【精品专题】动量定理与电磁感应地综合应用

【精品专题】动量定理与电磁感应地综合应用
【精品专题】动量定理与电磁感应地综合应用

动量定理与电磁感应的综合应用

姓名:____________ 【例题精讲】

例1:如图所示,水平面上有两根相距0.5m足够长的平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R=3Ω的定值电阻;有一质量m=0.1kg,长L=0.5m,电阻r=1Ω的导体棒ab,与导轨接触良好,整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=1T,在t=0s开始,使ab以v0=10m/s的初速度向右运动,直至ab停止,求:

(1)t=0时刻,棒ab两端电压;

(2)整个过程中R上产生的总热量是多少;

(3)整个过程中ab棒的位移是多少

针对训练1-1:如图所示,两条相距L的光滑平行金属导轨位于同一竖直面(纸面)内,其上端接一阻值为R的电阻;在两导轨间OO′下方区域内有垂直导轨平面向里的匀强磁场,磁感应强度为B。现使电阻为r、质量为m的金属棒ab由静止开始自OO′位置释放,向下运动距离d后速度不再变化。(棒ab与导轨始终保持良好的电接触且下落过程中始终保持水平,导轨电阻不计).

(1)求棒ab在向下运动距离d过程中回路产生的总焦耳热;

(2)棒ab从静止释放经过时间t0下降了0.5d,求此时刻的速度大小。

针对训练1-2:(浙江2015年4月选考)如图所示,质量m=3.0×10-3kg的“”型金属细框竖直放置在两水银槽中,“”型框的水平细杆CD长l=0.20 m,处于磁感应强度大小B1=1.0 T、方向水平向右的匀强磁场中,有一匝数n=300匝、面积S=0.01 m2的线圈通过开关K与两水银槽相连。线圈处于与线圈平面垂直的、沿竖直方向的匀强磁场中,其磁感应强度B2的大小随时间t变化的关系如图所示。

(1)求0~0.10 s线圈中的感应电动势大小;

(2)t=0.22 s时闭合开关K,若细杆CD所受安培力方向竖直向上,判断CD中的电流方向及磁感应强度B2的方向;

(3)t=0.22 s时闭合开关K,若安培力远大于重力,细框跳起的最大高度h=0.20 m,求通过细杆CD的电荷量。

针对训练1-3:(浙江2017年11月选考)所图所示,匝数N=100、截面积s=1.0×10-2m2、电阻r=0.15Ω的线圈内有方向垂直于线圈平面向上的随时间均匀增加的匀强磁场B1,其变化率k=0.80T/s。线圈通过开关S连接两根相互平行、间距d=0.20m的竖直导轨,下端连接阻值R=0.50Ω的电阻。一根阻值也为0.50Ω、质量m=1.0×10-2kg的导体棒ab搁置在等高的挡条上。在竖直导轨间的区域仅有垂直纸面的不随时间变化的匀强磁场B2。接通开关S后,棒对挡条的压力恰好为零。假设棒始终与导轨垂直,且与导轨接触良好,不计摩擦阻力和导轨电阻。

(1)求磁感应强度B2的大小,并指出磁场方向;

(2)断开开关S后撤去挡条,棒开始下滑,经t=0.25s后下降了h=0.29m,求此过程棒上产生的热量。

针对训练1-4:.如图所示,平行金属导轨OP 、KM 和PQ 、MN 相互垂直,且OP 、KM 与水平面间夹角为θ=37o,导轨间距均为L=1m ,电阻不计,导轨足够长。两根金属棒ab 和cd 与导轨垂直放置且接触良好,ab 的质量为M=2kg ,电阻为R1=2Ω,cd 的质量为m=0.2kg,电阻为R2=1Ω,金属棒和导轨之间的动摩擦因数均为

μ=0.5,两个导轨平面均处在垂直于轨道平面OPKM 向上的匀强磁场中.现让cd 固定不动,将金属棒ab 由静止释放,当ab 沿导轨下滑x=6m 时,速度已达到稳定,此时,整个回路消耗的电功率为P=12W 。(sin37o=0.6,g=10m/s2)求: (1)磁感应强度B 的大小;

(2)ab 沿导轨下滑x=6m 的过程中ab 棒上产生的焦耳热Q;

(3)若将ab 与cd 同时由静止释放,当cd 达到最大速度时ab 的加速度a.

(4)若将ab 与cd 同时由静止释放,当运动时间t=0.5s 时,ab 的速度vab 与cd 棒的速度vcd 的关系式。

例2:如图所示,在光滑的水平面上有竖直向下(垂直纸面向里)的匀强磁场分布在宽度为s 的区域内.一个边长为L (L

速度变为v.设线圈完全进入磁场时的速度为v',则( )

A.0'2v v v +>

B.0'2v v

v += C.0'2

v v

v +< D.无法判断

针对训练2-1:如图所示,虚线框内为某种电磁缓冲车的结构示意图,其主要部件为缓冲滑块K和质量为m的缓冲车厢。在缓冲车的底板上,沿车的轴线固定着两个光滑水平绝缘导轨PQ、MN。缓冲车的底部,还安装有电磁铁(图中未画出),能产生垂直于导轨平面的匀强磁场,磁场的磁感应强度为B;导轨内的缓冲滑块K由高强度绝缘材料制成,滑块K上绕有闭合矩形线圈abcd,线圈的总电阻为R,匝数为n,ab边长为L。假设缓冲车以速度v0与障碍物C碰撞后,滑块K立即停下,此后线圈与轨道的磁场作用力使缓冲车厢减速运动,从而实现缓冲,一切摩擦阻力不计。求:

(1)滑块K的线圈中最大感应电动势的大小以及流过线圈ab段的电流方向;

(2)若缓冲车厢向前移动一段距离后速度为零(导轨未碰到障碍物),则此过程线圈abcd 中通过的电量和产生的焦耳热各是多少;

(3)缓冲车厢减速运动的速度v随位移x变化的关系式。

针对训练2-2:月球探测器在月面实现软着陆是非常困难的,探测器接触地面瞬间速度为竖起向下的1v ,大于要求的软着陆速度0v ,为此科学家们设计了一种叫电磁阻尼缓冲装置,

(3)当磁感应强度为0B 时,探测器主体可以实现软着陆,若从1v 减速到0v 的过程中,通过线圈截面的电量为q ,求该过程所需要的时间,以及线圈中产生的焦耳热Q 。

针对训练2-3:如图所示,在空间有两个磁感强度均为 B 的匀强磁场区域,上一个区域边界 AA′与 DD′的间距为 H,方向垂直纸面向里,CC′与 DD′的间距为h,CC′下方是另一个磁场区域,方向垂直纸面向外。现有一质量为 m、边长为 L (h < L < H ) 、电阻为 R 的正方形线框由 AA′上方某处竖直自由落下,恰能匀速进入上面一个磁场区域,当线框的cd 边刚要进入边界 CC′前瞬间线框的加速度大小a1= 0.2 g,空气阻力不计,求:(1)线框的 cd 边从 AA′运动到 CC′过程产生的热量 Q .

(2)当线框的 cd 边刚刚进入边界 CC′时,线框的加速度大小

(3)线框的 cd 边从边界 AA′运动到边界 CC′的时间.

