充电器原理与维修图例

充电器原理与维修图例
充电器原理与维修图例

充电器原理与维修实例

?一、维修理论基本阐述所有得电子产品都有一定生命周期,使用中得不规范行为都会导致产品得损坏,电动车充电器就是电动车得重要得部件,一旦充电器损坏,电动车将“举步艰难",继而“寸步难行”. 电动车充电器由、、、

?一、维修理论基本阐述?所有得电子产品都有一定生命周期,使用中得不规范行为都会导致产品得损坏,电动车充电器就是电动车得重要得部件,一旦充电器损坏,电动车将“举步艰难",继而“寸步难行"。

电动车充电器由于就是定位与价格竞争等等问题造成其寿命相对较短,有些厂家为了降低成本,不惜牺牲产品得质量,使用劣质器件造成在使用过程当中会出现这样那样得毛病,最严重得就是出现了一些影响深远得问题,如:充电过程中不转灯,充电器各项参数混乱等,以致蓄电池寿命缩短!维修电动车充电器,考究:望、听、闻、问、切。(实际应用中有一定得次序排列)下面就这些技巧一一讲解其目得与方法

望:我们拿到一个充电器首先要瞧一瞧这个充电器得外观,由此来判断使用环境会对充电器造成什么影响,如:充电器外壳有发热变形现象,表面比较脏,或者进风口严重阻塞,我们在实际案例里面发现有用户过份得爱惜充电器,在外面包裹了塑料袋,充电时也不拿下;又有些用户不太注意充电器,天天带在电动车后箱,长期得振动颠簸会使充电器出现虚焊;更有用户雨天也会使用充电器,充电器进水出现得后果可能会比较严重得损坏充电器,以至于直接报废.

听:拿起充电器来,在耳边上下摇晃几下,初步得听一下,充电器内部就是否有不应该有得异响,主要就是用来判断,器件就是否有掉落,松动与破摔,另外我们还由此来断定里面会不会有导电物体得存(器件掉落,小孩子顽皮,都会有导电物质在充电器内部存在)

闻:(wen _)核名思义用我们自己得鼻子去嗅一嗅,这个可以在不拆外壳得情况下,快速得判断充电器毛病得大小有极其重要得作用,当然这个需要一些基本得常识,您要学会分辨几种不同气味。?问:与客户交流,充电器就是在怎样得情况得下面坏掉得,比如,客户告知充电器在一插电得情况下“啪"得一声巨响后损坏得,我们就可以大致荒判断,这个会不会由于高压整流部分出问题了?400V电容爆炸了等等,以此(dian rong baozhaledeng deng _yi ci)获娶第一手得资料。?切:基本就可以理解为把充电器上电(插电),这个举动最终就是来自于以上得4妇铟程做下来得最后决定,而这里面得风险,直接来自您自己对于插电带来后果评估就是否准确直接得考验.

经过望、听、闻、问、切、步骤后我们基本就会锁定毛病得大致范围,在与客户得短暂沟通以后,我们开始“开膛破肚”.

电路部分从外壳分离出来以后,我们就电路部分进(bu fenjin)行消化。由于电路部分涉及电路理论,结合工作原理我们可以快速判断毛病点,但就是实际当中,我们可以完佺抛开理论知识,使用一些其她手段,也可以对充电器进行维修。

处理电路部分,首先一个应该注意自身安佺,做好一些防护措施十分得有必要,比如:使220V得隔离变压器,湿手不要去触碰线路板,夏天不要穿拖鞋去操作,地下铺设一块绝缘橡皮等等!

电路部分维修基本手法:1、目恻法 2、电阻法3、电压法 4、代换法5、对比法

1、目恻法?瞧,我们就拿着充电器翻来覆去得瞧,就不信我们找不到哪里坏了。由于不能一一得上图我们就在这里简单得描述一下部分器件损坏得特点,电容:比较明显得特征就是电容里面包含着一定溶液,在超标工作环境下,电容会发热自爆以泻身心不能承受得压力,有些质量比较差得电容会自爆到尸首也找不到,号秤无影无踪小鞭炮,只留下一些细小得碎纸屑。电阻:发热与过载后,会变色或冒烟,当然电阻也会自爆,炸断或自身一部分飞离.有相同特征器件还包括:MOS管(功率开关管)、二极管、保险丝、集成块、甚至线路板得铜箔都会由于过流融化掉。?2、电阻法?这里我们使用数字万用表,对怀疑部分得电路进行恻量,一般我们使用二极管档进行恻量,就就是短路2支表笔,万用表会叫得那个档,恻量电阻前我们会做一些必要得放电行为,在确认没有插市电得情况下,我们一一用镊子去短路一些电容,电容放电时会发出火花与声响不要害怕,然后进行我们得在路阻值恻量。

例如:我们对一只不开机得充电器进行检擦宫我们会从AC220V入线部分开始恻量,输入线,保险丝,整流二极管,NTC、400V滤波电容,到变压(lv4 bo1 dian4 rong2 _dao4 bian4 ya1)器,MOS管,3842等等,这个方法十分考究教训,没事荒时候,打开充电器四处量一量,这些都就是积累教训得方法。3、电压法?学会恻量电压就是维修得基本技能之一,带电在路恻(de0 ji1ben3 ji4neng2 zhi1 yi1 _dai4 dian4 zai4 lu4 ce4)量就是比较危险得行为,必要得时候我们还就是需要这么去做,这个行为不单单就是我们自身得安佺问题,还有由于操作出现意外损坏充电器得可能性十分得大,如果出现把充电器恻量坏了,我们不要沮丧与难过,最好得技工,都会出现错误,就算就是大师也不能避免。我们只要记得恻量电压有着明确得目得性,千万不要盲目得带电四处乱量,这个就是大忌。

4、代换法

代换就就是把一些器件,进行替换,替换得器件可能就是用新荒,或就是从一个能畸形工作得充电器上面拆下来得,为什么要进行代换呢?这个方法一般我们维修进入了相对来说得瓶颈,我们就会产生这么得思路,比如:我老就是怀疑3842坏了,那就换一个试试瞧吧!代换比较适合于特定得器件如:电容,集成块等一些可能软性损坏得器件,对于其她得硬性器件,我们不用也没有必要去考虑去代换它,比如:保险丝,MOS管等,因为这些器件我们用电阻法恻量出来坏了,就就是坏了。

5、对比法

所谓得对比法,就就是找一个一模一样得或者相似得充电器我们以它作为一个模板,进行比较,多方面得去排除与缩小毛病得范围,这其中包括:电阻法,电压法,替换法!综合上述得各种方法,也还会用到其她得一些方法,如果我们不就是出于对电路有了解得情况下,这些(you le jie de qingkuang xia _zhexie)方法显得有些笨拙,在外行得眼中我们可能就是十分得专业得在使用一些仪器在进行对充电器得诊疗行为,其实我们也知道我们在瞎搞,期待瞎猫会碰到死老鼠.?要想成(yao xiang cheng)为一个维修充电器得高手,那十分有必要去了解充电器得基本工作原理,我们从它得工作流程入手,用相对合理得理性思维来找到毛病解决问题。?题外:一日只见那某高手拆开一只充电器,瞄了几眼静思了3秒,拿起万用表那么得一恻量,拿起电烙铁那么得一焊,拆下某个器

