光伏系统支架的设计方案

光伏系统支架的设计方案
光伏系统支架的设计方案

新能源科学与工程学院

光伏系统设计与施工

课程设计

学院:新能源科学与工程学院

专业班级:

学生姓名:名字就不告诉你们了

学号:

指导教师:

实施时间:2013.11.18—2013.11.22

项目课程成绩:

课程设计是《光伏系统设计与施工》课程的一个总结性教学环节,是培养学生综合运用本门课程及有关选修课程的基本知识去解决某一设计任务的一次训练。在整个教学计划中,它也起着培养学生独立工作能力的重要作用。

课程设计不同于平时的作业,在设计中需要学生自己做出决策,即自己确定方案,选择流程,查取资料,进行过程和设备计算,并要对自己的选择做出设计和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。所以,课程设计是培养学生独立工作能力的有益实践。

通过课程设计,学生应该注重以下几个能力的训练和培养:

1. 查阅资料,选用公式和搜集数据(包括从已发表的文献中和从生产现场中搜集)的能力;

2. 树立既考虑技术上的先进性又考虑经济上的合理性正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力;

3. 用简洁的文字或清晰的图表来表达自己设计思想的能力;

4.综合运用了以前所学的各门课程的知识(高数、CAD制图、机械制图、计算机等等)使相关学科的知识有机地联系起来;

5.运用太阳能光伏发电系统设计与施工中的知识解决工程中的实际问题。

二、课程设计日程安排:

实施时间实习内容安排地点

2013年11月18日讲解任务、设计原理及要求主附西多媒体5

2013年11月19日学生选定实验室电池组件对其长度及质

量进行测量,讲解参观学习实验室屋顶

及学习地面电站支架,对关键部位的连

接进行深入观测。

主A210教室

2013年11月20日针对新余地区的光伏并网电站,对给定

的电池组件进行荷载计算,包括风压荷

载计算,下载相关支架图片手绘制图纸

主A210教室

2013年11月21日出具图纸(用CAD制图),打印报告,

请指导教师批阅并给出评语

主A210教室

2013年11月22日提交设计书、答辩报告书、分组交叉答

主A210教室

1、光伏发电系统支架设计书

2、光伏发电系统支架设计图纸:支架整体及侧面的CAD制图

3、课程设计答辩

四、课程设计成绩

本课程设计成绩的评定为百分制,其中支架设计书/满分40、支架CAD制图的设计图纸满分30、课程设计答辩30分。

课程设计的总成绩=光伏发电系统支架设计书+光伏发电系统支架设计图纸:支架整体及侧面的CAD制图+课程设计答辩成绩。

附件1:光伏发电系统支架设计书

摘要

随着世界各国太阳能发电的兴起,安装光伏系统已经成为光伏发电当中的一个重要组成部分,安装光伏系统是对太阳电池在各种环境当中如何进行稳定的发电、固定、最佳倾角的一个综合任务。

关键词光伏系统组件支架安装

引言

太阳能光伏组件支架是固定太阳能电池板的重要部件,在获得太阳能电池板最大发电效率的前提下,保证支架的安全可靠性是安装光伏组件人员需要考虑和研究的。根据不同形式的太阳能光伏发电的需要,支架系统一般分为单立柱太阳能支架、双立柱太阳能支架、矩阵太阳能支架、屋顶太阳能支架、墙体太阳能支架、追踪系统系列支架等若干规格型号,同时按照不同的安装方式又分为地面安装系统、屋顶安装系统和建筑节能一体化支架安装系统。

本课题主要是对地面安装系统支架的设计,在设计中将会对系统的选址、支架的夹角、支架的抗压强度、以及光伏组件支架系统的连接方式,材质,选型,做一个全面的分析阐述。

1.1设计要求

1.1.1光伏系统的选址

针对新余市的地理位置,经过对土质的勘察,新余市土地1到2米的地表土层为疏松土质,因此在安装光伏组件的时候,应该对土地进行深挖,使用混凝土底座,一是对组件的一个固定,二是对光伏组件的一个配重,确保组件的稳定牢固。

图(1)混凝土底座

新余市的地理位置为北纬27°33’~28°05’,东经114°29’~

115°24’。属亚热带湿润性气候, 具有四季分明、气候温和、日照充足、雨量充沛、无霜期长、严冬较短的特征, 年平均气温15. 3℃ , 历史极端最高气温39. 1℃, 极端最低气温- 17. 7℃; 年降水量961 ~ 1048毫米, 日最大降雨量214.2毫米;年日照时数1700 小时, 太阳辐射和日照时数较为匮乏, 但可利用。根据地理位置及新余市的气候条件(如图2)可取最佳倾角为24度。 (参照:新余高专学报第15卷第6期2010年12月,新余市LED 光伏照明系统最佳倾角的优化设计)

2.1.支架材料的选用

2.1.1选用组件的参数

电池类型 多晶硅 最大功率(Wp) 180W ±3% 工作电流(Amppt ) 4.96A 工作电压(Vmppt ) 36.4V 开路电压(Voc) 44.6V 短路电流(Isc) 5.28A 单个电池重量(kg) 15.6kg 尺寸(mm ×mm )

1580×808×40

参数

水平辐射

斜面辐射量

气温

相对 湿度

日照实数

最长连续阴雨天数

年平均值 13094KJ/㎡ 13714KJ/㎡ 29.4℃ 74%-84% 1655h

5天

系统的支架和结构设计,是为了电池组件有更好的朝向和让系统有更好的倾角,并且能够抵御自然界是对其影响,因此,结构必须牢固。本次设计采用的是三角形和矩形相结合的结构。

太阳能电池板铺设在结构的斜面上,作为一个整体,所采用的钢为C 型钢,三角钢,扁钢。在系统的斜面固上固定太阳能电池板的材质则为不锈钢的铝合金。各种钢筋之间采用焊接或螺丝固定。

图(2)支架的构成

该支架设计采用混凝土作为底座的支撑,选用5根竖直支架作为主要支架来支撑,另外有3根底座支架及4根横向支架,再加上有3根横梁和拉杆来固定电池片,支架上有电池组件3块纵向放置,使得该组件成为一个完整的整体。2.1.3钢材的选用

钢材作为支架中最重要的组成部分,它的选择直接影响系统的使用寿命,而正确的选择钢材,不仅使得系统整体美观,还会节约成本、配重合理,增加使用年限。以下是选取的表格。

支架组成部

钢材的选择使用数量重量(kg) 钢材的规格

底座支架扁钢 3 3 Q35B型热浸镀锌

横向支架扁钢 4 4.5 Q235B型热浸镀锌

固定梁三角钢 3 2.5 Q35B型热浸镀锌55-80μm 竖直支架三角钢 5 3.5 Q235B型热浸镀锌

横梁铝合金 3 2 Al6005-T5外表阳极氧化拉杆三角钢 3 2.5 Q235B型热浸镀锌

螺丝低碳合金钢若干 3.5 M14×40

2.2光伏支架强度的计算

2.2.1.固定组件的负荷G(g取10N/kg)

组件质量Gm=15.6kg×3=46.8kg=468N

各钢架的质量:

3×3+4×4.5+3×2.5+5×3.5+3×2+3×2.5=65.5kg=655N

其他结构材料:螺母,螺栓等G=3.5kg=35N

固定组件负荷:

G=468+655+35=1158N

2.2.2.风压负荷(W)