例3:某同学利用电磁感应知识设计了一个测速仪。其简化模型如图所示,间距为L的两根水平固定放置的平行光滑的金属导轨MN、PQ,导轨的右端连接一个定值电阻,阻值为R,导体棒a垂直导轨放置在导轨上,在a棒左侧和导轨间存在竖直向下的匀强磁场,磁感应强度为B,在a棒右侧有一绝缘棒b,b棒与固定在墙上的轻弹簧相连但不粘连,弹簧处于压缩状态且被锁定。现解除锁定,b棒在弹簧的作用下向左移动,脱离弹簧后以速度v0与a棒发生碰撞粘在一起。已知a、b棒的质量分别为m、M,碰撞前后,棒始终垂直导轨,a棒在导轨间的电阻为r,导轨电阻和空气阻力均忽略不计。求:

(1)弹簧的弹性势能和a棒中电流的方向;

(2)从a棒开始运动到停止过程中,a棒产生的焦耳热Q;

(3)若a棒向左滑行的距离为x,a棒向左滑行距离x与b棒的速度v0的函数关系式。

针对训练3-1:如图所示,平行光滑且足够长的金属导轨ab、cd固定在同一水平面上,处于竖直向上的匀强磁场中,磁感应强度B=2T,导轨间距L=0.5m。有两根金属棒MN、PQ质量均为lkg,电阻均为0.5Ω,其中PQ静止于导轨上,MN用两条轻质绝缘细线悬挂在挂钩上,细线长h=0.9m,当细线竖直时棒刚好与导轨接触但对导轨无压力。现将MN向右拉起使细线与竖直方向夹角为60°,然后由静止释放MN,忽略空气阻力。发现MN到达最低点与导轨短暂接触后继续向左上方摆起,PQ在MN短暂接触导轨的瞬间获得速度,且在之后1s时间内向左运动的距离s=1m。两根棒与导轨接触时始终垂直于导轨,不计其余部分电阻。求:

(1)当悬挂MN的细线到达竖直位罝时,MNPQ回路中的电流强度大小及MN两端的电势差大小;

(2)MN与导轨接触的瞬间流过PQ的电荷量;

(3)MN与导轨短暂接触时回路中产生的焦耳热。

针对训练3-2:(浙江2016年4月选考)某同学设计了一个电磁推动加喷气推动的火箭发射装置,如图所示.竖直固定在绝缘底座上的两根长直光滑导轨,间距为L.导轨间加有垂直导轨平面向里的匀强磁场B.绝缘火箭支撑在导轨间,总质量为m,其中燃料质量为m′,燃料室中的金属棒EF电阻为R,并通过电刷与电阻可忽略的导轨良好接触.引燃火箭下方的推进剂,迅速推动刚性金属棒CD(电阻可忽略且和导轨接触良好)向上运动,当回路CEFDC面积减少量达到最大值ΔS,用时Δt,此过程激励出强电流,产生电磁推力加速火箭.在Δt时间内,电阻R产生的焦耳热使燃料燃烧形成高温高压气体.当燃烧室下方的可控喷气孔打开后,喷出燃气进一步加速火箭.

(1)求回路在Δt时间内感应电动势的平均值及通过金属棒EF的电荷量,并判断金属棒EF中的感应电流方向;

(2)经Δt时间火箭恰好脱离导轨,求火箭脱离时的速度v0; (不计空气阻力)

(3)火箭脱离导轨时,喷气孔打开,在极短的时间内喷射出质量为m′的燃气,喷出的燃气相对喷气前火箭的速度为u,求喷气后火箭增加的速度Δv.(提示:可选喷气前的火箭为参考系)

针对训练3-3:(浙江2017年4月选考)间距为l的两平行金属导轨由水平部分和倾斜部分平滑连接而成,如图所示.倾角为θ的导轨处于大小为B1、方向垂直导轨平面向上的匀强磁场区间Ⅰ中.水平导轨上的无磁场区间静止放置一质量为3m的“联动双杆”(由两根长为l 的金属杆cd和ef,用长度为L的刚性绝缘杆连接构成),在“联动双杆”右侧存在大小为B2、方向垂直导轨平面向上的匀强磁场区间Ⅱ,其长度大于L.质量为m、长为l的金属杆ab 从倾斜导轨上端释放,达到匀速后进入水平导轨(无能量损失),杆ab与“联动双杆”发生碰撞,碰后杆ab和cd合在一起形成“联动三杆”.“联动三杆”继续沿水平导轨进入磁场区间Ⅱ并从中滑出.运动过程中,杆ab、cd和ef与导轨始终接触良好,且保持与导轨垂直.已知杆ab、cd和ef电阻均为R=0.02 Ω,m=0.1 kg,l=0.5 m,L=0.3 m,θ=30°,B1=0.1 T,B2=0.2 T.不计摩擦阻力和导轨电阻,忽略磁场边界效应.求:

(1)杆ab在倾斜导轨上匀速运动时的速度大小v0;

(2)“联动三杆”进入磁场区间Ⅱ前的速度大小v;

(3)“联动三杆”滑过磁场区间Ⅱ产生的焦耳热Q.

【习题精练】

2.如图甲所示,间距L=0.4m的金属轨道竖直放置,上端接定值电阻R1=1Ω,下端接定值电阻R2=4Ω,其间分布着两个有界匀强磁场区域:区域Ⅰ内的磁场方向垂直纸面向里,其磁感应强度B1=3T;区域Ⅱ内的磁场方向竖直向下,其磁感应强度B2=2T .金属棒MN的质量

m=0.12kg、在轨道间的电阻r=4Ω,金属棒与轨道间的动摩擦因数μ=0.8。现从区域I的上方某一高度处静止释放金属棒,当金属

棒MN刚离开区域Ⅰ后B1便开始均匀

变化.整个过程中金属棒的速度随下落

位移的变化情况如图乙所示,“v2-x”图

象中除ab段外均为直线,oa段与cd段

平行,金属棒在下降过程中始终保持水

平且与轨道间接触良好,轨道电阻及空

气阻力忽略不计,两磁场间互不影响.

求:

(1)金属棒在图象上a、c两点对应的速

度大小;

(2)金属棒经过区域I的时间;

(3) B1随时间变化的函数关系式(从金

属棒离开区域I后计时):

(4)从金属棒开始下落到刚进入区域Ⅱ的过程中回路内的焦耳热.

动量定理与电磁感应的综合应用 答案

针对训练1-1:答案。解:(1)根据闭合电路的欧姆定律可得回路电流为:,

匀速运动时受力平衡,则有:

, 联立计算得出最大速度

为:,

根据能量守恒定律可得:,

计算得出:;

(2)以导体棒为研究对象,根据动量定理可得:

,

而, 所以计算得出:

针对训练1-2:(1)30 V (2)C →D 方向向上 (3)0.03 C [解析] (1)由磁感应定律E =n ΔΦ

Δt

得E =n S ΔB 2

Δt

=30 V

(2)电流方向C →D , B 2方向向上.

