。同时机器人的控制器的标准化和网络化以及基于PC机网络式控制器已成为研究热点。编程技术除进一步提高在线编程的可操作性之外,离线编程的实

用化将成为重点研究内容。

5.3数字伺服驱动技术

机器人已经实现了全数字交流伺服驱动控制,绝对位置反馈。目前正研究利用计算机技术,探索高效的控制驱动算法,提高系统的响应速度和控制精度;同时利用现场总线(FILDBUS)技术,实现的分布式控制。

5.4多传感系统技术

为进一步提高机器人的智能和适应性,多种传感器的应用是其问题解决的关键。目前视觉传感器、激光传感器等已在机器人中成功应用。

5.5仿真机器人应用技术

仿真机器人应用技术主要包括机器人工作环境的优化设计和智能作业。优化设计主要利用各种先进的计算机手段,实现设计的动态分析和仿真,提高设计效率和优化。智能作业则是利用传感器技术和控制方法实现机器人作业的高度柔性和对环境的适应性,同时降低操作人员参与的复杂性。

5.6仿真机器人网络化、灵巧化和智能化技术

网络化使机器人由独立的系统向群体系统发展,使远距离操作监控、维护及遥控脑型工厂成为可能,这是机器人技术发展的一个里程碑。目前,机器人仅仅实现了简单的网络通讯和控制,网络化机器人是目前机器人研究中的热点之一。仿真机器人结构越来越灵巧,控制系统愈来愈小,其智能也越来越高,并正朝着一体化方向发展。

六.参考文献

[1] 刘江.我国第一条仿生机器鱼正式宣布研制成功[N].科技日报,2004-12-7.[2] 刘进长,辛建成.机器人世界[M].郑州:河南科学技术出版社,2000.

[3] 梁燕.未来世界的超级间谍美军机器苍蝇问世[N].环球时报,2002-11-11.

[4] 陈福民.我国机器人技术的新突破———无孔不入的机器蛇[J].科学24小时,2002,(7):5.[5] 王田苗,孟思,裴葆青,等.仿壁虎机器人研究综述[J].机器人,2007,29(3):290-297.

[6] 尤亮.第二代“阿西莫”机器人首次在欧洲公开亮相[EB/OL].https://www.360docs.net/doc/1f2127755.html,/photo/2007-09/29/

content_6810325.htm.

[7] 马光.仿生机器人的研究进展[J].机器人,2001,23(5):463-466.

[8] 吉爱红,戴振东,周来水.仿生机器人的研究进展[J].机器人,2005,27(3):284-288.[9] 迟冬祥,颜国正.仿生机器人的研究状况及其未来发展[J].机器人,2001,23(5):476-480.[10]张秀丽,郑浩峻,陈恳,等.机器人仿生学研究综述[J].机器人,2002,24(2):188-192

最新西华大学机器人创新设计实验报告(工业机械手模拟仿真)

实验报告 (理工类) 课程名称: 机器人创新实验 课程代码: 6003199 学院(直属系): 机械学院机械设计制造系 年级/专业/班: 2010级机制3班 学生姓名: 学号: 实验总成绩: 任课教师: 李炜 开课学院: 机械工程与自动化学院 实验中心名称: 机械工程基础实验中心

一、设计题目 工业机器人设计及仿真分析 二、成员分工:(5分) 三、设计方案:(整个系统工作原理和设计)(20分) 1、功能分析 工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工业自动化水平的重要标志。机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。 本次我们小组所设计的工业机器人主要用来完成以下任务: (1)、完成工业生产上主要焊接任务; (2)、能够在上产中完成油漆、染料等喷涂工作; (3)、完成加工工件的夹持、送料与转位任务; (5)、对复杂的曲线曲面类零件加工;(机械手式数控加工机床,如英国DELCAM公司所提供的风力发电机叶片加工方案,起辅助软体为powermill,本身为DELCAM公司出品)

虚拟机器人仿真软件使用使用说明

热博机器人3D仿真系统 用 户 手 册

杭州热博科技有限公司 1.软件介绍 RB-3DRSS是热博科技有限公司新近推出的一款以.NET平台为基础,在Microsoft Windows平台上使用3D技术开发的3D机器人仿真软件。用户通过构建虚拟机器人、虚拟环境,编写虚拟机器人的驱动程序,模拟现实情况下机器人在特定环境中的运行情况。 RB-3DRSS与市面上的同类产品相比,它具有如下的特点: 1.全3D场景。用户可自由控制视角的位置,角度。 2.先进的物理引擎技术,引入真实世界的重力、作用力、反作用力、速度、加速度、摩擦力等概念,是一款真正意义上的仿真软件。 3.逼真的仿真效果。采用虚拟现实技术,高度接近实际环境下的机器人运动状态,大大简化实际机器人调试过程。

4.实时运行调试。运行时,依据实际运行情况,调整机器人参数,帮助用户快速实现理想中的效果。 5.自由灵活的机器人搭建与场地搭建。用户可自由选择机器人及其配件,进行机器人搭建,可自行编辑3D训练比赛场地,所想即所得。 6.单人或多人的对抗过程。用户可添加多个机器人,自由组队进行队伍间对抗。7.与机器人图形化开发平台无缝连接。其生成的控制程序代码可在虚拟仿真系统中直接调用,大大节省编程时间。

系统配置要求 操作系统:win98,win2000全系列,winXp,win2003 server 运行环境:.Net Framework v2.0,DirectX 9.0c 最低硬件配置: 2.0GHz以上主频的CPU,512M内存,64M显存以上的3D显卡.支持1024×768分辨率,16bit颜色的监视器,声卡 推荐配置: 3.0G以上主频的CPU,1G内存,128M显存的3D显卡,支持1024×768分辨率,16bit 颜色监视器,声卡