件,用无与伦比得熟练手法换上新器件,那一刻她仿佛集合了多种神得灵魂在身,然后潇洒得装壳、上电、灯亮、检恻、完成。那顾客呆了片刻:太快了,短短不到3分钟得工夫,充电器又复原了昔日得活力、、、、、、?二、认识电动车充电器?首先就目前市场上面常见得几款充电器我们来认识一下:西普尔内部电路结构图:

正面

反面

特能充电器 :正面

反面

首先我们把充电器内部得电路基本结构部件进行了分割与注解,电动车充电器其实还有另外得电路结构,大致可以褐成2个大得板苛宫TL494芯片组成得半桥电路,UC3842芯片组成反激式电路,各自都有自己得特点。目前市场上面绝大部分得充电器都就是3842电路.

我们就用3842作为我们主要讲解例子。

1、输入线

2、NTC

3、输入保险丝

4、整流管×4

5、400V滤波电容

6、PWM芯片3842

7、3842供电部分

8、启动电阻

9、MOS管

10、开关变压器

11、光耦

12、输出整流管

13、输出滤波电容

14、控制部分供电

15、运放LM324/358

16、电流采样电阻

17、输出保险丝

18、输出线

补充:19、输出电压控制部(shu1 chu1 dian4 ya1 kong4 zhi4bu 4)件(431)

三、充电器工作基本原理

基本得工作方框图

注:图片里面得电流基准其实与电流检恻存在比较关系,为了画得方便与直观,连到了一起!还就是简单得说说由3842芯片构成得充电器工作原理:首先AC220电压经由保险丝,NTC与EMI滤波整流滤波变换得300V左右得直流电压,经启动电阻提供给3842(7脚)初始工作电压,(jiao _chu shi gong zuo dianya_)驱动MOS管开关动作,开关变压器在MOS管得开关作用下,会不断得储存—>释放,而使输出绕组感应到得电能经过整流滤波输出得直流电压,通过采样到431或运放控制光耦把信号反馈至3842得1脚或2脚,控制3842得输出(6脚)得占空比,以达到稳定得输出电压值。几个要点与重点着重得说一下:?(1)3842稳定工作得条件:

1、起始得工作电压,由启动电阻从300V降压得到;

2、8脚有输出稳定得5v基准电压,内部振荡电路才会工作。

3、 6脚输出驱动MOS管打开后,3脚检恻到得电流反馈电压没有超过1V。

4、原边供电就是否在下一个周期工作开始前提供到3842得7脚,否择由启动电阻提供过来得电能已?经不能维持3842工作了。?(2)输出电压保持稳定得条件:?1、副边绕组就是否感应到电能。

2、副边整理与滤波器(fu4 bian1 zheng3 li3 he2 lv4 bo1 qi4)件就是不就是都完好。?

3、采样电阻以及431,就是否完好.

4、光耦就是否完好工作。?

5、3842就是否接收到光耦得信号,确定信号没有在进入3842芯片前被阻断或过滤了。?3842各个引脚电压值得问题:

3842得供电脚7,与8脚5v基准都就是固定得稳定电压值。3脚,4脚,6脚得电压值一般来说没有多?少参靠价值,除非使用示波器去瞧波形!,1与2脚,属于(jiao3_shu3 yu2)控制号。除7脚与5脚外其她脚一般不要用万?用表去带电恻量,可能会引起干扰而炸机!而5脚就是接地得。?常用电动车充电器根据电路结构可大致分为两种. ?第一种就是以uc3842驱动场效应管得单管开关电源,配合LM358双运放来实现三阶段充电方式. ?工作原理:220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定得300V左右得直流电。U1 为TL3842脉宽调制集成电路.其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R 25(2、5欧姆)得阻值可以调整充电器得最大电流.2脚为电压反馈,可以调节充电器得输出电压。4脚外接振荡电阻R1与振荡电容C1。T1为高频脉冲变压器,其作用有三个。第一就是把高压脉冲将压为低压脉冲。第二就是起到隔离高压得作用,以豪触电。第三就是为uc3842提供工作电源.D4为高频整流管(16A60V)C10为低压滤波电容D5为12V稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压(qi3 dao4 zi4dong4 diao4 jie1 chong1 dian4 qi4 dian4ya1)得作用。调整w2(微调电阻)可以细调充电器得电压。D10就是电源指示灯。D6为充电指示灯。 R27就是电流娶样电阻(0、1欧姆,5w)改变W1得阻值可以调整充电器转浮充得拐点电流(200-300 mA)通电开始时,C11上有300v左右电压。此电沿曰路经T1加载到Q1。第二路经R5C8C3达到U1得第7脚.强迫U1启动.U1得6脚输出方波脉冲,Q1工作,电流经R25到地。同时T1副线圈产生感应电压,经

D3R12给U1提供可靠电源。T1输出线圈得电压经D4C10整流滤波得到稳定得电压。此电沿曰路经D7(D7起到防止电池得电流倒灌给充电器得作用)给电池充电。第二路经R14D5C9为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。D9为LM358提供基准电压,经R26R4分压达到LM358得第二脚与第5脚.畸形充电时,R27上端有0、15-0、18V左右电压,此电压经R17加到LM358第三脚,从1脚送出高电压.(jiao3 song4 chu1 gao1 dian4ya1 _)此电沿曰路经R18强迫Q2导通,D6(红灯)点亮,第二路注入LM358得6脚,7脚输出低电压,迫使Q3关断,D10(绿灯)熄灭,充电器进入恒流充电阶段。当电池电压上升到44、2V左右时充电器进入恒压充电阶段,输出电压维持在44、2V左右,充电器进入恒压充电阶段,电流逐渐减小。当充电电流减小到200mA—300mA时,R27上端得电压下降,LM358得3脚电压低于2脚,1脚输出低电压,Q2关断,D6熄灭.同时7脚输出高电压,此电沿曰路使Q3导通,D10点亮。另一路经D8,W1达到反馈电路,使电压降低。充电器进入涓流充电阶段。1—2小时后充电结束. ?充电器常见得毛病有三大类:

1:高压毛病2;低压毛病3:高压,低压均有毛病。

高压毛病得主要现象就是指示灯不亮,其特征有保险丝熔断,整流二极管D1击穿,电容C11鼓包或炸裂。Q1击穿R25开路.U1得7脚对地短路.R5开路,U1无启动电压。更换以上元件即可修复。若U1得7脚有11V以上电压,8脚有5V电压,说明U1基本畸形。应重点检恻Q1与T1得引脚就是否有虚焊.若连续击穿Q1,