(3)由牛顿第二定律有F =ma =m

v -0

Δt

(或由动量定理有F Δt =mv -0) 安培力F =IB 1l ΔQ =I Δt v 2=2gh 得ΔQ =

m 2gh

B 1l

=0.03 C 针对训练1-3答案:

针对训练1-4:.解:(1)以ab 棒为研究对象,受重力、弹力、摩擦力和安培力. 当ab 沿导轨下滑时,速度已达到稳定,所以据合外力零,

即:

设稳定运动的速度为v,所以

即:

联立以上计算得出:;

(2)再以ab 沿导轨下滑

的过程中分析可以知道,安培力做功使机械能转化为电能,设克服安培力做功为W. 据动能定理得:

带入计算得出:

因为两电阻之比为:,据串联电路能量分配可以知道,ab 棒上产生的焦耳热

(3)以cd 棒为研究对象,因为达到最大速度,设此时电路的电流为I,所以此时合外力为零,即:

此时再对对ab 棒受力分析,受重力、摩擦力、安培力及支持力,由牛顿第二定律得:

联立①②代入数据计算得出:

(4)Mgsin37t-μMgcos37t-BILt=Mvab-0 Mgsin53t-μ(mgcos53+BIL )t=mvcd 求得:10vab-2vcd=5

例2.答案:B

针对训练2-1:答案:

(1)0m E nBLv = b →a (2)3针对训练2-2:解:(1)根据右手定则知,线圈中产生的感应电流方向为

根据左手定则知,ab边所受的安培力方向竖直向下.

(2)为了使探测器主体减速而安全着陆,则它的速度为时,

感应电动势为:, 电流为:, 安培力为:,

根据得:

(3)通过线圈截面的电量为:, 计算得出:,

根据能量守恒得:,

即为:

答:(1)线圈中感应电流的方向为,线圈ab边受到的安培力的方向竖直向下.

(2)为使探测器主体减速而安全着陆,磁感应强度B至少为

(3)该过程中线圈中产生的焦热Q为

针对训练2-3:答案:

例3:答案:(10分)【解析】(1)对b棒由能量守恒定律,得弹簧的弹性势能(1分)

由右手定则知,a棒中电流的方向:从上端流向下端(1分)

(2)b棒与a棒相碰撞时,由动量守恒定律知(1分)

又电路产生的总热量为(1分)

a棒产生的焦耳热(1分)

(3)对a棒向左滑动的过程中,由牛顿第二定律知

联立得

两边求和得(1分)

代入,得(1分)

针对训练3-1答案:解:(1)MN 杆下摆过程,由机械能守恒定律得:

,计算得出:

,

刚到竖直位置时,感应电动势:

,

则回路中电流为:, MN 两端的电压:

,

计算得出:

,

;

(2)PQ 杆做匀速直线运动:,

对PQ 杆由动量定理有:

,计算得出:

;

(3)取向左为正方向,在MN 与轨道接触的瞬间, 两杆组成的系统动量守恒,以m 的初速度方向为正方向,由动量守恒定律得:

,

由能量守恒有:′,计算得出:。

针对训练3-2:[答案] (1)B ΔS Δt B ΔS R 方向向左 (2)B 2L ΔS mR -g Δt (3)m ′

m -m ′

u

[解析] (1)根据电磁感应定律,有E =ΔΦΔt =B ΔS Δt ,q =I Δt =ΔΦR =B ΔS

R ,电流方向

向右

(2)平均感应电流I =E R =

B ΔS

R Δt

,平均安培力F =BIL

根据动量定理,有(F -mg )Δt =mv 0。解得v 0=B 2L ΔS

mR

-g Δt

(3)以火箭为参考系,设竖直向上为正,由动量守恒定律有 -m ′u +(m -m ′)Δv =0,得Δv =

m ′

m -m ′

u 针对训练3-3:[答案] (1)6 m/s (2)1.5 m/s (3)0.25 J [解析] (1)感应电动势E =B 1lv 0,电流I =E

1.5R

,安培力F =B 1Il

匀速运动条件为B 21l 2v 0

1.5R

=mg sin θ

解得v 0=1.5mgR sin θ

B 21l

2

=6 m/s. (2)由动量守恒定律得mv 0=4mv ,解得v =v 0

4

=1.5 m/s.

(3)进入磁场区Ⅱ,设速度变化Δv ,由动量定理,有I -

B 2l Δt =-4m Δv

I -

Δt =Δq =B 2lL 1.5R ,解得Δv =-B 22l 2

L

1.5R ×4m

=-0.25 m/s

出磁场区Ⅱ,同样有:Δv =-B 22l 2

L

1.5R ×4m

=-0.25 m/s

出磁场区Ⅱ后“联动三杆”的速度为:v ′=v +2Δv =1.0 m/s 产生的焦耳热Q =12×4m (v 2-v ′2

)=0.25 J.

答案:针对训练3-4,(1)

φ

将开关拨向2 时A 棒会弹出说明所受安培力向右,电流向上,故电容器下板带正电。 (2)A 、B 棒相碰地方发生时没有构成回路,没有感应电流,A 、B 棒均作匀速直线运动直至A 棒到达OO ′处, 设碰后A 棒速度为v ,由于B 棒的位移是A 棒的两倍,故B 棒速度是2v 。A 棒过OO ′ 后在安培力作用下减速。 由动量定理可知:-BI l - ?t= m ?v

,即

两边求和可得,即

(3)设A 棒与B 棒碰前的速度为v 0,碰撞过程动量守恒,有:m v 0= mv+ m 2v 0 ,可得v 0 =3v

A 棒在安培力作用下加速,则有:BI l ?t=m ?v 即Bl ?q =m ?v 两边求和得: Bl (Q-Q ′) = mv 0得:

代入前面的数据可知,电容器所剩电量为

答案:

法拉第电磁感应定律及应用

电磁感应定律的应用(一) 知识点1、感生电动势 例题1、一匀强磁场,磁场方向垂直纸面,规定向里的方向为正。在磁场中有一细金属圆环,线圈平面位于纸面内,如图甲所示。现令磁感应强度B 随时间t 变化,先按图乙中所示的Oa 图象变化,后来又按图象bc 和cd 变化,令E 1、E 2、E 3分别表示这三段变化过程中感应电动势的大小,I 1,I 2,I 3分别表示对应的感应电流,则( BD ) A .E 1>E 2,I 1沿逆时针方向,I 2沿顺时针方向 B .E 10)那么在t 为多大时,金属棒开始移动? 2 212211,L L k mgR t mg R L kL L kt μμ==? ? 知识点2、动生电动势 例题.如图所示,空间存在两个磁场,磁感应强度大小均为,方向相反且垂直纸面,、为其边界,OO ′为其对称轴。一导线折成边长为的正方形闭合回路,回路在纸面内以恒定速度向右运动,当运动到关于OO ′对称的位置时( ACD ) A .穿过回路的磁通量为零 B .回路中感应电动势大小为2B C .回路中感应电流的方向为顺时针方向 D .回路中边与边所受安培力方向相同 练习1、如图,电阻r =5Ω的金属棒ab 放在水平光滑平行导轨PQMN 上(导轨足够长),ab 棒与导轨垂直放置,导轨间间距L =30cm ,导轨上接有一电阻R =10Ω,整个导轨置于竖直向下的磁感强度B =的匀强磁场中,其余电阻均不计。现使ab 棒以速度v =2.0m/s 向右作匀速直线运动,试求: (1)ab 棒中的电流方向及ab 棒两端的电压U ab ; (2)ab 棒所受的安培力大小F ab 和方向。 练习2.如图所示,平行于y 轴的导体棒以速度v 向右匀速直线运动,经过半径为R 、磁感应强度为 B 的圆形匀强磁场区域,导体棒中的感应电动势ε与导体棒位置x 关系的图像是( A ) 知识点3、动生中的图像描绘 例题、匀强磁场磁感应强度 B= T ,磁场宽度L=3rn ,一正方形金属框边长ab=l =1m ,每边电阻r=Ω,金属框以v =10m/s 的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直,如图所示,求: (1)画出金属框穿过磁场区的过程中,金属框内感应电流的I-t 图线 (2)画出ab 两端电压的U-t 图线