中学信息技术《机器人仿真系统》教案

中学信息技术《机器人仿真系统》教案第16课机器人仿真系统 【教学目标】 .知识目标 ◆认识仿真下的虚拟机器人; ◆能用NSTRSS设计场地、构建机器人并利用仿真环境进行组队测试。 2.过程与方法 ◆通过教师演示在虚拟仿真环境下的机器人运行,激发学生兴趣; ◆通过教师讲解虚拟仿真软件,培养学生对新软件的兴趣; ◆通过让学生自己动手调试,体会学习新事物的乐趣。 3.情感态度与价值观 ◆使学生领悟“自由无限,创意无限,只有想不到,没有做不到”的道理; ◆培养学生积极探索、敢于实践、大胆创新的精神和意识。 【教法选择】 示例讲解、任务驱动、辅导答疑。 【教学重点】 .用NSTRSS仿真系统设计仿真场地;

2.搭建仿真机器人; 3.运行仿真。 【教学难点】 .设计场地; 2.搭建仿真机器人。 【教学过程】 一、巩固1日知,引入新知 教师活动 将上节课学生完成的在现实场地中运行的走迷宫机器人进行分组比赛,一是能够检验学生的学习情况,二是能调动起学生的积极性,三是为引入仿真系统做准备。 学生活动 小组合作,调试机器人程序,检查机器人的搭建,准备比赛。 教师活动 通过比赛,提出问题:同学们想不想经常地进行这样的比赛呢?但是在现实中调试,需要很多的时间,而且还需要固定的场地环境等等,非常不方便,我们有没有什么好办法解决这个问颢? 引入纳英特的仿真模拟系统,展示它的特点,与现实情况做比较。 教师给学生演示讲解:

.关于仿真系统 什么是仿真系统?仿真系统是机器人的设计、实现,完全在虚拟的环境中,以虚拟的形式出现,它以优化机器人硬件和软件设计、缩短研发周期、节约成本为特色,解决机器人设计过程的不足。 2.初识NSTRSS软件 NSTRSS是NST科技新近推出的一款以.NET平台为基础,使用microsoftDirectX9.0技术的3D机器人仿真软件。用户通过构建虚拟机器人、虚拟环境,编写虚拟机器人的驱动程序,模拟现实情况下机器人在特定环境中的运行情况。 NSTRSS与市面上的同类产品相比,它具有如下的特点:全3D场景。用户可自由控制视角的位置及角度,甚至以第一人称方式进行场景漫游; 逼真的仿真效果。采用虚拟现实技术,高度接近实际环境下的机器人运动状态,大大简化实际机器人调试过程; 实时运行调试。运行时,依据实际运行情况,调整机器人参数,帮助用户快速实现理想中的效果; 自由灵活的机器人搭建与场地搭建。用户可自由选择机器人及其配件,进行机器人搭建,可自行编辑3D训练比赛场地,所想即所得; 单人或多人的对抗过程。用户可添加多个机器人,自由组队进行队伍间对抗;

机器人系统常用仿真软件介绍

1 主要介绍以下七种仿真平台(侧重移动机器人仿真而非机械臂等工业机器人仿真): 1.1 USARSim-Unified System for Automation and Robot Simulation USARSim是一个基于虚拟竞技场引擎设计高保真多机器人环境仿真平台。主要针对地面机器人,可以被用于研究和教学,除此之外,USARSim是RoboCup救援虚拟机器人竞赛和虚拟制造自动化竞赛的基础平台。使用开放动力学引擎ODE(Open Dynamics Engine),支持三维的渲染和物理模拟,较高可配置性和可扩展性,与Player兼容,采用分层控制系统,开放接口结构模拟功能和工具框架模块。机器人控制可以通过虚拟脚本编程或网络连接使用UDP协议实现。被广泛应用于机器人仿真、训练军队新兵、消防及搜寻和营救任务的研究。机器人和环境可以通过第三方软件进行生成。软件遵循免费GPL条款,多平台支持可以安装并运行在Linux、Windows和MacOS操作系统上。 1.2 Simbad Simbad是基于Java3D的用于科研和教育目的多机器人仿真平台。主要专注于研究人员和编程人员热衷的多机器人系统中人工智能、机器学习和更多通用的人工智能算法一些简单的基本问题。它拥有可编程机器人控制器,可定制环境和自定义配置传感器模块等功能,采用3D虚拟传感技术,支持单或多机器人仿真,提供神经网络和进化算法等工具箱。软件开发容易,开源,基于GNU协议,不支持物理计算,可以运行在任何支持包含Java3D库的Java客户端系统上。 1.3 Webots Webots是一个具备建模、编程和仿真移动机器人开发平台,主要用于地面机器人仿真。用户可以在一个共享的环境中设计多种复杂的异构机器人,可以自定义环境大小,环境中所有物体的属性包括形状、颜色、文字、质量、功能等也都可由用户来进行自由配置,它使用ODE检测物体碰撞和模拟刚性结构的动力学特性,可以精确的模拟物体速度、惯性和摩擦力等物理属性。每个机器人可以装配大量可供选择的仿真传感器和驱动器,机器人的控制器可以通过内部集成化开发环境或者第三方开发环境进行编程,控制器程序可以用C,C++等编写,机器人每个行为都可以在真实世界中测试。支持大量机器人模型如khepera、pioneer2、aibo等,也可以导入自己定义的机器人。全球有超过750个高校和研究中心使用该仿真软件,但需要付费,支持各主流操作系统包括Linux, Windows和MacOS。 1.4 MRDS-Microsoft Robotics Developer Studio MRDS是微软开发的一款基于Windows环境、网络化、基于服务框架结构的机器人控制仿真平台,使用PhysX物理引擎,是目前保真度最高的仿真引擎之一,主要针对学术、爱好者和商业开发,支持大量的机器人软硬件。MRDS是基于实时并发协调同步CCR(Concurrency and Coordination Runtime)和分布式软件服务DSS(Decentralized Software Services),进行异步并行任务管理并允许多种服务协调管理获得复杂的行为,提供可视化编程语言(VPL)和可视化仿真环境(VSE)。支持主流的商业机器人,主要编程语言为C#,非商业应用免费,但只支持在Windows操作系统下进行开发。 1.5 PSG-Player/Stage/Gazebo