且Q1不发烫,一般就是D2C4失效,若就是Q1击穿且发烫,一般就是低压部分有漏电或短路,过大或UC3842得6脚输出脉冲波形不畸形,Q1得开关损耗与(de 0 kai1 guan1 sun3 hao4he2)发热量大增,导致Q1过热烧毁。高压毛病得其她现象有指示灯闪烁,输出电压偏低且不稳定,一般就是T1得引脚有虚焊或者D3R12开路TL3842及其外围电路无工作电源。另有一种罕见得高压毛病就是输出电压偏高到120V以上,一般就是U2失效,R13开路所致或U3击穿使U1得2脚电压拉低,6脚送出超宽脉冲。此时不能长工夫通电,否择将严重烧毁低压电路。低压毛病大部分就是充电器与电池正负极接反,导致R27烧断,LM358击穿。其现象就是红灯一直亮,绿灯不亮,输出电压低,或者输出电压接近0V,更换以上元件即可修复.另外W2因抖动,输出电压漂移,若输出电压偏高,电池会过充,严重失水,发烫,最终导致热失控,充爆电池。若输出电压偏低,会导致荤池欠充。高低压电路均有毛病时,通电前应首先佺面检恻所有得二极管,三极管,光耦合器4N35,场效应管,电解电容,集成电路,R25R5R12R27,尤其就是D 4(16A60V快复原二极管),C10(63V470UF).避免盲目通电使毛病范围进一步扩大。有一部分充电器输出端具有防反接,防短路等特殊功能.其实就就是输出端多加一个继电器,在反接,短路得情况下继电器不工作,充电器无电压输出.还有一部分充电器也具有防反接,防短路得功能,其原理与前面介绍得不同,其低压电路得启动电压由被充电池提供,且接有一个二极管(防反接)。待电源畸形启动后,就由充电器提供低压工作电源。

第二种充电器得控制芯片一般就是以TL494为核心,推动2只高压三极管。配合LM324(4运算放大器),实现三阶段充电(yun4 suan4 fang4 da4 qi4 __sh i2 xian4 san1 jie1 duan4 chong1dian4).

220V交流电经D1-D4整流,C5滤波得到300V左右直流电。此电压给C4充电,经TF1高压绕琢宫TF2主绕组V2等形成启动电流。TF2反馈绕组产生感应电压,使V1,V2轮流导通.因此在TF1低压供电绕组产生电压,经D9D10整流,C8滤波,给TL494LM324V3V4等供电。此时输出电压较低。TL494启动后其8脚,11脚轮流输出脉冲,推动V3V4,经TF2反馈绕组激励V1V2。使V1V2由自激状态转入受控状态。TF2输出绕组电压上升,此电压经R29R26R27

分压后反馈给TL494得1脚(电压反馈)使输出电压稳定在41、2V上.R30就是电流娶样电阻,充电时R30产生压降。此电压经R11R12反馈给TL494得15脚(电流反馈)使充电电流恒(jiao _dian liufan kui _shi chong dian dian liu heng)定在1、8A左右。另外充电电流在D20上产生压降,经R42达到LM324得3脚。使2脚输出高电压点亮充电灯,同时7脚输出低电压,浮充灯熄灭.充电器进入恒流充电阶段.而且7脚低电压拉低D19阳极得电压。使TL494得1脚电压降低,这将导致充电器最高输出电压达到44、8V.当电池电压上升至44、8V时,进入恒压阶段。当充电电流降低到0、3A—0、4A时LM324得3脚电压降低,1脚输出低电压,充电灯熄灭。同时7脚输出高电压,浮充灯点亮。而(jiao3 shu1 chu1 gao1 dian4 ya1 _fu2 chong1 deng1 d ian3 liang4_er2)且7脚高电压抬高D19阳极得电压。使TL494得1脚电压上升,这将导致充电器输出电压降低到41、2V上。充电器进入浮(shang4_chong1 dian4 qi4 jin4 ru4 fu2)充。

手机充电器原理分解和图

USB用电池充电器电路图 如图是USB用电池充电器电路。它是在5.25V/500mA最大额定功率时,使用通用串联总线(USB)以最大电流对锤离子充电的电路。电路中,LM3622为锤离子电池充电控制器。设计的充电电路使USB具有最大功率工作的能力,为了满足USB的技术指标,在正常工作情况下,最大功率工作能力从总线中取出的电流不能大于5OOmA。通过限流电阻R1将其最大充电电流设定为400mA,而剩下的100mA电流供给充电器控制电路等。在系统启动期间,LM3525电源开关使电池充电器与总线保持隔离状态,充电电流不会超过总线提供的最大电流。 在总线输出口经过适当的计算后,USB控制信号将USB电源通过LM3525与充电电路连接起来。在开关通/断工作时,LM3525具有过电流与欠电压防止功能。在设计充电电路时,应认真考虑总线电源与充电电路之间的电压降,因此,VT1和VD1要选用低电压降的器件,使输入电压较低时电路也能有效地对电池进行充电。在优选元件的情况下 LM3525输入与电池正极之目的电压降的典型值为53OmV,或对电池的充电电流大于400mA。最佳充电时间为从以最大电流对电池开始充电直到电池达到满充电电压为止。 对于4.2V锤离子电池,要求充电电路的输入电压典型值为4.7V。USB规格规定的最小输出电压为4.75V,但USB电缆和接线电阻上电压降为35OmV,因此,在最坏情况下,充电电路的输入电压低至4.4V,而在USB规格中充电电路仍然有效。要说清楚的是,要防止USB电压规格下限的系统对电池进行慢充电,或防止对满度电池充电。4.2V电池的最佳充电电压是充电电路的输入电压,其典型值为4.7V。当电路的输入电压低到4.6V以及电池电压接近满充电4.2V时,VT1和VD1的电压降使电路不能有效地提供充电电流。 在VT1和VD1的电压降仅为400mV时,电路为电池提供的充电电流不大于2OOmA。在低输入情况下,充电电流降为50%对电池恒压充电。当输人电压低到4.5V时,电池不能满充电到4.2V。在设计USB电源时,要采用低阻抗电缆和低电阻接线,使充电电路的输入电压足够高,确保不会出现慢充电或不完全充电的情况。

无线充电原理图文详解

无线充电原理图文详解 支持无线充电的智能手机从2011年夏季前后开始上市。任何厂商的任何机型均可使用的“Qi”规格将成为全球标准。停车即可充电的EV(电动汽车)用充电系统也在推进研发。 无线充电已经在电动牙刷、电动剃须刀、无线电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域。 NTT DoCoMo在2011年夏季以后陆续上市了多款支持无线充电的智能手机和充电座。这些手机无需在手机上插上充电线缆,只需放置在充电座上即可为电池充电。今后NTT DoCoMo 将在电影院、餐厅、酒店、机场休息室等公共场所设置充电座,便于用户在外出时使用。 软银移动也预定2012年1月上市支持无线充电的智能手机。KDDI正在开发车载式智能手机的无线充电座。 未来无线充电的应用范围将有望扩大到EV的充电系统。 目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。Qi源自汉语“气功”中的“气”,以松下、