电磁感应动量定理的应用

电磁感应中动量定理的运用 动量定律I =?P 。 设想在某一回路中,一部分导体仅在安培力作用下运动时,安培力F 为变力,但其冲量可用它对时间的平均值进行计算,即I =F t ?, 而F =B I L (I 为电流对时间的平均值) 故有:B I L t ?=mv 2-mv 1 . 而I t=q ,故有q=BL mv 12mv - 理论上电量的求法:q=I ?t 。 这种方法的依据是电流的定义式I=q/t 该式的研究对象是通电导体的某一截面,若在t 时间内流过该截面的电量为q ,则流过该切面的电流为I =q/t ,显然,这个电流应为对时间的平均值,因此该式应写为I = q/t ,变形后可以得q =I t ,这个关系式具有一般性,亦即无论流经导体的电流是恒定的还是变化的,只要电流用这段时间内的平均值代入,该式都适用,而平均电流的求解,在电磁感应问题中最为常见的思路为:对某一回路来说,据法拉第电磁感应定律,得E=t ??φ,显然该感应电动势也为对其时间的平均值,再由I =R E (R 为回路中的总电阻)可以得到I = t R ??φ。 综上可得q =R φ?。若B 不变,则q =R φ?=R s B ? 电量q 与安培力的冲量之间有什么联系?可用下面的框图来说明。 从以上框图可见,这些物理量之间的关系可能会出现以下三种题型: 第一:方法Ⅰ中相关物理量的关系。 第二:方法Ⅱ中相关物理量的关系。 第三:就是以电量作为桥梁,直接把上面框图中左右两边的物理量联系起来,如把导体

棒的位移和速度联系起来,但由于这类问题导体棒的运动一般都不是匀变速直线运动,无法使用匀变速直线运动的运动学公式进行求解,所以这种方法就显得十分巧妙。这种题型难度最大。 2在解题中强化应用意识,提高驾驭能力 由于这些物理量之间的关系比较复杂,只能从理论上把握上述关系还不够,还必须通过典型问题来培养学生的应用能力,达到熟练驾驭的目的。请看以下几例:(1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应 强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量 为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点 cd时的速度为v,不计摩擦。求: (1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 分析与解 有的同学据题目的已知条件,不假思索的就选用动量定理,对该过程列式如下: mgt-B I Lt=mv -0显然该式有两处错误:其一是在分析棒的受力时,漏掉了轨道对 棒的弹力N,从而在使用动量定理时漏掉了弹力的冲量I N;其二是即便考虑了I N,这种解法也是错误的,因为动量定理的表达式是一个矢量式,三个力的冲量不在同一直线上,而且IN的方向还不断变化,故 我们无法使用I=Ft来求冲量,亦即无法使用前面所提到的方法二。 为此,本题的正确解法是应用前面提到的方法一,具体解答如下: 对应于该闭合回路应用以下公式: (2)如图2所示,在光滑的水平面上,有一垂直向下的 匀强磁场分布在宽度为L的区域内,现有一个边长为 a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边 界滑过磁场后,速度为v(v﹤v0),那么线圈 A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 分析与解 这是一道物理过程很直观的问题,可分为三个阶段:进入和离开磁场过程中均为加速度不断减少的减速运动,完全进入磁场后即作匀速直线运动,那么这三个过程的速度之间的关系如何呢?乍看好象无从下手,但对照上面的理论分析,可知它属于第三类问题。首先,由于进入磁场和离开磁场两段过程中,穿过线圈回路的磁通量变化量Δφ相同,故有q0=q=Δφ/R;其次,对线框应用动量定理,设线框完全进入磁场后的速度为v′,则有:

电磁感应定律的应用教案

电磁感应定律应用 【学习目标】 1.了解感生电动势和动生电动势的概念及不同。 2.了解感生电动势和动生电动势产生的原因。 3.能用动生电动势和感生电动势的公式进行分析和计算。 【要点梳理】 知识点一、感生电动势和动生电动势 由于引起磁通量的变化的原因不同感应电动势产生的机理也不同,一般分为两种:一种是磁场不变,导体运动引起的磁通量的变化而产生的感应电动势,这种电动势称作动生电动势,另外一种是导体不动,由于磁场变化引起磁通量的变化而产生的电动势称作感生电动势。 1.感应电场 19世纪60年代,英国物理学家麦克斯韦在他的电磁场理论中指出,变化的磁场会在周围空间激发一种电场,我们把这种电场叫做感应电场。 静止的电荷激发的电场叫静电场,静电场的电场线是由正电荷发出,到负电荷终止,电场线不闭合,而感应电场是一种涡旋电场,电场线是封闭的,如图所示,如果空间存在闭合导体,导体中的自由电荷就会在电场力的作用下定向移动,而产生感应电流,或者说导体中产生感应电动势。 要点诠释:感应电场是产生感应电流或感应电动势的原因,感应电场的方向也可以由楞次定律来判断。感应电流的方向与感应电场的方向相同。 2.感生电动势 (1)产生:磁场变化时会在空间激发电场,闭合导体中的自由电子在电场力的作用下定向运动,产生感应电流,即产生了感应电动势。 (2)定义:由感生电场产生的感应电动势成为感生电动势。 (3)感生电场方向判断:右手螺旋定则。 3、感生电动势的产生 由感应电场使导体产生的电动势叫做感生电动势,感生电动势在电路中的作用就是充当电源,其电路是内电路,当它和外电路连接后就会对外电路供电。 变化的磁场在闭合导体所在的空间产生电场,导体内自由电荷在电场力作用下产生感应电流,或者说产生感应电动势。其中感应电场就相当于电源内部所谓的非静电力,对电荷产生作用。例如磁场变化时产生的感应电动势为cos B E nS t ?θ?= . 知识点二、洛伦兹力与动生电动势 导体切割磁感线时会产生感应电动势,该电动势产生的机理是什么呢?导体切割磁感线产生的感应电动势与哪些因素有关?他是如何将其他形式的能转化为电能的? 1、动生电动势

广东高考电磁感应定律综合应用复习

广东高考电磁感应定律综合应用复习 (2009?广东)如图(a )所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路,线圈的半径为r 1,在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图(b )所示,图线与横、纵轴的截距分别为t 0和B 0导线的电阻不计,求0至t 1时间内 (1)通过电阻R 1上的电流大小和方向; (2)通过电阻R 1上的电量q 及电阻R 1上产生的热量. (2012广东物理)35.(18分)如图17所示,质量为M 的导体棒ab ,垂直放在相距为l 的平行光滑金属导轨上。导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B 、方向垂直与导轨平面向上的匀强磁场中。左侧是水平放置、间距为d 的平行金属板。R 和R x 分别表示定值电阻和滑动变阻器的阻值,不计其他电阻。 (1)调节R x =R ,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I 及棒的速率v 。 (2)改变R x ,待棒沿导轨再次匀速下滑后,将质量为m 、带电量为+q 的微粒水平射入金属板间,若它能匀速通过,求此时的R x 。 图17 R x R d a b l B θ

