最全函数概念及基本性质知识点总结及经典例题(汇编)

最全函数概念及基本性质知识点总结及经典例题(汇编)
最全函数概念及基本性质知识点总结及经典例题(汇编)

函数及基本性质

一、函数的概念

(1)设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到

B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.

(2)函数的三要素:定义域、值域和对应法则.

注意1:只有定义域相同,且对应法则也相同的两个函数才是同一函数 例1.判断下列各组中的两个函数是同一函数的为( )

⑴3)

5)(3(1+-+=x x x y ,52-=x y ;

⑵111-+=

x x y ,)1)(1(2-+=x x y ;

⑶x x f =)(,2)(x x g =;

⑷()f x ()F x =

⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2:求函数的定义域时,一般遵循以下原则:

①()f x 是整式时,定义域是全体实数.如:943)(2-+=x x x f ,R x ∈ ②()f x 是分式函数时,定义域是使分母不为零的一切实数.如:()6

35

-=

x x f ,2≠x ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.如()1432+-=x x x f ,

13

1

>=x x x f a ,当对数或指数函数的底数中含变量时,底数须大

于零且不等于1。如:(

)

2

12

()log 25f x x x =-+

⑤tan y x =中,()2

x k k Z π

π≠+

∈.

⑥零(负)指数幂的底数不能为零.如:2)32()(-+=x x f

⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初

等函数的定义域的交集.如:)2(log 22x y --=

⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数

[()]f g x 的定义域应由不等式()a g x b ≤≤解出.如:()[]()x f x f 28,2,的定义域是的定义

域为 822≤≤x

⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. 例:求函数()())1lg(lg x k x x f -+-=的定义域。

⑩有实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.

例2. 函数0y

=

__________________

例3. 求1

112

2--+-=x x x y 的定义域

例4.

考点3:求函数的值域或最值

求函数最值的常用方法和求函数值域的方法基本上是相同的。事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同。 求函数值域与最值的常用方法:

①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值“直线类、反比例

函数类”。一次函数的值域:R 反比例函数:{}0/≠y y ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确

定函数的值域或最值。“二次函数”用配方法求值域; 例5:求函数562+--=x x y 的值域。

③判别式法:行如()不同时为零212

2221121,a a c x b x a c x b x a y ++++=的函数用判别式法求值域。

例6:求函数x

x y 1

+

=的值域。

④不等式法:利用基本不等式确定函数的值域或最值(一正二定三相等)。 ⑤换元法:通过变量代换达到化繁为简、化难为易的目的。行如:()

x f y 1

=

的函数,可令()t x f =;

行如)0(≠+±+=ac d cx b ax y 的函数,可令d cx t +=;行如22x a y -=的函数,可令[]πθθ,0,cos ∈=a x 或令??

?

???-

∈=2,2,sin ππθθa x 例7:求函数x x y -+=142的值域。

⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值。形如()0≠++=

a b

ax d

cx y 的函数用反函数法求值域。 例8:求2

1

3-+=

x x y 的值域。 ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值。 ⑧函数的单调性法。

例9:求函数41++-=x x y 的值域。 法一(数形结合法): 法二(单调性): 练习1 求下列函数的值域

(1)x x y -+=43 (2)3

425

2

+-=x x y (3)x x y --=21

例10已知函数2

()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值。

练习2 设,αβ是方程2

4420,()x mx m x R -++=∈的两实根,当m 为何值时, 2

2

αβ+有最

小值?求出这个最小值.

(3)函数的表示法:解析法(用数学表达式表示两个变量间的对应关系)、列表法(列出表格来表示两个变量间的对应关系)、图像法(用图像来表示两个变量间的对应关系) 二、函数的基本性质 (1)函数的单调性 ①定义:

②判别方法:a.定义法:

例11:已知函数()y f x =的定义域为R ,且对任意,a b R ∈,都有()()()f a b f a f b +=+,且当0x >时,()0f x <恒成立,证明:(1)函数()y f x =是R 上的减函数;

(2)函数()y f x =是奇函数。

b.性质法:

“()())(为常数与c c x f x f +有相同单调性”

“()())(为常数与c x cf x f 当c>0时具有相同的单调性,当c<0时具有相反的单调性” “增+增=增,减+减=减,增-减=增,减-增=减”

“当()()x g x f 、都是增(减)函数,则()()x g x f 当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数”

C.“同增异减”:对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为

增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x = 为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. 例12:求函数()2

2

2-+=x x x f 的单调区间。

例13:已知函数()()

a ax x x f 3log 22+-=在区间()+∞,2上是增函数,求a 的取值范围。

④打“√”函数()(0)a

f x x a x

=+

>的图象与性质 ()f x

分别在(,-∞

、)+∞

上为增函数,分别在[

、上为减函数.

