第9章 聚合物的流变性

第9章   聚合物的流变性
第9章   聚合物的流变性

第9章聚合物的流变性

1.什么是假塑性流体?绝大多数聚合物熔体和浓溶液在通常条件下为什么均呈现假塑性流体的性质?试用缠结理论加以解释。

答:(1)流动指数n<1的流体称为假塑性流体;

(2)略

2.聚合物的粘性流动有何特点?为什么?

3.为什么聚合物的粘流活化能与分子量无关?

答:根据自由体积理论,高分子的流动不是简单的整个分子的迁移,而是通过链段的相继跃迁来实现的。形象的说,这种流动的类似于蚯蚓的蠕动。因而其流动

活化能与分子的长短无关。,由实验结果可知当碳链不长

时,随碳数的增加而增加,但当碳数大于30时,不再增大,因此聚合物超过一定数值后,与相对分子质量无关。

4.讨论聚合物的分子量和分子量分布对熔体粘度和流变性的影响。

答:低切变速率下,当时,略依赖于聚合物化学结构和温度,当

时,与聚合物化学结构,分子量分布及温度无关;增大切变速率,链

缠结结构破坏程度增加,分子量对体系粘度影响减小。

聚合物熔体非牛顿流动时的切变速率随分子量加大向低切变速率移动,剪切引起的粘度下降,分子量低的试样也比分子量高的试样小一些。分子量相同时分子量分布宽的聚合物熔体出现非牛顿流动的切变速率比分布窄的要低的多。

5.从结构观点分析温度、切变速率对聚合物熔体粘度的影响规律,举例说明这一规律在成型加工中的应用。

答:a.温度升高,粘度下降,在较高温度的情况下,聚合物熔体内自由体积相当大,流动粘度的大小主要取决于高分子链本身的结构,即链段跃迁运动的能力,一般分子链越刚硬,或分子间作用力越大,则流动活化能越高,这类聚合物是温敏性的;当温度处于一定范围即Tg

b.柔性链高分子表观粘度随切变速率增加而明显下降,刚性链高分子表观粘度也随且变速率增加而下降,但降幅较小,因为切变速率增加,柔性链易改变构象,即通过链段运动破坏原有缠结,降低流动阻力,刚性链链段较长,构象改变较困难,随切变阻力增加,阻力变化不大。

6.解释下列名词、概念:

(1)牛顿流体和非牛顿流体;

牛顿流体:流动行为符合牛顿流动定律的流体;

非牛顿流体:流动行为不符合牛顿流动定律的流体。

(2)切粘度和拉伸粘度;

切粘度:等于单位速度梯度时单位面积上所受到的切应力,其值放映了液体分子间由于相互作用而产生的流动阻力即内摩擦力的大小,单位为帕秒(Pa s)。拉伸粘度:等于单位速度梯度时单位面积上所受到的拉伸应力。

(3)真实粘度和表观粘度;

真实粘度:单位速度梯度时单位面积上所受到的切应力。

表观粘度:在粘性流动中,流体具有剪切速率依赖性时的剪切应力与剪切速率之比值。

(4)非牛顿指数和稠度系数;

非牛顿指数:n=,对切变速率非牛顿的校正。

稠度系数:描述非牛顿流体流动行为可用下述幂律方程:,其中K为稠

度系数。

(5)不稳定流动与熔体破裂。

不稳定流动与熔体破裂:聚合物熔体在挤出时,如果切应力超过一极限值时,熔体往往会出现不稳定流动,挤出物外表不再是光滑的,最后导致不规则的挤出物断裂,称为熔体破裂。

7.为什么涤纶采用熔融纺丝方法,而腈纶却用湿法纺丝?

答:由于聚丙烯腈的熔点很高(318℃),分解温度(220℃)低于熔点,所以不能用熔融纺丝。由于聚对苯二甲酸乙二酯的熔点为260~270℃,低于分解温度(约为350℃),可用熔融纺丝。

8.某一聚苯乙烯试样,已知160℃时粘度为1e3Pa·s,试估算Tg(100℃)时及120℃时的粘度。

答:Tg(100℃)时为?Pa·s,120℃时为?Pa·s。

9.一种聚合物在加工中劣化,其重均分子量从1e6下降到8e5.问加工前后的熔融粘度之比是多少?

答:2.14

10.用毛细管流变仪挤出顺丁橡胶试样,不同柱塞速度ν条件下,得到载荷下的数值如下:

V(mm/min) 0.6 2 6 20 60 200

F(mm/min) 2067.8 3332 4606 5831 6918.8 7781.2

已知柱塞直径dp=0.9525cm,毛细管直径D=0.127cm,毛细管长径比L/D=4,忽略入口校正,试作出熔体的τw-曲线和ηa-曲线。

答:略。

试验十八流体流变性质的测定-沈阳药科大学

实验十八流体流变性质的测定 一、实验目的 掌握流体流变曲线的测定原理及方法。 二、实验指导 在适当外力的作用下,物质所具有的流动和变形的性能,称为流变性。量度物质流变性最常用的物理量是粘度。 流体分为牛顿流体和非牛顿流体两大类。 牛顿流体表现为切变应力与切变速度成正比,即: F/A=η·dν/dγ 式中F/A-切变应力,dν/dγ-切变速度,η为粘度系数或粘度。 对于某一特定液体,粘度为一常数,这是牛顿流体的特征,如水、甘油、糖浆都属于牛顿流体。测定牛顿流体粘度常用的仪器有毛细管粘度计(平式和乌式粘度计)和落球粘度计。 非牛顿流体不符合切变应力和切变速度成正比的关系,其粘度是随切变应力的变化而变化的。如高分子溶液、溶胶、乳浊液、软膏及一些混悬剂等,均属于非牛顿流体。 把切变速度(D= dν/dγ)随切变应力(S=F/A)而变化的规律绘制的曲线称为流变曲线。牛顿液体流变曲线是通过原点的直线,可以用一点的粘度绘制流变曲线。非牛流体的流动曲线有的不通过原点,且大部分为曲线,切变速度与对应的切变应力须一一测定后才能绘制出流变曲线。非牛顿流体按流动方式的不同,可分为塑性流体、假塑性流体、胀性流体、触变流体。测定非牛顿性流体粘度的常用仪器为旋转式粘度计。 流变学在药剂中的混悬剂、乳剂、胶体溶液、软膏剂和栓剂等的处方设计、质量评价以及制备工艺的确定都具有重要的指导意义。 三、实验内容和操作 1.甘油流变曲线的绘制 (1)将杯和转子在所定的位置固定,通循环水使杯保持恒温(30℃) 83