韩国三星电子、英国索尼爱立信、芬兰诺基亚、电装为首,许多国家的家电厂商和汽车厂商都相继加盟了WPC。 无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。 19世纪发现的物理现象 电磁感应方式采用了19世纪上半期发现的物理现象。众所周知,电流流过线圈时,周围会产生磁场。1820年,丹麦物理学家汉斯·奥斯特(Hans Oersted)发现了这种电磁效应。

用没有通电的其他线圈接近该磁场,线圈中就会产生电流,由此点亮灯泡。1831年,英国物理学家迈克尔·法拉第(Michael Faraday)发现了这个可从线圈向线圈供电的物理现象,并称之为电磁感应现象。

手机充电器电路原理和检修方法

手机充电器电路原理和检修方法 一、电路原理 在早期的手机通用充电器电路设计时,由于考虑到锂电池与镍氢电池充电特点的不同(锂电池充电电压为4.2V-4.4V,镍氢电池充电电压为 4.3V-4.5V,且在给镍氢电池充电前,应先放电,以防止出现记忆效应)因此充电器电路比较复杂,一般由开关电源、基准电压、充电控制、放电控制和充电指示等电路组成,且基准电压、充电指示及充、放电控制电路多由运算放大器控制。近年来,由于绝大多数手机采用锂电池,加之出于制造成本考虑,通用型手机充电器的电路已非常简单实为一简单的自激式开关电源电路。图1为一款诺基亚手机通用充电器实绘电路。AC220V电压经D3半波整流、C1滤波后得到约+300V电压,一路经开关变压器T 初级绕组L1加到开关管Q2 c极,另一路经启动电阻R3加到Q2 b极,Q2 进入微导通状态丄1中产生上正下负的感应电动势,则L2中产生上负下正的感应电动势。L2中的感应电动势经R8、C2正反馈至Q2 b极,Q2迅速进入饱和状态。在Q2饱和期间,由于L1中电流近似线性增加,则L2中产生稳定的感应电动势。此电动势经R8、R6、Q2的b-e结给C2充电,随着C2的充电,Q2 b极电压逐渐下降,当下降至某值时,Q2退出饱和状态,流过L1中的电流减小丄1、L2中感应电动势极性反转,在R8、C2的正反馈作用下,Q2迅速由饱和状态退至截止状态。 这时,+300V 电压经R3、R8、L2、R16对C2反向充电,C2右端电位逐渐上升, 当升至一定值时,在R3的作用下,Q2再次导通,重复上述过程,如此周而复始,形成

CT — t 1。伽 DI vrn 5 av 自激振荡。在Q2导通期间丄3中的感应电动势极性为上负下正,D7截止;在Q2 截止期间丄3中的感应电动势极性为上正下负,D7导通,向外供电。图1中,VD1、 Q1等元件组成稳压电压。若输出电压过高,则L2绕组的感应电压也将升高,D1 整流、C4滤波所得电压升高。由于 VD1两端始终保持5.6V 的稳压值,则Q1 b 极电压升高,Q1导通程序加深,即对Q2 b 极电流的分流作用增强,Q2提前截止, 输出电压下降 若输出电压降低,其稳压控制过程与上述相反。 另外,R6、R4、 Q1组成过流保护电路。若流过Q2的电流过大时,R6上的压降增加,Q1导通,Q2 截止, 以防止Q2过流损坏。 、常见故障检修 A.C220V C2 m Cl ? 2 匸 400^ L1 R7 520k ll * U3J01? T 1H5S19 确1 4Q : bee

手机电池充电过程原理介绍

锂电池充电的原理 锂离子电池的充电过程可以分为四个阶段:涓流充电(低压预充)、恒流充电、恒压充电以及充电终止。锂电池充电器的基本要求是特定的充电电流和充电电压,从而保证电池安全充电。增加其它充电辅助功能是为了改善电池寿命,简化充电器的操

作,其中包括给过放电的电池使用涓流充电、电池电压检测、输入电流限制、充电完成后关断充电器、电池部分放电后自动启动充电等。 锂电池的充电方式是限压恒流,都是由IC芯片控制的,典型的充电方式是:先检测待充电电池的电压,如果电压低于3V,要先进行预充电,充电电流为设定电流的1/10,电压升到3V后,进入标准充电过程。标准充电过程为:以设定电流进行恒流充电,电池电压升到时,改为恒压充电,保持充电电压为。此时,充电电流逐渐下降,当电流下降至设定充电电

流的1/10时,充电结束。下图为充电曲线 图1

图2 阶段1:涓流充电——涓流充电用来先对完全放电的电池单元进行预充(恢复性充电)。在电池电压低于3V 左右时采用涓流充电,涓流充电电流

是恒流充电电流的十分之一即(以恒定充电电流为1A举例,则涓流充电电流为100mA), 阶段2:恒流充电——当电池电压上升到涓流充电阈值以上时,提高充电电流进行恒流充电。恒流充电的电流在至之间。电池电压随着恒流充电过程逐步升高,一般单节电池设定的此电压为阶段3:恒压充电——当电池电压上升到时,恒流充电结束,开始恒压充电阶段。电流根据电芯的饱和程度,随着充电过程的继续充电电流由最大值慢慢减少,当减小到时,认为充电终止。(C是以电池标

称容量对照电流的一种表示方法,如电池是1000mAh的容量,1C就是充电电流1000mA。) 阶段4:充电终止—— 有两种典型的充电终止方法:采用最小充电电流判断或采用定时器(或者两者的结合)。最小电流法监视恒压充电阶段的充电电流,并在充电电流减小到至范围时终止充电。第二种方法从恒压充电阶段开始时计时,持续充电两个小时后终止充电过程。 上述四阶段的充电法完成对完全放电电池的充电约需要至3小时。高级充电器还采用了更多安全措施。例如

电动车充电器图解原理与维修

电动车充电器原理和维修-两种充电器 常用电动车充电器根据电路结构可大致分为两种。第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。其电原理图和元件参数见(图表1) 220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V 左右的直流电。U1 为TL3842脉宽调制集成电路。其5脚为电源负极,7脚为电源正极,6 脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。2脚为电压反馈,可以调节充电器的输出电压。4脚外接振荡电阻R1,和振荡电容C1。T1为高频脉冲变压器,其作用有三个。第一是把高压脉冲将压为低压脉冲。第二是起到隔离高压的作用,以防触电。第三是为uc3842提供工作电源。D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管, U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。调整w2(微调电阻)可以细调充电器的电压。D10是电源指示灯。D6为充电指示灯。 R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。 通电开始时,C11上有300v左右电压。此电压一路经T1加载到Q1。第二路经R5,C8,C3, 达到U1的第7脚。强迫U1启动。U1的6脚输出方波脉冲,Q1工作,电流经R25到地。同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。正常充电时,R27上端有0.15-0.18V左右电压,此电压经R17加到LM358第三脚,从1脚送出高电压。此电压一路经R18,强迫Q2导通,D6(红灯)点亮,第二路注入LM358的6脚,7脚输出低电压,迫使Q3关断,D10(绿灯)熄灭,充电器进入恒流充电阶段。当电池电压上升到44.2V左右时,充电器进入恒压充电阶段,输出电压维持在44.2V左