(2)最大(小)值定义

①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤;

(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.

②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.

(4)函数的奇偶性

①定义及判定方法

注意:①若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.

②奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.

③在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.“偶±偶=偶,奇±奇=奇,偶?偶=偶,偶÷偶=偶,奇?奇=奇,奇÷奇=奇,偶?奇=奇,偶÷奇=奇”

例14:设a 为实数,函数1||)(2

+-+=a x x x f ,R x ∈

(1)讨论)(x f 的奇偶性;

(2)求)(x f 的最小值。

例15:设函数()f x 与()g x 的定义域是x R ∈且1x ≠±,()f x 是偶函数, ()g x 是奇函数,且

1

()()1

f x

g x x +=

-,求()f x 和()g x 的解析式.

三、

四、函数的图像 (1)作图

利用描点法作图:

①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.

利用基本函数图象的变换作图:

要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换

0,0,|()()h h h h y f x y f x h ><=???????→=+左移个单位

右移|个单位

0,0,|()()k k k k y f x y f x k ><=???????→=+上移个单位下移|个单位

②伸缩变换

01,1,()()y f x y f x ωωω<<>=????→=伸缩 01,1,()()A A y f x y Af x <<>=????→=缩伸

③对称变换

()()x y f x y f x =???→=-轴

()()y y f x y f x =??

?→=-轴 ()()y f x y f x =???→=--原点

1()()y x y f x y f x -==????→=直线 ()(||)y y y y f x y f x =???????????????→=去掉轴左边图象

保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =?????????→=保留轴上方图象

将轴下方图象翻折上去

f x f a x x a ()()与的图象关于直线对称2-= 联想点(x,y ),(2a-x,y)

20联想点(x,y),(2a-x,0)

--

与的图象关于点,对称

()()()

f x f a x a

(2)识图

对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.

(3)用图

函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法。

例16

函数的性质知识点总结

1.函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x) ; (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数); (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0); (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2.复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称; 4.函数的周期性 (1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数; (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数; 5.方程 (1)方程k=f(x)有解k∈D(D为f(x)的值域); (2)a≥f(x) 恒成立a≥[f(x)]max,; a≤f(x) 恒成立a≤[f(x)]min; (3)(a>0,a≠1,b>0,n∈R+); log a N= ( a>0,a≠1,b>0,b≠1); (4)log a b的符号由口诀“同正异负”记忆;

三角函数的图象和性质典型例题

三角函数的图象和性质·典型例题 于P1,P2两点,过P1,P2分别作P1M1⊥x轴,P2M2⊥x轴,垂足分 k∈Z} 【说明】学会利用单位圆求解三角函数的一些问题,借助单位圆求解不等式的一般方法是:①用边界值定出角的终边位置;②根据不等式定出角的范围;③在[0,2π]中找出角的代表;④求交集,找单位圆中重叠的部分;⑤写出角的范围的表达式,注意加周期.

【例3】求下列函数的定义域: 解:(1)为使函数有意义,需满足2sin2x+cosx-1≥0 【说明】求函数的定义域通常是解不等式组,利用“数形结合”,借助于数轴画线求交集的方法进行.在求解三角函数,特别是综合性较强的三角函数的定义域,我们同样可以利用“数形结合”,在单位圆中画三角函数线,求表示各三角不等式解集的扇形区域的交集来完成. 【说明】求三角函数的定义域要注意三角函数本身的特征和性质,如在转化为不等式或不等式组后要注意三角函数的符号及单调性,在进行三角函数的变形时,要注意三角函数的每一步变形都保持恒等,即不能改变原函数的自变量的取值范围. 【例4】求下列函数的值域:

∴此函数的值域为{y|0≤y<1} 【说明】求三角函数的值域,除正确运用必要的变换外,还要注意函数的概念的指导作用,注意利用正、余弦函数的有界性. 【例5】判断下列函数的奇偶性: 【分析】先确定函数的定义域,然后根据奇函数成偶函数的定义判断函数的奇偶性. ∵f(1-x)=-sin(-2x)=sin2x=-f(x) 【例8】求下列各函数的最大值、最小值,并且求使函数取得最大值、最小值的x 的集合. ∴使y取得最大值的x的集合为{x|x=(2kπ+1)π,k∈Z} ∴使y取得最小值的x的集合为{x|x=2kπ,k∈Z}