W=1/2×(Cw×ρ×V

2×S)×α×I×J

式中

Cw—为风力系数通过查阅资料可知

顺风时Cw=1.06,逆风时Cw=1.43;

Ρ—为空气密度=1.274N*s2/m4;

V—为风速取新余最大40m/s;

S—面积=1.586×0.808×3=3.85m2;

α—为高度补正系数=(h/h

)1/5,

h—为阵列的地面以上高度这里取值为2.5m,

h 0——为基准地面以上高度10m,所以α=(h/h

)1/5=(2.5/10)1/5=0.758;

I—为用途系数=本光伏发电系统为通常光伏发电系统所以系数取1;

J —为环境系数=本光伏发电系统没有障碍物的平坦地,系数取1.15。 当风从阵列前方吹来(顺风)的时候风压负荷W 为

W=1/2×1.06×1.274×402×3.85×0.758×1×1.15=3625.5N 当风从阵列后方吹来(逆风)的时候风压负荷W 1为

W 1=1/2×1.43×1.274×402×3.85×0.758×1×1.15=4890N 该风压对太阳能电池方阵作为上吹荷重起作用。 2.2.3.总负荷

顺风时候总荷重G+W=1158+3625.5=4783.5N 逆风时候总荷重G- W 1=1158-4890=-3732N 因此,设计中采用的是悬空的支架设计:

支架的悬空设计有利于气流的流通,在遭遇大风天气时,不会对光伏系统

造成损伤,很好的对系统进行保护。 2.3各部件的安装连接

底座支架与竖直支架和固定

梁之间的连接,底座支架与竖直支架采用的是焊接的方法,之间连接的是用三角钢(如左图),竖直支架与固定梁之间则是采用螺丝连接,在支架上有相应的螺丝孔,安装方便简洁。

图(3)悬空的支架设计

图(4)底座支架与竖直支架和固定梁之间

的连接

横梁与拉杆之间使用螺丝连接,因为拉杆采用的是三角钢,适合打孔使用螺丝,螺丝采用的型号是M14×40,使用配套垫片,横梁采用的是铝合金材质的导轨。

固定梁与拉杆之间的连接同样采用的是M14×40型号的螺丝,注意安装螺丝时要选用同种型号的垫片,螺丝要拧紧,防止松动。

电池组件与横

梁之间的连接,组件边框上有打好的配套螺丝孔,安装时直接将螺丝与横梁和组件边框相连接,同样要使用同种型号的垫片。

图(5)横梁与拉杆之间的连接

图(6)固定梁与拉杆之间的连

图(7)电池组件与横梁之间的连接

3.1设计评述及体会

本次设计使用了大量CAD绘图、图片、表格,来展现产品的各个特点,使得观察者能够很清晰的明白设计者的用途,这是这次设计的一个特点,也是一个优点。对于CAD绘图来说是一个很好的表现形式,但是对于一个CAD初学者来说,系统的绘制光伏系统的三维图形,确实有点吃力,但经过这几天的边学边画,已经能够掌握一般的绘制方法,在这次设计中也是一个难得的收获。

设计中采用了很多其他的文献资料,这会使设计更加的有深度,更加的科学性,对于一个设计来说是很必要的,但对设计者来说这就要求有很好的收集资料的能力,学习他人的优点,善于总结。

通过这次的课程设计,对于我们来说是一个很好的锻炼, 它锻炼了我的思考能力和耐心.做这个课程设计除了需要一定知识的积累,还需要极大的耐心。用所学知识设计生活中的东西,加深了对光伏系统设计的了解。

参考文献

1.【日】太阳光发电协会编太阳能光佚发电系统的设计与施工北京:科学

出版社.2006.

2.混凝土平屋面光伏组件支架的连接设计祁建洲 2012.5

3.格尔木200MWp并网光伏电站组件支架基础的选择许建军科技报. 2013.2

4.新疆天华阳光农一师光伏电站项目光伏支架基础选型的探讨商长征科技向导. 2013年第5期

5.新余市LED光伏照明系统最佳倾角的优化设计李玲, 廖卫兵, 张发云, 刘波, 杨祚宝新余高专学报第15卷第6期2010年12月

附图2:太阳电池组件尺寸示意图(一张A4纸一页图)

附图3:地面太阳电池组件支架示意图(一张A4纸一页图)

附图4 太阳电池组件分解示意图(一张A4纸一页图)

光伏组件支架及太阳能板安装工程施工组织设计方案

. . 目录 1、工程概况和特点 (3) 1.1工程简述 (3) 1.2工程规模 (3) 2、编制依据 (3) 3、开工前准备计划 (3) 3.1人员准备计划 (4) 3.2工机具准备计划 (8) 4、施工管理目标 (8) 4.1质量目标 (8) 4.2工期目标 (8) 4.3安全目标 (8) 5、光伏支架安装 (8) 5.1施工准备 (8) 5.2一般规定 (9) 5.3支架零部件及支架基础的检查 (9) 5.4标准螺栓及组件的要求和质量检验 (10) 5.5光伏组件支架安装工艺要求 (10) 5.6质量标准 (10) 6、光伏组件安装 (11) 6.1光伏组件安装前准备 (11) 7、光伏组件安装安全通则 (13) 8、安全文明施工 (14)

光伏支架及电池板安装施工方案 1、工程概况和特点 1.1工程简述 由华能风力发电有限责任公司投资建设的华能彰武风光互补(章古台)(20 兆瓦)光伏发电站项目地处省市彰武县北部的彰古台镇的低丘沙地区域。场地周围地势开阔,但略有起伏,周围基本无大型障碍物,光伏电站站址区域建设条件比较优越。本期光伏电站接入系统规划容量为20MWp。按目前国较先进的组阵方案,分为20个1MWp 的光伏矩阵单元,每一个1MWp矩阵单元经箱式逆变器逆变后,通过双分裂箱式变压器将逆变器交流输入的电压就地升压至35kV。箱变高压侧采用环接方式,10个逆变升压单元环接成一回出线,20个逆变升压单元以2回35kV架空线路接入华能彰北220kV风电场2期升压站35kV侧,由铁塔16基,线路全长4.119KM输送至变电站送至电网。 1.2工程规模 20MW光伏并网发电 2、编制依据 (1)《光伏发电站施工规》(GB50794-2012) (2)《光伏发电站验收规》(GB50796-2012) (3)钢结构工程质量检验评定标准(GB50221-2001) (4)光伏支架项目-安装说明书 (5)光伏组件支架安装施工图 (6)有关产品的技术文件 3、开工前准备计划 3.1人员准备计划 光伏组件支架安装:技术负责人10名,焊工30名,安装工150名,辅助工20名。 太阳能板安装:技术负责人12名,安装工100名,辅助工60名。 3.2工序质量检验和质量控制 实行质量岗位责任制,现场项目经理对工程质量负全面责任,班组保证分项工程质量,个人保证操作面和工序质量,严格执行工序间质量自检、交换检制度。