高校工业机器人虚拟仿真实训中心建设方案

工业机器人教学实训室方案 1、XS-XN虚拟工业机器人教学实训系统技术指标: (可对FANUC、ABB、KUKA、MOTOMAN(安川)等工业机器人进行现场示教编程学习)1.1、虚拟工业机器人教学实训系统组成: 虚拟机器人教学实训系统单元是在计算机中构造虚拟的六自由度工业机器人应用环境,学员可以使用真实的手持盒,操作虚拟工业环境中的虚拟机器人,包括示教、再现编程等。都能在系统中通过工业机器人的三维图形仿真出来。

1.2、虚拟工业机器人教学实训系统功能要求: ★该实训系统需采用真实的工业机器人控制系统和真实手持示教器控制虚拟的工业机器人完成工业机器人的现场示教编程教学要求。 ★该实训系统配两个不同工业机器人手持示教盒,通过更换手持示教器能够对ABB、FANUC两种品牌工业机器人进行现场示教编程训练; 该实训系统能够支持外部三维模型的导入功能,增加教学的多样性。 ★该实训系统具有工业机器人的理论考试考工及实践考试考工功能,能够自动出题、评分。 该实训系统具有机器人碰撞检测功能,可以检测学示教过程中发生的碰撞错误。1.3虚拟工业机器人教学实训系统技术要求:

1.4、基本技术参数 输入电源:AC220V±10%(单相三线);配AC220V 三眼插座1个 整体功率:<400VA; 工作环境:温度-5oC~+40oC;湿度85%(25oC);海拔<4000m; 安全保护:具有漏电保护,安全符合国家标准 1.5、能够开设的实验内容 A.原理性实验: 1.多自由度工业机器人关节运动控制底层算法实验 2.多自由度工业机器人直线运动轨迹控制底层算法实验 3.多自由度工业机器人圆弧运动轨迹控制底层算法实验 4.多自由度工业机器人加减速约束控制底层算法实验 B.应用性实验: 1.工业机器人手持示教器的认知及使用实验 2.工业机器人各类坐标系转换实验 3.工业机器人编程指令的学习实验 4.工业机器人工具坐标系和用户坐标系设置实验 5.工业机器人控制器IO信号设置和监控实验 6.工业机器人参数、变量的调整实验 7.工业机器人程序调用和自动运行实验 8.工业机器人机床上下料示教编程实验 9.工业机器人的搬运/堆垛示教编程实验 10.工业机器人的点胶/焊接示教编程实验 11.工业机器人装配示教编程实验 12.工业机器人碰撞实验 C.技能考核 1.工业机器人理论考试考工 2.工业机器人实践考试考工 1.6、配套资料 工业机器人操作与编程理论教学大纲

1.3 简介能力风暴机器人仿真系统

1.3 简介能力风暴机器人仿真系统 学习智能机器人,除了需要具备机器人硬件外,还需要为机器人编写控制程序,并在场地上进行反复调试。但如果手边暂时既无机器人实物,又无真实场地,我们还能学习和研究机器人吗?答案是可以的。能力风暴机器人为我们提供了一套仿真的VJC系统软件,在这个仿真系统中,我们不仅可以为机器人编写各种控制程序,同时还可以将编制的程序下载到仿真的机器人上,并在仿真的场地中进行模拟运行和调试,体验机器人控制的全过程。本节我们就来认识VJC系统仿真版软件,学习构建仿真场地和仿真调试的方法。 1.3.1 认识VJC系统仿真版软件 1.VJC系统仿真版软件的安装 安装VJC系统仿真版的方法很简单,先打开本书配套光盘上的“VJC系统软件\VJC1.5仿真版”文件夹,找到名为“setup.exe”的安装程序,用鼠标双击该文件,系统自动将其安装到C盘中,并在Windows桌面上自动生成一个“VJC1.5仿真版”的快捷方式图标,软件安装的路径默认为:C:\program files\VJC1.5仿真版。如果我们使用的计算机中已经安装了VJC系统仿真版,则安装这一步可以跳过不做。 2.VJC系统仿真版软件的启动及主界面 当需要进入VJC系统仿真版编程时,只要双击桌面上的“VJC1.5仿真版”快捷方式图标,就可进入VJC的编程环境。 VJC编程环境的主界面见图1-3-1。可以看出,主界面包含了以下几个部分: (1)菜单栏及工具栏:位于窗口上方,工具栏上除了新建、打开、保存等常规按钮外,还有仿真、JC代码、缩放等按钮,见图1-3-2所示。 (2)模块库:位于窗口左侧,共有五大类模块库,其中:执行器模块库包含了基本动作模块,这是控制机器人运动的基本模

matlab实现puma机器人工作空间

matlab实现PUMA机器人的工作空间 PUMA机器人的工作空间主要有前3个关节决定,后3个关节决定姿态。程序编写好了,请看运行结果! 步长为20度 步长为10度

步长为5度 步长为3度 步长为2度

步长为5度时的XY平面 步长为5度时的XZ,YZ平面

编写时的界面,为运行 源代码如下: function varargout = mypuma(varargin) gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ...

