复合材料测试技术

复合材料测试技术

复合材料测试技术

复合材料性能试验方法选择和结果评价

复合材料性能试验方法选择和结果评价 张汝光 (上海玻璃钢研究院 200126) 摘要:由于复合材料性能的多样性和性能机理的复杂性,其试验方法也同样多样、复杂。应该根据试验目的和考虑材料的性能机理,正确选择试验方法或制订试验方案,以确保试验结果的可靠性。对试验方法和试验结果都要作科学的评价。 关键词:复合材料性能试验 多样性 复杂性 可靠性 1 概 述 要用好材料,首先就要认识材料。认识材料的最重要途径就是通过材料的性能试验。由于复合材料本身就是个结构,在进行复合材料产品设计时,不能简单地选择材料,而是要同时设计复合材料。因此认识材料就不单单是了解材料的性能数值范围,而还要了解复合材料的性能机理。复合材料性能试验变得更加重要。 复合材料的性能试验一般有三种不同的目的。一是揭示复合材料的材料性能机理;二是取得用于产品设计的材料性能参数;三是取得供材料质量评定用的材料性能参数。试验目的的不同,对试验方法的要求,就有各自不同的侧重点,自然就会有不同的试验方法或方案。 复合材料细观不均匀结构的本质,使其性能不但具有各向异性的特点,在许多情况下,还具有各种耦合效应。这就使得复合材料的性能试验相对于常规材料,要多样、复杂,同时也具有更多的影响材料性能的因素。在制订试验方案或选择试验方法时,这些方面都应该加以考虑,做认真、细致的分析。对试验方法和试验结果都要作科学的评价。 2复合材料性能试验的目的 制订试验方案或选择试验方法,首先要根据自己的试验目的。即使是对同一个性能,目的不同,对试验方案或方法也会有不同的考虑和选择。 2.1为揭示材料性能机理的性能试验 揭示材料性能机理,就是揭示在一定条件下材料作出响应的全过程及其原因,揭示各种因素是如何影响这一过程。显然,以揭示材料性能机理为目的的材料性能试验,要强调的是试验所得到的性能规律首先必须是定性上准确。因此,在考虑试验方法 时,首先要确保这一点。例如,当我们要揭示某一因素对某一性能的影响规律时,在试验条件中要特别注意严格排除其他影响因素同时发生变化,否则试验结果就无法说明是哪一因素的影响规律,测试数据再准确也毫无用处。 2.2 为取得用于产品设计性能参数的性能试验 要取得用于产品设计性能参数,对其性能试验要求,自然是试验结果的可靠性。例如,试样工作区内要确保材料是处在试验所要求的条件状态下,试验中所测数据,必须取自试样工作区或是与工作区内数值相同。除此之外,可靠性还要求试验要有一定的试样个数,对试验结果除要计算平均值外,还需要计算离散系数。在产品设计中,仅有性能参数的平均值而没有离散系数,就无法确定该性能的离散程度,就将无法确定在一定置信度要求下,如何使用这一平均值参数。 2.3为取得供质量评定性能参数的性能试验 质量评定,可以是在生产过程中的质量检验,也可以是对产品的质量检验。进行质量评定,往往都预先设定一个合格的材料性能标准,将试验结果与这一标准相比较,以评定其质量是否合格。这种其结果用于对比的材料性能试验,应该强调的是:试验必须严格按照同一标准试验方法进行。因为任何试验方法都只有具有相对的理想或合理性(第5节中进一步说明),不同的试验方法往往会得出不同的结果,它们之间常常不具有可对比性,最具权威的试验方法自然是国家标准试验方法。作为产品性能指标的性能数据,必须按照国家标准试

最新聚合物复合材料性能及测试标准

聚合物复合材料性能解释以及测试标准指南1.1拉伸性能 拉伸性能包括拉伸强度,弹性模量、泊松比、断裂伸长率等。对于如高压容器、高压管、叶片等产品,必须要测出聚合物复合材料的拉伸性能,才能进行产品设计及检验。 对于不同的聚合物复合材料,拉伸性能试验方法是不同。对于普通的,用国标GB/T1447进行测试;对于缠绕成型的,用国标GB/T1458进行测试;对于定向纤维增强的,用国标GB/T33541进行测试;对于拉挤成型的,用国标GB/T13096-1进行测试。使用最多的是 GB/T1447。 国标GB/T1447,对于不同成型工艺复合材料,又规定不同形状的拉伸试样,有带R型、直条型及哑铃型。使用拉伸试验机或万能试验按规定的加载速度对试样施加拉伸载荷直到试样破坏。用破坏载荷除以试样横截面面积则为拉伸强度。从测出的应力----应变曲线的直线段的斜率则为弹性模量,试样横向应变与纵向应变比为泊松比。破坏时的应变称为断裂伸长率。 单位面积上的力,称为应力,通常用MPa(兆帕)表示,1MPa相当于1N/mm2的应力。应变是单位长度的伸长量,是没有量刚(单位)的。 不同的现代复合材料其拉伸性能大不一样,以玻璃纤维增强的玻璃钢为例:1:1玻璃钢,拉伸强度为(200-250)MPa,弹性模量为(10-16)GPa;4:1玻璃钢,拉伸强度为(250-350)MPa,弹性模量为(15-22)GPa;单向纤维的玻璃钢(如缠绕),拉伸强度大于800MPa,弹性模量大于24GPa;SMC材料,拉伸强度为(40-80)MPa,弹性模量为(5-8)GPa;DMC 材料,拉伸强度为(20-60)MPa,弹性模量为(4-6)GPa。 1. 2弯曲性能 一般产品普遍存在弯曲载荷,弯曲性能是很重要的,同时,往往用弯曲性能来进行原材料,成型工艺参数,产品使用条件因素等的选择。