手机充电器原理解析(

手机充电器原理详解 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE130 03),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名

端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF 电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。

手机充电器原理与维修

手机通用充电器及诺基亚手机充电器原理与维修 图片: 这是一种脉宽调制型充电电路,220V交流电压经R1限流,D1~D4桥式整流,C1滤波得到300V 左右的直流电压,此电压经主绕组L1给开关管V1集电极供电,经R4给V1偏置。刚加电压时V1开始导通,L1产生感生电动势,反馈绕组L2的感生电动势经反馈回路C4、R6加到开关管V1的基极,构成正反馈,从而使V1迅速进入饱和导通状态。此时V1的发射极电流很大,电阻R2上压降很大,此电压经R3 加到控制管V2的基极,使其导通,V1基极电压降低,集电极电流减小,L2感生与前反向的负电压经C4、R6加到V1基极,使开关管V1迅速进入截止状态。就这样,开关管不断导通截止,变压器B次级绕组L3就可获得脉冲电压。改变R6、C4的值可改变脉冲宽度从而达到调节充电电流的目的。不充电时,无负载,没有电流经过R20,V6截止,变色发光二极管D8不亮。当接上负载时,绕组L3的电压经D13、D15整流,C7滤波给负载供电,R20产生左负右正的电压,使V6导通,发光管D8导通发红光,

指示开始充电,随着充电的进行,充电电流越来越小,当充满电时,流过R20的电流变小,其上压降变小,V6 导通程度降低,流过D8电流变小,发绿光,表示充满电。其常见故障为开关管因功率过载而损坏和限流电阻R1损坏。 图1为一款诺基亚手机通用充电器实绘电路。AC220V电压经D3半波整流、C1滤波后得到约+300V电压,一路经开关变压器T初级绕组L1加到开关管Q2 c极,另一路经启动电阻R3加到Q2 b极,Q2进入微导通状态,L1中产生上正下负的感应电动势,则L2中产生上负下正的感应电动势。L2中的感应电动势经R8、C2正反馈至Q2 b极,Q2迅速进入饱和状态。在Q2饱和期间,由于L1中电流近似线性增加,则L2中产生稳定的感应电动势。此电动势经R8、R6、Q2的b-e结给C2 充电,随着C2的充电,Q2 b极电压逐渐下降,当下降至某值时,Q2退出饱和状态,流过L1中的电流减小,L1、L2中感应电动势极性反转,在R8、C2的正反馈作用下,Q2迅速由饱和状态退至截止状态。这时,+300V 电压经R3、R8、L2、R16对C2反向充电,C2右端电位逐渐上升,当升

充电器工作原理

电动车充电器参数的调节

LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚正常充电时,R27上端有0.15-0.18V左右电压,此电压经R17加到LM358第三脚,从1脚送出高电压当电池电压上升到44.2V左右时,充电器进入恒压充电阶段,输出电压维持在44.2V左右,充电器进入恒压充电阶段,电流逐渐减小当充电电流减小到200mA-300mA时,R27上端的电压下降,LM358的3脚电压低于2脚,1脚输出低电压,Q2关断,D6熄灭同时7脚输出高电压,此电压一路使Q3导通,D10点亮另一路经D8,W1到达反馈电路,使电压降低充电器进入涓流充电阶段1-2小时后充电结束 如图,这就是应用最多的普通三段式充电器电路原理图。一般市面上便宜的垃圾充电器大多使用这种电路。只是有不少充电器的运放使用的是四运放LM324,电路有些小小的不同,原理一样。 按照电路原理图,对电路进行分析后得知,调节W2将同时改变充电器的高恒压值(即恒压充电时期的输出电压)和低恒压值(即涓流充电时期的输出电压),而调节W1将只改变充电器的低恒压值。以前网友的结论大多有错误,那是没有仔细分析电路。 第一步,首先找到电路板上的精密妊乖碩L431。找到其上、下偏流电阻以及和TL431 REF端相连的二极管。在原电路图中,R7和R11为上偏流电阻,R28和W2 为下偏流电阻,D8即是要找的二极管。 第二步,调节高恒压值。断开二极管D8一端(即图上所示二极管),此时电路输出即为高恒压值。在输出端接上假轻负载(我用的是一个300欧10瓦的电阻),调节W2(或TL431的下偏流电阻),使输出电压为44.2V。W2增大,输出电压降低。 第三步,调节低恒压值。接上D8,调节和二极管串联的电阻(原理图中的W1),使输出电压为42.2V。W1增大,输出电压升高。

手机充电器电路原理图分析

专门找了几个例子,让大家看看。自己也一边学习。 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,

充电器原理与维修图例

充电器原理与维修实例 ?一、维修理论基本阐述所有得电子产品都有一定生命周期,使用中得不规范行为都会导致产品得损坏,电动车充电器就是电动车得重要得部件,一旦充电器损坏,电动车将“举步艰难",继而“寸步难行”. 电动车充电器由、、、 ?一、维修理论基本阐述?所有得电子产品都有一定生命周期,使用中得不规范行为都会导致产品得损坏,电动车充电器就是电动车得重要得部件,一旦充电器损坏,电动车将“举步艰难",继而“寸步难行"。 电动车充电器由于就是定位与价格竞争等等问题造成其寿命相对较短,有些厂家为了降低成本,不惜牺牲产品得质量,使用劣质器件造成在使用过程当中会出现这样那样得毛病,最严重得就是出现了一些影响深远得问题,如:充电过程中不转灯,充电器各项参数混乱等,以致蓄电池寿命缩短!维修电动车充电器,考究:望、听、闻、问、切。(实际应用中有一定得次序排列)下面就这些技巧一一讲解其目得与方法 望:我们拿到一个充电器首先要瞧一瞧这个充电器得外观,由此来判断使用环境会对充电器造成什么影响,如:充电器外壳有发热变形现象,表面比较脏,或者进风口严重阻塞,我们在实际案例里面发现有用户过份得爱惜充电器,在外面包裹了塑料袋,充电时也不拿下;又有些用户不太注意充电器,天天带在电动车后箱,长期得振动颠簸会使充电器出现虚焊;更有用户雨天也会使用充电器,充电器进水出现得后果可能会比较严重得损坏充电器,以至于直接报废. 听:拿起充电器来,在耳边上下摇晃几下,初步得听一下,充电器内部就是否有不应该有得异响,主要就是用来判断,器件就是否有掉落,松动与破摔,另外我们还由此来断定里面会不会有导电物体得存(器件掉落,小孩子顽皮,都会有导电物质在充电器内部存在) 闻:(wen _)核名思义用我们自己得鼻子去嗅一嗅,这个可以在不拆外壳得情况下,快速得判断充电器毛病得大小有极其重要得作用,当然这个需要一些基本得常识,您要学会分辨几种不同气味。?问:与客户交流,充电器就是在怎样得情况得下面坏掉得,比如,客户告知充电器在一插电得情况下“啪"得一声巨响后损坏得,我们就可以大致荒判断,这个会不会由于高压整流部分出问题了?400V电容爆炸了等等,以此(dian rong baozhaledeng deng _yi ci)获娶第一手得资料。?切:基本就可以理解为把充电器上电(插电),这个举动最终就是来自于以上得4妇铟程做下来得最后决定,而这里面得风险,直接来自您自己对于插电带来后果评估就是否准确直接得考验. 经过望、听、闻、问、切、步骤后我们基本就会锁定毛病得大致范围,在与客户得短暂沟通以后,我们开始“开膛破肚”. 电路部分从外壳分离出来以后,我们就电路部分进(bu fenjin)行消化。由于电路部分涉及电路理论,结合工作原理我们可以快速判断毛病点,但就是实际当中,我们可以完佺抛开理论知识,使用一些其她手段,也可以对充电器进行维修。 处理电路部分,首先一个应该注意自身安佺,做好一些防护措施十分得有必要,比如:使220V得隔离变压器,湿手不要去触碰线路板,夏天不要穿拖鞋去操作,地下铺设一块绝缘橡皮等等!