太阳能电站光伏单柱支架机械结构设计浅析

太阳能电站光伏单柱支架机械结构设计浅析 摘要:光伏组件支架作为太阳能电站电池板最主要的支撑结构,越来越被太阳能发电行业重视,支架的设计和使用寿命要求一定要满足整个电站的运行年限需要,在整个电站建设的投资中也占有相当的比例。支架的设计涉猎钢结构,地质分析,土建基础,施工工艺,机械加工,表面处理,金属非金属材料,建筑结构等多领域多学科的知识,综合性较强。本文针对单立柱支架系统的结构设计思路进行讨论,寻找最优的支架系统解决方案。 关键词:光伏支架;单立柱;双立柱;结构设计;太阳能发电 1.太阳能发电产业的前景 太阳能由于其安全、无污染和资源无限等优良属性,成为人类发展所必需的清洁能源。尽管目前与风能、生物质能相比,太阳能开发利用的成本还很高,但太阳能的潜力巨大,前景非常广阔,随着其技术的不断进步和成本降低,太阳能,尤其是光伏发电的竞争力开始显现,使其成为继风电和生物质发电之后,又一个可以大规模开发利用的可再生能源技术。从我国资源禀赋来看,就资源的可获得性而言,与水电、核电和风电等技术相比,太阳能发电资源几乎没有限制。太阳能资源的利用与所用的技术、方式和面积有关。截至2010年年底,中国已有建筑面积约450亿m2,屋顶和南立面至少有50亿m2,20%的可利系统;中国有大约120万km2的戈壁和荒漠面积,开发利用5%的荒漠可安装超过50亿kW(5 000 GW)太阳能光伏发电系统,年发电量可以达到6万亿kWh,是美国2010年发电量总和的1.5倍,相当于我国2015年预测的发电量总和。可见,太阳能发电将成为将来新能源发展的主流方向,在不断进步的科学技术推动下,必将为人类社会能源问题解觉走出一条可持续发展的道路。 2.太阳能光伏组件支架系统概述 光伏支架系统产业,是太阳能电站的服务性产业,主要为太阳能电池板的安装提供稳定,可靠,满足使用寿命并与项目地自然条件相关的一系列要求的支撑结构。随着太阳能发电产业的发展,带动了光伏支架行业的共同发展。为了提高太阳能电站发电的实际效率,节省电站投资成本,对光伏支架的设计提出了更高的要求,既要满足结构上的要求,又要实现太阳能电池板实际发电效率的提升,光伏支架有固定支架、可调角度支架、跟踪系统等形式。目前阶段,国内光伏电站项目,还是以固定支架应用最为广泛。由于太阳能电池板的规模化生产技术水平提升很快,生产工艺逐渐成熟,其制造成本也在逐步下降,相比而言,使得光伏支架占太阳能电站总投资的比重在加大。为适应整个光伏发电行业的发展趋势,光伏支架应在结构上不断的进行优化设计,控制成本,综合考虑支架结构对设计整个电站建设施工过程的影响,因此,光伏组件支架设计者应该站在全局的高度来进行支架设计。 3.地面固定单、双柱支架设计比较

光伏发电系统方案专业设计书

光伏发电工程 项 目 方 案 设 计 书

目录 一、概述 (4) 1.1项目概况 (4) 1.2编制依据 (4) 二、建设地址资源简述 (4) 2.1日照资源 (4) 2.2接入系统条件 (5) 三、总体方案设计 (6) 3.1光伏工艺部分 (6) 3.2太阳电池组件选型 (6) 3.3光伏阵列设计 (11) 3.4系统效率分析 (14) 四、电气部分 (15) 4.1概述 (15) 4.2系统方案设计选型 (15) 4.3电气主接线 (18) 4.4主要设备选型 (18) 4.5防雷及接地 (27) 4.6电气设备布置 (27) 4.7电缆敷设及电缆防火 (28) 五、工程案例........................................................................................... 错误!未定义书签。 六、系统配置以及报价 .......................................................................... 错误!未定义书签。

一、概述 1.1 项目概况 1)建设规模:光伏系统用来供给小区道路亮化用电及楼宇亮化用电。该系统设计使用最大负荷50KVA,为保证系统在连续阴雨天或其它太阳辐射不足情况下正常使用,系统接入市电作为辅助能源,提高系统的稳定性能。为减少系统因直流端电流过大造成的线路损耗,系统采用220V直流接入逆变输出三相380V/220V交流。针对固定式安装电池板,采用最佳倾角进行安装,石家庄地区最佳角度为46度(朝向正南),控制柜、逆变器及蓄电池储能系统均须安放于在室内。 1.2 编制依据 本初步设计说明书主要根据下列文件和资料进行编制的: 1)GB50054《低压配电设计规范》; 2)GB50057《建筑物防雷设计规范》; 3)GB31/T316—2004《城市环境照明规范》; 4)GBJl33—90《民用建筑照明设计标准》; 5)JGG/T16—921《民用建筑电气设计规范》; 6)GBJ16—87《建筑设计防火规范》; 7)《中华人民共和国可再生能源法》; 8)国家发展改革委《可再生能源发电有关管理规定》; 二、建设地址资源简述 2.1日照资源 我国属世界上太阳能资源丰富的国家之一,全年辐射总量在917~2333kWh/㎡年之间。全国总面积2/3 以上地区年日照时数大于2000 小时。 我国的太阳能资源按日照时间和太阳能辐射量的大小,全国大致上可分为五类地区: 一类地区: 全年日照时数达到3200~3300小时的地区,主要包括青藏高原、甘肃省北部、宁夏北部和新疆南部等地。 二类地区: 全年日照时数达到3000~3200小时的地区,主要包括河北省西北部、

光伏发电支架组件安装资料

XXXX 10MWP光伏发电项目 光伏支架及组件 安装施工方案 审批人年月日审核人年月日编制人年月日 XXXX 二〇一五年八月

目录 一、工程概况 (2) 二、编制依据 (2) 三、施工准备 (2) 四、主要施工方法 (3) 五、施工进度计划及保证措施 (7) 六、质量标准与质量保证措施 (7) 七、施工安全文明管理措施 (10)

一、工程概况 本工程共5MWp的支架及光伏板安装,每MWp安装110组光伏板支架,共计550组光伏板支架。每组支架安装40块光伏板,共计22000块光伏板。 光伏板支架采用钢结构镀锌件通过螺栓进行连接,光伏板通过压块进行压接施工。 二、编制依据 1、《光伏发电站施工规范》(GB50794-2012); 2、《光伏发电站验收规范》(GB50794-2012); 3、《钢结构工程施工质量验收规范》(GB50505-2001); 3、支架及组件安装说明书; 4、光伏支架及组件安装施工图 三、施工准备 3.1施工现场准备 1、认真熟悉图纸,熟悉设计交底和图纸会审纪要,了解设计的具体意图、所使用的规范、规程等,熟悉操作规程和具体施工方法。 2、安装支架和光伏组件所用工具、机械均已配备齐全。 3、现场进行样板引路,试安装一组,安装完毕后,请甲方及监理验收,合格后方可大面积开始安装,安装要求同样板一致。 3.2技术准备 1、收到施工图后,及时组织施工图会审。 2、组织相关人员认真学习支架说明书,召开技术专题会议,将安装问题暴露出来,集中解决,以便顺利进行大面积施工。 3、针对项目部各施工区域工长及安装施工队带班进行技术交底。 3.3机械、劳动力投入计划 光伏支架和组件安装拟投入人力40人左右(高峰),根据工程的进展情况,可灵活增减人数。主要用工体现在光伏支架和光伏组件运输、安装上,人数不够用普工补充,普工主要用于转运材料和配合等工作。具体用工情况详见机械与劳动力计划表。