(2013广东卷)图19(a )所示,在垂直于匀强磁场B 的平面内,半径为r 的金属圆盘绕过圆心O 的轴承转动,圆心O 和边缘K 通过电刷与一个电路连接。电路中的P 是加上一定正向电压才能导通的电子元件。流过电流表的电流I 与圆盘角速度ω的关系如图19(b )所示,其中ab 段和bc 段均为直线,且ab 段过坐标原点。ω>0代表圆盘逆时针转动。已知:R=3.0Ω,B=1.0T ,r=0.2m 。忽略圆盘,电流表和导线的电阻。 (1)根据图19(b )写出ab 、bc 段对应的I 与ω的关系式; (2)求出图19(b )中b 、c 两点对应的P 两端的电压U b 、U c ; (3)分别求出ab 、bc 段流过P 的电流I P 与其两端电压U P 的关系式。 (2014广一模)35.(18分)如图,匀强磁场垂直铜环所在的平面,导体棒a 的一端固定在铜环的圆心O 处,另一端紧贴圆环,可绕O 匀速转动.通过电刷把铜环、环心与两竖直平行金属板P 、Q 连接成如图所示的电路,R 1、R 2是定值电阻.带正电的小球通过绝缘细线挂在两板间M 点,被拉起到水平位置;合上开关K ,无初速度释放小球,小球沿圆弧经过M 点正下方的N 点到另一侧. 已知:磁感应强度为B ;a 的角速度大小为ω,长度为l ,电阻为r ;R 1=R 2=2r ,铜环电阻不计;P 、Q 两板间距为d ;带电的质量为m 、电量为q ;重力加速度为g .求: (1)a 匀速转动的方向; (2)P 、Q 间电场强度E 的大小; (3)小球通过N 点时对细线拉力T 的大小. A I /c b a ) //(s rad ω15-30 -45 -60 -60 45 30 15 4.03.02.01 .01 .0-2 .0-3.0-4 .0-卓越教育李咏华作图 图19(b ) R 1 N O a K l d P Q M R 2 B

电磁感应中动量定理和动量守恒

高考物理电磁感应中动量定理和动量守恒定律的运用 (1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN 间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静 止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。 求: (1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 (2)如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v ﹤v0),那么线圈 A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 (3)在水平光滑等距的金属导轨上有一定值电阻R,导轨宽d电阻不计,导体棒AB垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B.现给导体棒一水平初速度v0,求AB在导轨上滑行的距离. (4)如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为: A.1:1 B.1:2 C.2:1 D.1:1 5:如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab、cd是质量均为m的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长。试求: (1)ab、cd棒的最终速度;

高中物理典型问题分析:两道与动量结合的电磁感应问题!

高中物理典型问题分析:两道与动量结合的电磁感应问题! 与传统高考试题不同,浙江新高考选考试卷中,将电磁感应与动量结合是一种常见题型。 ?例题: 1、如图,光滑平行异形导轨ABCD 与abcd,导轨的水平部分BCD处于竖直向上的匀强磁场中,BC段导轨宽度为CD段轨道宽度的2倍,轨道足够长。金属棒P的长度刚与BC段轨道的宽度相同,金属棒Q 的长度刚好与CD段轨道宽度相同,金属棒P的电阻金属棒Q的电阻的2倍。将质量都为m 的金属棒P 和Q分别置于轨道上的AB 和CD段,将P棒距水平轨道高为h 的地方由静止释放,使其自由下滑,求: (1)P棒刚进人磁场时的速度v0 (2)P棒和Q棒的最終速度。 (3)整个过程中P棒上产生的焦耳热。 2、科研人员设计了一种磁性板材,可以在其周围产生勾强磁场,现为测试 其性能,做了如下实验。将足够长的磁性板固定 在小车A 上,产生的匀强磁场磁感应强度大小为 B,方向竖直向上,如图甲所示,磁性板上表面 光滑,与小车的总质量为M,小车静止于光滑水 平面上;小车右侧有一质量为m的绝缘光滑滑块 C,滑块上表面与磁性板处于同一水平高度上; 滑块C上有一质量也为m、匝数为n、边长为L、 总电阻为R 的正方形线框D.俯视图如图乙所示。现让线框D、滑块C一起以v0 向左匀速运动,与A 发生碰撞(不计一切摩擦)。 (1)锁定小车A,C与A 碰撞后立即停止运动,当D进人磁场瞬间,求线圈产生感应电流的大小和方向(从上往下看) (2)锁定小车A,C与A 碰撞后立即停止运动,当D刚好完全进人磁场恰好

静止,求线圈产生的焦耳热。 (3)释放小车A ,C与A 碰撞后黏在一起,当D还未完全进入磁场时已与小车保持相对静止,求线圈产生的焦耳热。 ?参考答案: 第1题:

法拉第电磁感应定律的应用

法拉第电磁感应定律 2.确定目标 本节课讲解应用法拉第电磁感应定律计算感应电动势问题,会区别感应电动势平均值和瞬时值。 二 精讲精练 (一)回归教材、注重基础 例 (见教材练习题P21 T2)如图甲所示,匝数为100匝,电阻为5Ω的线圈(为表示线 圈的绕向图中只画了2匝)两端A 、B 与一个电压表相连,线圈内有指向纸内方向的磁场,线圈中的磁通量按图乙所示规律变化。 (1)求电压表的读数?确定电压表的正极应接在A 还是接在B ? (2)若在电压表两端并联一个阻值为20Ω的电阻R .求通过电阻R 的电流大小和 方向? ,面 时间内,匀强磁场平行于线圈轴线向右穿过,则该段时间线圈两12)t B --

变式3.如图所示,匀强磁场的磁感应强度方向竖直向上,大小为 B,用电阻率为ρ、横 截面积为S的导线做成的边长为L的正方形线框abcd水平放置,OO′为过ad、bc 两边中点的直线,线框全部都位于磁场中.现把线框右半部分固定不动,而把线框 左半部分以OO′为轴向上转动60°,如图中虚线所示。若转动后磁感应强度随时 间按kt 变化(k为常量),求: B B+ = (1)在0到t 0时间内通过导线横截面的电荷量? (2)t0时刻ab边受到的安培力? (三)真题检测,品味高考 1.(2014·新课标全国Ⅰ)如图 (a),线圈ab、cd绕在同一软铁芯上.在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示.已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是( )

2. (2012·福建)如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀 强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心0在区域中心。一质量为m 、带电量为q (q>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动。已知磁感应强度大小B 随时间t 的变化关系如图乙所示(T0为已知量)。设小球在运动过程中电量保持不变,对原磁场的影响可忽略。当t=0T 到t=05.1T 这段时间内的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等.求:这段时间内,细管内涡旋电场的场强大小E 。 (四)拓展深挖、把握先机 拓展:如图甲所示,匝数为n 匝,电阻为r,半径为a 的线圈两端A 、B 与电容为C 的电容器 和电阻R 相连,线圈中的磁感应强度按图乙所示规律变化(取垂直纸面向内方向为正方向)。求: (1)流过电阻的电流大小为多少? (2)电容器的电量为多少? 三 总结归纳 1. 应用法拉第电磁感应定律计算感应电动势。 2. 会判断导体两端电势的高低。