复合材料分析测试方法

复合材料分析测试方法 复合材料是由基体材料和分散材料构成的多相体系。可按基体材料不同大体可分为金属基复合材料、无机分金属基复合材料和聚合物基复合材料。本文主要介绍高分子基复合材料分析测试的分析测试方法。 1.红外光谱法 红外光谱法是鉴别有机化合物与确定样品物质的分子结构的常用手段。通过它可以确定高分子基复合材料基体的分子结构。红外光谱法有如下特点:(1)有机化合物的红外光谱有丰富的结构信息,对于一些同分异构体、几何异构体和互变异构体也可以鉴定。(2)特征性强,分子结构表征更为精细,通过IR谱的波数位置、波峰数目及强度确定分子基团、分子结构;(3)适用范围广,几乎大部分的有机和无机化合物在红外光谱区均有吸收。无论是纯净物,还是混合物都可以进行分析,并且样品的状态没有特殊要求,气体、液体、可研细的固体或薄膜物质等都适用,对于透光性不好的样品还可采用反射技术等等,测定方便,制样简单。(4)分析的时间很短,一般一个样可在几分钟内完成,所需样品用量少,一次用样量约有时甚至可以低到几十微克。 2.热分析法 通过热分析可以推断材料相关的化学变化和物理结构,得到试样的比热容,研究高分子材料的共混性能,确定熔点。但影响其因素较多:升温速率、气氛及压力、参比物和试样处理等,且它不能用于确

定变化的性质,测定过程中体系不处于平衡状态,测得的结果不同于热力学平衡条件下的测量结果。 3.扫描电子显微镜 扫描电子显微镜能清晰、准确知道样品的组织形貌,还可以和能谱结合知道样品某一部分的元素组成。并且具有分辨率和放大倍数高、景深大、制样简单并可以实现试样从低倍到高倍的定位分析等优点,在高分子材料的形态、结构、晶态和共混相容性上发挥了重要的作用。 4.力学性能 复合材料力学性能主要包括拉伸、压缩、弯曲。复合材料力学研究材料在外力作用下的变形、受力和破坏规律,为合理设计复合材料构件提供有关强度、刚度和稳定性分析的基本理论和方法。复合材料的力学性能具有各向异性的显著特征,在不同的方向抵抗变形及失效的能力是不同的。例如长纤维增强树脂基单向复合材料在纤维轴向方向上具有卓越的力学性能,远优于其它方向上的刚度和强度,这是由于纤维复合材料多尺度结构的力学性能在方向上具有差异性。复合材料各组分材料中,一般树脂基体是各向同性材料,增强体材料可分为各向同性的玻璃纤维以及横观各向同性的碳纤维。 根据外加应力的类型及其与裂纹广展面的取向关系,裂纹扩展的基本方式可分为三种类型张开型裂纹,其特征是拉应力垂直于裂纹扩展面,裂纹上下表面沿作用力的方向张开,裂纹沿裂纹面往前扩展。滑开型裂纹,裂纹的扩展受切应力控制,切应力平行作用于裂纹面且

复合材料教学大纲

《复合材料》教学大纲 一、课程名称:复合材料 二、学分、学时:2学分、32学时 三、教学对象:06级应用化学本科 四、课程性质、教学目标 《复合材料》是应用化学专业的一门学科基础课程,选修。复合材料是包括多学科、多领域的一门综合性学科。 本课程以恰当的比例分别对复合材料的各种增强材料、复合材料的各种基体材料以及聚合物基复合材料、陶瓷基复合材料等的性能、制备、应用和发展动态进行了较为系统的讨论。使学生在已有的材料科学的基础上,较为系统地学习复合材料的各种基体材料和增强材料,以及各种复合材料的性能、制备方法与应用,了解材料的复合原理,以及复合材料的发展方向。从而丰富和拓宽学生在材料及材料学方面的知识。 五、课堂要求 要求认真随堂听课,认真阅读指定教材,广泛查阅有关复合材料方面的最新资料。按教学要求完成专题综述论文的撰写,并进行课堂交流。 六、教学内容与基本要求 (一)绪论(2学时) 复合材料的国内外发展状况及今后的发展方向;复合材料的分类;复合材料的基本性能;复合材料的增韧增强原理;复合材料的特性;复合材料的应用。 基本要求:掌握复合材料的基本性能及分类,了解复合材料的应用。 (二)材料的基体材料 (6学时) 金属材料:金属的结构与性能、各种合金材料; 陶瓷材料:包括水泥、氧化物陶瓷、碳化物陶瓷、氮化物陶瓷; 聚合物材料:聚合物的种类、结构与性能,复合材料选用聚合物的原则。 基本要求:掌握常用基体材料的种类、结构性能及其选用的原则。 (三)材料的增强材料 (6学时) 玻璃纤维及其制品的分类、制备、性能与应用; 碳纤维的分类、制备、性能与应用; 陶瓷纤维、芳纶纤维、晶须的制备、性能与应用; 填料(高岭土、石墨、烹饪土、烹饪土、碳酸钙、化石粉等)的性能与应用。 基本要求:掌握常用增强材料的种类、性能及其选用的原则。 (四)传统复合材料的新发展 (4学时) 航空用先进树脂基复合材料的发展:先进复合材料在飞机上的应用、材料技术的进展、低成本复合制造技术的进展; 热塑性片材与热塑性树脂基复合材料:由片材制造成品的成型工艺、GMT片材在汽车工业中的应用; 熔体自发浸渗制备金属基复合材料:熔体自发浸渗制备金属基复合材料的原理及方法及研究现状; 陶瓷基层状复合材料:陶瓷制品的仿生结构构思、材料体系和制备技术、陶瓷基层状复合材料的结构性能及其强韧化机制、陶瓷基层状复合材料的发展方向。 基本要求:掌握常见几种传统复合材料的新应用、制备工艺与性能的基本知识,了解传统复合材料的发展方向。 (五)功能复合材料(4学时)