高考复习函数知识点总结

高考复习 函数知识点总结 一.函数概念的理解以及函数的三要素 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则(函数关系式)也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ; 满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ; 满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做 [,)a b ,(,]a b ; 满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b < . (3)求函数的定义域时,一般遵循以下原则: ① 分式的分母不为0; ② 偶次根式下被开方数大于0; ③ 0y x = ,则有0x ≠ ; ④ 对数函数的真数大于0,底数大于0切不等于1 注意:①解析式为整式的函数定义域为R ; ②若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则

其定义域一般是各基本初等函数的定义域的交集; ③对于求复合函数定义域问题,一般步骤是:若已知() f x的定义域 为[,] a g x b ≤≤解出. f g x的定义域应由不等式() a b,其复合函数[()] (4)求函数的值域或最值 常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量 的取值范围确定函数的值域或最值. ③判别式法:若函数() =可以化成一个系数含有y的关于x的二次方程 y f x 2 ++=,则在()0 a y x b y x c y ()()()0 a y≠时,由于,x y为实数,故必须有 2()4()()0 ?=-?≥,从而确定函数的值域或最值. b y a y c y ④不等式法:利用基本不等式确定函数的值域或最值. ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代 数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的 值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法. (5)函数解析式 ①换元法;(用于求复合函数的解析式) ②配凑法;(用于求复合函数的解析式)

高中数学必修一《集合与函数的概念》经典例题

高中数学必修一第一章《集合与函数概念》综合测 试题试题整理:周俞江 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正 确答案的代号填在题后的括号内(本大题共12个小题, 每小题5分,共60分). 1.已知全集}5,4,3,2{},3,2,1{==B A ,则=B A I ( ) A. }{5,4,3,2,1 B.{}3,2,1 C.{}3,2 D.{}7,6,3 2. 若{{}|0,|12A x x B x x =<<=≤<,则A Y B=( ) A . {}|0x x ≤ B .{}|2x x ≥ C .{0x ≤≤ D .{}|02x x << 3 .在下列四组函数中,f (x )与g (x )表示同一函数的是( ) A.x x y y ==,1 B .1,112-=+?-=x y x x y C.55 ,x y x y == D .2)(|,|x y x y == 4.函数x x x y +=的图象是( ) 5.0≤f 不是映射的是A .1:3f x y x ?? →= B .1 :2 f x y x ??→= C .1:4f x y x ??→= D .1:6f x y x ??→= 6.函数y =f (x )的图象与直线x =1的公共点数目是( ). A .1 B .0 C .0或1 D .1或2 7.函数1)2(++=x k y 在实数集上是增函数,则k 的范围是( ) A .2-≥k B .2-≤k C .2->k D .2-

9.有下面四个命题: ①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称; ④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R ). 其中正确命题的个数是( ). A .1 B .2 C .3 D .4 10.图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 11.若函数))(12()(a x x x x f -+= 为奇函数,则=a ( ) A.21 B.32 C.43 D.1 12.已知函数x x x x f 22 11)11(+-=+-,则函数)(x f 的解析式可以是( ) A.x x 21+ B.x x 212+- C.x x 212+ D.x x 21+- 13.二次函数y =x 2+bx +c 的图象的对称轴是x =2,则有( ). A .f (1)<f (2)<f (4) B .f (2)<f (1)<f (4) C .f (2)<f (4)<f (1) D .f (4)<f (2)<f (1) 14.已知函数[](]?????∈--∈-=5,2,32,13)(,2x x x x f x 则方程1)(=x f 的解是( ) A.2或2 B.2或3 C.2或4 D.±2或4 15.函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则()f x 在),(b a 上是 A .增函数 B .减函数

高一数学《函数的性质》知识点总结

高一数学《函数的性质》知识点总结 二.函数的性质 函数的单调性 增函数 设函数y=f的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x12时,都有f2),那么就说f在区间D上是增函数.区间D称为y=f的单调增区间. 如果对于区间D上的任意两个自变量的值x1,x2,当x12时,都有f>f,那么就说f在这个区间上是减函数.区间D称为y=f的单调减区间. 注意:函数的单调性是函数的局部性质; 图象的特点 如果函数y=f在某个区间是增函数或减函数,那么说函数y=f在这一区间上具有单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. 函数单调区间与单调性的判定方法 定义法: 任取x1,x2∈D,且x12; 作差f-f; 变形;