'gui_OpeningFcn', @mypuma_OpeningFcn, ... 'gui_OutputFcn', @mypuma_OutputFcn, ... 'gui_LayoutFcn', [], ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end handles.output = hObject; guidata(hObject, handles); function varargout = mypuma_OutputFcn(hObject, eventdata, handles) varargout{1} = handles.output; %步长为20度时的工作空间,2个for循环就搞定 function pushbutton1_Callback(hObject, eventdata, handles) hold off; for a=(-160:20:160)*pi/180

一种码垛机器人的设计与仿真

一种码垛机器人的设计与仿真 节 1.01 摘要 21世纪,科学技术的发展可谓日新月异,各种信息技术的不断发展进步,推动着社会生产的各个领域的进步,尤其是自动化技术的应用。码垛技术是近年来活跃在物流自动化领域的一项新兴的技术。码垛技术的概念是指在日常的物流运输的过程中,为了实现实现物料的搬运、装卸等物流的活动,设计一定的物料的堆码成垛的模式,这种模式是基于集成单元化的思想之上的,这种堆码成垛实现物流运输的技术就是码垛技术。 我们在实现码垛技术的同时,发明了相关的码垛机器人。码垛机器人是基于码垛技术而产生的,它是一种具备特殊功能的机器人,具有垂直的多关节型的特点。码垛机器人自产生以来,已经广泛应用于社会生产的不同的专业领域,比如食品加工、石油化工等。对于不同的物流对于码垛要求参数的不同,码垛机器人可以通过自身的主计算机进行相应的参数的设置,从而进一步实现不同产品包装的码垛要求。现代物流的发展,对于码垛机器人的要求也呈现出越来越高的趋势,比如物料的码垛的精度的提高,是的码垛机器人必须具有一定的刚度和强度,防止搬运过程中出现差池。 本文主要是设计一种码垛机器人的机械部分,应用于自动化生产线的物料的码垛。在进行码垛机器人的设计的时候,主要是结果机械、电子以及码垛机器人的软件等方面,根据不同方面的特点进行综合的分析,实现码垛机器人的设计。 关键词:码垛技术,机器人,有限元分析,运动仿真 Abstract In the 21st century, the development of science and technology is changing, all kinds of the continuous development of information technology progress, push the progress of the various fields of social production, especially the application of automation technology. Stacking technology is active in recent years a new technology in the field of logistics automation. Stacking technology refers to the concept of in the daily logistics transportation process, in order to achieve the

四自由度机器人手臂工作空间分析

四自由度机器人手臂设计 ---工作空间分析 050696135 张东红指导老师:刘铁军讲师 第1章绪论 1.1 机器人的概念 我们一直试图为自己的研究对象下一个明确的定义----就象其他所有的技术领域一样----始终未能如愿。关于机器人的概念,真有点像盲人摸象,仁者见仁,智者见智。在此,摘录一下有代表性的关于机器人的定义: 牛津字典: Automation with human appearance or functioning like human 科幻作家阿西莫夫(Asimov)提出的机器人三原则: 第一,机器人不能伤害人类,也不能眼见人类受到伤害而袖手旁观; 第二,机器人必须绝对服从人类,除非人类的命令与第一条相违背; 第三,机器人必须保护自身不受伤害,除非这与上述两条违背; 日本著名学者加藤一郎提出的机器人三要件: 1.具有脑、手、脚等要素的个体; 2.具有非接触传感器(眼、耳等)和接触传感器; 3.具有用于平衡和定位的传感器; 世界标准化组织(ISO)

机器人是一种能够通过编程和自动控制来执行诸如作业或移动等任务的机器。 细细分析以上定义,可以看出,针对同一对象+所做的定义,其内涵有很大的区别,有的注重其功能,有的则偏重与结构。这也就难怪对同一国家关于机器人数量的统计,不同资料的数据会很大差别。 虽然现在还没有一个严格而准确的普遍被接受的机器人定义,但我们还是希望能对机器人做某些本质性的把握。 首先,机器人是机器而不是人,它是人类制造的替代人类从事某种作业的工具,它只能是人的某些功能的延伸。在某些方面,机器人可具有超越人类的能力,但从本质上说机器人永远不可能全面超越人类。 其次,机器人在结构上具有一定的仿生性。很多工业机器人模仿人的手臂或躯体结构,以求动作灵活。海洋机器人则在一定程度上模仿了鱼类结构,以期待得到最小的水流阻力。 第三,现代机器人是一种机电一体化的自动装置,其典型特征之一是机器人受微机控制,具有(重复)编程的功能。 1.2 机器人的基本组成和分类 机器人由机械部分、传感部分、控制部分三大部分组成。这三大部分可分成驱动系统、机械结构系统、感受系统、机器人—环境交互系统、人机交互系统、控制系统六个子系统。 1.驱动系统 要使机器人运行起来,需给各个关节即每个运动自由度安置传动装置,这就是驱动系统。 2.机械机构系统