光伏电站支架系统的优化设计研究 桂晓刚

光伏电站支架系统的优化设计研究桂晓刚 发表时间:2019-05-17T16:06:31.043Z 来源:《电力设备》2018年第34期作者:桂晓刚 [导读] 摘要:光伏发电场设计的重要组成部分就是光伏支架结构设计,而其设计原则目前国内缺乏相应的规范依据。 (宁夏回族自治区电力设计院有限公司宁夏银川 750001) 摘要:光伏发电场设计的重要组成部分就是光伏支架结构设计,而其设计原则目前国内缺乏相应的规范依据。以现行其他规范为指导,参考国外其他规范的要求,建立了光伏支架结构计算的理论方法,并开发了相关的优化设计程序。通过数值模拟验证,该程序准确度较好且偏于安全。采用上述优化设计程序,对光伏组件的排布方式进行了经济性分析,并推荐了最优方案。 关键词:光伏电站;光伏支架;优化设计 1光伏行业现状 早在1839年,法国科学家贝克雷尔(Becqurel)就发现,光照能使半导体材料的不同部位之间产生电位差。这种现象后来被称为"光生伏特效应",简称"光伏效应"。1954年,美国科学家恰宾和皮尔松在美国贝尔实验室首次制成了实用的单晶硅太阳电池,诞生了将太阳光能转换为电能的实用光伏发电技术。20世纪70年代后,随着现代工业的发展,全球能源危机和大气污染问题日益突出,传统的燃料能源正在一天天减少,对环境造成的危害日益突出,这个时候,全世界都把目光投向了可再生能源,希望可再生能源能够改变人类的能源结构,维持长远的可持续发展。太阳能以其独有的优势而成为人们重视的焦点。丰富的太阳辐射能是重要的能源,是取之不尽、用之不竭的、无污染、廉价、人类能够自由利用的能源。截至2011年底,中国共有电池企业约115家,总产能为36.5GW左右。其中产能1GW以上的企业共14家,占总产能的53%;在100MW和1GW之间的企业共63家,占总产能的43%;剩余的38家产能皆在100MW以内,仅占全国总产能的4%。规模、技术、成本的差异化竞争格局逐渐明晰。国内前十家组件生产商的出货量占到电池总产量的60%。中国太阳能光伏发电发展潜力巨大,配合积极稳定的政策扶持,到2030年光伏装机容量将达1亿千瓦,年发电量可达1300亿千瓦时,相当于少建30多个大型煤电厂。 2光伏支架概述 目前,光伏支架常用模式有固定倾角模式和跟踪模式。由于跟踪模式投资较大,占地面积是固定倾角模式的2倍左右,考虑到系统的可靠性、经济性和维护性,光伏电站普遍采用固定倾角模式。通过对甘肃地区多个光伏电站进行调研发现,固定倾角模式光伏支架主要存在以下问题:1)光伏支架设计复杂、连接部件多;2)钢材使用量大;3)施工安装工作量大;4)支架安装困难;5)对场平要求较高;6)组件角度不可调节。2光伏支架的选择光伏支架的设计原则是结构稳固、质量最小。查阅资料,镇江地区光伏支架系统的最佳倾角为30°,以此进行支架的抗风计算,合格的支架系统的砼支墩应不小于400mm×400mm×400mm,砼支墩横向间距(支架的跨度)小于等于2m。这样的支架系统恒载荷很大,会大幅减少建筑物的载荷安全余量,需要进一步优化,以提高建筑物的安全系数。减少支架系统砼支墩质量的最好办法是缩小支架的倾角,这样,组件背面风力的倾覆力矩会变小。 3新型支架方案 在对光伏支架做了大量研究的基础上,本文提出了一种可调节光伏支架方案,具体包括光伏组件与支架。其中,支架包括斜置框架、前支腿、后支腿、斜撑、前支架基础与后支架基础。后支腿包括上部后支腿与下部后支腿,上部后支腿的下部设有数个定位孔,下部后支腿上部设有数个连接孔,连接螺栓通过定位孔、连接孔将上部后支腿与下部后支腿相连接;下部后支腿底部埋置于后支架基础,前支腿底部埋置于前支架基础,上部后支腿上端与前支腿上端通过螺栓与斜置框架连接,光伏组件通过螺栓安装于斜置框架上面,斜撑一端与斜置框架连接,另一端经连接螺栓安装在后支腿。前支架基础与后支架基础为下部大、上部小的圆台形,形成倒圆锥体基础,增加了基础的抗拔力,可适应西北地区风大的恶劣环境条件。为便于安装及实现各连接部件角度及位移的变化,与上部后支腿连接部位的斜置框架上设有条形孔。主要部件的功能阐述:1)前支腿:对光伏组件起支撑作用,根据光伏组件最小离地间隙确定高度,工程实施中直接预埋于前支架基础中。2)后支腿:对光伏组件起支撑及调节倾角的作用,通过连接螺栓与不同的连接孔、定位孔相连接,实现后支腿高度的变化;下部后支腿预埋于后支架基础中,取消法兰盘、螺栓等连接材料的使用,大幅减少了工程投资及施工量。3)斜撑:对光伏组件起辅助支撑作用,增加了光伏支架的稳定性、刚度与强度。4)斜置框架:光伏组件的安装主体。5)连接件:前后支腿、斜撑、斜置框架均采用U型钢材,各部位之间的连接均采用螺栓直接固定,取消了常规的法兰盘、减少了螺栓使用量,减少了投资及施工量。斜置框架与后支腿上部分、斜撑与后支腿下部分的连接部位均采用条形孔。调节后支腿高度时,需将各连接部位的螺栓松动,即可实现后支腿、前支腿与斜置框架的连接角度变化;斜撑和斜置框架的位移增量通过条形孔实现。6)支架基础:采用钻孔混凝土浇筑式,实际工程中,钎杆变长有抖动现象,实际上是非钢体,所以浇筑混凝土形成倒圆锥体基础,增加了基础的抗拔力,能较好满足西北地区风大的恶劣环境条件。 4跟踪支架在光伏项目中的应用 光伏发电采用太阳能跟踪系统的发电量高于采用固定支架的发电量,同时光伏电池跟踪支架的不同,直接影响光伏发电的效率。针对分布式光伏项目的不同,选择与之相相适应的光伏电池跟踪支架,可大幅度提高光伏发电效率,综合度电成本比采用固定支架方案更低,同时还可缩短光伏项目的投资回收期。分布式光伏项目包括屋顶光伏、水上光伏、林光互补光伏电站和渔光互补光伏电站等。针对不同的光伏项目,光伏跟踪支架可依据以下影响因素加以选择。(1)占地面积。采用不同型式的跟踪支架,占地面积不同。固定支架的占地面积最小,其次分别为水平单轴支架和倾斜单轴支架,并且倾斜角度越大,相应的占地面积也越大。占地面积最大的为双轴跟踪支架。一般而言,单轴跟踪电站占地是固定支架电站的1.5倍,双轴跟踪电站是固定支架电站的2倍多。故对于租地成本有要求的分布式光伏项目,应考虑不同型式的跟踪支架所需的占地面积因素,可选择固定支架、水平单轴支架或者倾角较小的倾斜单轴支架等占地面积较小的支架类型,尽量不采用双轴支架或大倾角的倾斜单轴支架。(2)光伏发电量。采用不同型式的光伏跟踪支架,光伏发电量有一定的差异。以西北某省的分布式光伏电站实测数据为例,采用固定光伏支架在夏季时发电量较大,而在其他季节发电量较小;采用其他三种跟踪支架在春、秋、冬三个季节的发电量都比采用固定光伏支架时大,跟踪效果明显;采用双轴跟踪支架的发电量高于单轴支架,因为双轴跟踪支架跟踪了太阳入射角的变化,这种方式对发电量的提高最为显著。 结语 分布式光伏项目能大幅减少发电厂把电能传输给用户时的线路传输损耗,有益于社会能源健康发展。光伏支架的优化设计能够在充分利用太阳能资源的同时满足安全和经济投资需要。