定号; 下结论. 图象法 复合函数的单调性 复合函数f[g]的单调性与构成它的函数u=g,y=f的单调性密切相关,其规律:“同增异减” 注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集. .函数的奇偶性 偶函数 一般地,对于函数f的定义域内的任意一个x,都有f=f,那么f就叫做偶函数. .奇函数 一般地,对于函数f的定义域内的任意一个x,都有f=—f,那么f就叫做奇函数. 具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 利用定义判断函数奇偶性的步骤: 首先确定函数的定义域,并判断其是否关于原点对称; 确定f与f的关系; 作出相应结论:若f=f或f-f=0,则f是偶函数;若

f=-f或f+f=0,则f是奇函数. 注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,再根据定义判定;由f±f=0或f/f=±1来判定;利用定理,或借助函数的图象判定. 函数的解析表达式 函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. 求函数的解析式的主要方法有: )凑配法 )待定系数法 )换元法 )消参法 0.函数最大值 利用二次函数的性质求函数的最大值 利用图象求函数的最大值 利用函数单调性的判断函数的最大值: 如果函数y=f在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f在x=b处有最大值f; 如果函数y=f在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f在x=b处有最小值f;

函数的基本性质知识点和典型例题

学生姓名: 年级: 班型:1对1 上课时间: (第 次课) 剩余课时: 上课内容:函数的基本性质 一、函数的单调性: 1、定义域为I 的函数f (x )在区间D 上的增减性 (1)共同条件:12 , ,D I x x D ??↓?∈?任意 (2)假设前提:12x x <。 (3)判断依据: ①若__________________,则f (x )在区间D 上是增函数; ②若__________________,则f (x )在区间D 上是增函数。 2、单调区间 如果函数y=f (x )在区间D 上是增函数或减函数,就说f (x )在区间D 上具有(严格的)___________,区间D 叫做f (x )的__________。 思考探究 1、把增(减)函数定义中的“任意两个自变量12,x x ”换成“存在两个自变量12,x x ”还能判断函数是增(减)函数吗? 2、把增(减)函数定义中的“某个区间D ”去掉,其余条件不变,能否判断函数的增减性? 3、所有的函数都具有单调性吗? 自主测评 1、下列说法正确的是( ) A 、定义在(,)a b 上的函数f (x ),若存在12x x <时,有12()()f x f x <,那么f (x )在(,)a b 上为增函数 B 、定义在(,)a b 上的函数f (x ),若有无穷多对12,(,)x x a b ∈使得12x x <时,有12()()f x f x <,那么f (x )在(,)a b 上为增函数 C 、若f (x )在区间I 1上为增函数,在区间I 2上也为增函数,那以f (x )在I 1 I 2上也一定为增函数 D 、若f (x )在区间I 上为增函数,且1212()()(,)f x f x x x I <∈,那么12x x <

人教版高一数学必修一第一章 集合与函数概念知识点

高一数学必修1各章知识点总结 第一章集合与函数概念 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西 洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 ◆注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 A?有两种可能(1)A是B的一部分,;(2)A与B是注意:B 同一集合。 ?/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A ?/A 或B 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 ◆有n个元素的集合,含有2n个子集,2n-1个真子集

函数的基本性质知识点归纳与题型总结

函数的基本性质知识点归纳与题型总结 一、知识归纳 1.函数的奇偶性 2.函数的周期性 (1)周期函数 对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期. (2)最小正周期 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 解题提醒: ①判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. ②判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)

=-f (x )或f (-x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0). ③分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性. 题型一 函数奇偶性的判断 典型例题:判断下列函数的奇偶性: (1)f (x )=(x +1) 1-x 1+x ; (2)f (x )=? ???? -x 2+2x +1,x >0, x 2+2x -1,x <0; (3)f (x )=4-x 2 x 2; (4)f (x )=log a (x +x 2+1)(a >0且a ≠1). 解:(1)因为f (x )有意义,则满足1-x 1+x ≥0, 所以-1<x ≤1, 所以f (x )的定义域不关于原点对称, 所以f (x )为非奇非偶函数. (2)法一:(定义法) 当x >0时,f (x )=-x 2+2x +1, -x <0,f (-x )=(-x )2+2(-x )-1=x 2-2x -1=-f (x ); 当x <0时,f (x )=x 2+2x -1, -x >0,f (-x )=-(-x )2+2(-x )+1=-x 2-2x +1=-f (x ).