机器人工作空间配置的可靠性规划

第23卷第2期机械科学与技术V01.23No.22004年2月MECHANICALSCIENCEANDTECHNOLOGYFebruary2004 段齐骏文童编号:1003-8728(2004)02一0200—03 机器人工作空间配置的可靠性规划 段齐骏 (南京理工大学机械工程学院,南京210094) 摘要:机器人工作空间是机器人远行控制的一个重要指标。本文依据动作可靠性的基本概念,结合机器人动作可靠性评价的基本要求,建立了机器人运动误差分析模型。基于针对机器人工作空间配置的数学描述,给出了机器人工作空间配置的可靠性评价方法与规划策略。运用一个4自由度机器人工作空间规划分析的实例说明,机器人工作空间配置的可靠性规划,是全面完善系统性能的一个有效途径。 关键词:机器人;工作空间;可靠性;规划 中图分类号:TBll4.3文献标识码:A ReUabilityPlanintheArnngementofaRobot’sWorkspace DUANQi.jun (SchoolofMechanicalEngineering,NanjingUniversityofScienceandTechnology,Nanjing210094) Abstract:Workspaceofambotisoneofthemostimponantfactor,forrobot’sworkingandcontr01.Ac-cordingtotheconceptofmotionreliability,ananaIysis modelformoVementerrorisestablishedbyconsid—ering basicrequirementofmbotmotionreli8bilityinthisp8per.Basedonthemathematicrepresentationofarr8ngementofmbotworkspace,theassessmentmethodaboutthearrangement《robotworkspaceandtheplanofwor王【spacearegiven.Byanactualexample,whichistheplanofworkspaceofrobotwith4free—doms,itisillustmtedthatthereliabilityplanofarrangementofmbotworkspacewillbeane妇fectivewayforimproVing thepropertyofthesystemcomprehensiVely. Keywords:Robot;Workspace;Reliability;Plan 机器人的工作空间是指机器人末端执行器工具中心点所能到达的空间点的集合。一般而言,臂部的自由度主要用来确定手部及工件(或工具)在空间运动的范围或位置,而腕部的自由度主要是用来调整手部及工件(或工具)在空间的姿态。显然,机器人的工作空间取决于臂部的运动。机器人的工作空间及其在此空间内的运动规划同题,一直是机器人研究的主要问题,研究的出发点涉及机器人运动学、动力学及机器人控制等许多方面。但是,根据系统科学的基本观点,相互联系、相互影响、相互作用的组成部分称作系统结构,系统结构与系统环境决定系统动能¨】,机器人的性能实现必然与其工作环境与工作过程密切相关。从这个角度出发,机器人在其工作空间的运动规划问题,应在针对机器人系统及其隶属的复杂系统等多个层面上展开。 机器人系统的动作可靠性是机器人性能的一个重要指标,根据可靠性的基本概念,机器人动作可靠度的定义:机器人在规定的工作时间及规定的使用条件下,准确、及时并协 收稿日期:2002一04—03 作者简介:段齐骏(1964一)。女(汉)。江苏。副教授,博士 E—mail:pyldu¨@hotmail.com调地完成规定功能的能力。当用概率来描述这种能力时,则称为可靠度。显然,规定的使用条件包括工作空间及工作空间的环境因素,比如温度、粉尘等。由此,可以肯定,机器人的动作可靠性不仅与机器人本身的结构、控制与工作方式有关,还与机器人工作空间配置的合理性有相当大的关系。基于提高或者保障系统可靠性的目的,本文试图就机器人工作空间的合理配置,提出进行可靠性规划的方法。 1机器人动作可靠性评价的基本要求 从系统的角度看,机器 人一般服务于一个复杂系 统,它本身与系统的监控子 系统有着频繁的信息交流, 它的运动控制流程见图l。图l机器人运动控制因此机器人的位姿特性 可以通过伺服系统进行修正,也就是说无论指令所给出的要求是怎样的,只要指令所提出的要求在机器人的工作空间内或者与机器人的设计要求没有冲突,最终机器人总能 完成指令(动作要求),排除因设备故障所带来的动作失

能力风暴机器人仿真系统备课教案

第一课教学机器人 一、教学目标 帮助学生了解机器人的由来 二、重点难点 使学生理解机器人是靠什么来思考,机器人的部分。 三、教学过程: 第一课时机器人的故事 新课导入 “robot”一词源出自捷克语“robota”,意为“强迫劳动”。1920年捷克斯洛伐克作家萨佩克写了一个名为《洛桑万能机器人公司》的剧本,他把在洛桑万能机器人公司生产劳动的那些家伙取名“Robot”,汉语音译为“罗伯特”,捷克语意为“奴隶”——萨佩克把机器人的地位确定为只管埋头干活、任由人类压榨的奴隶,它们存在的价值只是服务于人类。它们沒有思维能力,不能思考,只是类似人的机器,很能干, 以便使人摆脱劳作。它们能生存20年,刚生产出来时由人教它们知识。它们不能思考,也有感情,一个人能干三个人的活,公司为此生意兴隆。后来一个极其偶然的原因,机器人开始有了知觉,它们不堪忍受人类的统治,做人类的奴隶,于是,机器人向人类发动攻击,最后彻底毁灭了人类。“机器人”的名字也正式由此而生。 新课讲授 第一代机器人只能用手抓取东西,用脚行走,听“懂”主人的语言,做一些重复性的机械动作。人们把它称为工业机器人。现在,机器人经过好几代的更新改造,已经能和人们自由交谈,沟通语言,并灵活地走动。也就是说,它不仅有了听觉、视觉、触觉,而且还具有记忆、学习、思维和判断能力。人们把新一代的机器人称为智能机器人。 明天的高级智能机器人将比今天的智能机器人具有更丰富的感觉功能和更熟练的活动能力。到那时,家庭里将有服务周到、态度和蔼可亲的家庭机器人。早晨,主人吃过早点上班以后,它立即用吸尘器清的房间,用洗衣机洗涤(dí)主人换下的衣服。电话铃响了,它马上拿起耳机,在一张便条上记下对话内容。“哇——”摇篮里的婴儿醒了,它又像慈祥的母亲一样抱起婴儿,喂水、喂奶,轻声哼(hēng)起一支优美动听的催眠曲,把婴儿再一次送入梦乡。门铃响了,它并不急于开门,而首先问来访者是谁,然后根据来访者的声音仔细辨别他是不是主人的客人,以此决定是否开门。即使是盗贼的恐吓,它也不会害怕,而是声色俱厉地高喊:“快走,你这个无赖(lài)!再不走,我要报警了!”盗贼听到这喊声,只好胆战心惊地走开。做午餐的铃声响了,