(2)将甘油倒入杯中标线处,继续循环水,使甘油保持恒温。 (3)将砝码挂上后,读出旋转指针的刻度,然后使制动器脱离,记录旋转指针旋转一周的时间,求出旋转的速度(ν)。 (4)变换砝码的重量,重复上述操作 2.先配制0.5%、1.0%、3.0%羧甲基纤维素钠水溶液的流变曲线的绘制 如前述固定好杯和转子,加入羧甲基纤维素水溶液至标线处,保持杯内溶液恒温后,重复上述操作。 四、实验结果与讨论 1.对于甘油,依据测定的旋转速度ν和砝码的重量(w)的关系,绘制流变曲线,由直线的斜率求出装置的常数(Kν)。 ν=Kν·W·1/η 这里η为粘度系数,甘油的粘度系数为624cp(t=30℃) 2.各种浓度的羧甲基纤维素水溶液的数据,同上述方法处理,当流变曲线为直线时,由上式求出粘度系数。若为非牛顿流体,指出符合哪种类型。 五、思考题 1.简述流变学在药剂学中的应用。 2.给出牛顿型流体、塑性流体、假塑性流体、胀性流体的流动曲线。 (杨丽) 84

聚合物的流变性能

第四节聚合物的流变性能 一概述 注塑中把聚合物材料加热到熔融状态下进行加工。这时可把熔体看成连续介质,在机器某些部位上,如螺杆,料筒,喷嘴及模腔流道中形成流场。在流场中熔体受到应力,时间,温度的联合作用发生形变或流动。这样聚合物熔体的流动就和机器某些几何参数和工艺参数发生密切的联系。 处于层流状态下的聚合物熔体,依本身的分子结构和加工条件可分近似牛顿型和非牛顿型流体它们的流变特性暂不予祥细介绍。 1 关于流变性能 (1)剪切速率,剪切应力对粘度的影响 通常,剪切应力随剪切速率提高而增加,而粘度却随剪切速率或剪切应力的增加而下降。 剪切粘度对剪切速率的依赖性越强,粘度随剪切速率的提高而讯速降低,这种聚合物称作剪性聚合物,这种剪切变稀的现象是聚合物固有的特征,但不同聚合物剪切变稀程度是不同的,了解这一点对注塑有重要意义。 (2)离模膨胀效应 当聚合物熔体离开流道口时,熔体流的直径,大于流道出口的直径,这种现象称为离模膨胀效应。 普遍认为这是由聚合物的粘弹效应所引起的膨胀效应,粘弹效应要影响膨胀比的大小,温度,剪切速率和流道几何形状等都能影响熔体的膨胀效应。所以膨胀效应是熔体流动过程中的弹性反映,这种行为与大分子沿流动方向的剪切应力作用和垂直于流动方向的法向应力作用有关。 在纯剪切流动中法向效应是较小的。粘弹性熔体的法向效应越大则离模膨胀效应越明显。流道的影响;假如流道长度很短,离模效应将受到入口效应的影响。这是因为进入浇口段的熔体要收剑流动,流动正处在速度重新分布的不稳定时期,如果浇口段很短,熔体料流会很快地出口,剪切应力的作用会突然消失,速度梯度也要消除,大分子发生蜷曲,产生弹性恢复,这会使离模膨胀效应加剧。如果流道足够长,则弹性应变能有足够的时间进行弹性松驰。这时影响离模膨胀效应的主要原因是稳定流动时的剪切弹性和法向效应的作用。 (3)剪切速率对不稳定流动的影响 剪切速率有三个流变区:低剪切速率区,在低剪切速率下被破坏的高分子链缠结能来得及恢复,所以表现出粘度不变的牛顿特性。中剪切区,随着剪切速率的提高,高分子链段缠结被顺开且来不及重新恢复。这样就助止了链段之间相对运动和内磨擦的减小。可使熔体粘度降低二至三个数量级,产生了剪切稀化作用。在高剪切区,当剪切速率很高粘度可降至最小,并且难以维持恒定,大分子链段缠结在高剪切下已全部被拉直,表现出牛顿流体的性质。如果剪切速率再提高,出现不稳定流动,这种不稳定流动形成弹性湍流熔体出现波纹,破裂现象是熔体不稳定的重要标志。 当剪切速率达到弹性湍流时,熔体不仅不会继续变稀,反而会变稠。这是因为熔体发生破裂。 (4)温度对粘度的影响