一次函数的图象和性质知识点和典型例题讲解

一次函数的图象和性质 一、知识要点: 1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。 注意:(1)k≠0,否则自变量x的最高次项的系数不为1; (2)当b=0时,y=kx,y叫x的正比例函数。 2、图象:一次函数的图象是一条直线, (1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0) (2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。 3、性质: (1)图象的位置: (2)增减性 k>0时,y随x增大而增大 k<0时,y随x增大而减小 4.求一次函数解析式的方法 求函数解析式的方法主要有三种 (1)由已知函数推导或推证 (2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。 (3)用待定系数法求函数解析式。

“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况: ①利用一次函数的定义 构造方程组。 ②利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b平行于y=kx,即由k来定方向。 ③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。 ④利用题目已知条件直接构造方程。 二、例题举例: 例1.已知y=,其中=(k≠0的常数),与成正比例,求证y与x也成正比例。 证明:∵与成正比例, 设=a(a≠0的常数), ∵y=, =(k≠0的常数), ∴y=·a=akx, 其中ak≠0的常数, ∴y与x也成正比例。 例2.已知一次函数=(n-2)x+-n-3的图象与y轴交点的纵坐标为-1,判断 =(3-)是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。 解:依题意,得 解得 n=-1, ∴=-3x-1,

集合与函数知识点归纳

集合与函数板块公式 1.集合的运算: (1)交集:A x x B A ∈=|{ 且}B x ∈,即集合B A ,的所有公共元素构成的集合. (2)并集:A x x B A ∈=|{ 或}B x ∈,即集合B A ,的所有元素构成的集合. (3)补集:?U ∈=x x A |{U 且}A x ?,即除A 中元素需补充的所有元素的集合. 2.集合中的关系: (1)元素与集合的关系:属于或不属于关系.(∈或?) (2)集合与集合关系:A 是B 的子集记为B A ?.(开口朝范围大的集合) (3)含有n 个元素的子集有n 2个,真子集有12-n 个,非空真子集有22-n 个. 3.集合表示法:列举法、描述法、区间法、特殊字母(Venn 图象法、数轴表示) 4.常用函数定义域的求法(结果用集合的表示方法表示) (1))(x f y =,0)(≥x f (2))(log x f y a =,0)(>x f (3))()(x g x f y = ,0)(≠x g (4))(tan x f y =,∈+≠k k x f (,2 )(π π)Z 5.函数的单调性 (1)定义法: ①增函数:任意D x x ∈21,且21x x <,都有)()(21x f x f < ②减函数:任意D x x ∈21,且21x x <,都有)()(21x f x f > (2)定义法变形: ①)(x f 增函数? 0)]()()[(0) ()(2121212 1>--?>--x f x f x x x f x f x x ②)(x f 减函数? 0)]()()[(0) ()(2121212 1<--?<--x f x f x x x f x f x x (3)图象法: ①增函数图象上升; ②减函数图象下降 (4)导数法: ①增函数(增区间):令0)('>x f 解得x 的范围为增区间 ②减函数(减区间):令0)('a 为增函数; ②0

函数定义域与值域经典类型总结 练习题 含答案

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

初中数学函数知识点归纳(1)

函数知识点总结(掌握函数的定义、性质和图像) 平面直角坐标系 1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系 2、各个象限内点的特征: 第一象限:(+,+)点P(x,y),则x>0,y>0; 第二象限:(-,+)点P(x,y),则x<0,y>0; 第三象限:(-,-)点P(x,y),则x<0,y<0; 第四象限:(+,-)点P(x,y),则x>0,y<0; 3、坐标轴上点的坐标特征: x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。两坐标轴的点不属于任何象限。 4、点的对称特征:已知点P(m,n), 关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号 5、平行于坐标轴的直线上的点的坐标特征: 平行于x轴的直线上的任意两点:纵坐标相等; 平行于y轴的直线上的任意两点:横坐标相等。 6、各象限角平分线上的点的坐标特征: 第一、三象限角平分线上的点横、纵坐标相等。 第二、四象限角平分线上的点横、纵坐标互为相反数。 7、点P(x,y)的几何意义: 点P(x,y)到x轴的距离为 |y|,