复合材料超声检测技术

复合材料超声检测技术 立陶宛考纳斯科技大学的Kazys等人采用斜入射同侧检测方式,研究了航空用复合材料垂直结构蜂窝板中A0模式Lamb波的板边回波特性,由于损伤区域有很强的能量泄漏,所以可用于检测脱粘和结构损伤等缺陷,并估计其大小。波兰格坦斯克科技大学的Imielinska等人采用空气耦合探头和穿透式超声C扫描技术对多层聚合体复合材料的冲击损伤进行了检测研究,与X射线检测结果比较后表明,该方法更快、更方便、更准确,且可用于检测一些X射线无法检测的材料。美国爱荷华州立大学无损检测中心的HSU和印度GE全球研究中心的Kommareddy等合作,利用压电陶瓷空气耦合换能器,开展了复合材料零部件的缺陷检测和修复评价的研究工作,并研制了相应的空气耦合超声扫描系统,在飞机零部件阵地探伤中得以使用;英国伦敦大学的Berketis等人利用空气耦合超声检测方法对潜艇用玻璃纤维增强型复合材料的损伤和退化进行了检测和评价,获得了用水耦合超声检测方法得不到的效果。丹麦国家实验室的Borum与丹麦工业大学的Berggreen等人合作,利用空气耦合超声波,采用穿透法,对海军舰艇用层状叠合复合材料板进行检测,结果显示,该方法可以检测出上述材料板中的脱粘。 4、激光超声检测技术 激光超声是目前国内外研究最活跃的非接触超声检测方法之一。它利用高能量的激光脉冲与物质表面的瞬时热作用,在固体表面产生热特性区,形成热应力,在物体内部产生超声波。激光超声检测可分3种:一种用激光在工件中产生超声波,用PZT等常规超声探头接收超声波进行检测;另一种用PZT等常规超声波探头激励超声波,用激光干涉法检测工件中的超声波;还有一种用激光激励超声波,并用激光干涉法检测工件中的超声波,此法是纯粹意义上的激光超声检测技术。超声波的激励或探测可通过激光进行,不需要耦合剂,因而可实现远距离非接触检测,检测距离可从几十厘米到数米。所激发的超声波具有很宽的频带,从几百kHz到几GHz,可用于薄膜测量分析等一些特殊应用场合。而且探测激光可聚焦到非常小的点,可实现高达数微米的空间分辨力。此外,激光超声源能同时激发纵波、横波、表面波以及各种导波,是试验验证各种复杂媒质中声传播理论的有效手段。近年来,已发展成超声学中的重要分支,并在激光超声信号的激发与接收、传播以及应用等方面取得很大进展。 激光超声检测的快速、远距离和高分辨力等特性适用于常规压电检测技术难以检测的形状结构较复杂或尺寸较小的复合材料以及材料的高温特性等研究,如飞机上各个部件的定位和成像等。加拿大A.Blouin用激光超声研究了蜂窝芯复合材料的分层、脱粘等缺陷。美国洛克希德·马丁公司开发了LaserUT激光超声检测系统,在检测F-22复合材料构件时获得了清晰的B扫描、C扫描图像,不需要任何特殊夹具,检测时间大大缩短,达到了传统超声无法达到的效果。国内钱梦騄等在激光超声的特性和检测各种材料的力学特性方面进行了大量的研究。刘松平研究了碳纤维增强树脂基复合材料中常见缺陷的激光超声信号特性与缺陷识别评估方法。利用激光发射-超声接收检测系统有效地提取了反映复合材料中缺陷的声波信息,并可进行缺陷的判别,确定缺陷的性质。 尽管激光超声在复合材料检测中取得了很大的进展,但现阶段仍存在2个主要问题:一个是光声能量的转换效率较低;另一个是激光超声信号微弱,需要提高检测灵敏度。适当增大激光的能量,可提高激光超声信号强度。但当能量增大到一定程度时,又容易将材料的表面灼伤。因此,揭示激光发声机理、提高光声转换效率及其检测灵敏度已成为激光超声研究的3个主要方向。

复合材料实验

材料科学与工程专业实验第三篇复合材料实验 材料科学与工程学院 材料系

目录 实验1 酚醛树脂凝胶时间、挥发分、树脂含量和固体含量测定 实验2 单丝强度和弹性模量测定 实验3 丝束(复丝)表观强度和表观模量测定(参照GB3362-82)实验4 树脂浇注体制作及其巴科尔硬度测试 实验5 手糊成型工艺试验 实验6 复合材料模压工艺试验 实验7 层压工艺试验 实验8 热塑性塑料注射成型 实验 9 复合材料真空导入成型工艺试验 实验10 RTM成型工艺试验

实验1 酚醛树脂凝胶时间、挥发分、树脂含量和固体含量测定 一、实验目的 掌握对酚醛树脂几个重要技术参数的测定方法,证实酚醛树脂由B 阶向C 阶段过度时放出小分 子的事实。 二、实验原理 酚醛树脂由于苯酚上羟甲基(—CH 2OH )的作用,它的固化与环氧树脂和不饱和聚酯树脂不同, 在加热固化过程中两个—CH 2OH 作用将会脱下一个H 2O 和甲醛(CH 2O ),甲醛又会马上与树脂中苯环上的活性点反应生成一个新的—CH 2OH 。这个过程的快慢和放出水分子的本质,将需要用试验证实,从而帮助学生理解树脂含量和固体含量的不同含义。 三、实验仪器和设备 分析天平、智能电热板、秒表、称量瓶或坩埚等。 四、实验步骤 1、 将智能电热板设定至150±1℃且恒定,用一小块铝箔迅速取A 阶酚醛树脂的乙醇溶液 1g~1.5g 放到智能电热板上,同时用秒表记时并开始用玻璃棒摊平和不断搅动,树脂逐渐变成粘稠起丝,直至起丝挑起即断时为终点,停止秒表,记录此时间,即为该树脂样品的150℃条件下的凝胶时间,以秒数表示。重复操作三次,同一树脂每次相差不应大于5s ,取其平均值。 2、 取一已恒重的称量瓶或坩埚,称量为m 1,取1g 左右的A 阶酚醛树脂溶液于称量瓶中,称量 总重为m 2,然后将它放入80±2℃的恒温烘箱中处理60min ,取出放入干燥器中冷却至室温,称量m 3,则树脂含量Rc 是指挥发溶剂后测出的溶液中树脂的百分比,即: %1001 213?--=m m m m R C 3、 将称量为m 3的试样再放入160±2℃恒温烘箱中处理60min ,取出在干燥器中冷却至室温后 称量为m 4,则固体含量Sc 是指A 阶树脂进入C 阶后树脂的百分比,即: %1001 214?--=m m m m S C 挥发分Vc 就是指B 阶树脂进入C 阶段树脂过程中放出的水和其他可挥发的成分所占B 阶树脂的百分比,即:%1001 343?--=m m m m V C 高温固化绝对脱水量(m 3-m 4)和溶剂量(m 2-m 3)与树脂溶液总量(m 2-m 1)之比称为总 挥发量Fc :