聚合物溶液流变性

聚合物溶液的流变模式 聚合物流变性是指其在流动过程中发生变形的性质,主要体现在有外力场作用时,溶液粘度与流速或压差之间的变化关系。高分子的形态变化导致了聚合物溶液宏观性质的变化。聚合物溶液是非牛顿流体,其流动行为可用Ostwald-Dewael幂律方程[56]来描述: 根据流体力学对液体流型的分类,驱油用的部分水解聚丙烯酰胺溶液属于假塑性流型,即表观粘度呈现剪切稀化现象。在低剪切速率下,溶液的流变曲线斜率n=1,符合牛顿流动定律,称为第一牛顿流动区,该区的粘度通常称为零切粘度η0,即γ&→0的粘度。随着剪切速率的增大,流动曲线的斜率n<1,称假塑性区,该区的粘度为表观粘度ηa;剪切速率的增大,表观粘度ηa值变小,其表观粘度与剪切速率呈幂指数关系。在假塑性区,剪切速率与表观粘度的关系可用Ostwald-Dewael幂律模型来描述。 HPAM水溶液的完整的流变曲线如图2-1所示。流变曲线包括牛顿段、假塑段、极限牛顿段、粘弹段和降解段。粘度随剪切速率的变化与高分子在溶液中的形态结构有关。在很小的剪切速率下,大分子构象分布不改变,流动对结构没有影响,聚合物溶液的粘度不随剪切速率的变化而变化,此即牛顿段;当剪切速率较大时,在切应力的作用下高分子构象发生了变化,长链分子偏离平衡态构象,而沿流动方向取向,使聚合物解缠和分子链彼此分离,从而降低了相互运动阻力,这时表观粘度随剪切速率的增加而降低。当剪切速率增加到一定程度以后,大分子取向达到极限状态,取向程度不再随剪切速率而变化,聚合物溶液遵守牛顿流动定律,表观粘度又成为常数,此即所谓的极限牛顿段。当剪切速率再增加时,主链的相邻键偏离了正常的键角,从而产生了弹性恢复力,而表现出粘弹性,使表观粘度增加。当剪切速率增加到足以使高分子链断裂时,发生能了聚合物降解,使聚合物粘度降低。 另外,随着剪切速率的增加,ηa下降,开始时ηa下降很快,随后变得缓慢,逐渐趋于平缓,进一步说明了HPAM属于假塑性流体。Mooney方程可解释这一现象,体系的表观粘度ηa与粒子的内相体积Vi、堆积系数υ和形态常数ke有如下关系:

第五章 高聚物的流变性

第五章 高聚物的流变性 热塑性塑料成型过程一般需经历加热塑化、流动成型和冷却固化三个基本步骤。加热塑化:经过加热使固体高聚物变成粘性流体;流动成型:借助注塑机或挤塑机的柱赛或螺杆的移动,以很高的压力将粘性流体注入温度较低的闭合模具内,或以很高的压力将粘性流体从所要求的形状的口模挤出,得到连续的型材。冷却固化:是用冷却的方法使制品从粘流态变成玻璃态。 聚合物的粘流发生在g T 以上,热塑料、合成纤维和合成橡胶的加工成型都是在粘流态下进行的.由于大多数高分子的f T 都低于300℃,经一般无机材料低得多,给加工成型带来很大方便,这也是高分子得以广泛应用的一个重要原因. 5.1牛顿流体与非牛顿流体 牛顿流体:粘度不随剪切应力和剪切速率的大小而改变,始终保持常数的流体,通称为~。 非牛顿流体:凡是不符合牛顿流体公式的流体,统称为非牛顿流体。 牛顿流体: d dt γ σηηγ== 非牛顿流体: 'n a K σγηγ == 式中γ 为剪切速率,n 为非牛顿性指数(n<1称为假塑性); a η为表观粘度,表观粘度比高聚物真正的粘度(零剪切粘度0η小). 剪切变稀:大多数高聚物熔体和浓溶液属假塑性流体,其粘度随剪切速率的增加而减小,即所谓~。 剪切变稠:膨胀性流体与假塑性流体相反,随着剪切速率的增大,粘度升高,即发生~。 宾汉流体:或称塑性流体,具有名符其实的塑性行为,即在受到的剪切应力小于某一临界值Y σ是不发生流动,相当于虎克固体,而超过Y σ后,则可像牛顿液体一样流动。 触变(摇溶)液体:在恒定剪切速率下粘度随时间增加而降低的液体。 摇凝液体:在恒定剪切速率下粘度随时间而增加的液体。 5.2高聚物粘性流动的主要特点 1. 高分子流动是通过链段的位移运动来实现的,粘流活化能与相对分子质量无关. 2. 一般不符合物顿液体定律,即不是牛顿流体,而是非牛顿流体,常是假塑性流体.这是由于流动时链段沿流动方向取向,取向的结果使粘度降低. 3. 粘流时伴有高弹形变。高弹形变的恢复也是一个松驰过程,恢复的快慢一方面与高分子链本身的柔顺性有关,柔性好,恢复得快,另一方面也与高聚物所处的温度有关,温度高,恢复快。

聚合物共混改性-a(答案)知识讲解

聚合物共混改性2007-A(答案)

四川大学期考试试题(闭卷)A (2006 ——2007学年第 2 学期) 课程号:30004720 课序号:课程名称:聚合物共混改性原理任课教师:成绩: 适用专业年级: 2004级学生人数:印题份数:学号:姓名:

5、根据下图分析啮合型同向旋转双螺杆挤出机可分为哪几个工作区段?各段的作用是什么? 答:1、固体输送区。作用:(1)输送物料;(2)将松散的粉状物料压实或提高粒状物料在螺杆中的充满度,以促进物料在下一区的熔融塑化。(2分) 2、熔融和混合。物料经输送区受到一定的压缩后开始熔融,并发生混合。(2分) 3、混合区(第二混合段)。将组分尺寸进一步细化与均化;侧加料,加入添加剂等。(2分) 4、脱挥、排气。完全熔融状态的物料经压缩后突然减压,可挥发性物料在真空条 件下迅速挥发,脱离熔体。(2分) 5、熔体输送、增压挤出。物料必须建立起一定的压力,使模口处物料有一定的致 密度,一般来说,在此区,物料可进一步混合,主要功能是输送与增压。(2分) 6、简述影响聚合物共混物形变的因素。(10分) 答:1、基体性质。聚合物共混物屈服形变时,银纹和剪切形变两种成分的比例在很大程度上取决于连续相基体的性质。一般而言,连续相的韧性越大,则剪切成分所占的比例越大。(2分) 2、应力的影响。a. 应力大小(1分):形变中银纹成分的比例随应力和形变速率 的增加而增加;b. 形变速率(1分):增加形变速率会使银纹成分的比例提高;c. 应力性质的影响(1分):由于银纹化伴随着体积的增加,所以压应力抑制银纹,张应力则促进银纹的生成。 3、大分子取向的影响。大分子取向常常减小银纹成分的比例。例如橡胶增韧塑 料,拉伸时基体大分子取向,橡胶颗粒会变成椭球状,结果应力集中因子减小。取向的结果使剪切成分的比例增加而银纹化成分的比例下降。(2分)