太阳能光伏设计方案

前言 太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长的态势并表现出强大的生命力。它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。 太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。

1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在客户工厂的屋顶上,用于演示光伏阵列采取跟踪模式和固定模式时发电的情况,待客户参考后再设计一套发电量更大的系统,向工厂提供生产生活用电。本系统建成后将为客户产品做出很好的宣传,系统会直观的显示采用跟踪系统后发电总量的提升情况。 1.2光伏发电系统的要求 因本系统仅是一个参考项目,所以这里就只设计一个2.88kWp的小型系统,平均每天发电5.5kWh,可供一个1kW的负载工作5.5小时。 2.系统方案 2.1现场资源和环境条件 江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。年降水量1041.6毫米,年平均气温15.2℃。具有气候温和、雨量充沛、四季分明等特点。其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度2.5℃;最热月7月份,平均温度27.6℃。

光伏系统支架的设计方案

新能源科学与工程学院 光伏系统设计与施工 课程设计 学院:新能源科学与工程学院 专业班级: 学生姓名:名字就不告诉你们了 学号: 指导教师: 实施时间:2013.11.18—2013.11.22 项目课程成绩:

课程设计是《光伏系统设计与施工》课程的一个总结性教学环节,是培养学生综合运用本门课程及有关选修课程的基本知识去解决某一设计任务的一次训练。在整个教学计划中,它也起着培养学生独立工作能力的重要作用。 课程设计不同于平时的作业,在设计中需要学生自己做出决策,即自己确定方案,选择流程,查取资料,进行过程和设备计算,并要对自己的选择做出设计和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。所以,课程设计是培养学生独立工作能力的有益实践。 通过课程设计,学生应该注重以下几个能力的训练和培养: 1. 查阅资料,选用公式和搜集数据(包括从已发表的文献中和从生产现场中搜集)的能力; 2. 树立既考虑技术上的先进性又考虑经济上的合理性正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力; 3. 用简洁的文字或清晰的图表来表达自己设计思想的能力; 4.综合运用了以前所学的各门课程的知识(高数、CAD制图、机械制图、计算机等等)使相关学科的知识有机地联系起来; 5.运用太阳能光伏发电系统设计与施工中的知识解决工程中的实际问题。 二、课程设计日程安排: 实施时间实习内容安排地点 2013年11月18日讲解任务、设计原理及要求主附西多媒体5 2013年11月19日学生选定实验室电池组件对其长度及质 量进行测量,讲解参观学习实验室屋顶 及学习地面电站支架,对关键部位的连 接进行深入观测。 主A210教室 2013年11月20日针对新余地区的光伏并网电站,对给定 的电池组件进行荷载计算,包括风压荷 载计算,下载相关支架图片手绘制图纸 主A210教室 2013年11月21日出具图纸(用CAD制图),打印报告, 请指导教师批阅并给出评语 主A210教室 2013年11月22日提交设计书、答辩报告书、分组交叉答 辩 主A210教室

5kWp光伏太阳能离网发电系统设计方案

5kWp光伏太阳能离网发电系统 设 计 方 案

目录 一、光伏太阳能离网发电系统简介 (2) 二、项目地参数 (2) 三、相关规范和标准 (5) 四、系统组成与原理 (6) 五、设计过程 (8) 1、方案简介 (8) 2、用户信息 (8) 3、蓄电池设计选型 (8) 4、组件设计选型 (12) 5、离网逆变器设计选型 (16) 6、控制器设计选型 (18) 7、交直流断路器 (21) 8、电缆设计选型 (23) 9、方阵支架 (23) 10、配电室设计 (23) 11、接地及防雷 (23) 12、数据采集检测系统 (24) 六、仿真软件模拟设计 (25) 七、设备配置清单及详细参数 (31) 八、系统建设及施工 (31) 九、系统安装及调试 (32) 十、工程预算投资分析报告 (36) 十二、运行及维护注意事项 (38) 十三、设计图纸 (41)

5kWp光伏太阳能离网发电系统配置方案 一、光伏太阳能离网发电系统简介 独立光伏电站是独立光伏系统中规模较大的应用。它的主要特点就是集中供电,如在一个十几户的村庄就可建立光伏电站来利用太阳能,当然这是在该村庄地理位置较偏远,无法直接利用电力公司电能的情况下,所能用到的方法。用这种方式供电便于统一管理和维护。而户用系统是采用分散供电的方式提供电能,如果要在该村庄安装户用光伏系统,这样每一户都得需这么一套光伏系统,它比起独立光伏电站来,所需的元器件规格要小,控制器、逆变器和蓄电池及负载都比较小,但是独立光伏电站和户用光伏系统基本结构是完全一致的。 太阳能光伏建筑一体化(Building Integrated Photovoltaic——BIPV)是应用太阳能发电 的一种新形式,简单的讲就是将太阳能发电系统和建筑的围护结构外表面如建筑幕墙、屋顶等有机的结合成一个整体结构,不但具有围护结构的功能,同时又能产生电能供本建筑及周围用电负载使用。还可通过建筑物输电线路离网发电,向电网提供电能。太阳能光伏方阵与建筑的结合由于不占用额外的地面空间,是光伏发电系统在城市中广泛应用的最佳安装方式,因而备受关注。 二、项目地参数 图片来自Google地球 1、项目地点:江苏省泰州市XX区XX镇; 2、经度:120°12’ ,纬度:32°23’; 3、平均海拔高度:7m;

光伏发电设计方案

1概述 1.1设计依据 1.1.2设计范围 本工程光伏并网发电系统,一期工程规模10MW,本工程设计范围为(1)新建110KV升压站一座 (2)相关电器计算分析,提出有关电器设备参数要求 (3)相关系统继电保护、通信及调度自动化设计 2.电力系统概述 3..1.电气主接线 本期工程建设容量为20MWp,本期光伏电站接入110KV系统,光伏电站设110KV、35KV集电线路回,经一台升压变电站接入电站内110KV变电站,SVG容量为10Mvar 3.1.3.1 110KV升压站主接线设计 本期110KV升压站设计采用1台20MWa/110KV升压变压器,1回110KV出线。 3.1.3.2 光伏方阵接线设计 1概述;1.1设计依据;1.1.11遵循的主要设计规范、规程、规定等:;1)《变电所总布置设计技术规程》(DL/T205;2)《35kV-110kV无人值班变电

所设计规程;3)《3kV~110kV高压配电装置设计规范》(;4)《35-110KV 变电站设计规范》(GB20;5)《继电保护和安全自动装置技术规范》(GB14; 6)《电力装置的继电保护和自动装置设计 1 概述 1.1设计依据 1.1.11遵循的主要设计规范、规程、规定等: 1)《变电所总布置设计技术规程》(DL/T2056-1996); 2)《35kV-110kV无人值班变电所设计规程》(DL/T5103-1999); 3)《3kV~110kV高压配电装置设计规范》(GB20060-92); 4)《35-110KV变电站设计规范》(GB20059-92); 5)《继电保护和安全自动装置技术规范》(GB14285-93); 6)《电力装置的继电保护和自动装置设计规范》(GB20062-92); 7)《交流电气装置过电压保护和绝缘配合》; 8)《微机线路保护装置通用技术规程》(GB/T15145-94); 9)《电测量仪表装置设计规程》(DJ9-87); 10) 其它相关的国家规程、规范及法律法规。