复合材料超声检测

试验八:复合材料工艺缺陷的空气耦合超声检测 实验原理 1.超声检测:利用超声波在介质中的传播特性对试件进行缺陷检测。可检测表面、内部缺陷,对与试件表面平行的面状缺陷效果最佳。对于复合材料,气孔、孔洞、层间开裂等都可以用超声法检测。 2.空气耦合:超声检测有接触式、液浸式、非接触式。接触法是在探头和工件之间涂有专门的耦合剂层;浸液法是以水作耦合剂,将工件局部或全部浸没在液体中,无盲区。空气耦合式1983年美国的一家公司研制的,核心是高强度发射和声阻抗匹配技术。本实验采用空气耦合方式。 3.穿透法。超声检测方法按原理分类可分为脉冲反射法和穿透法。脉冲反射法灵敏度高、缺陷定位准确,适用于多种探伤技术;穿透法有两个探头,不存在探伤盲区、不受工件厚薄的限制,容易实现连续自动探伤,但不能定位缺陷深度。 实验材料和仪器设备 1.实验仪器:NAUT21非接触空气耦合超声检测系统。 2.实验试样:手糊工艺、预浸料铺层、液态模塑、模压工艺制得的复合材料板各一块。其 中,手糊工艺和液态模塑的板是是玻纤聚酯,后一块板是碳纤维预浸料,最后一块板是碳纤聚酯。 实验结果

从上到下、从左到右依次是手糊、液态模塑、模压、预浸料铺层的板。 结果分析 1、从图看出预浸料铺层的板效果最好,其次是模压的,然后是手糊的,最后的是液态模塑 的。但实际情况应该是液态模塑的必手糊的效果好。原因是,在液态模塑工艺时,树脂现调现用,并没有抽真空或静置,就想一瓶刚打开的啤酒,带着无数的气泡,都被吸进复合材料的肚子里了。缺陷能不多吗? 2、实验的老师其实是挺漫不经心的。在检测模压和预浸料铺层的板时,并未改变原先设置 的参数,导致实验出现的结果是全都是蓝色的(即全都是缺陷)。实际情况是二者材料不同,应当再放大波。在此,我又有个疑问,看模压的板,大部分是黄色,是真的是过渡区,还是因为没调好参数? 思考题 见前一页的原理。

聚合物复合材料性能及测试标准

精品文档 1.拉伸性能聚合物复合材料性能解释以及测试标准指南1 拉伸性能包括拉伸强度,弹性模量、泊松比、断裂伸长率等。对于如高压容器、高压管、 叶片等产品,必须要测出聚合物复合材料的拉伸性能,才能进行产品设计及检验。 GB/T1447 对于不同的聚合物复合材料,拉伸性能试验方法是不同。对于普通的,用国标进行测试;对于定向纤维增强的,用国标进行测试;对于缠绕成型的,用国标GB/T1458进行测试。使用最多的是进行测试;对于拉挤成型的,用国标GB/T13096-1GB/T33541 GB/T1447。 型、,对于不同成型工艺复合材料,又规定不同形状的拉伸试样,有带R 国标GB/T1447使用拉伸试验机或万能试验按规定的加载速度对试样施加拉伸载荷直到试直条型及哑铃型。应变曲线的直线样破坏。用破坏载荷除以试样横截面面积则为拉伸强度。从测出的应力----破坏时的应变称为断裂伸长试样横向应变与纵向应变比为泊松比。段的斜率则为弹性模量,率。 的应力。1N/mm2(兆帕)表示,1MPa相当于单位面积上的力,称为应力,通常用MPa 应变是单位长度的伸长量,是没有量刚(单位)的。 玻璃钢,11:不同的现代复合材料其拉伸性能大不一样,以玻璃纤维增强的玻璃钢为例:)(250-350:1玻璃钢,拉伸强度为(MPa,弹性模量为10-16)GPa;4)拉伸强度为(200-250,800MPa)15-22GPa;单向纤维的玻璃钢(如缠绕),拉伸强度大于MPa,弹性模量为(DMCGPa;弹性模量为,(5-8)40-80SMC弹性模量大于24GPa;材料,拉伸强度为()MPa 。)GPa4-620-60材料,拉伸强度为()MPa,弹性模量为( 1. 2弯曲性能 往往用弯曲性能来进行原材料,弯曲性能是很重要的,同时,一般产品普遍存在弯曲载荷, 成型工艺参数,产品使用条件因素等的选择。精品文档. 精品文档 进行进行测试;对于拉挤材料,用国标GB/T13096.2 弯曲性能,一般采用国标GB/T1449 GB/T3356进行测试。测试;对于单向纤维增强的,用国标 采用当中加载的三点弯曲测试弯曲性能的试样一般是矩形截面积的长条,简称为矩形梁。 横截面积上还要承受剪切应梁的横截面的上表面承压缩应力,梁下表面承受拉伸应力,法。因此梁所承受弯曲时,其应力状态是很复杂的,破坏形式也是多种力,中性层剪应力最大,试验方法和试样尺寸同样也很敏原材料品种、性能及成型工艺参数对弯曲性能很敏感,的。)有l/h感,为了达到材料弯曲破坏,国标对试样的跨(跨度或支距)高(试样厚度)比(。l/h≥16,对于单向纤维增强的材料,要求l/h≥32一定要求,一般要求 1.1由于弯曲性能的复杂性及对各因素的敏感性,对于上述不同材料的弯曲性能,或大于 节中的拉伸性能。在正常成型工艺情况下,一般弯曲强度略大于1.1节中拉伸性能,或小于拉伸强度,弯曲弹性模量略小于拉伸弹性模量。 压缩性能.3 1 是不能承受压缩力的,当聚合其本身很柔软,增强纤维或织物,只能承受很大的拉伸力, 因物复合材料承受压缩载荷时,是靠聚合物基体把增强纤维或织物粘结成整体时才能承受。成型工艺、二者的界面等的关系很此,聚合物复合材料的压缩性能与聚合物的品种、性能、有的甚同一种复合材料的压缩性能变化也很大。一般高温高压成型的压缩性能要高,密切,压缩强度略比拉伸强一般情况弹性模量,压缩的与拉伸的相差的极小,至于高于拉伸性能。度低,特别是室温固化,成型工艺质量欠佳的材料,压缩强度要比拉伸强度低得多。 1010×棱型或35×10×10(mm)30×GB/T1448压缩性能,一般用国标进行测试。标准试样