第二章共混改性基本原理解析

第二章共混改性基本原理 2.0本章介绍 概述 共混组分的相容性(重点) 掌握聚合物之间相容性的基本概念、改进相容性的方法,了解相容性理论、相容性的表征方法。 聚合物共混物的形态(重点、难点) 掌握聚合物共混物形态结构的基本类型、相界面结构、相容性和混合加工方法对形态结构的影响以及形态结构的主要测定方法。了解控制聚合物共混物的结构与性能控制的基本途径。 共混物的性能(重点) 共混物制备方法(重点)、原理(重点)与设备(自学) 2.1概述 2.1.1相关概念 聚合物共混 聚合物共混(Polymer blend):是指两种或两种以上均聚物或共聚物混合制成宏观均匀物质的过程。共混产物称为聚合物共混物。 高分子合金是指含多种组分的聚合物均相或多相体系,包括聚合物共混物、嵌段和接枝共聚物,而且一般言,高分子合金具有较高的力学性能。其形态结构为微观非均相或均相。 高分子合金不能简单等同于聚合物共混物。 相容性 相容性(Miscibility):是指共混无各组分彼此相互容纳,形成宏观均匀材料的能力。 互溶性 互溶性(solubility):指可以达到分子级混合的共混物。因聚合物材料结构特征限制,要达到完全分子级的混合难以实现,因此其应用不多。 混溶性 混溶性(compatibility):以是否能获得比较均匀和稳定的形态结构的共混体系为判据,而不论共混体系是否热力学相互溶解。 反应性共混体系 反应性共混体系:是指在不相容或相容性较差的共混体系中加入(或就地形成)反应性聚合物,在混合过程中(例如挤出过程)与共混聚合物的官能团之间在相界面上发生反应,使体系相容性得到改善,起到增容剂的作用的体系。 2.1.2共混的特点与意义 许多天然和合成的聚合物是经改性才能达到工业应用性能的. 综合、均衡各聚合物组分的性能、提高使用档次,如ABS兼有PS的光泽

高物复习题第九章聚合物的流变性

如有你有帮助,请购买下载,谢谢! 1页 第九章 聚合物的流变性 一、 概念 1、牛顿流体: 2、非牛顿流体: 3、假塑性流体: 4、表观粘度: 5、韦森堡效应(包轴效应): 6、巴拉斯效应(挤出物胀大现象): 二、选择答案 1、下列聚合物中,熔体粘度对温度最敏感的是( C )。 A 、PE B 、PP C 、PC D 、PB 2、大多数聚合物熔体在剪切流动中表现为(B )。 A 、 宾汉流体, B 、假塑性流体, C 、膨胀性流体, D 、牛顿流体 3、聚合物的粘流活化能一般与(D )有关。 A 、温度 B 、切应力 C 、切变速率 D 、高分子的柔顺性 4、下列四种聚合物中,粘流活化能最大的为( D )。 A 、高密度聚乙烯, B 、顺丁橡胶, C 、聚二甲基硅氧烷, D 、聚苯乙烯 5、对于同一种聚合物,在相同的条件下,流动性越好,熔融指数MI 越(A );材料的耐 热性越好,则维卡软化点越( A )。 A 、高、高 B 、低、低 C 、高、低 D 、低、高 6、 下列方法中不能测定聚合物熔体粘度的是:(C ) A 、 毛细管粘度计 B 、旋转粘度计 C 、乌氏粘度计 D 、落球粘度计 三、填空题 1、假塑性流体的粘度随应变速率的增大而 减小 ,用幂律方程 表示时,n < 1。 2、聚合物熔体的弹性响应包括有 维森堡效应 , 巴拉斯效应 与 不稳定流动和熔体破裂 。 3、对于相同分子量,不同分子量分布的聚合物流体,在低剪切速率下,分子量分布 宽 的粘度高,在高剪切速率下,分子量分布 窄 的粘度高。 四、回答下列问题 1、就流动性而言,PC 对温度更敏感,而PE 对切变速率更敏感,为什么? 2、示意绘出聚合物熔体在宽切变速率下的流动曲线,并用缠结理论作出解释。 3、为什么涤纶采用熔融纺丝方法,而腈纶却采用湿法纺丝? 由于聚丙烯腈的熔点很高(318℃),分解温度(220℃)低于熔点,所以不能用熔融纺丝。由于聚对苯二甲酸乙二酯的熔点为260~270℃,低于分解温度(约为350℃), 可用熔融纺丝。 4、简述聚合物流体产生挤出物胀大效应的原因,以及温度、剪切速率和流道长径比对胀大的影响。 五、计算题 1、一种聚合物在加工中劣化,其重均分子量从1×106下降到 8×105。文加工前后熔融粘度之比是多少? 2、聚甲基丙烯酸甲酯试样,已知240o C 时粘度为200Pa·s ,试估算250o C 时和230o C 时的粘度。(已知聚甲基丙烯酸甲酯的粘流活化能为184kJ/mol ,T g 为100o C )