光伏支架安装方式

光伏支架安装方式 光伏支架作为光伏电站重要的组成部分,它承载着光伏电站的发电主体。支架的选择直接影响着光伏组件的运行安全、破损率及建设投资,选择合适的光伏支架不但能降低工程造价,也会减少后期养护成本。 一、光伏支架类型

1、根据材料分类 根据光伏支架主要受力杆件所采用材料的不同,可将其分为铝合金支架、钢支架以及非金属支架,其中非金属支架使用较少,而铝合金支架和钢支架各有特点。 2、根据安装方式分类 二、固定式光伏支架介绍 光伏阵列不随太阳入射角变化而转动,以固定的方式接收太阳辐射。根据倾角设定情况可以分为:最佳倾角固定式、斜屋面固定式和倾角可调固定式。 、最佳倾角固定式 1 先计算出当地最佳安装倾角,而后全部阵列采用该倾角固定安装,目前在 平顶屋面电站和地面电站广泛使用。

混凝土基础支架-平顶屋面1) 平顶屋面混凝土基础支架是目前平屋面电站中最常用的安装形式,根据基础的形式可以分为条形基础和独立基础;支架支撑柱与基础的连接方式可以通过地脚螺栓连接或者直接将支撑柱嵌入混凝土基础。

优点:抗风能力好,可靠性强,不破坏屋面防水结构。 缺点:需要先制作好混凝土基础,并养护到足够强度才能进行后续支架安装,施工周期较长。混凝土压载支架-平顶屋面2)

优点:混凝土压载支架施工方式简单,可在制作配重块时同时进行支架安 装,节省施工时间。缺点:混凝土压载支架抗风能力相对较差,设计配重块重量时需要充分考 虑到当地最大风力。 -混凝土基础支架 3)地面电站地面电站混凝土基础支架多种多样,根据不用的项目地质情况,可选择对 应的安装方式,以下主要介绍现浇钢筋混凝土基础、独立及条形混凝土基础、预制混凝土空心柱基础等几种最常见的混凝土基础安装形式。现浇钢筋混凝土基础根据基础形式不同,现浇钢筋混凝土基础可分为现浇混凝土桩和浇注锚杆。 优点:现浇钢筋混凝土基础开挖土方量少,混凝土钢筋用量小,造价较低、 施工速度快。缺点:现浇钢筋混凝土基础施工易受季节和天气等环境因素限制,施工要

光伏支架受力计算书..

支架结构受力计算书 设计:___ ___ _日期:___ 校对:_ 日期:___ 审核:__ _____日期:____ 常州市**实业有限公司

1 工程概况 项目名称: *****30MW 光伏并网发电项目 工程地址: 新疆 建设单位: **集团 结构高度: 电池板边缘离地不小于500mm 2 参考规范 《建筑结构可靠度设计统一标准》GB50068—2001 《建筑结构荷载规范》GB50009—2012 《建筑抗震设计规范》GB50011—2010 《钢结构设计规范》GB50017—2003 《冷弯薄壁型钢结构设计规范》GB50018—2002 《不锈钢冷轧钢板和钢带》GB/T3280—2007 《光伏发电站设计规范》 GB50797-2012 3 主要材料物理性能 3.1材料自重 铝材——————————————————————327/kN m 钢材————————————————————3/78.5kN m 3.2弹性模量 铝材————————————————————270000/N mm 钢材———————————————————2206000/N mm 3.3设计强度 铝合金 铝合金设计强度[单位:2/N mm ]

钢材 钢材设计强度[单位:2/N mm ] 不锈钢螺栓 不锈钢螺栓连接设计强度[单位:2/N mm ] 普通螺栓 普通螺栓连接设计强度[单位:2/N mm ] 角焊缝 容许拉/剪应力—————————————————2160/N mm 4 结构计算 4.1 光伏组件参数 晶硅组件: 自重PV G :0.196kN (20kg /块) 尺寸(长×宽×厚)992164400mm ?? 安装倾角:37°

10MW光伏电站设计方案

10MW光伏电站设计方案 10兆瓦的太阳能并网发电系统,推荐采用分块发电、集中并网方案,将系统分成10个1兆瓦的光伏并网发电单元,分别经过0.4KV/35KV变压配电装置并入电网,最终实现将整个光伏并网系统接入35KV中压交流电网进行并网发电的方案。 本系统按照10个1兆瓦的光伏并网发电单元进行设计,并且每个1兆瓦发电单元采用4台250KW并网逆变器的方案。每个光伏并网发电单元的电池组件采用串并联的方式组成多个太阳能电池阵列,太阳能电池阵列输入光伏方阵防雷汇流箱后接入直流配电柜,然后经光伏并网逆变器和交流防雷配电柜并入0.4KV/35KV变压配电装置。 (一)太阳能电池阵列设计 1、太阳能光伏组件选型 (1)单晶硅光伏组件与多晶硅光伏组件的比较 单晶硅太阳能光伏组件具有电池转换效率高,商业化电池的转换效率在15%左右,其稳定性好,同等容量太阳能电池组件所占面积小,但是成本较高,每瓦售价约36-40元。 多晶硅太阳能光伏组件生产效率高,转换效率略低于单晶硅,商业化电池的转换效率在13%-15%,在寿命期内有一定的效率衰减,但成本较低,每瓦售价约34-36元。 两种组件使用寿命均能达到25年,其功率衰减均小于15%。 (2)根据性价比本方案推荐采用165WP太阳能光伏组件。 2、并网光伏系统效率计算 并网光伏发电系统的总效率由光伏阵列的效率、逆变器效率、交流并网等三部分组成。 (1)光伏阵列效率η1:光伏阵列在1000W/㎡太阳辐射强度下,实际的直流输出功率与

标称功率之比。光伏阵列在能量转换过程中的损失包括:组件的匹配损失、表面尘埃遮挡损失、不可利用的太阳辐射损失、温度影响、最大功率点跟踪精度、及直流线路损失等,取效率85%计算。 (2)逆变器转换效率η2:逆变器输出的交流电功率与直流输入功率之比,取逆变器效率95%计算。 (3)交流并网效率η3:从逆变器输出至高压电网的传输效率,其中主要是升压变压器的效率,取变压器效率95%计算。 (4)系统总效率为:η总=η1×η2×η3=85%×95%×95%=77% 3、倾斜面光伏阵列表面的太阳能辐射量计算 从气象站得到的资料,均为水平面上的太阳能辐射量,需要换算成光伏阵列倾斜面的辐射量才能进行发电量的计算。 对于某一倾角固定安装的光伏阵列,所接受的太阳辐射能与倾角有关,较简便的辐射量计算经验公式为: Rβ=S×[sin(α+β)/sinα]+D 式中: Rβ--倾斜光伏阵列面上的太阳能总辐射量 S--水平面上太阳直接辐射量 D--散射辐射量 α--中午时分的太阳高度角 β--光伏阵列倾角 根据当地气象局提供的太阳能辐射数据,按上述公式计算不同倾斜面的太阳辐射量,具体数据见下表:

光伏支架技术要求

光伏支架技术要求 支架对于我们来说并不陌生,在生活的每个角落,只要你稍加注意,就会有支架的出现,下面南通正道就详细为你介绍一下光伏支架的几种常见形式。 (1)方阵支架采用固定支架,光伏阵列的最佳倾角为36°,共1429个支架, (2)光伏组件的支撑依据风荷载按照能够抵抗当地50年一遇最大风速进行设计,支架应按承载能力极限状态计算结构和构件的强度、稳定性以及连接强度。 (3)支架设计应考虑在安装组件后,组件最低端离地高度应满足光伏电站设计规范要求,在确保安全的前提下既经济合理,又方便施工。 (4)要充分考虑现场对光伏发电对支架距离地面最小距离的要求,具体数值要经招标人确认。 (5)钢材、钢筋、水泥、砂石料的材质应满足国家标准。 (6)光伏电池组件安装采用压块式固定在组件框架上,为防止腐蚀冷弯薄壁型钢,螺栓、螺母材质为Q235B热浸镀锌,厚度不小于65μm;与冷弯薄壁型钢相联接的所有螺栓也Q235B热浸镀锌;导槽与组件之间的连接螺栓直径为不小于M8。热浸镀锌满足《金属覆盖层钢铁制件热浸镀锌层技术要求及试验方法》GB/T13912-2002中规定,防腐寿命不低于25年,并提供抗腐蚀性测试报告。 (7)光伏组件光伏支架承受的基本风压应不小于m2。 (8)支架冷弯薄壁型钢檩条满足最大变形量不超过L/200,构件的允许应力比不大于。 (9)钢支撑结构系统的变形量应满足《光伏发电站设计规范》 (GB50797-2012)、“钢结构设计规范(GB50017-2003)”和“钢结构工程施工质量验收规范(GB50205-2001)”。

(10)支架系统抗震等级等应满足《光伏发电站设计规范》(GB50797-2012)以及《建筑抗震设计规范》(GB50011-2012)的要求。 (11)支架与支架基础之间采用螺栓连接形式或预埋件焊接形式,安装完成后的防腐处理由投标人负责,连接螺栓的大小由投标人负责设计。 (12)支架应预留汇流箱安装支撑件,汇流箱规格待定(汇流箱不在供货范围内)。 (13)支架应预留接地扁钢安装用螺栓孔,螺栓孔的位置中标后协商确定。 (14)冷弯薄壁型钢型材与所有钢支撑件之间应有钢垫片。 (15)投标人应提供光伏支架作用于支架基础上的荷载及连接件的定位、大小。 (16)投标人应按照设计院对本项目的整体设计和结构荷载要求,进行支架二次深化设计,向甲方和设计院提供深化设计图和计算书;二次深化设计应满足相关规范、标准的要求,深化设计图纸需经设计院审核确认后方可实施,否则由此引起的返工及其他损失由投标人自行承担。 (17)投标单位应根据自己系统进行深化设计,并在投标报价中考虑此部分造价,深化设计业主不追加造价(正常设计变更除外)。 (18)中标人应在招标人发出中标通知书7天内提交深化设计图纸给设计院供审核,并在招标人的组织协调下,派相关专业人员与施工相关方进行图纸会审。 (19)投标人投标时应提供以下技术文件: 1)投标人须提供企业业绩,项目案例及资质复印件。 2)投标人在投标文件中应提供设计方案图纸及节点详图;同时提供支架的结构计算书及紧固件节点计算书;

太阳能光伏照明控制系统的硬件电路项目设计方案

太阳能光伏照明控制系统的硬件电路项 目设计方案 1.1概述 传统的化石能源资源日益枯竭,严重的环境污染制约了世界经济的可持续发展。能 源的需求有增无减,能源资源已成为重要的战略物资,化石能源储量的有限性是发展可 再生能源的主要因素之一。根据世界能源权威机构的分析,按照目前已经探明的化石能 源储量以及开采速度来计算,全球石油剩余可采年限仅有 41年,其年占世界能源总消 耗量的40.5%,国内剩余可开采年限为15年;天然气剩余可采年限61.9年,其年占世 界能源总消耗量的24.1%,国内剩余可开采年限30年;煤炭剩余可采年限230年,其 年占世界能源总消耗量的25.2%,国内剩余可开采年限81年;铀剩余可采年限71年, 其年占世界能源总消耗量的 7.6%,国内剩余可开采年限为50年。 太阳能利用和光伏发电是最有发展前景的可再生能源,因此,世界各国都把太阳能 光伏发电的商业化开发和利用作为重要的发展方向,制定了相应的导向政策。在光伏发 电的历史上,最早规模化推广的是日本,而后是德国,再发展到现在大力推广的包括美 国、西班牙、意大利、挪威、澳大利亚、韩国、印度等超过 40个国家与地区,如日本 “新阳光计划”、欧盟“可再生能源白皮书”,以及美国国家光伏发展计划、百万太阳能 屋顶计划、光伏先锋计划等的相继推出,成为近年来推动太阳能光伏发电产业的主要动 力。根据欧盟的预测:到2030年太阳能发电将占总能耗10%以上,到2050年太阳能发 电将占总能耗20% 1.2光伏照明系统的结构 光伏照明系统主要由五大部分组成,即太阳能电池、蓄电池、控制器、照明电路、 负载,如下图1-1所示。 在系统中,控制器是整个系统的核心。它控制蓄电池的充电及蓄电池对负载的供电, 对蓄电池性能、使用寿命有非常大的影响。目前,光伏系统主要由于控制器控制蓄电池 充电方式不合理,降低了蓄电池寿命而导致整个系统可靠性不高,因此,在控制器的设 计中采用什么样的充电 图1- 1光伏系统组成框图

光伏支架类型及常见问题

光伏支架类型及常见问题 光伏支架作为光伏电站重要的组成部分,它承载着光伏电站的发电主体。支架的选择直接影响着光伏组件的运行安全、破损率及建设投资,选择合适的光伏支架不但能降低工程造价,也会减少后期养护成本。 一、光伏支架类型 1、根据材料分类 根据光伏支架主要受力杆件所采用材料的不同,可将其分为铝合金支架、钢支架以及非金属支架,其中非金属支架使用较少,而铝合金支架和钢支架各有特点。

2、根据安装方式分类 二、固定式光伏支架介绍 光伏阵列不随太阳入射角变化而转动,以固定的方式接收太阳辐射。根据倾角设定情况可以分为:最佳倾角固定式、斜屋面固定式和倾角可调固定式。 1、最佳倾角固定式 先计算出当地最佳安装倾角,而后全部阵列采用该倾角固定安装,目前在平顶屋面电站和地面电站广泛使用。

1)平顶屋面-混凝土基础支架 平顶屋面混凝土基础支架是目前平屋面电站中最常用的安装形式,根据基础的形式可以分为条形基础和独立基础;支架支撑柱与基础的连接方式可以通过地脚螺栓连接或者直接将支撑柱嵌入混凝土基础。 平顶屋面条形混凝土基础支架 a.地脚螺栓连接 b. 直接嵌入基础 平顶屋面独立混凝土基础支架 平顶屋面混凝土基础支架安装方式优点为抗风能力好,可靠性强,不破坏屋面防水结构;缺点为需要先制作好混凝土基础,并养护到足够强度才能进行后续支架安装,施工周期较长。