点P (x,y )到y 轴的距离为 |x|。 点P (x,y )到坐标原点的距离为22y x + 8、两点之间的距离: X 轴上两点为A )0,(1x 、B )0,(2x |AB|||12x x -= Y 轴上两点为C ),0(1y 、D ),0(2y |CD|||12y y -= 已知A ),(11y x 、B ),(22y x AB|= 2 12212)()(y y x x -+- 9、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点,则:M=(212x x + , 2 1 2y y +) 10、点的平移特征: 在平面直角坐标系中, 将点(x,y )向右平移a 个单位长度,可以得到对应点( x-a ,y ); 将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y ); 将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b ); 将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。 注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来, 从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。 函数的基本知识: 基本概念 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的 值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断A 是否为B 的函数,只要看B 取值确定的时候,A 是否有唯一确定的值与之对应 3、定义域和值域: 定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 值域:一般的,一个函数的因变量所得的值的范围,叫做这个函数的值域。

最全函数概念及基本性质知识点总结及经典例题(汇编)

函数及基本性质 一、函数的概念 (1)设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到 B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. (2)函数的三要素:定义域、值域和对应法则. 注意1:只有定义域相同,且对应法则也相同的两个函数才是同一函数 例1.判断下列各组中的两个函数是同一函数的为( ) ⑴3) 5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+= x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2:求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.如:943)(2-+=x x x f ,R x ∈ ②()f x 是分式函数时,定义域是使分母不为零的一切实数.如:()6 35 -= x x f ,2≠x ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.如()1432+-=x x x f , 13 1 >=x x x f a ,当对数或指数函数的底数中含变量时,底数须大 于零且不等于1。如:( ) 2 12 ()log 25f x x x =-+ ⑤tan y x =中,()2 x k k Z π π≠+ ∈.

高中数学第一章集合与函数概念知识点

高中数学第一章集合与函数概念知识点 〖1.1〗集合 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 表示正整数集,Z表示整数集,Q表示有理数集,N表示自然数集,N*或N + R表示实数集. (3)集合与元素间的关系 ?,两者必居其一. ∈,或者a M 对象a与集合M的关系是a M (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x具有的性质},其中x为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(?). 【1.1.2】集合间的基本关系 (6)子集、真子集、集合相等

(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有 21n -个非空子集,它有22n -非空真子集. (8)交集、并集、补集 【1.1.3】集合的基本运算

【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法 (2)一元二次不等式的解法 0) 〖1.2〗函数及其表示 【1.2.1】函数的概念 (1)函数的概念

①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足 ,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域

高中数学全必修一函数性质详解及知识点总结及题型详解

高中数学全必修一函数性质详解及知识点总结及题型详解

————————————————————————————————作者:————————————————————————————————日期:

(经典)高中数学最全必修一函数性质详解及知识点总结及题型详解 分析 一、函数的概念与表示 1、映射:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射 集合A ,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:(x,y)→(x 2+y 2,xy),求象(5,2)的原象. 3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11 -x ,则集合A 中的元素最多有几个?写出元素最多时的集合A. 2、函数。构成函数概念的三要素 ①定义域②对应法则③值域 两个函数是同一个函数的条件:三要素有两个相同 1、下列各对函数中,相同的是 ( ) A 、x x g x x f lg 2)(,lg )(2== B 、)1lg()1lg()(,1 1 lg )(--+=-+=x x x g x x x f C 、 v v v g u u u f -+= -+= 11)(,11)( D 、f (x )=x ,2)(x x f = 2、}30|{},20|{≤≤=≤≤=y y N x x M 给出下列四个图形,其中能表示从集合M 到集合 N 的函数关系的有 ( ) A 、 0个 B 、 1个 C 、 2个 D 、3个 二、函数的解析式与定义域 函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知221 )1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f x x x x 1 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2 y y y y 3 O O O O

高中数学集合与函数的概念知识点归纳与常考题型专题练习(附解析)