常见手机充电器检修

常见MP3,手机USB充电器原理与检修 这类充电器基本上都是采用贴片原件开关电源电路制作,电路结构大同小异。电路见下图。 (1)开关振荡电路市电经D1~D4整流后,在A点获得脉动直流电压,该电压一路经小型开关变压器T301的①-② 绕组 加至开关管Q1的c极,另一路经限流电阻R3加至Q1的b极,为Q1提供启动电流。Q1开始导通,其集极电流在T301的①-② 绕组中产生①正② 负的电动势,经T301耦合,在T301的③-④绕组中感应出③正④负的电动势,此电动势经R4、C1叠加到Q1的b极,使Q1迅速饱和导通。由于流过电感的电流不能突变,故在T301的①-②绕组中产生①负② 正的电动势。经T301耦合,在T301的③-④绕组中感应出③负④正的电动势,通过R4、C1,使Q1迅速进入截止状态。随着A点经R3对C1的不断充电,Q1又开始导通,进而进入下一轮的开关振荡状态。截止期间,T301通过副边⑤-⑥绕组,经D6及其负载电路释放能量,获得MP3所需的充电电压。 (2)稳压电路稳压电路由Z1、Q2等元件组成。当负载减轻或市电升高时,B点电压势必上升。当该电压大于5.6V时,Z1击穿,Q2因b-e结正偏而迅速导通,使Q1提前截止,进而使开关电源输出电压趋于下降;反之,则控制过程相反,从而使T301副边输出电压基本稳定。 (3)保护电路R1、R6为限流电阻。当负载过重时,Q1的集-射极电流势必增大,R6上的压降也随之增大。当该电压大于0.7V 时,Q2饱和导通,相当于Q2的c-e极短接,Q1因b极失电而立刻截止,达到过流保护的目的。为避免截止期间T301的①-② 绕组感应出的尖峰脉冲高压击穿Q1,在T301的①-②绕组并联了尖峰脉冲吸收电阻R2,以改善Q1的开关特性。

电动车经典_48V-3A_充电器原理图与讲解_高清版

电动车48V-3A 充电器原理图与维修 电动车充电器实际上就是一个开关电源加上一个检测电路,目前很多电动车的48V 充电器都是采用KA3842 和比较器LM358 来完成充电工作理图如图1 所示 工作原理 220V 交流电经LF1 双向滤波.VD1-VD4 整流为脉动直流电压,再经C3 滤波后形成约300V 的直流电压,300V 直流电压经过启动电阻R4 为脉宽调制集成电路IC1 的7 脚提供启动电压,IC1 的7 脚得到启动电压后,(7 脚电压高于14V 时,集成电路开始工作),6 脚输出PWM 脉冲,驱动电源开关管(场效应管) VT1 工作在开关状态,流通过VT1 的S 极-D 极-R7-接地端.此时开关变压器T1 的8-9绕产生感应电压,经VD6,R2 为IC1 的7 脚提供稳定的工作电压,4 脚外接振荡阻R10 和振荡电容C7 决定IC1 的振荡频率, IC2(TL431)为精密基准压源,IC4(光耦合器4N35)配合用来稳定充电压,调整RP1(510 欧半可调电位器)可以细调充电器的电压,LED1 是电源指示灯.接通电源后该指示灯就会发出红色的光。VT1 开始工作后,变压器的次级6-5 绕组输出的电压经快速恢复二极管VD60 整流,C18 滤波得到稳定的电压(约53V).此电压一路经二极管VD70(该二极管起防止电池的电流倒灌给充电器的作用)给电池充电,另一路经限流电阻R38,稳压二极管VZD1,滤波电容C60,为比较器IC3(LM358)提供12V 工作电源,VD12 为IC3 提供基准压,经R25,R26,R27 分压后送到IC3 的 2 脚和5 脚。 正常充电时,R33 上端有0.18-0.2V 的电压,此电压经R10 加到IC3 的 3 脚,从 1 脚输出高电平。1 脚输出的高电平信号分三路输出,第一路驱动VT2 导通,散热风扇得开始工作,第二路经过电阻R34 点亮双色二极管LED2 中的红色发光二极管,第三路输入到IC3 的 6 脚,此时7 脚输出低电平,双色发光二极管LED2 中的绿色发光二极管熄灭,充电器进入恒流充电阶段。当电池压升到44.2V 左右时,充电器进入恒压充电阶段,流逐渐减小。当充电流减小到200MA-300MA 时,R33 上端的电压下降,IC3 的 3 脚电压低于 2 脚,1 脚输出低电平,双色发光二极管LED2 中的红色发光二极管熄灭,三极管VT2 截止,风扇停止运转,同时IC3 的7 脚输出高电平,此高电平一路经过电阻R35 点亮双色发光二极管LED2 中的绿色发光二极管(指示电已经充满,此时并没有真正充满,实际上还得一两小时才能真正充满),另一路经R52,VD18,R40,RP2 到达IC2 的 1 脚,使输出电压降低,充电器进入200MA-300MA 的涓流充电阶段(浮充),改变RP2 的电阻值可以调整充电器由恒流充电状态转到涓流充电状态的转折流(200-300MA)。 常见故障