2)平顶屋面-混凝土压载支架 混凝土压载支架施工方式简单,可在制作配重块时同时进行支架安装,节省施工时间,但其抗风能力相对较差,设计配重块重量时需要充分考虑到当地最大风力。 平顶屋面混凝土压载支架 3)地面电站-混凝土基础支架 地面电站混凝土基础支架多种多样,根据不用的项目地质情况,可选择对应的安装方式,以下主要介绍现浇钢筋混凝土基础、独立及条形混凝土基础、预制混凝土空心柱基础等几种最常见的混凝土基础安装形式。 现浇钢筋混凝土基础 根据基础形式不同,现浇钢筋混凝土基础可分为现浇混凝土桩和浇注锚杆。施工工艺都是先开孔,然后放入钢筋和混凝土,经养护凝固后与支架连接。其中现浇混凝土桩基础可以通过埋设地脚螺栓与支架支撑柱连接,可以直接将支撑柱嵌入混凝土,浇注锚杆基础不需成桩。现浇钢筋混凝土基础开挖土方量少,混凝土钢筋用量小,造价较低、施工速度快。但施工易受季节和天气等环境因素限制,施工要求高,一旦做好后无法再调节。 a.直接嵌入基础 b.地脚螺栓连接 c.浇注锚杆 现浇钢筋混凝土基础

1光伏支架小结

光伏支架小结 0综述 根据德国的统计数据,在一个大型太阳能发电站项目中,建安成本占光伏项目总投资的21%左右,而太阳能光伏支架的投资仅占总成本的3%左右。因此,相对于太阳能电站高额的投资,支架成本的波动并不是敏感因素,选择高端支架的成本仅提高不足1%,然而如果选用的支架不合适,后期养护成本会大大增加,整体考虑并不合算。 任何类型的太阳能光伏组件装配部件,最重要的特征之一是耐候性。需保证25年内结构必须牢固可靠,能承受如环境侵蚀,风、雪荷载和其它外部效应。安全可靠的安装,以最小的安装成本达到最大的使用效果、几乎免维护、可靠的维修、可回收,这些都是做选择方案时所需要考虑的重要因素。目前一些支架企业应用了高耐磨材料以抵抗风力雪荷载和其它腐蚀作用,综合利用了铝合金阳极氧化,超厚热镀锌,不锈钢,抗UV老化等技术工艺来保证阳能支架和太阳能跟踪的使用寿命。 1光伏支架常见形式 光伏支架具有多种分类方式,如按照连接方式分为焊接式和组装式,按照安装结构分为固定式和逐日式,按照安装地点分为地面式和屋面式等。无论哪种光伏系统,其支架构成大体相似,都包括连接件、立柱、龙骨、横梁、辅助件等部分。 1.1固定式光伏支架 固定式光伏支架,顾名思义,是指安装之后方位、角度等保持不变的支架系统。固定安装方式直接将太阳能光伏组件朝向低纬度地区放置(与地面成一定的角度),以串并联的方式组成太阳能光伏阵列,从而达到太阳能光伏发电的目的。其固定方式有多种,如地面固定方式就有桩基法(直接埋入法)、混凝土块配重法、预埋法、地锚法等,屋面固定方式随屋面材料不同而有不同的方案。 图1地面支架固定方式

太阳能电池阵列的支架,通常由从钢筋混凝土基础中伸出的钢制热浸镀锌的加工品或者不锈钢制地脚螺栓来固定。在房屋屋顶上采用混凝土基础的场合,将房屋的防水层揭开一部分,剥掉混凝土表面.在天井的钢筋上把阵列用的混凝土座的钢筋焊接在一起。不能焊接钢筋时,为了借助混凝土的附着力和自重对抗风压,使混凝土底座表面凹凸不平使附着力加大。之后,用防水填充剂进行二次防水处理。 如果上述方法也不能实施时,可在防水层上敷设比较贵的硅胶等耐候性缓冲材料,在其上安装热浸镀锌的重量大的钢骨架,然后在钢骨架上固定阵列支架。钢骨架是用塑料螺栓连接在房上周围突出的压檐墙上.目的是风压不致使阵列及钢骨架移动。起辅助强化作用。 1.1.1屋面光伏系统支架 屋面光伏支架所安装的环境包括坡屋面、平屋面,安装时需顺应屋面环境,不破坏固有结构及自防水系统,屋面材料包括琉璃瓦、彩钢瓦、油毡瓦、混凝土面等。针对不同的屋面材料采用不同的支架方案。 屋面按倾斜角度分为坡面和平面两种,所以屋面光伏系统的倾斜角度有多种选择,对于坡屋面通常采用平铺的方式顺应屋顶坡度布置,也可以采用与屋顶成一定倾角的布置方式,但是这种做法相对比较复杂,案例较少;对于平屋面则有平铺和倾斜一定角度两种选择。 针对不同的屋面材料,会有不同的支架系统。 1)琉璃瓦屋面支架 如图1所示,琉璃瓦为碱土、紫砂等软硬质原料经过挤制、塑压后烧制而成的建筑材料,材质脆,承重能力差。在安装支架时一般采用特殊设计的主支撑构件与琉璃瓦下层屋面固定,来支撑支架主梁及横梁,支撑构件如连接板等通常设计成如图2中所示的多开孔样式,灵活有效实现支架位置调整。组件与横梁之间采用铝合金压块压接。 图2琉璃瓦屋面、主支撑构件机组件固定压块 2)彩钢瓦屋面支架

离网光伏系统设计方案

太阳光伏系统设计方案

南京格瑞能源科技有限公司. 总体方案描述一 在能源供应方面必须走可持续发面对化石燃料的逐渐枯竭和人类生态环境的日益恶化, 展的道路,逐渐改变能源消费结构,大力开发利用以太阳能为代表的可再生能源,已逐步成为人们的共识。由于太阳能发电具有节能、环保,安装使用方便,一次投资,长期受益等特点,目前广泛应用在别墅群、旅游渡假村、草原牧区、偏远山村、高山海岛等。太阳太阳能阵列把光能转换为电能,210W单晶太阳电池组件组成太阳电池阵列,采用充电控制器作过充、灯控电池阵列通过防雷汇流箱后,进线通过防雷处理进入光伏控制器,交流电且和市电形成互2%)AC220V频率(50Hz±制进入蓄电池组,逆变器把蓄电池逆变为LED等照明灯使用。共462盏,补,通过AC220V交流配电柜输出配电和后级防雷保护处理后可分别安装在屋顶相应的朝南位120平方米左右,太阳能电池板总共需安装占地面积约(东经)置,电池板支架采用全铝结构,具体方案在图纸深化设计中体现。万泽大厦位于:E °48′光伏组件安装倾角确定为3258°′N(北纬)31°119发电系统包括太阳能电池板、组件支架、防雷汇流箱、蓄电池组,控制器,逆变器及配电箱其附件。系统介绍二 灯后地下车库照明负载总功率采用LED本系统的主要目的是给照明设备供 电, 灯管的LED462盏 12W车道、为5544W,车位共采用,220V,负载需要电压为交流11340,方阵支8小时。根据电量平衡原理,需要太阳电池方阵功率为:Wp负载每天工作㎡。系统设计列。太阳能电池方阵占地面积:9120架的倾角为32°,组件排列方式为6行。蓄电池,控制器,逆变器,以180Ah/DC220V2个阴雨能正常工作,蓄电池配置容量为:及输出控制柜安装在空置房内。 本图供示意参考系统核心配置2.1 名称型号参数备注 单晶210Wp/DC96V 太阳电池组件. 180Ah/DC220V 蓄电池 智能自动控制GESM60/220 控制器DC220V/60A 汇流箱汇流箱6进一出GEHL10-S6 带市DC220V/10KW 逆变器GEII10K/220 正弦波逆变器() 电互补太阳电池组件支架 负载用电(2.2 AC220V)数量工作时间用电功率项目名称总功率

相关文档
最新文档