高中数学集合与函数的概念 知识点归纳与常考题型专题练习(附解析) 知识点: 第一章集合与函数概念 1.1 集合 1.1.1集合的含义与表示 【知识要点】 1、集合的含义 一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。 2、集合的中元素的三个特性 (1)元素的确定性;(2)元素的互异性;(3)元素的无序性 2、“属于”的概念 我们通常用大写的拉丁字母A,B,C, ……表示集合,用小写拉丁字母a,b,c, ……表示元素如:如果a是集合A的元素,就说a属于集合A 记作a∈A,如果a不属于集合A 记作a?A 3、常用数集及其记法 非负整数集(即自然数集)记作:N;正整数集记作:N*或N+ ;整数集记作:Z;有理数集记作:Q;实数集记作:R 4、集合的表示法 (1)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 (2)描述法:用集合所含元素的公共特征表示集合的方法称为描述法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2} (3)图示法(Venn图) 1.1.2 集合间的基本关系 【知识要点】 1、“包含”关系——子集 一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说 这两个集合有包含关系,称集合A为集合B的子集,记作A?B 2、“相等”关系 如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A 的元素,我们就说集合A等于集合B,即:A=B A B B A 且 ??? 3、真子集 如果A?B,且A≠B那就说集合A是集合B的真子集,记作A?B(或B?A) 4、空集 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集. 1.1.3 集合的基本运算

函数定义域知识点梳理、经典例题及解析、高考题带答案

函数的定义域 【考纲说明】 1、理解函数的定义域,掌握求函数定义域基本方法。 2、会求较简单的复合函数的定义域。 3、会讨论求解其中参数的取值范围。 【知识梳理】 (1) 定义:定义域是在一个函数关系中所有能使函数有意义的 的集合。 (2) 确定函数定义域的原则 1.当函数y=f(x)用列表法给出时,函数的定义域指的是表格中所有实数x 的集合。 2.当函数y=f(x)用图象法给出时,函数的定义域指的是图象在x 轴上的投影所覆盖的实数的集合。 3.当函数y=f(x)用解析式给出时,函数定义域指的是使解析式有意义的实数的集合。 4.当函数y=f(x)由实际问题给出时,函数定义域要使函数有意义,同时还要符合实际情况。 3、.确定定义域的依据: ①f(x)是整式(无分母),则定义域为 ; ②f(x)是分式,则定义域为 的集合; ③f(x)是偶次根式,则定义域为 的集合; ④对数式中真数 ,当指数式、对数式底中含有变量x 时,底数 ; ⑤零次幂中, ,即x 0中 ; ⑥若f(x)是由几个基本初等函数的四则运算而合成的函数,则定义域是各个函数定义域的 。 ⑦正切函数x y tan = 4、抽象函数的定义域(难点) (1)已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可 得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 (2)已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

三角函数图像与性质知识点总结

函数图像与性质知识点总结 一、三角函数图象的性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ?? ?? ? π2,1 (π,0) ? ?? ??? 32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ?????π2,0,(π,-1),? ???? ? 3π2,0,(2π,1) 2.三角函数的图象和性质

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期) 4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; 关于正、余弦函数的有界性 由于正余弦函数的值域都是[-1,1],因此对于?x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;含参数的最值问题,要讨论参数对最值的影响. (3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题. 利用换元法求三角函数最值时注意三角函数有界性,如:y =sin 2x -4sin x +5,令t =sin x (|t |≤1),则y =(t -2)2+1≥1,解法错误. 5.求三角函数的单调区间时,应先把函数式化成形如y =A sin(ωx +φ) (ω>0)的形式,再根据基本三角函数的单调区间,求出x 所在的区间.应特别注意,应在函数的定义域内考虑.注意区分下列两题的单调增区间不同;利用换元法求复合函数的单调区间(要注意x 系数的正负号) (1)y =sin ? ?????2x -π4;(2)y =sin ? ?? ???π4-2x . 6、y =A sin(ωx +φ)+B 的图象求其解析式的问题,主要从以下四个方面来考虑: ①A 的确定:根据图象的最高点和最低点,即A =最高点-最低点 2; ②B 的确定:根据图象的最高点和最低点,即B = 最高点+最低点 2 ; ③ω的确定:结合图象,先求出周期,然后由T =2π ω (ω>0)来确定ω; ④φ的确定:把图像上的点的坐标带入解析式y =A sin(ωx +φ)+B ,然后根据 φ的范围确定φ即可,例如由函数y =A sin(ωx +φ)+K 最开始与x 轴的交点(最靠近原点)的横坐标为-φω(即令ωx +φ=0,x =-φ ω )确定φ. 二、三角函数的伸缩变化

相关文档
最新文档