聚合物复合材料性能及测试标准

聚合物复合材料性能解释以及测试标准指南 1.1拉伸性能 拉伸性能包括拉伸强度,弹性模量、泊松比、断裂伸长率等。对于如高压容器、高压管、叶片等产品,必须要测出聚合物复合材料的拉伸性能,才能进行产品设计及检验。 对于不同的聚合物复合材料,拉伸性能试验方法是不同。对于普通的,用国标GB/T1447进行测试;对于缠绕成型的,用国标GB/T1458进行测试;对于定向纤维增强的,用国标GB/T33541进行测试;对于拉挤成型的,用国标GB/T13096-1进行测试。使用最多的是 GB/T1447。 国标GB/T1447,对于不同成型工艺复合材料,又规定不同形状的拉伸试样,有带R型、直条型及哑铃型。使用拉伸试验机或万能试验按规定的加载速度对试样施加拉伸载荷直到试样破坏。用破坏载荷除以试样横截面面积则为拉伸强度。从测出的应力----应变曲线的直线段的斜率则为弹性模量,试样横向应变与纵向应变比为泊松比。破坏时的应变称为断裂伸长率。 单位面积上的力,称为应力,通常用MPa(兆帕)表示,1MPa相当于1N/mm2的应力。应变是单位长度的伸长量,是没有量刚(单位)的。 不同的现代复合材料其拉伸性能大不一样,以玻璃纤维增强的玻璃钢为例:1:1玻璃钢,拉伸强度为(200-250)MPa,弹性模量为(10-16)GPa;4:1玻璃钢,拉伸强度为(250-350)MPa,弹性模量为(15-22)GPa;单向纤维的玻璃钢(如缠绕),拉伸强度大于800MPa,弹性模量大于24GPa;SMC材料,拉伸强度为(40-80)MPa,弹性模量为(5-8)GPa;DMC 材料,拉伸强度为(20-60)MPa,弹性模量为(4-6)GPa。 1. 2弯曲性能 一般产品普遍存在弯曲载荷,弯曲性能是很重要的,同时,往往用弯曲性能来进行原材料,成型工艺参数,产品使用条件因素等的选择。 弯曲性能,一般采用国标GB/T1449进行测试;对于拉挤材料,用国标GB/T13096.2进行

复合材料力学性能表征(教学资料)

复合材料力学性能表征(characterization of mechanical properties of composites) 力学性能包括拉伸、压缩、弯曲、剪切、冲击、硬度、疲劳等,这些数据的取得必须严格遵照标准。试验的标准环境条件为:温度23℃±2℃,相对湿度45%~55%,试样数量每项试验不少于5个。 此检测方法适用于树脂基复合材料,金属基复合材料力学性能可参考此方法进行。 拉伸拉伸试验是对尺寸符合标准的试样,在规定的试验速度下沿纵轴方向施加拉伸载荷,直至其破坏。通过拉伸试验可获得如下材料的性能指标: 式中P为最大载荷,N;b,h分别为试样的宽度和厚度,mm。 式中△L为试样破坏时标距L0内的伸长量,mm;L0为拉伸试样的测量标距,mm。 拉伸弹性模量Et 式中△P为载荷一形变曲线上初始直线段的载荷增量,N;△L为与△P相对应的标距L0内的变形增量,mm。 由于复合材料的各向异性,特别是用单向预浸带做的复合材料通常同时测以下项目: σL:∥纤维方向的拉伸强度; σT:⊥纤维方向的拉伸强度; EL:∥纤维方向的拉伸模量; ET:⊥纤维方向的拉伸模量。 应力-应变曲线记录拉伸过程中应力-应变变化规律的曲线,用于求取材料的力学参数和分析材料拉伸破坏的机制。 压缩对标准试样的两端施加均匀的、连续的轴向静压加载荷,直至试样破坏,以获得有关压缩性能的参数,若压缩试验中试样破坏或达最大载荷时的压缩应力为P(N),试样横截面积为F(mm2),则压缩强度σc为:

由压缩试验中应力-应变曲线上初始直线段的斜率,即应力与应变之比,可求出压缩弹性模量(MPa)。 由于复合材料的各向异性,特别是用单向预浸带做的复合材料通常同时测 σL:∥纤维方向的压缩强度; σT:⊥纤维方向的压缩强度; EL:∥纤维方向的压缩模量; ET:上纤维方向的压缩模量。 弯曲复合材料在弯曲试验中受力状态比较复杂,拉、压、剪、挤压等力同时对试样作用,因而对成型工艺配方,试验条件等因素的敏感性较大。用弯曲试验作为筛选试验是简单易行的方法。 复合材料的弯曲试验一般采用三点加载简支梁法,即将标准试样放在两支点上,在中间施加载荷,使试样变形直至破坏。材料的弯曲强度σ f为: 式中P为破坏载荷,N(或挠度为1.5倍试样厚度时的载荷);l为跨度,mm;b,h分别为试样的宽度和厚度,mm。 弯曲弹性模量Ef是指比例极限内应力与应变的比值,可按下式计算: 式中△P为载荷,N(或挠度曲线上使直线段产生弯曲的载荷增量);△f为与△P对应的试样跨距中点处的挠度增量。 剪切复合材料的特点之一是层间剪切强度低,并且层问剪切形式复杂,因此剪切试验对于复合材料的质量控制特别重要。层问剪切强度测试方法有直接剪切法和短梁弯曲法等。 (1)直接剪切法。试样的形式和尺寸如图,对试样的A、C面以一定的加载速度施加剪切,直至试样破坏。试样破坏时单位面积上所承受的载荷值为层间剪切强度τs。 式中Pb为破坏载荷,N;b,h分别为受剪面的宽度和高度,mm。