聚合物共混改性

1.高分子的来源是来自天然高分子、半天然高分子、以及合成高分子。而其中天然高分子是自然界存在的高分子 2.共混方法:物理方法:机械混合溶液混合胶乳混合粉末混合 化学方法:接枝共聚(组分间有化学反应)嵌段共聚(组分间有化学应) 互穿网络(组分间没有化学反应)渐变处理(组分间没有化学反应) 3.高分子材料共混技术进展 相容剂技术(见离聚体进展报告) 互穿聚合物网络技术(见第五章内容) 动态硫化技术(见第三章) 反应挤出成型技术 形态结构研究 增韧机理研究 4.反应挤出成型技术特点: 可连续且小批量的生产; 投资少; 不使用溶剂,节省能源和减少公害; 对制品和原料有较大选择余地; 可方便地进行混炼、聚合等操作,简化脱挥发物、造粒和成型加工等过程,并可使其一体化; 在控制化学结构的同时还可控制微相等物理结构,以制备具有良好性能的新物质。 5.弹性体增韧理论 a 多重银纹理论 Mertz等人首次提出了聚合物的增韧理论。该理论认为,作增韧体的部分橡胶粒子会横跨在材料变形所产生的很多微细的裂缝上,阻止其迅速发展,而橡胶在变形过程中消耗了能量,从而提高了材料的韧性。此理论的主要弱点是注意了橡胶而忽视了母体。后来Newman等人计算了拉伸断裂过程中橡胶断裂所耗散的能量仅占总能量的10%,这说明该理论并未真正揭示橡胶增韧的本质原因。 Bucknall等人发展了Mertz等人的微缝理论,提出了多重银纹理论。该理论认为,在橡胶增韧塑料体系中,橡胶相颗粒起了应力集中的作用。当材料受到冲击时,它能引发大量的银纹,但由于大量银纹之间的应力场的相互干扰并且如果生产着的银纹前峰处的应力集中低于临界值或银纹遇到另一橡胶颗粒时,则银纹就会终止,橡胶相粒子不仅能引发银纹而且能控制银纹。材料受到冲击时产生的大量银纹可吸收大量的冲击能量,从而保护了材料不受破坏 6.弹性体增韧和非弹性体增韧两种理论比较 a 增韧剂种类不同:前者是橡胶或热塑性弹性材料,模量低、易于挠曲、流动性差;后者是脆性塑料或刚性无机粒子,模量高,几乎不发生塑性形变,流动性好。 b 增韧对象不同:前者可增韧脆性或韧性材料;后者则要求基体本身有—定韧性。 c 增韧剂含量变化的效果不同:前者随加入量的增加韧性一直增加;后者有一合适的增韧范围,超过这一范围后无增韧效果。 d 复合体系性质不同:前者在提高材料韧性的同时,材料的模量、强度和热变形温度等大幅度降低;后者则在提高材料韧性的同时,提高材料的模量、强度和热变形温度,不过,前者对基体韧性提高幅度大;后者则通常不能大幅度提高韧性。

膀胱脱细胞基质预凝胶水溶液的微流变特性研究

膀胱脱细胞基质预凝胶水溶液的微流变特性研究 刘文景1?范苏娜1?张慧慧1?邵惠丽1?宋鲁杰2?黄建文2?张耀鹏1? (1.纤维材料改性国家重点实验室?东华大学材料科学与工程学院?上海一201620? 2.上海交通大学附属第六人民医院泌尿外科?上海一200233) 一一摘一要:本研究采用光学微流变仪对不同浓度膀胱脱细胞基质(BAM)预凝胶水溶液的动态成胶过程进行考察?结果表明?在BAM水凝胶成胶过程中?颗粒均方位移(MSD)曲线均出现平台区?且流动因子(FI)逐渐减小?即发生溶胶凝胶转变?随着BAM浓度的增加?MSD曲线平台区高度降低且向右移动?宏观黏度因子(MVI)和弹性因子(EI)逐渐增大?网格尺寸(ξ)减小?即凝胶粘弹性增强?本研究为组织工程应用中原位注射BAM水凝胶提供了流变学参考? 关键词:膀胱脱细胞基质一水凝胶一微流变性能一溶胶-凝胶转变 中图分类号:TQ322.4一一一一一文献标识码:A一一一一一文章编号:1006334X(2019)01001105 基金项目:国家重点研发计划?2018YFC1105802?国家自然科学基金?21674018?81600524? 作者简介:刘文景(1994-)?安徽南陵人?硕士研究生?研究方向为生物质材料的加工和制备? ?通讯作者:张耀鹏?zyp@dhu.edu.cn? 一一BAM水凝胶作为一种源于膀胱组织的细胞外基质(ECM)水凝胶?具有良好的组织工程应用潜力?有望用于不规则形状缺陷组织的修复?BAM水凝胶的流变学性能对其组织工程中的可注射应用有较大影响?因此对于其流变学性能的研究很有必要?目前?研究水凝胶流变性能最常用的方法是旋转流变学[12]?但测量过程存在较多局限?微流变学是一种在微米尺度下研究悬浮液二料浆以及凝胶等软物质粘弹性质的流变学方法[35]? 基于动态激光光散射技术[6]?通过追踪体系中示踪粒子的布朗运动来表征样品粘弹性的变化?与传统的旋转流变测试相比?微流变测试能有效避免外部其他条件的干扰?可原位测定水凝胶的成胶过程和粘弹性能?本文采用光学微流变仪对BAM水凝胶的成胶过程进行全面评价?研究浓度对BAM水凝胶粘弹性能二内部网格尺寸的影响?为组织工程应用过程中原位注射BAM水凝胶的应用提供流变学参考? 1一试一验 1.1一原料及试剂 新鲜猪膀胱?自购?聚乙二醇辛基苯基醚(Triton X100)?美国Sigma公司?氨水?分析纯?国药集团化 学试剂有限公司?胃蛋白酶?美国Sigma公司?盐酸?分析纯?平湖化工?氢氧化钠?分析纯?上海凌峰?磷酸缓冲生理盐水试剂?杭州吉诺?磷酸缓冲生理盐水溶液?规格10?PBS?上海翊圣?去离子水?实验室 自制? 1.2一仪器设备光学微流变仪:RheolaserMaster型?法国For ̄mulaction公司?电子分析天平:HANGPINGFA2104型?上海精 密仪器公司? 恒温摇床:HS200B型?上海和呈仪器公司?冷冻干燥机器:FD1A50型?北京博医康公司?冷冻研磨机:FREEZER/MILL6770型?美国SPEXSamplePrep公司? 离心管:50mL?合肥新恩源公司? 1.3一猪膀胱脱细胞处理 将猪膀胱粘膜进行脱细胞处理[7]?简要步骤如下:首先将新鲜猪膀胱组织清洗后剔除肌层和浆膜层?剩余粘膜层和粘膜下层?继续置于去离子水中震荡48h?再将其置于体积分数0.5%的聚乙二醇辛基苯基醚(TritonX100)和0.1%氨水组成的脱细胞液中处理2周?每2~3天更换新脱细胞液?完成后在去离子水中继续清洗24h?得到脱细胞BAM片层?最后将清洗后的BAM置于体积分数75%乙醇中备用? 1.4一BAM预凝胶溶液的制备 经去离子水洗净的BAM片经冷冻干燥二冷冻研 第34卷第1期2019年3月合成技术及应用 SYNTHETICTECHNOLOGYANDAPPLICATION Vol.34一No.1Mar.2019