用动量定理解决电磁感应问题

应用动量定理解决电磁感应问题的思维起点 电磁感应部分历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力.通过对近年高考题的研究,此部分结合动量定理的力电综合模型经常在高考题中出现。本文结合例题分析应用动量定理解决电磁感应问题的思维起点。 一、 以累积公式q=It 结合动量定理为思维起点 直导线在磁场中要受到安培力的作用,速度发生变化,安培力随之变化。通常直导线(或线框)的运动为非匀变速直线运动,不能用牛顿运动定律结合运动学公式解题,而动量定理适用于非匀变速直线运动。在时间△t 内安培力的冲量BLq t BLI t F =?=?,式中q 是通过导体截面的电量。利用该公式结合动量定理是解答此类问题思维起点。 例1.如图所示,在匀强磁场区域内与B 垂直的平面中有两根足够长的固定金属平行导轨,在它们上面横放两根平行导体棒构成矩形回路,长度为L ,质量为m ,电阻为R ,回路部分导轨电阻可忽略,棒与导轨无摩擦,开始时图中左侧导体棒静止,右侧导体棒具有向右的初速v 0,试求两棒之间距离增长量x 的上限。 析与解:当右棒运动时,产生感应电动势,两棒中有感 应电流通过,右棒受到安培力作用而减速,左棒受到安培力 作用而加速。当它们的速度相等时,它们之间的距离最大。 设它们的共同速度为v ,则据动量守恒定律可得: mv 0=2mv ,即02 1v v = 对于左棒应用动量定理可得: BILt= mv 所以,通过导体棒的电量q=It =BL mv 20 而q =R BLx t I 2= ? 由上述各式可得: x =220L B R mv 。 v

浙江选考版高考物理一轮复习增分突破五电磁感应与动量观点综合问题.docx

增分突破五电磁感应与动量观点综合问题 增分策略 1.应用动量定理解题的基本思路 (1)确定研究对象,在中学阶段用动量定理讨论的问题,其研究对象一般仅限于单个物体或能看成一个物 体的系统。 (2)对物体进行受力分析,可以先求每个力的冲量,再求各力冲量的矢量和——合力的冲量;或先求合力,再求其冲量。 (3)抓住过程的初、末状态,选好正方向,确定各动量和冲量的正负号。 (4)根据动量定理列方程,如有必要还需要其他补充方程。最后代入数据求解。 2.应用动量定理的注意事项 (1)一般来说,用牛顿第二定律能解决的问题,用动量定理也能解决,如果题目不涉及加速度和位移,用动量定理求解更简单。动量定理不仅适用于恒力,也适用于变力。为变力时,动量定理中的力F应理解为变力在作用时间内的平均值。 (2)动量定理的表达式是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中 的F是物体或系统所受的合力。 3.电磁感应与动量的结合主要有两个考点 (1)对与单杆模型,则是与动量定理结合。例如在光滑水平轨道上运动的单杆(不受其他力作用),由于在 磁场中运动的单杆为变速运动,则运动过程所受的安培力为变力,依据动量定理F安Δt=ΔP,而又由于F 安Δt=BILΔt=BLq,q=NΔΦR总=NBLxR总,ΔP=mv2-mv1,由以上四式将流经杆的某一横截面积的电荷量q、杆位移x及速度变化结合一起。 (2)对于双杆模型,除受到的安培力之外,受到的其他外力之和为零时,与动量守恒结合考查较多。 典例1如图所示,一质量为m的金属杆ab,以一定的初速度v0从一光滑平行金属轨道的底端向上滑 行,轨道平面与水平面成θ角,两导轨上端用一电阻相连,磁场方向垂直轨道平面向上,轨道与金属杆ab 的电阻不计并接触良好。金属杆向上滑行到某一高度h后又返回到底端( ) A.整个过程中合外力的冲量大小为2mv0 B.上滑过程中电阻R上产生的焦耳热等于下滑过程中电阻R上产生的焦耳热

法拉第电磁感应定律及其应用

法拉第电磁感应定律及其应用 1. (法拉第电磁感应定律的应用)(优质试题·北京卷)如图所示,匀强磁场中有两个导体圆环a、b,磁场方向与圆环所在平面垂直。磁感应强度B随时间均匀增大。两圆环半径之比为2∶1,圆环中产生的感应电动势分别为E a和E b,不考虑两圆环间的相互影响。下列说法正确的是() A.E a∶E b=4∶1,感应电流均沿逆时针方向 B.E a∶E b=4∶1,感应电流均沿顺时针方向 C.E a∶E b=2∶1,感应电流均沿逆时针方向 D.E a∶E b=2∶1,感应电流均沿顺时针方向 ,感应电流产生的磁场方向垂直圆环所在平面向里,由右手定则知,两圆环中电流均沿顺时针方向。圆环的半径之比为2∶1,则面积之比为4∶1,据法拉第电磁感应定律得E=为定值,故E a∶E b=4∶1,故选项B正确。 2.

(法拉第电磁感应定律的应用)如图所示,在水平面内固定着U形光滑金属导轨,轨道间距为50 cm,金属导体棒ab质量为0.1 kg,电阻为0.2 Ω,横放在导轨上,电阻R的阻值是0.8 Ω(导轨其余部分电阻不计)。现加上竖直向下的磁感应强度为0.2 T的匀强磁场。用水平向右的恒力F=0.1 N拉动ab,使其从静止开始运动,则() A.导体棒ab开始运动后,电阻R中的电流方向是从P流向M B.导体棒ab运动的最大速度为10 m/s C.导体棒ab开始运动后,a、b两点的电势差逐渐增加到1 V后保持不变 D.导体棒ab开始运动后任一时刻,F的功率总等于导体棒ab和电阻R的发热功率之和 R中的感应电流方向是从M流向P,A错;当金属导体棒受力平衡时,其速度将达到最大值,由F=BIl,I= 可得 总总 ,代入数据解得v m=10 m/s,B对;感应电动势的最大值E m=1 V,a、b F= 总 两点的电势差为路端电压,最大值小于1 V,C错;在达到最大速度以前,F所做的功一部分转化为内能,另一部分转化为导体棒的动能,D错。 3.(法拉第电磁感应定律的应用)(优质试题·海南文昌中学期中)关于电磁感应,下列说法正确的是() A.穿过回路的磁通量越大,则产生的感应电动势越大

第二十二讲-电磁感应与动量结合

第二十二讲电磁感应与动量结合 电磁感应与动量的结合主要有两个考点: 对与单杆模型,则是与动量定理结合。例如在光滑水平轨道上运动的单杆(不受其他力作用),由于在磁场中运动的单杆为变速运动,则运动过程所受的安培力为变力,依据动量定理 F t P ?=?安,而又由于F t BIL t BLq ?=?= 安 ,= BLx q N N R R ?Φ = 总总 , 21 P mv mv ?=-,由以上四 式将流经杆电量q、杆位移x及速度变化结合一起。 对于双杆模型,在受到安培力之外,受到的其他外力和为零,则是与动量守恒结合考察较多一、安培力冲量的应用 例1:★★如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈(B ) A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 分析:进入和离开磁场的过程分别写动量定理(安培力的冲量与电荷量有关,电荷量与磁通量的变化量有关,进出磁场的安培力冲量相等) 点评:重点考察了安培力冲量与电荷量关系。 例2:★★★如图所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为( C )