最新利用虚拟仿真技术辅助机器人

利用虚拟仿真技术辅 助机器人

关于利用虚拟仿真技术辅助机器人维修示教的探讨 周政华 (山西华泽铝电有限公司电解厂) 摘要:利用机器人虚拟仿真技术,可使检修人员在系统离线状态下对机器人进行编程,并以三维图形方式显示出机器人实际运行轨迹,这样通过 离线编程平台进行新系统的测试,既避免了应用上的风险,保证了机器 人系统的安全性,同时又降低了新程序应用的测试成本,并可以作为培 训系统供检修人员进行虚拟操作使用。 关键词:虚拟仿真离线编程机器人 1 引言 在实际设备运行过程中存在许多影响正常生产状态的因素,而如何优化生产过程,减少这些因素所造成的损失,而仿真技术可以将设备放在一个虚拟环境中,通过对已出现或未知的问题进行模拟,为找出解决此类问题提供了便捷的方法,这样不仅可以减少检修时间,保证生产的正常,也可以保证操作安全。而机器人离线技术的出现以及虚拟仿真技术的发展,正是应这样的要求,不仅可以将人从危险和恶劣的环境中解脱出来,也可以解决远程控制中的通信延时问题,同时利用机器人仿真技术可直观显示出机器人实际运行轨迹,而且不占用机器人作业时间,有利于提高经济效益。 2仿真基本理论 机器人仿真技术分为两大类:第一大类是设计机器人时所必须具有的结构分析和运动分析仿真包括:(1)机器人的物理特性,比如

形状等;(2)是机器人的动态特性,比如加速度、速度等,这需要参考机器人本身的动力学方程,而这个方程用来描述机器人的运动轨迹和特性。 2.1机器人的结构仿真主要是对机器人进行物理特性仿真,在虚拟环境中是以三维实体模型表现的,可以用市面上较常用的 Pro/E、UG、CATIA等三维设计软件进行建模。 2.2 机器人的运动学仿真是通过对建立的的函数模型,然后利用ADMAS、Matlab等专业软件对模型进行运动分析,例如图2.1为一台串联六自由度关节式机器人。 图2.1 两个相邻坐标系i与i-1间的齐次变换矩阵(i=1,2,3…,6)为 其中:a i-1为杆长;d i为杆件偏距; i为关节变量。经运动学整解,可得到机器人末端的位姿,而已知机器人末端的位姿,经过运

基于Matlab的空间描点机器人建模与仿真报告

课程设计 课程名称机器人学 题目名称空间描点机器人建模仿真学生学院 专业班级 学号 学生姓名 指导教师

目录 1.课程设计要求 (1) 2.空间描点机器人的设计 (2) 2.1机器人构型及坐标 (2) 2.2D-H参数表 (4) 3.正运动学 (5) 3.1齐次变换矩阵 (5) 3.2 空间描点机器人工作空间 (6) 4.几何法求逆解 (7) 5.程序流程图 (8) 6.总结分析 (9) 7.Matlab程序附录 (10) 7.1 Mov_6DOF_Rob_Lnya.m (10) 7.2 DHfk6Dof_Lnya.m (12) 7.3 IK_6DOF_Rob_Lnya.m (13) 7.4 Build_6DOFRobot_Lnya.m (14) 7.5 Erzhihua.m (14) 7.6 draw_Workplace.m (15) 7.7 Matrix_DH_Ln.m (16) 7.8 Connect3D.m (17)

1. 课程设计要求 一,按照附件模板填写,要求有封面和目录,除签名处不能有手写。二,主要内容包括下面几个部分, 1,设计一款六自由度机器人,要求2,3,4,5关节中有一个是滑动关节,其余关节应为转动关节。试构想该机器人的功能,并根据功能设定机器人的介绍参数(杆件长度及关节极限) 2,建立机器人的正运动学模型,进行Matlab 运动仿真。(分析机器人的工作空间,制作机器人各个运动的动画。) 注意事项: 1)要求画出机器人的关节坐标系,列出DH 参数表,以及各个关节间的齐次变换矩阵。 2)Matlab仿真应画出工作空间的立体图和剖面图。采用机器人产品的同学应与实际说明书的工作空间做对比。自行设计的同学要做简单的分析讨论。 3)直接采用例程里面的三自由度机器人该部分得0 分。 3,实现逆运动学轨迹规划 注意事项: 1)这里特指机器人末端的轨迹规划,不是关节空间的轨迹规划。2)要实现控制机器人末端在空间中完成某种轨迹。(如直线,圆弧,心型,写字等) 3)可以采用求解逆运动的方程或者是利用微分运动。 4)写出详细的推导过程(公式)。 5)要求有仿真截图及动画。 6)只能使用matlab 及本课程提供的例程,不能使用工具箱。 7)仅仅使用3自由度例程的同学本部分分数会很低 4,自由发挥项(完成这一部分的同学才能够得到90分以上) 1)机器人完整逆解的求解方式(数值解); 2)寻找奇异点,分析奇异位型。 5,Matlab程序作为附录应添加在课程设计报告书的最后面。要求在第一页附上程序流程图,注明函数调用过程,此外,程序要排好版。