聚合物共混改性(小字)

1.试述聚合物共混改性的目的:获得预期性能的共混物。 2.试述共混改性的方法:1.熔融共混;2.溶液共混; 3.乳液共混; 4.釜内共混。 1、共混物形态的三种基本类型(1)均相体系 (2)两相体系①海—岛结构 ②海—海结构 答:其一是均相体系;其二被称为“海-岛结构”,这是一种两相体系,且一相为连续相,一相为分散相,分散相分散在连续相中,就好像海岛分散在大海中一样;其三被称为“海-海结构”,也是两相体系,但两相皆为连续相,相互贯穿。 2.均相体系的判定:如果一种共混物具有类似于均相材料所具有的性能,该共混物就可以认为是具有均相结构的共混物.在大多数情况下,可以用玻璃化转变温度(Tg)作为判定的标准.如果两种聚合物共混后, 形成的共混物具有单一的Tg,则就可以认为该共混物为均相体系. 3、简述分布混合与分散混合的概念 分布混合:又称分配混合,是混合体系在应变作用下置换流动单元位置而实现的. 分散混合:既增加分散相空间分布的随机性,又减小分散相粒径,改变分散相粒径分布过程. 4 P17— 18 , 一个分散相大粒子(大液滴)分裂成两个较小较小的粒子再进一步分裂。展示的分散过程是逐步进行的重复破裂过程。 (大液滴)先变为细流线,细流线再在瞬间破裂成细小的粒。其展示的分散过程是在瞬间完成的。 5、影响共混过程的5答:a. 调控共混温度,改变剪 ,使We 值增大,进而使形变增大; ,使We 值增大,易于变形.液滴的变形到达,使We 值增大,进而使液滴(分散相)的形变增大; σ下降,使We 值增大,进而使液滴的形变增大; 的影响; ⑥熔体弹性; ⑦液滴破碎的判据:τ(19λ+16)/16(λ+1) > σ/R ,式中τ为剪切应力. ⑧流动场形式的影响 (2)双小球模型: ①剪切应力、分散相内力:增大剪切应力或降低分散相内力有利于分散相颗粒的破碎分散; ②粒径大的分散相颗粒易破碎分散,发生分散相粒径的自动均化过程; ③在分散相的破碎分散过程中,分散相颗粒会发生伸长变形和转动.当伸长变形的分散相颗粒转动到剪切应力平行的方向时,就难以进一步破碎了。 7、采用哪些方法,可以对聚合物熔体黏度进行调控 P35—37 答:①调节共混温度; ②调节剪切应力; ③用助剂进行调节; ④改变相对分子质量. 8、简述总体均匀性与分散度概念 总体均匀性:分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。 分散度:分散相颗粒的破碎程度;用分散相平均粒径表征。 9、简述影响分散相粒径的因素 P54 答:熔体黏度与组分配比是影响分散相粒径的重要因素;共混过程中共混体系所受到的外力作用(通常是剪切应力),对分散相粒径也有重要影响;两相之间界面张力对分散相物料的分散过程产生影响,进而影响分散相粒径。 10、简述聚合物表面张力的影响因素 (1)温度 表面张力的本质是分子间相互作用。由于分子间力随温度升高而下降,且与温度呈线性关系。聚合物的表面张力也随温度升高而下降,且与温度呈线性关系。 (2)聚合物物态 结晶性聚合物发生结晶或熔融时,密度发生变化。根据Macled 方程,密度变化会引起表面张力变化,密度增大,表面张力也增大;因而,结晶性聚合物发生相变时,表面张力会发生相应的变化。结晶体的密度高于熔体的密度,相应的,结晶体的表面张力高于熔体的表面张力。这种变化,会使表面张力与温度的线性关系受到影响。 (3)相对分子质量 ;分子量大,表面张力也大。 (4)内聚能密度及溶解度参数 内聚能密度 2i ii C δ=;表面张力和内聚能密度都与分子间相互作用有关,两者彼此有关联; 溶解度参数 14.043 .0m V K δφσ =;表面张力随溶解度参数的增大而增大。 11、简述共混体系界面张力、界面层厚度与相容性的关系 答:溶解度参数接近的体系,或者B 参数较小的体系,相容性相应的较好,界面张力较低,界面层厚度也较厚。 12、共混体系的相容剂有哪些类型? 两类,非反应性共聚物,反应性共聚物。 13、试述影响共混体系熔融流变性能的因素 答:因素主要有:剪切速率、温度、粘弹性、共混物组分含量、第三组分(调节剂)。 答:(1)玻璃纤维的直径的影响:用于PA 增强的玻璃纤维直径在10—20μm 左右; (2)玻纤长度的影响;(3)玻璃纤维表面处理的影响;(4)玻纤含量的影响 16、表面处理作用机理 答:(1)提高碳纤维的表面能(实质是提高碳纤维表面的含氧量),减少纤维与基体、树脂表面能之差值,以达到改善基体与纤维间的浸润性,实现纤维与基体间的有关粘结; (2)通过一定处理后,可在碳纤维表面形成大量可与基体形成化学键及氢键或范德华力结合的活性基团,可明显提高CFRP 层间剪切强度; (3)改善碳纤维表面物理状态,及增加表面粗糙或在纤维表面生成凹凸结构,以通过机械契合或者说“锚固效应”达到好的界面性能 17、如何提高极性尼龙和非极性聚烯烃弹体的相容性?给出至少3种表征PA/POE 共混物相容性的方法。 答:(1)添加相容剂,作用机理是富集在两相界面处,改善两相之间的界面结合。 (2)固体物性表征:热分析法(DSC)、膨胀计法、动态力学分析法(DM)。热力学表征:熔点降低法,吸附探针法和反气相色谱法等. 18、试述聚合物表面改性的必要性及其意义。 答:表面改性技术是采用化学的、物理的方法改变材料或工件表面的化学成分或组织结构以提高机器零件或材料性能的一类热处理技术。它包括化学热处理(渗氮、渗碳、渗金属等);表面涂层(低压等离子喷涂、低压电弧喷涂、激光重熔复合等门薄膜镀层(物理气相沉积、化学气相沉积等)和非金属涂层技术等。这些用以强化零件或材料表面的技术,赋予零件耐高 温、防腐蚀、耐磨损、抗疲劳、防辐射、导电、导磁等各种新的特性。使原来在高速、高温、高压、重载、腐蚀介质环境下工作的零件,提高了可靠性、延长了使用寿命,具有很大的经济意义和推广价值。 