对电磁感应定律的理解和应用

第18卷 第12期 武汉科技学院学报 Vol.18 No.12 2005年12月 JOURNAL OF WUHAN UNIVERSITY OF SCIENCE AND ENGINEERING Dec. 2005 对电磁感应定律的理解和应用 袁作彬 (湖北民族学院 物理系,湖北 恩施 445000) 摘要:电磁感应定律是电磁学中的一条重要定律,它的两种表述形式,分别反映了电磁感应的宏观表现和微 观机制。对电磁感应定律的理解和运用是电磁学教学的一个重要内容。分析了现行教材中用法拉第电磁感应 定律判定感应电动势方向方法的弊端,提出了一种简便方法,并给出了验证的实例。 关键词:法拉第电磁感应定律;感应电动势;右手定则 中图分类号:O441.3 文献标识码:B 文章编号:1009-5160(2005)-0147-02 电磁感应定律是电磁学教学中的重要内容,结合教学实践,谈谈对于电磁感应定律两种表述及利用法拉第电磁感应定律判断感应电动势的简便方法。 1 电磁感应定律的两种表述 电磁感应定律是电磁学的重要规律,它有两种表述形式。电磁感应定律的第一种表述为: t d d φε?= (1) 式(1) 是电磁感应的宏观表现,它表明当通过闭合回路所围面积的磁通量发生变化时,回路中就产生感应电动势(不论引起磁通量变化的原因是什么)。同时,无论回路的绕行方向怎样选择,ε总与t d d φ的符号相反。 进一步分析引起磁通量变化的原因,有电磁感应定律的第二种表述:[1~3] →→ →→→?????×=∫∫∫S d t B l d B L S )(νε (2) 式(2)中的第一项就是由于导体运动而产生的动生电动势()d L B d l εν→→→ =×?∫,第二项则是由于磁场变化而产生的感生电动势S d t g ∫∫??=ε,式(2)反映出电磁感应的微观机制。由此可以看出,动生电动势和感生电动势的物理过程是有区别的。关于这两种表述表述是否等价的问题,有许多文献讨论,至今仍无定论。[4~6] 2 电磁感应定律的应用 式(2)所示的第二种表述是从微观机理出发揭示电磁感应现象,它不仅揭示了电磁感应现象的微观本质,而且也便于应用。利用式(2),既可以方便地计算由非闭合导体在磁场中做切割磁力线运动而产生的动生电动势,也便于计算静止的闭合导体由于磁场变化而产生的感生电动势,当然也可以计算闭合导体在变化的磁场中运动时产生的感应电动势。 对于第一种表述,现行教材中是这样处理的:在讨论ε的正负之前,将回路的绕向与以回路为边界的曲面法向矢量n r 统一在右手螺旋定则下。在图1所示的四种情形中,一律规定回路的绕向如图中虚线所示,按右手定则,以它为边界的曲面法 收稿日期:2005-08-23 作者简介:袁作彬(1966-),讲师,硕士,研究方向:理论物理.

专题四:41电磁感应定律及其应用

专题四:4.1电磁感应定律及其应用 一、单项选择题 1.下列说法正确的是( ) A .线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B .线圈中的磁通量越大,线圈中产生的感应电动势一定越大 C .线圈处在磁场越强的位置,线圈中产生的感应电动势一定越大 D .线圈中磁通量变化得越快,线圈中产生的感应电动势越大 [答案] D 2.如图所示,闭合线圈abcd 在磁场中运动到如图位置时,ab 边受到的磁场力竖直向上,此线圈的运动情况可能是( ) A .向右进入磁场 B .向左移出磁场 C .以ab 为轴转动 D .以ad 为轴转动 [答案] B 3.(2012·吉林期末质检) 如图所示,两块水平放置的金属板距离为d ,用导线、开关K 与一个n 匝的线圈连接,线圈置于方向竖直向上的变化磁场B 中.两板间放一台小压力传感器,压力传感器上表面静止放置一个质量为m 、电荷量为+q 的小球,K 断开时传感器上有示数,K 闭合稳定后传感器上恰好无示数,则线圈中的磁场B 的变化情况和磁通量变化率分别是( ) A .正在增加,ΔΦΔt =mgd q B .正在减弱,ΔΦΔt =mgd nq C .正在减弱,ΔΦΔt =mgd q D .正在增加,ΔΦΔt =mgd nq

[答案] D 5.(2012·海南卷)如图,一质量为m的条形磁铁用细线悬挂在天花板上,细线从一水平金属圆环中穿过.现将环从位置Ⅰ释放,环经过磁铁到达位置Ⅱ.设环经过磁铁上端和下端附近时细线的张力分别为T1和T2,重力加速度大小为g,则() A.T1>mg,T2>mg B.T1mg,T2mg [答案] A 二、双项选择题 6.如图所示是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流.各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中正确的是() [答案]CD 7.(2012·长沙名校模考)如图所示,通过水平绝缘传送带输送完全相同的铜线圈,线圈等距离排列,且与传送带以相同的速度匀速运动.为了检测出个别未闭合的不合格线圈,让传送带通过一固定匀强磁场区域,磁场方向垂直于传送带,根据穿过磁场后线圈间的距离,就能够检测出不合格线圈,通过观察图形.判断下列说法正确的是()

电磁感应动量定理应用

电磁感应与动量的综合 1.安培力的冲量与电量之间的关系: 设想在某一回路中,一部分导体仅在安培力作用下运动时,安培力为变力,但其冲量可用它对时间的平均值进行计算,即t F I ?=安 冲 而F =B I L (I 为电流对时间的平均值) 故有:安培力的冲量t L I B I ??=冲 而电量q =I Δt ,故有BLq I =冲 因只在安培力作用下运动 BLq =mv 2-mv 1 BL P q ?= 2.感应电量与磁通量的化量的关系:R n t R t n t R E t I q ?Φ=????Φ=??=??= 若磁感应强度是匀强磁场,R BLx R S B R q =?=?Φ= 以电量作为桥梁,把安培力的冲量、动量变化量与回路磁通量的变化量、导体棒的位移联系起来。 例1.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分 布在宽度为L 的区域内,现有一个边长为a (a

【精品专题】动量定理与电磁感应地综合应用

动量定理与电磁感应的综合应用 姓名:____________ 【例题精讲】 例1:如图所示,水平面上有两根相距0.5m足够长的平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R=3Ω的定值电阻;有一质量m=0.1kg,长L=0.5m,电阻r=1Ω的导体棒ab,与导轨接触良好,整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=1T,在t=0s开始,使ab以v0=10m/s的初速度向右运动,直至ab停止,求: (1)t=0时刻,棒ab两端电压; (2)整个过程中R上产生的总热量是多少; (3)整个过程中ab棒的位移是多少 针对训练1-1:如图所示,两条相距L的光滑平行金属导轨位于同一竖直面(纸面)内,其上端接一阻值为R的电阻;在两导轨间OO′下方区域内有垂直导轨平面向里的匀强磁场,磁感应强度为B。现使电阻为r、质量为m的金属棒ab由静止开始自OO′位置释放,向下运动距离d后速度不再变化。(棒ab与导轨始终保持良好的电接触且下落过程中始终保持水平,导轨电阻不计). (1)求棒ab在向下运动距离d过程中回路产生的总焦耳热; (2)棒ab从静止释放经过时间t0下降了0.5d,求此时刻的速度大小。