机器人系统常用仿真软件介绍概要

1 主要介绍以下七种仿真平台 (侧重移动机器人仿真而非机械臂等工业机器人仿真 : 1.1 USARSim-Unified System for Automation and Robot Simulation USARSim 是一个基于虚拟竞技场引擎设计高保真多机器人环境仿真平台。主要针对地面机器人, 可以被用于研究和教学, 除此之外, USARSim 是 RoboCup 救援虚拟机器人竞赛和虚拟制造自动化竞赛的基础平台。使用开放动力学引擎 ODE(Open Dynamics Engine,支持三维的渲染和物理模拟,较高可配置性和可扩展性,与 Player 兼容,采用分层控制系统, 开放接口结构模拟功能和工具框架模块。机器人控制可以通过虚拟脚本编程或网络连接使用 UDP 协议实现。被广泛应用于机器人仿真、训练军队新兵、消防及搜寻和营救任务的研究。机器人和环境可以通过第三方软件进行生成。软件遵循免费 GPL 条款, 多平台支持可以安装并运行在Linux 、 Windows 和 MacOS 操作系统上。 1.2 Simbad Simbad 是基于 Java3D 的用于科研和教育目的多机器人仿真平台。主要专注于研究人员和编程人员热衷的多机器人系统中人工智能、机器学习和更多通用的人工智能算法一些简单的基本问题。它拥有可编程机器人控制器, 可定制环境和自定义配置传感器模块等功能, 采用 3D 虚拟传感技术, 支持单或多机器人仿真,提供神经网络和进化算法等工具箱。软件开发容易,开源,基于 GNU 协议,不支持物理计算,可以运行在任何支持包含 Java3D 库的 Java 客户端系统上。 1.3 Webots Webots 是一个具备建模、编程和仿真移动机器人开发平台, 主要用于地面机器人仿真。用户可以在一个共享的环境中设计多种复杂的异构机器人, 可以自定义环境大小, 环境中所有物体的属性包括形状、颜色、文字、质量、功能等也都可由用户来进行自由配置,它使用 ODE 检测物体碰撞和模拟刚性结构的动力学特性, 可以精确的模拟物体速度、惯性和摩擦力等物理属性。每个机器人可以装配大量可

工业机器人工程应用虚拟仿真教程教学提纲

工业机器人工程应用虚拟仿真教程教学提纲 一、说明 1?'课程的性质和内容 《工业机器人工程应用虚拟仿真教程》课程是髙级技工学校工业机器人应用与维护专业的专业课。主要内容包括:Robot Studio软件的操作、建模、Smart 组建的使用、轨迹离线编程、动画效果的制作、模拟工作站的构建、仿真验证以及在线操作。 2?课程的任务和要求 本课程的主要任务是培养学生熟练操作Robot Studio软件,并能通过Robot StiMio 软件对工业机器人进行应用开发、调试、现场维护,为学生从事工业机器人工程技术人员打下的必要的专业基础。 通过本课程的学习,学生应该达到以下儿个方面的专业基础。 (1)了解Robot Studio工业机器人仿真软件的基础知识,掌握软件使用方法和技巧。 (2)掌握构建基本仿真工业机器人工作站的方法。 (3)能熟练在Robot Studio软件中创建工件、工具模型。 (4)掌握工业机器人离线轨迹编程方法。 (5)掌握Smart组建的应用。 (6)掌握带导轨和变位机的机器人系统创建于应用方法。 (7)了解ScreenMaker示教器用户自定义界面的操作。 (8)掌握Robot Studio软件的在线功能。 3?教学中注意的问题 (1)本课程教学最好采用理论与实际相结合的一体化教学方式,借助多媒体网络教室,一人一机,使用多媒体课件讲解与软件操作相结合。 (2)理论教学中应帮助学生总结并灵活运用所学的相关知识,本着够用的原则讲授,切忌面面俱到。对工业机器人仿真操作不作深入探讨,仅作一般性了解。 (3)实践教学环节中对工业机器人Robot Studio仿真软件常用功能作简单介绍,重点培养学生使用软件对工业机器人进行基本操作、功能设置、二次开发、在线监控与编程、方案设讣和检验。教师教学中多联系生产实际并选用一些工业上经典的匸业机器人使用案例进行讲解,提高学生对工业机器人进行应用开发、调试、现场维护的能力。 二、学时分配表

(完整word版)《工业机器人编程、仿真及调试》实训报告书

广州城建职业学院 综合实训报告 课程名称:《工业机器人编程、仿真及调试》实训项目:手动操纵ABB工业机器人 学生姓名:罗吉祥 学生学号: 1509010430 所在班级: 15机电4班 指导教师:张志杰 机电工程学院 2017-2018学年第1学期

实训项目 手动操纵工业机器人 一、学习准备 1.主要设备:工业机器人 2.学习资料:安全操作规程、工作页、多媒体设备、焊接手册; 3.劳动保护用品:工作服、电焊手套、面罩、绝缘鞋、滤光玻璃 二、学习过程 引导问题: 1.请同学们查阅资料并写出手动模式下可以进行微动控制,无论“示教器”上显示什么 视图都可以进行微动控制,但在程序执行过程中无法进行微动控制。 答:微动控制就是使用 FlexPendant 控制杆手动定位或移动机器人或外轴。 什么时 候可以微动控制? 手动模式下可以进行微动控制。无论 FlexPendant 上显示什么视图都可 以进行微动控 制,但在程序执行过程中无法进行微动控制。 关于动作模式和机器人 选定 的动作模式和 / 或坐标系确定了机器人移动的方式。 在线性动作模式下,工具中心点沿空 间内的直线移动,即 " 从 A 点到 B 点移动 " 方 式。工具中心点按选定的坐标系轴的方 向移动。 在逐轴模式下,一次只能移动一根机器人轴。因此很难预测工具中心点将如何移 动。 关于动作模式和附加轴 附加轴只能进行逐轴微动控制。附加轴可设计为进行某种线性 动作或旋转 (角)动 作的轴。线性动作用于传送带,旋转动作用于各种工件操纵器。 附 加轴不受选定的坐标系影响。 关于坐标系 如果工具坐标系的其中一个坐标与钻孔平行,则 能轻而易举地使用机械爪将销子定 位于钻孔内。在基坐标系中执行同样的任务时,可能需 要同时在 x 、和 z 坐标进行微 动控制,从而增加了精确控制的难度。 选择合适的坐标系 会使微动控制容易一些,但对于选择哪一种坐标系并没有简单或 唯一的答案 学习目标: 1、掌握各轴的运动规律; 2、熟练使用机器人的三种运动方式; 3、能够使用示教器摇杆熟练控制机器人各轴运动; 4、能够使用增量控制机器人的步进运动; 5、培养学生认真细致的工作态度; 建议学时: 学习地点:一体化学习工作站