1.试述聚合物共混改性的目的:获得预期性能的共混物。 2.试述共混改性的方法:1.熔融共混;2.溶液共混; 3.乳液共混; 4.釜内共混。 1、共混物形态的三种基本类型(1)均相体系 (2)两相体系①海—岛结构 ②海—海结构 答:其一是均相体系;其二被称为“海-岛结构”,这是一种两相体系,且一相为连续相,一相为分散相,分散相分散在连续相中,就好像海岛分散在大海中一样;其三被称为“海-海结构”,也是两相体系,但两相皆为连续相,相互贯穿。 2.均相体系的判定:如果一种共混物具有类似于均相材料所具有的性能,该共混物就可以认为是具有均相结构的共混物.在大多数情况下,可以用玻璃化转变温度(Tg)作为判定的标准 .如果两种聚合物共混后,形成的共混物具有单一的Tg,则就可以认为该共混物为均相体系。 3、简述分布混合与分散混合的概念 分布混合:又称分配混合,是混合体系在应变作用下置换流动单元位置而实现的. 分散混合:既增加分散相空间分布的随机性,又减小分散相粒径,改变分散相粒径分布过程. 4 P17—18 ,一个分散相大粒子(大液滴)分裂成两个较小较小的粒子再进一步分裂。展示的分散过程是逐步进行的重复破裂过程。 (大液滴)先变为细流线,细流线再在瞬间破裂成细小的粒。其展示的分散过程是在瞬间完成的。 5、影响共混过程的5 答:a. 调控共混温度,改变剪,使We 值增大,进而使形变增大; ,使We 值增大,易于变形.液滴的变形到达,使We 值增大,进而使液滴(分散相)的形变增大; σ下降,使We 值增大,进而使液滴的形变增大; 的影响; ⑥熔体弹性; ⑦液滴破碎的判据:τ(19λ+16)/16(λ+1) > σ/R ,式中τ为剪切应力. ⑧流动场形式的影响 (2)双小球模型: ①剪切应力、分散相内力:增大剪切应力或降低分散相内力有利于分散相颗粒的破碎分散; ②粒径大的分散相颗粒易破碎分散,发生分散相粒径的自动均化过程; ③在分散相的破碎分散过程中,分散相颗粒会发生伸长变形和转动.当伸长变形的分散相颗粒转动到剪切应力平行的方向时,就难以进一步破碎了。 7、采用哪些方法,可以对聚合物熔体黏度进行调控 P35—37 答:①调节共混温度; ②调节剪切应力; ③用助剂进行调节; ④改变相对分子质量. 8、简述总体均匀性与分散度概念 总体均匀性:分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。 分散度:分散相颗粒的破碎程度;用分散相平均粒径表征。 9、简述影响分散相粒径的因素 P54 答:熔体黏度与组分配比是影响分散相粒径的重要因素;共混过程中共混体系所受到的外力作用(通常是剪切应力),对分散相粒径也有重要影响;两相之间界面张力对分散相物料的分散过程产生影响,进而影响分散相粒径。 10、简述聚合物表面张力的影响因素 (1)温度 表面张力的本质是分子间相互作用。由于分子间力随温度升高而下降,且与温度呈线性关系。聚合物的表面张力也随温度升高而下降,且与温度呈线性关系。 (2)聚合物物态 结晶性聚合物发生结晶或熔融时,密度发生变化。根据Macled 方程,密度变化会引起表面张力变化,密度增大,表面张力也增大;因而,结晶性聚合物发生相变时,表面张力会发生相应的变化。结晶体的密度高于熔体的密度,相应的,结晶体的表面张力高于熔体的表面张力。这种变化,会使表面张力与温度的线性关系受到影响。 (3)相对分子质量 ;分子量大,表面张力也大。 (4)内聚能密度及溶解度参数 内聚能密度 2i ii C δ=;表面张力和内聚能密度都与分子间相互作用有关,两者彼此有关联; 溶解度参数 14.043.0m V K δφσ=;表面张力随溶解度参数的增大而增大。 11、简述共混体系界面张力、界面层厚度与相容性的关系 答:溶解度参数接近的体系,或者B 参数较小的体系,相容性相应的较好,界面张力较低,界面层厚度也较厚。 12、共混体系的相容剂有哪些类型? 两类,非反应性共聚物,反应性共聚物。 13、试述影响共混体系熔融流变性能的因素 答:因素主要有:剪切速率、温度、粘弹性、共混物组分含量、第三组分(调节剂)。 答:(1)玻璃纤维的直径的影响:用于PA 增强的玻璃纤维直径在10—20μm 左右; (2)玻纤长度的影响;(3)玻璃纤维表面处理的影响;(4)玻纤含量的影响 16、表面处理作用机理 答:(1)提高碳纤维的表面能(实质是提高碳纤维表面的含氧量),减少纤维与基体、树脂表面能之差值,以达到改善基体与纤维间的浸润性,实现纤维与基体间的有关粘结; (2)通过一定处理后,可在碳纤维表面形成大量可与基体形成化学键及氢键或范德华力结合的活性基团,可明显提高CFRP 层间剪切强度; (3)改善碳纤维表面物理状态,及增加表面粗糙或在纤维表面生成凹凸结构,以通过机械契合或者说“锚固效应”达到好的界面性能 17、如何提高极性尼龙和非极性聚烯烃弹体的相容性?给出至少3种表征PA/POE 共混物相容性的方法。 答:(1)添加相容剂,作用机理是富集在两相界面处,改善两相之间的界面结合。 (2)固体物性表征:热分析法(DSC)、膨胀计法、动态力学分析法(DM)。热力学表征:熔点降低法,吸附探针法和反气相色谱法等. 18、试述聚合物表面改性的必要性及其意义。 答:表面改性技术是采用化学的、物理的方法改变材料或工件表面的化学成分或组织结构以提高机器零件或材料性能的一类热处理技术。它包括化学热处理(渗氮、渗碳、渗金属等);表面涂层(低压等离子喷涂、低压电弧喷涂、激光重熔复合等门薄膜镀层(物理气相沉积、化学气相沉积等)和非金属涂层技术等。这些用以强化零件或材料表面的技术,赋予零件耐高温、防腐蚀、耐磨损、抗疲劳、防辐射、导电、导磁等各种新的特性。使原来在高速、高温、高压、重载、腐蚀介质环境下工作的零件,提高了可靠性、延长了使用寿命,具有很大的经济意义和推广价值。