复合材料力学性能实验复习题new要点

复合材料力学性能实验复习题 1.力学实验方法的内涵? 是以近代力学理论为基础,以先进的科学方法为手段,测量应变、应力等力学量,从而正确真实地评价材料、零部件、结构等的技术手段与方法; 是用来解决“物尽其用”问题的科学方法; 2.力学实验的主要任务,结合纤维增强复合材料加以阐述。 面向生产,为生产服务;面对新技术新方法的引入,研究新的测试手段;面向力学,为力学的理论建设服务。 3.对于单向层合板而言,需要几组实验来确定其弹性模量和泊松比?如何确定实验方案? 共需五组实验,拉伸0/90两组,压缩0/90两组,剪切试验一组。 4.单向拉伸实验中如何布置应变片? 5.单向压缩实验中如何布置应变片? 6.三点弯曲实验中如何布置应变片? 7.剪切实验中如何布置应变片? 8.若应变片的粘贴方向与实样应变方向不一致,该如何处理? 9.若加载方向与材料方向不一致,该如何处理?(这个老师给了) 10.纤维体积含量的测试方法? 密度法、溶解法 11.评价膜基结合强度的实验方法? 划痕法、压痕法、刮剥法、拉伸法、黏结剂法、涂层直接加载法、激光剥离法、弯曲法。 12.简述试样机械加工的规范? 试样的取位区(距板材边缘30mm以上,最小不得小于20mm) 试样的质量(气泡、分层、树脂富集、皱褶、翘曲、错误铺层) 试样的切割(保证纤维方向和铺层方向与试验要求相符) 试样的加工(采用硬质合金刀具或砂轮片加工,防止试样产生分层、刻痕和局部挤压等机械损伤) 试样的冷却(采用水冷,禁止油冷) 13.纤维增强复合材料在拉伸试验中的几种可能破坏模式及其原因? 所有纤维在同一位置破坏,材料吸收断裂能量很小,材料断裂韧性差; 纤维在基体中拔出,吸收断裂能量很大,材料韧性增加并伴随界面开裂; 介于以上两者之间。 14.加强片的要求? 材料硬度低,便于夹具的咬合;材料的强度高,保证载荷能传递到试样上,且在试样发生破坏前本身不发生破坏。

07310220+复合材料分析测试实验

复合材料分析测试实验 Experiments of Analysis and Test for Composite Materials 课程编号:07310220学时:15周学分:2 先修课程:复合材料原理、金属基复合材料、材料分析测试技术 适用专业:复合材料与工程、材料成型与控制工程、金属材料工程 一、课程的性质与任务 复合材料分析测试技术实验是一个重要的教学环节,通过学习可引导学生了解各实验的原理,熟悉实验设备,能运用所学原理和方法对实验结果进行正确分析,培养学生的动手能力,观察实验现象,理论联系实际,解决实际问题的能力,有助于学生专业综合素质的提高,使学生从复合材料设计、复合材料的制备和复合材料的成形以及性能检测的全过程得到训练,达到工程师的基本要求,培养学生综合运用所学知识的能力。 本课程的基本要求是: 1.了解现代主要分析测试仪器的结构、基本组成、工作原理和主要操作方法; 2.熟悉分析测试对样品的要求,掌握一般的制样方法,了解特殊的制样方法; 3.学会实验结果的数据处理与分析方法; 4.学会主要分析方法的计算机检索方法; 5.掌握实验的分析测试技术的主要用途。 二、本实验课程与其它课程的关系 前修课程:复合材料原理、材料力学性能、材料分析测试技术、材料成型工艺、金属基复合材料、陶瓷基复合材料等。 后继课程:复合材料综合实验、毕业实习、毕业论文等。 三、实验课程理论教学内容安排 1.本门实验课的具体实验穿插在理论课《材料分析测试技术》、《材料力学性能》、《金属基复合材料》授课时段之中进行。 2.在进行每个复合材料分析测试实验前,由实验指导教师进行相关理论教学的授课。 四、实验内容安排

玻璃钢复合材料的性能对比

复合材料聚合物的性能对比 聚合物复合材料的性能解释 1. 1 拉伸性能 拉伸性能包括拉伸强度,弹性模量、泊松比、断裂伸长率等。对于如高压容器、高压管、叶片等产品,必须要测出聚合物复合材料的拉伸性能,才能进行产品设计及检验。 对于不同的聚合物复合材料,拉伸性能试验方法是不同。对于普通的,用国标 GB/T1447 进行测试;对于缠绕成型的,用国标 GB/T1458 进行测试;对于定向纤维增强的,用国标 GB/T33541 进行测试;对于拉挤成型的,用国标GB/T13096-1 进行测试。使用最多的是 GB/T1447 。 国标 GB/T1447 ,对于不同成型工艺复合材料,又规定不同形状的拉伸试样,有带 R 型、直条型及哑铃型。使用拉伸试验机或万能试验按规定的加载速度对试样施加拉伸载荷直到试样破坏。用破坏载荷除以试样横截面面积则为拉伸强度。从测出的应力--------------------------- 应变曲线的直线段的斜率则为弹性模量,试样横向应变 与纵向应变比为泊松比。破坏时的应变称为断裂伸长率。 单位面积上的力,称为应力,通常用 MPa (兆帕)表示, 1MPa 相当于 1N/mm2 的应力。应变是单位长度的伸长量,是没有量刚(单位)的。 不同的现代复合材料其拉伸性能大不一样,以玻璃纤维增强的玻璃钢为例:1:1 玻璃钢,拉伸强度为(200-250 )MPa ,弹性模量为(10-16 )GPa;4:1 玻璃钢,拉伸强度为(250-350 )MPa ,弹性模量为(15-22 )GPa ;单向纤维的玻璃钢(如缠绕),拉伸强度大于800MPa ,弹性模量大于 24GPa ; SMC 材料,拉伸强度为( 40-80 ) MPa ,弹性模量为( 5-8 )GPa ;DMC 材料,拉伸强度为( 20-60 ) MPa ,弹性模量为( 4-6 )GPa。 1.2 弯曲性能 一般产品普遍存在弯曲载荷,弯曲性能是很重要的,同时,往往用弯曲性能来进行原材料,成型工艺参数,产品使用条件因素等的选择。 弯曲性能,一般采用国标 GB/T1449 进行测试;对于拉挤材料,用国标 GB/T13096.2 进行测试;对于单向纤维增强的,用国标 GB/T3356 进行测试。测试弯曲性能的试样一般是矩形截面积的长条,简称为矩形梁。采用当中加载的三点弯曲法。梁的横截面的上表面承压缩应力,梁下表面承受拉伸应力,横截面积上还要承受剪切应力,中性层剪应力最大,因此梁所承受弯曲时,其应力状态是很复杂的,破坏形式也是多种的。原材料品种、性能及成型工艺参数对弯曲性能很敏感,试验方法和试样尺寸同样也很敏感,为了达到材料弯曲破坏,国标对试样的跨(跨度或支距)高(试样厚度)比( l/h )有一定要求,一般要求 l/h >16,对于单向纤维增强的材料,要求l/h >32。 由于弯曲性能的复杂性及对各因素的敏感性,对于上述不同材料的弯曲性能,或大于 1.1 节中拉伸性能,或小于 1.1 节中的拉伸性能。在正常成型工艺情况下,一般弯曲强度略大于拉伸强度,弯曲弹性模量略小于拉伸弹性模量。 1. 3 压缩性能