科技前沿,仿真机器人

最 特 别 的 机 器 人 科 技 前 沿 课程: 院系: 专业: 学号: 姓名:

最特别的机器人科技前沿 【摘要】机器人的出现和发展,对全人类的发展具有巨大的影响,机器在很多领域代替了人类自己操作,使人类的生产能力有了巨大的提高。随着智能机器人的研发,机器人将进一步为人类服务,本文主要从不同的角度来探讨仿真机器人的科技原理、应用、影响等。 【关键字】机器人;仿真系统;应用;影响;发展 在人类的发展史中,机器人扮演着一个十分重演的角色,特别是现代机器人。首先让我们来看看机器人的发展简史。追根溯源,早在三千多年前的西周时代,我国就出现了能歌善舞的木偶,称为“倡者”,这可能是世界上最早的“机器人”。在近代,随着第一次、第二次工业革命,各种机械装置的发明与应用,世界各地出现了许多“机器人”玩具和工艺品。这些装置大多由时钟机构驱动,用凸轮和杠杆传递运动。1920年,捷克作家K.凯比克在一科幻剧本中首次提出了ROBOT (汉语前译为“劳伯”)这个名词。现在已被人们作为机器人的专用名词。1950 年美国作家I.阿西莫夫提出了机器人学(Robotics)这一概念,并提出了所谓的“机器人三原则”,即:1.机器人不可伤人;2.机器人必须服从人给与,但不和(1)矛盾的指令; 3.在与(1)、(2)原则不相矛盾的前提下,机器人可维护自身不受伤害。上世纪50,60年代,随着机构理论和伺服理论的发展,机器人进入了使用化阶;70年代,随着计算机技术、现代控制技术、传感技术、人工智能技术的发展,机器人得到了迅速发展;进入80年代,随着传感技术,包括视觉传感器、非视觉传感器(力觉、触觉、接近觉等)以及信息处理技术的发展,出现了第二代机器人—有感觉的机器人。它能够获得作业环境和作业对象的部分有关信息,进行一定的实时处理,引导机器人进行作业。第二代机器人已进随着时代的发展,入了使用化,在工业生产中得到广泛应用。 科学技术日新月异。我们的生活无时无刻不在被新科学新技术影响着、改变着。特别是机器人的到来更是给我们的生活和生产带来了巨大的改变,特别是工业机器人在日本大力发展之后,机器人的发展迎来了一个新的春天。到了上世纪80年代,随着科技的进步,人类也在不断地研发更人性化的机器人,于是科学家们开始了研究一种新的机器人——仿真机器人。 随着计算机技术和人工智能技术的飞速发展,使机器人在功能和技术层次上有了很大的提高,移动机器人和机器人的视觉和触觉等技术就是典型的代表。既然有了技术,人类就想最大化利用他们,让他们具有更大的价值,于是人们将机器人的技术(如传感技术、智能技术、控制技术等)扩散和渗透到各个领域形成了各式各样的新机器——仿真机器人。 看到仿真机器人这几个字,就能想到仿真技术是他的核心技术,那么下面就针对机器人仿真技术和仿真设计简单介绍一下。机器人系统仿真是指通过计算机对实际的机器人系统进行模拟的技术。通过计算机对实际的机器人系统进行 模拟。机器人系统仿真可以通过单机或多台机器人组成的工作站或生产线。仿真可以通过交互式计算机图形技术和机器人学理论等,在计算机中生成机器人的几何图形,并对其进行三维显示,用来确定机器人的本体及工作环境的动态变化过程。通过系统仿真,可以在制造单机与生产线之前模拟出实物,缩短生产工期,可以避免不必要的返工。在使用的软件中,工作

MATLAB在机器人虚拟仿真实验教学中的应用

龙源期刊网 https://www.360docs.net/doc/1f2127755.html, MATLAB在机器人虚拟仿真实验教学中的应用 作者:刘相权 来源:《教育教学论坛》2018年第15期 摘要:本文简要介绍了MATLAB在机器人虚拟仿真实验教学中的基本应用。以 PUMA560机器人为研究对象,在MATLAB环境下,用Robotics Toolbox建立了该机器人的运动学模型,并对其进行求解,绘制了关节运动曲线和机器人末端运动轨迹。通过使用虚拟仿真技术,使学生的创新能力和实践能力得到提高。 关键词:MATLAB;机器人;虚拟仿真;实验教学 中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2018)15-0261-02 在机器人学课程的实验教学中,一方面由于机器人价格比较昂贵,不可能用许多实际的机器人来作为教学实验设备,另一方面,由于机器人的教学涉及大量数学运算,手工计算烦琐,采用虚拟仿真技术可以有效地提高教学的质量和效率,在实验教学中的作用越来越明显[1]。 本文以PUMA560机器人为研究对象,采用改进的D-H法分析其结构和连杆参数,运用Robotics Toolbox构建运动学模型并进行运动学仿真。 一、PUMA560机器人的结构及连杆参数 PUMA560机器人是美国Unimation公司生产的6自由度串联结构机器人,本文采用改进 的D-H法建立6个杆件的固接坐标系,如图1所示。 二、PUMA560机器人的运动学仿真 1.机器人模型的建立。在Robotics Toolbox中,构建机器人模型关键在于构建各个杆件和关节,Link函数用来创建一个杆件,其一般形式为: L=Link([theta d a alpha sigma],CONVENTION) 根据表1的数据,构建模型的仿真程序如下: 三、结束语 通过研究利用MATLAB软件进行虚拟仿真实验教学,克服了机器人实验设备数量不足的现状,把学生从烦琐的数值计算中解脱出来,实现了实验教学的创新,获得了良好的教学效

相关文档
最新文档