手机万能充电器电路原理与维修

手机万能充电器电路原 理与维修 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

手机万能充电器电路原理与维修 由于各型号手机所附带的充电器插口不同,以造成各手机充电器之间不能通用。当用户手机充电器损坏或丢失后,无法修复或购不到同型号充电器,使手机无法使用。万能充电器厂家看到这样的商机,就开发生产出手机万能充电器,该充电器由于其体积小、携带方便,操作简单,价格便宜,适合机型多,深受用户的欢迎。下面以深圳亚力通实业有限公司生产的四海通S538型万能充电器为例,介绍其工作原理和维修方法。该充电器在市场上占有率较高,又没有随机附带电路图,给维修带来一定的难度,本文根据实物测绘出其工作原理图,见附图,供维 修时参考。 四海通S538型万能充电器在外观设计上比较独特,面板上采用透明塑料制作的半椭圆形夹子,透明塑料面板上固定有两个距离可调节的不锈钢簧片作为充电电极。面板的尾部并排有1个测试开关(极性转换开关)和4个状态指示灯,用户根据需要可以调节充电器电极距离和输出电压极性,并通过状态指示灯可方便看出电池的充电情况。 一、工作原理 该充电器电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在150mA~180mA。在充电之前,先接上待充电池,看充电器面板上的测试指示灯是否亮若亮,表示极性正确,可以接通电源充电;否则,说明电池的极性和充电器输出电压的极性是相反的,这时需要按一下极性转换开关AN1(测试键) 才行。具体电路原理如下。 1.振荡电路 该电路主要由三极管VT2及开关变压器T1等组成。接通电源后,交流220V经二极管VD2半波整流,形成100V左右的直流电压。该电压经开关变压器T的1-1初级绕组加到了三极管VT2的c极,同时该电压经启动电阻R4为VT2的b极提供一个正向偏置电压,使VT2导通。此时,三极管VT2和开关变压器T1组成的间歇振荡电路开始工作,开关变压器T的1-1初级绕组中有电流通过。由于正反馈作用,在变压器T的1-2绕组感应的电压通过反馈电阻R1和电容C1加到VT2的b极,使三极管VT2的b极导通电流加大,迅速进人饱和区。随着电容C1两端电压不断升高,VT1的b极电压逐渐降低,使三极管VT2逐渐退出饱和区,其集电极电流开始减少,变压器T的1-1初级绕组中产生的磁通量也开始减少。在变压器T的1-2绕组感应的负反馈电压,使VT2迅速截止,完成一个振荡周期。在VT2进入截止期间,变压器T的1-3绕组就感应出一个5.5V左右的交流电压,作为后级的充电电压。 2.充电电路

车载手机充电器原理

车载手机充电器? 简单的: 直接将车载12V电源经一片7805变成5V,再通过10十几个100K电阻分压,得到4.5~4.8伏的电压即可。 复杂的,12V通过LM317或者LM2596之类的芯片,稳压到4.7V ,并用一个电流检测模块,比如可用LM311之类的精密比较器,一旦电流减小,则通过电源芯片关断供电。但要注意,这些电源芯片大部分都是内部工作在开关模式,所以输出纹波比较大,注意要做好输出滤波。 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。而下方的1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。右边的次级绕组就没有太多好说的了,经二极管RF93整流,220uF电容滤波后输出6V的电压。没找到二极管RF93的资料,估计是一个快速回复管,例如肖特基二极管等,因为开关电源的工作频率较高,所以需要工作频率的二极管。这里可以用常见的1N5816、1N5817等肖特基二极管代替。同样因为频率高的原因,变压器也必须使用高频开关变压器,铁心一般为高频铁氧体磁芯,具有高的电阻率,以减小涡流。 本文来自:我爱研发网(https://www.360docs.net/doc/2018036605.html,) 详细出处:https://www.360docs.net/doc/2018036605.html,/bbs/dispbbs.asp?boardID=56&ID=15346&page=1

手机充电器电路图讲解(DOC)

手机充电器电路图讲解 时间:2012-12-18 来源:作者: 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容

滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关 13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能 量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。 而下方的1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。右边的次级绕组就没有太多好说的了,经二极管RF93整流,220uF电容滤波后输出6V的电压。没找到二极管RF93 的资料,估计是一个快速回复管,例如肖特基二极管等,因为开关电源的工作频率较高,所以需要工作频率的二极管。这里可以用常见的1N5816、1N5817等肖特基二极管代替。 同样因为频率高的原因,变压器也必须使用高频开关变压器,铁心一般为高频铁氧体磁芯,具有高的电阻率,以减小涡流。 霓虹灯灯管要求很高的启动电压,需用一个漏磁变压器作启动和整流用。漏磁变压器的空载二次电压不小于15kV、容量为450V·A、电流为24mA、短路电流为30mA。这样的漏磁变压器能点亮管径为12mm、展开长度约为12m的灯管。霓虹灯控制电路:

电池充电器原理图详解

电池充电器原理图详解(附图) 时间:2012-06-27 11:49:27 来源:中国装备制造网点击量:42 锂电池充电器原理图就是什么呢?在充电时,手机与电动车使用得充电器多为锂电池充电器,那么您知道锂电池充电器原理图就是什么呢?下面世界工厂网小编就与大家聊聊锂电池充电器原理图,也长长见识。 锂离子电池具有单只端电压高、比容量大等优点,但其充电必须使用专用充电器,因为它在过充电时极易损坏。锂离子电池充电器之所以称“新创意”,就是因为它除监视电池得充电状态外,还能分阶段控制电池得最大充电电流。用本充电器充电开始时,充电电流从10mA依次递增至270mA,当电量充至70%左右时,自动改用最大220mA充电,然后依次改为最大170mA、120mA与70mA,最后以10mA左右得涓流结束充电。这种充电方法可以较大限度地将锂离子电池充足。 本装置电路如附图所示。IC1构成频率约1Hz1得多谐振荡器,IC2构成脉冲频率6分配器,IC3构成充电执行电路。通电后IC2复位,Q0输出高电平,这时IC3输出电压仅1、25V,电路由+15V经R1给电池提供约10mA得充电电流。通电后IC1起振,其③脚输出得脉冲触发IC2工作,使输出端Q1~Q5依次出现高电平,经不同得分压电阻分压后,IC3得输出电压按6V、7V、8V、9V、10V依次递增,充电电流也因此在70mA至270mA之间依次递增。当Q6输出高电平时IC2被复位,此后电路在IC1输出脉冲得作用下重复上述过程。 锂电池得标称电压为3、6V,通常放电至3V即需充电,终止充电电压最高为4、2V。IC4构成电池端电压检测电路,其门限电压即电池充电终止电压可通过RP在4~4、2V范围

手机充电电路

手机充电电路因不同的机型,芯片组,不同的设计理念其实际电路有所 不同,比如: 1.MT,展讯等杂牌机的充电电路不算复杂,基本上在电路板上都能找到相应的元器件。如图(一)所示 ffl (— 5 MT系列充电莹元 2.诺基亚手机的充电电路看起来最容易,外围电路设计得相当简单,复 杂的充电电路基本上都已经集成到电源中。外面只能看到保护和限流部 分了。如图(二)所示

图(二J N7610充电单元 3.摩托罗拉的充电电路历来则是最复杂的,外围充电电路的元器件有几十个,故障点相当多,维修起来相比很罗嗦,不过也有一定的思路可循。如图(三)所示 图(三〉V丑充电单元 虽然充电电路在具体维修时分量不是很重,但涉及漏电,不开机时还是要修 的。同时也是因为一直以来单独介绍这方面的文章很少,维 修师傅和学员又很需要掌握这方面的知识。基于此,我们有必要根据维修经验,以及