聚合物复合材料性能及测试标准精选版

聚合物复合材料性能及 测试标准 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

聚合物复合材料性能解释以及测试标准指南 1.1 拉伸性能包括拉伸强度,弹性模量、泊松比、断裂伸长率等。对于如高压容器、高压管、叶片等产品,必须要测出聚合物复合材料的拉伸性能,才能进行产品设计及检验。 对于不同的聚合物复合材料,拉伸性能试验方法是不同。对于普通的,用国标GB/T1447进行测试;对于缠绕成型的,用国标GB/T1458进行测试;对于定向纤维增强的,用国标GB/T33541进行测试;对于拉挤成型的,用国标GB/T13096-1进行测试。使用最多的是GB/T1447。 国标GB/T1447,对于不同成型工艺复合材料,又规定不同形状的拉伸试样,有带R型、直条型及哑铃型。使用拉伸试验机或万能试验按规定的加载速度对试样施加拉伸载荷直到试样破坏。用破坏载荷除以试样横截面面积则为拉伸强度。从测出的应力----应变曲线的直线段的斜率则为弹性模量,试样横向应变与纵向应变比为泊松比。破坏时的应变称为断裂伸长率。 单位面积上的力,称为应力,通常用MPa(兆帕)表示,1MPa相当于1N/mm2的应力。应变是单位长度的伸长量,是没有量刚(单位)的。 不同的现代复合材料其拉伸性能大不一样,以玻璃纤维增强的玻璃钢为例:1:1玻璃钢,拉伸强度为(200-250)MPa,弹性模量为(10-16)GPa;4:1玻璃钢,拉伸强度为(250-350)MPa,弹性模量为(15-22)GPa;单向纤维的玻璃钢(如缠绕),拉伸强度大于800MPa,弹性模量大于 24GPa;SMC材料,拉伸强度为(40-80)MPa,弹性模量为(5-8)GPa;DMC材料,拉伸强度为(20-60)MPa,弹性模量为(4-6)GPa。

复合材料检查方法介绍

中国邮政航空China Postal Airlines 安全创新包容奉献COMPOSITE MATERIAL INSPECTION METHOD INTRUDUCTION 复合材料检查方法介绍 工程技术分部 blueman 1

2 安全创新包容奉献 Contents 内容 ?In-service Inspection Philosophy 运行中的检查理念 ?Selecting an Inspection Method 选择检查方法 ?NDT Manual Resources NDT 手册资源

安全创新包容奉献 In-service Inspection Philosophy 运行中的检查理念 ?Visual inspection is the principal method of damage detection 目视检查损伤检查的主要方法 ?NDI used to determine extent of damage NDI 通常用于判断损伤的范围 ?NDI used for post repair inspection/ NDI也用于修理的检查?Directed visual and nondestructive inspection (NDI) on some specific components/ 在某些特定的部件需要目视检查和NDI检查。 3

4 安全创新 包容奉献 Directed inspection 规定的检查

5 安全创新 包容奉献 Inspection of In-service Damage 运行中损伤的检查

高性能复合材料发展现状与发展方向

8 高性能复合材料发展现状与发展方向 8.1 国内复合材料发展现状与发展方向 复合材料学界较普遍认为我国复合材料发展中亟待研究解决下列问题: (1)在发展复合材料新品种的同时,注意发展复合材料构件的制造技术,特别是先进制造技术; (2)在研究复合材料构件无损检测方法的同时,加紧研究制定无损评价标准。 其中有五个问题是研究重点: ①增强纤维的研制、生产与供应; ②复合材料低成本生产技术; ③新工艺、新设备的研制与发展; ④复合材料生产环境及回收利用; ⑤国际大环境与市场经济条件下我国复合材料发展的对策。 8.1.1 航天功能复合材料的现状与展望 (1)引言 《美国国防部关键技术计划》指出:“下一代复合材料结构的研究将侧重于材料的多功能性能方面”。 20世纪90年代初、中期,美国用于这方面的研究经费为(1.7~1.8)亿美元/年。 功能复合材料的成功应用,使先进战略导弹弹头的有效载荷与结构重量之比大幅度提高(达到4:1),并实现了小型化、被动滚控和强突防。同时具有全天候能力和百米级命中精度。 (2)航天高技术对功能复合材料的要求 1)军事对抗要求 航天高技术对功能复合材料的军事对抗要求包括: ①生存性(全天候、突防、隐身、探测—透波); ②小型化、轻质化(结构—功能一体化、多功能一体化); ③高精度(稳定外形)。 2)环境要求 航天高技术对功能复合材料的环境要求(即生存性要求)包括: ①防热; ②抗热应力; ③抗侵蚀; ④耐空间原子氧; ⑤耐高低温交变; ⑥耐空间辐射 ⑦阻尼减震。 (3)航天功能复合材料的研究方向与主要研究内容 航天功能复合材料的研究方向包括:防热功能复合材料、透波和多功能复合材料、功能复合材料的加工技术和功能复合材料测试评价技术。 ①防热功能复合材料主要研究内容 防热功能复合材料的研究内容主要包括:先进碳/碳复合材料技术、先进碳/酚醛防热复合材料技术、低成本、碳/碳复合材料、新型防热复合材料探索和防热复合材料修补技术; 探索研究防热复合材料现场诊断与损伤预警。 ②透波、多功能复合材料主要研究内容