针对训练1-2:(浙江2015年4月选考)如图所示,质量m=3.0×10-3kg的“”型金属细框竖直放置在两水银槽中,“”型框的水平细杆CD长l=0.20 m,处于磁感应强度大小B1=1.0 T、方向水平向右的匀强磁场中,有一匝数n=300匝、面积S=0.01 m2的线圈通过开关K与两水银槽相连。线圈处于与线圈平面垂直的、沿竖直方向的匀强磁场中,其磁感应强度B2的大小随时间t变化的关系如图所示。 (1)求0~0.10 s线圈中的感应电动势大小; (2)t=0.22 s时闭合开关K,若细杆CD所受安培力方向竖直向上,判断CD中的电流方向及磁感应强度B2的方向; (3)t=0.22 s时闭合开关K,若安培力远大于重力,细框跳起的最大高度h=0.20 m,求通过细杆CD的电荷量。 针对训练1-3:(浙江2017年11月选考)所图所示,匝数N=100、截面积s=1.0×10-2m2、电阻r=0.15Ω的线圈内有方向垂直于线圈平面向上的随时间均匀增加的匀强磁场B1,其变化率k=0.80T/s。线圈通过开关S连接两根相互平行、间距d=0.20m的竖直导轨,下端连接阻值R=0.50Ω的电阻。一根阻值也为0.50Ω、质量m=1.0×10-2kg的导体棒ab搁置在等高的挡条上。在竖直导轨间的区域仅有垂直纸面的不随时间变化的匀强磁场B2。接通开关S后,棒对挡条的压力恰好为零。假设棒始终与导轨垂直,且与导轨接触良好,不计摩擦阻力和导轨电阻。 (1)求磁感应强度B2的大小,并指出磁场方向; (2)断开开关S后撤去挡条,棒开始下滑,经t=0.25s后下降了h=0.29m,求此过程棒上产生的热量。

动量定理、动量守恒在电磁感应中导轨与导体棒的应用—解析版

A B R v 0 B 导轨与导体棒问题 一、单棒问题 【典例1】如图所示,AB 杆受一冲量作用后以初速度v 0=4m/s 沿水平面内的固定轨道运动,经一段时间后而停止.AB 的质量为m=5g ,导轨宽为L=0.4m ,电阻为R=2Ω,其余的电阻不计,磁感强度B=0.5T ,棒和导轨间的动摩擦因数为μ=0.4,测得杆从运动到停止的过程中通过导线的电量q=10﹣2 C ,求:上述过程中 (g 取10m/s 2 )(1)AB 杆运动的距离;(2)AB 杆运动的时间; (3)当杆速度为2m/s 时,其加速度为多大? 【答案】(1) 0.1m ;(2)0.9s ;(3)12m/s 2 . (2)根据动量定理有:﹣(F 安t+μmgt )=0﹣mv 0 而F 安t=BLt=BLq ,得:BLq+μmgt=mv 0, 解得:t=0.9s (3)当杆速度为2m/s 时,由感应电动势为:E=BLv 安培力为:F=BIL ,而I= 然后根据牛顿第二定律:F+μmg=ma 代入得: 解得加速度:a=12m/s 2 , 25.(20分) 如图(a),超级高铁(Hyperloop)是一种以“真空管道运输”为理论核心设计的交通工具,它具有超高速、低能耗、无噪声、零污染等特点。 如图(b),已知管道中固定着两根平行金属导轨MN 、PQ ,两导轨间距为r ;运输车的质量为m ,横截面是半径为r 的圆。运输车上固定着间距为D 、与导轨垂直的两根导体棒1和2,每根导体棒的电阻为R ,每段长度为D 的导轨的电阻也为R 。其他电阻忽略不计,重力加速度为g 。 (1)如图(c),当管道中的导轨平面与水平面成θ=30°时,运输车恰好能无动力地匀速下滑。求运输车与导轨间的动摩擦因数μ; (2)在水平导轨上进行实验,不考虑摩擦及空气阻力。 ①当运输车由静止离站时,在导体棒2后间距为D 处接通固定在导轨上电动势为E 的直流电源,此时导体棒1、2均处于磁感应强度为B ,垂直导轨平向下的匀强磁场中,如图(d)。求刚接通电源时运输车的加速度的大小;(电源内阻不计,不考虑电磁感应现象) ②当运输车进站时,管道内依次分布磁感应强度为B ,宽度为D 的匀强磁场,且相邻的匀强磁场的方向相反。求运输车以速度vo 从如图(e)通过距离D 后的速度v 。 【典例3】 如图所示,水平放置的光滑平行金属导轨上有一质量为m 的金属棒ab .导轨的一端连接电阻R ,其他

1003法拉第电磁感应定律应用

1003法拉第电磁感应定律应用1 一、电磁感应电路问题的理解和分类 1.对电源的理解:电源是将其他形式的能转化为电能的装置.在电磁感应现象里,通过导体切割磁感线和线圈磁通量的变化而将其他形式的能转化为电能. 2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成. 3.问题分类: (1)确定等效电源的正负极,感应电流的方向,电势高低,电容器极板带电性质等问题. (2)根据闭合电路求解电路中的总电阻,路端电压,电功率的问题. (3)根据电磁感应的平均感应电动势求解电路中通过的电荷量: 【针对训练】 1.(2009·广东汕头六都中学质检)如图所示,在磁感应强度B=0.5 T的匀强磁场中,有一等边三角形ABC的固定裸导体框架,框架平面与磁感线方向垂直,裸导体DE能沿着导体框架滑动,且滑动时一直能与框架保持良好的接触.已知三角形的边长为0.2 m,且三角形框架和导体DE的材料、横截面积相同,它们单位长度的电阻均为每米10 Ω,当导体DE以v=4.2 m/s的速度(速度方向与DE垂直)下滑至AB、AC的中点M、N时,求: (1)M、N两点间感应电动势的大小; (2)流过导体框底边BC的电流多大?方向如何? 二、求解电磁感应与力学综合题的思路 思路有两种:一种是力的观点,另一种是能量的观点. 1.力的观点 力的观点是指应用牛顿第二定律和运动学公式解决问题的方法.即先对研究对象进行受力分析,根据受力变化应用牛顿第二定律判断加速度变化情况,最后找出求解问题的方法.2.能量观点 动能定理、能量转化守恒定律在电磁感应中同样适用. 三、电磁感应综合题中的两部分研究对象 电磁感应中的综合题有两种基本类型.一是电磁感应与电路、电场的综合;二是电磁感应与磁场、导体的受力和运动的综合;或是这两种基本类型的复合题,题中电磁现象、力现象相互联系、相互影响和制约. 这类题综合程度高,涉及的知识面广,解题时可将问题分解为两部分:电学部分和力学部分. 1.电学部分思路:将产生感应电动势的那部分电路等效为电源.如果在一个电路中切割磁感线的是几部分但又互相联系,可等效成电源的串、并联.分析内外电路结构,应用闭合电路欧姆定律和部分电路欧姆定律理顺电学量之间的关系.

相关文档
最新文档