掌握的原理知识来分析充电电路的原理,维修思路。因为它们的工作原理基本一致,为了大家都能容易理解,我们就以杂牌机MT 系列为主来研究,相信大家对其它机型也会举一反三的。 一、手机充电部分组成,它包括充电电路及其保护电路两大部分: (一)充电基本部分: 1.充电检测部分:检测充电器是否插入手机,告知CPU充电器已经插入,可以充电了,该电路出问题会出现充电时无反应等。 2.充电控制部分:控制外电向手机充电或不充电,告知电源和充电模块电池已经低电,准备受控,快充还是慢充,该电路出问题会造成不充电,充不满电,过充电,始终充电的现象。 3.电量检测部分:检测充电电量的多少,当充满电后,向CPU发出信号,告知已充满 电量,否则该电路出问题会出现始终充电,或显示充电但充不进去电的现象。 二)充电保护部分: 1. 过压保护部分:过压保护一般是当充电时候交流端电压的不稳定,防止损毁电源

手机充电器电路原理和检修方法

手机充电器电路原理和检修方法 ?一、电路原理 ?在早期的手机通用充电器电路设计时,由于考虑到锂电池与镍氢电池充电特点的不同(锂电池充电电压为4.2V-4.4V,镍氢电池充电电压为4.3V-4.5V,且在给镍氢电池充电前,应先放电,以防止出现记忆效应)因此充电器电路比较复杂,一般由开关电源、基准电压、充电控制、放电控制和充电指示等电路组成,且基准电压、充电指示及充、放电控制电路多由运算放大器控制。近年来,由于绝大多数手机采用锂电池,加之出于制造成本考虑,通用型手机充电器的电路已非常简单,实为一简单的自激式开关电源电路。图1为一款诺基亚手机通用充电器实绘电路。AC220V电压经D3半波整流、C1滤波后得到约+300V电压,一路经开关变压器T初级绕组L1加到开关管Q2 c极,另一路经启动电阻R3加到Q2 b极,Q2进入微导通状态,L1中产生上正下负的感应电动势,则L2中产生上负下正的感应电动势。L2中的感应电动势经R8、C2正反馈至Q2 b极,Q2迅速进入饱和状态。 在Q2饱和期间,由于L1中电流近似线性增加,则L2中产生稳定的感应电动势。 此电动势经R8、R6、Q2的b-e结给C2充电,随着C2的充电,Q2 b极电压逐渐下降,当下降至某值时,Q2退出饱和状态,流过L1中的电流减小,L1、L2中感应电动势极性反转,在R8、C2的正反馈作用下,Q2迅速由饱和状态退至截止状态。 这时,+300V 电压经R3、R8、L2、R16对C2反向充电,C2右端电位逐渐上升,当升至一定值时,在R3的作用下,Q2再次导通,重复上述过程,如此周而复始,形成

自激振荡。在Q2导通期间,L3中的感应电动势极性为上负下正,D7截止;在Q2截止期间,L3中的感应电动势极性为上正下负,D7导通,向外供电。图1中,VD1、Q1等元件组成稳压电压。若输出电压过高,则L2绕组的感应电压也将升高,D1整流、C4滤波所得电压升高。由于VD1两端始终保持5.6V的稳压值,则Q1 b 极电压升高,Q1导通程序加深,即对Q2 b极电流的分流作用增强,Q2提前截止,输出电压下降若输出电压降低,其稳压控制过程与上述相反。另外,R6、R4、Q1组成过流保护电路。若流过Q2的电流过大时,R6上的压降增加,Q1导通,Q2截止,以防止Q2过流损坏。 ?二、常见故障检修 ?在该类充电器中,初级电路故障率较高,其常见故障现象为:次级无输出,R1烧焦。从实修情况看,R1烧焦、开路常系Q2击穿所致,并伴有R6开路损坏。

手机充电器原理图详解

手机充电器原理图详解 该充电器采用了RCC型开关电源,即振荡抑制型变换器,它与PWM型开关电源有一定的区别。PWM型开关电源由独立的取样误差放大器和直流放大器组成脉宽调制系统;而RCC型开关电源只是由稳压器组成电平开关,控制过程为振荡状态和抑制状态。由于PWM型开关电源中的开关管总是周期性的通断,系统控制只是改变每个周期的脉冲宽度,而RCC型开关电源的控制过程并非线性连续变化,它只有两个状态:当开关电源输出电压超过额定值时,脉冲控制器输出低电平,开关管截止;当开关电源输出电压低于额定值时,脉冲控制器输出高电平,开关管导通。当负载电流减小时,滤波电容放电时间延长,输出电压不会很快降低,开关管处于截止状态,直到输出电压降低到额定值以下,开关管才会再次导通。开关管的截止时间取决于负载电流的大小。开关管的导通/截止由电平开关从输出电压取样进行控制。因此这种电源也称非周期性开关电源。 220V市电经V D1~V D4桥式整流后在V2的集电极上形成一个300V左右的直流电压。由V2和开关变压器组成间歇振荡器。开机后,300V直流电压经过变压器初级加到V2的集电极,同时该电压还经启动电阻R2为V2的基极提供一个偏置电压。由于正反馈作用,V2 Ic迅速上升而饱和,在V2进入截止期间,开关变压器次级绕组产生的感应电压使V D7导通,向负载输出一个9V左右的直流电压。开关变压器的反馈绕组产生的感应脉冲经V D5整流、C1滤波后产生一个与振荡脉冲个数呈正比的直流电压。此电压若超过稳压管V D17的稳压值,V D17便导通,此负极性整流电压便加在V2的基极,使其迅速截止。V2的截止时间与其输出电压呈反比。V D17的导通/截止直接受电网电压和负载的影响。电网电压越低或负载电流越大,V D17的导通时间越短,V2的导通时间越长,反之,电网电压越高或负载电流越小,V D5的整流电压越高,V D17的导通时间越长,V2的导通时间越短。V1是过流保护管,R5是V2 Ie的取样电阻。当V2 Ie过大时,R5上的电压降使V1导通,V2截止,可有效消除开机瞬间的冲击电流,同时对V D17的控制功能也是一种补偿。V D17以电压取样来控制V2的振荡时间,而V1是以电流取样来控制V2振荡时间的。 如果是为镍镉、镍氢电池充电,由于这类电池存在一定的记忆效应,需不定时对其进行放电。SW1是镍镉、镍氢、锂离子电池充电转换开关。SW1与精密基准电源SL431为运放LM324⑨提供两个不同的精密基准源,由SW1切换。在给镍镉、镍氢电池充电时,LM324⑨脚的基准电压约0。09V(空载);在给锂离子电池充电时,LM324⑨脚的基准电压约为0。08V(空载),

相关文档
最新文档