复合材料力学性能的试验评价方法及其标准化动向

复合材料力学性能的试验评价方法及其标准化动向 王瑞杨连贺王建坤 (天津纺织工学院 300160) 摘要:复合材料力学性能的试验评价方法及其标准化是关系到加速复合材料的发展和扩大应用领域的重要课题。本文综述了复合材料力学性能的试验评价方法及其标准化的现状,分析了现行试验方法及标准中存在的问题和国际研究动向,提出了我国今后对复合材料试验方法及标准化研究和开发方向的建议。 关键词:复合材料力学特性试验方法标准化 1 前言 树脂基复合材料作为一种新型材料,以其轻量、耐腐蚀及良好的力学性能等而倍受青睐。由于其优良的特性,复合材料的研究和应用得到了广泛的关注,目前已被广泛应用于航空航天、电子、超导、汽车及建筑等领域。为了进一步扩大复合材料的应用领域,作为材料性能和安全可靠性保证的手段,试验技术和评价方法的研究是必不可少的。 复合材料力学性能的试验与评价在复合材料的开发与应用中发挥着极其重要的作用,尤其是在材料设计中。试验与评价在优化加工工艺、分析组分材料性能对复合材料整体性能的影响及降低材料成本等方面均具有十分重要的意义。高性能复合材料的设计与加工,需要充分把握复合材料的力学性能,从而明确开发目标与既用材料的差别,以确立高性能复合材料的开发方针。同时,为了根据使用条件和环境合理准确地设计复合材料,需要可靠和真实的复合材料力学性能数据、设计数据,来源于可靠的测试评价方法,因而复合材料力学性能的测试与评价方法的确立是正确设计复合材料,确保力学性能和使用质量、扩大应用范围的重要研究课题。在制定复合材料的试验方法与标准时,特别需要考虑的是与国际标准的接轨,以促进复合材料产品的市场发展,将我国的标准化运作同国际组织的标准化研究逐步衔接起来,使测试标准更加规范,消除贸易上的技术障碍,有效地促进信息交流和共享。实验方法的标准化也是复合材料发展和应用中必须解决的问题,具有重要的经济效益和社会效益。 2 试验、评价方法与标准化现状 2.l 特性评价的物理意义 与通常的金属材料及其它结构材料相比,复合材料具有无延伸性和异向性显著的特点,因此与通常的金属材料不同,存在三个问题:(1)在夹持部无因塑性变形而引起的缓和应力集中作用;(2)在测试部难以获得均匀的应力分布;(3)在应力传递部容易引起破坏等问题。目前,复合材料的力学特性试验与评价方法作为既定标准已不鲜见,但多数都存在上述问题。其中有些已历经修改而成为具有较高水平的“标准”,但同样存在不尽人意之处。理想的情况下,力学特性试验法应该是评价材料某一物理特性值的,但许多情况下都由于应力集中等影响而只能获得表现值,得不到材料的真实数据,因此在应用这些试验方法和标准时,必须充分理解和认识它们的物理意义。 2.2 评价方法存在的问题 关于复合材料力学性能的评价,迄今已有许多实验方法,其中有些方法比较简单,而且已经制定了标准。有些实验方法涉及复合材料固有的复杂性,尚不够

复合材料

第一章绪论 1、复合材料的定义、组成及分类 ①定义 复合材料→是指将两种或两种以上的不同材料,用适当的方法复合成的一种新材料,其性能比单一材料性能优越。 ②组成 基体、增强材料、界面 基体:起黏结作用,将增强材料黏合,起到均匀应力和传递应力的作用。 增强材料:承受力的组分 界面:界面粘结力充分发挥其材料的性能使其大大优于单一材料的性能。 ③分类 A 按基体类型分类:⑴树脂基复合材料⑵金属基复合材料⑶无机非金属基复合材料 B 按增强材料类型分类:⑴玻璃纤维复合材料(玻璃纤维增强的树脂基复合材料俗称玻璃钢) ⑵碳纤维复合材料⑶有机纤维复合材料⑷陶瓷纤维复合材料 C 按用途不同分类:⑴结构复合材料⑵功能复合材料 2、复合材料的特性 优点:㈠轻质高强㈡可设计性好㈢电性能好㈣耐腐蚀性好㈤热性能良好㈥工艺性能优良 缺点:㈦弹性模量较低(易变形)㈧长期耐热性不足(不能高温下长期使用)㈨老化现象3、复合材料的应用及发展 应用: ⒈在航天航空方面的应用:轻质高强,使飞机的质量减轻,连接减少,速度提升,耗能减少。 ⒉在交通运输方面的应用:汽车质量减轻,相同的条件下耗油量只是钢铁汽车的四分之一,而且受到撞击时复合材料能大幅度的吸收冲击能量,保护人员安全。 ⒊在化学工业方面的应用:复合材料主要被用来制造防腐制品,因为聚合物复合基材料具有优良的耐腐性能,可用于制造各种管道,烟囱,地坪,风机,泵等。 ⒋在电气工业方面的应用:因为复合基材料是一种优异的电绝缘材料,广泛的用于电机、电工器材制造。例如:绝缘板、绝缘管、电机护环等。 ⒌在建筑方面的应用:玻璃钢具有优异的力学性能、良好的隔热,隔音性能,吸水率低,耐腐蚀性好和很好的装饰性,因此是一种理想的建筑材料,建筑上玻璃钢被用作承重结构、围护结构、冷却塔、水箱、卫生洁具、门窗等。耐海水性能,并能极大的减少金属钢筋对电磁波的屏蔽作用。建筑物损坏修补材料等 ⒍在机械工业方面的应用:用于制造各种叶片、风机、各种机械部件、齿轮、皮带轮和防护罩等。用复合材料制造的叶片具有质量轻、制造容易、耐腐蚀等优点,并且使用时噪声很小,特别适用于纺织机械。 ⒎在体育方面的应用:被用作赛车、赛艇、皮艇、划桨、撑杆、球拍、弓箭、雪橇等。 发展: ⑴降低成本⑵研制高性能的复合材料:高强度、高模量、耐高温 ⑶功能复合材料:⑷智能复合材料: ⑸仿生复合材料:⑹环保型复合材料:回收利用、节约资源,减少污染 第三章、复合物材料基体 一、不饱和聚酯树脂 1、不饱和聚酯树脂定义、结构特点及优缺点 定义:不饱和聚酯在乙烯基类交联单体中的溶液。 结构特点:

相关文档
最新文档