聚合物共混改性原理及应用

聚合物共混改性原理及应用 ``````` 201015014057 一.名词解释(每题5分,共20分) 1.聚合物共混 答:共混改性包括物理共混、化学共混和物理/化学共混三大类型。其中,物理共混就是通常意义上的“混合”。如果把聚合物共混的涵义限定在物理共混的范畴之内,则聚合物共混是指两种或两种以上聚合物经混合制成宏观均匀物质的过程。 2.分布混合和分散混合 答:分布混合,又称分配混合。是混合体系在应变作用下置换流动单元位置而实现的。分散混合是指既增加分散相空间分布的随机性,又减少分散相粒径,改变分散相粒径分布的工程。 分布混合和分散混合在实际的共混工程中是共生共存的,分布混合和分散混合的驱动力都是外界施加的作用力。 3.总体均匀性和分散度 答:总体均匀性是指分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。分散度则是指分散相颗粒的破碎程度。对于总体均匀性,则采用数理统计的方法进行定量表征。分散度则以分散相平均粒径来表征。

4.分散相的平衡粒径 答:在分散混合中,由于分散相大粒子更容易破碎,所以共混过程是分散相粒径自动均化的过程,这一自动均化的过程的结果,是使分散相例子达到一个最终的粒径。即“平衡粒径”。 二.选择题(每题1.5分,共15分) 1.热力学相容条件是混合过程的吉布斯自由能(A) A.小于零 B大于零 C等于零 D不确定 2.共混物形态的三种基本类型不包括(D) 3.A.均相体系 4.B海-岛结构 5.C海--海结构 6. D共混体系 3.影响熔融共混过程的因素不包括(B) A聚合物两相体系的熔体黏度 B聚合物两相体系的表面张力 C聚合物两相体系的界面张力 D流动场的形式和强度 4.共混物形态研究的主要内容不包括(D)

第二章复习题

第二章聚合物共混改性复习题 一.名词解释 聚合物共混熔融共混相容性(热力学相容性miscibility,机械相容性compatibility)UCST LCST 亚稳定态相容剂均一性分散度共混物的相界面单相连续结构(“海-岛结构”)等粘点“软包硬”银纹剪切带剪切屈服浊点动态硫化ABS HIPS 二.简答题 1)简述聚合物共混物的几种基本相图(6种)。 2)以UCST为例,简述聚合物共混体系从均相结构到非均相结构转变过程中 的相分离过程和机理。 3)如何判断和检测聚合物共混物的相容性?试举3种以上方法。 4)请根据聚合物共混体系的相容性情况说明聚合物共混物界面的形成过 程。 5)不用实验方法而根据聚合物的物理性质,如何判断聚合物共混后的界面 好坏? 6)如何提高聚合物共混体系的界面相容性? 7)简述增容剂(相容剂)对聚合物共混物的作用,请从微观角度进行说明。 8)增容剂主要有哪些类型?对完全不相容体系如何增容? 9)简述聚合物共混改性的选择原则。(共5条) 10)不考虑结晶因素,聚合物共混物主要有哪些形态结构? 11)如何定量表征聚合物的分散状况? 12)简述影响聚合物共混物形态与结构的因素? 13)如何调控聚合物共混物的等粘点? 14)简述“两阶共混分散历程”制备聚合物共混物的方法。 15)简述聚合物共混物均相体系的性能与各组分之间的关系。 16)聚合物共混物在形变过程中银纹如何引发,如何终止? 17)根据“银纹-剪切带理论”简述橡胶相的增韧作用。 18)简述橡胶增韧塑料体系中控制橡胶尺寸的重要性。 19)简述“wu氏增韧理论”中的“临界粒子间距Lc”的概念。 20)简述弹性体与非弹性体增韧的区别。 21)举例说明PVC的弹性体增韧体系和ROF增韧体系。 22)举例说明PP、PS的共混增韧改性体系。 23)举例说明PA的共混增韧改性体系。 24)分别举例说明PE/PA,PP/PS,PC/PE,PET/PE等共混体系的增容剂。

第9章聚合物的流变性

第9章聚合物的流变性 流变学是研究材料流动和变形规律的一门科学。聚合物液体流动时,以粘性形变为主,兼有弹性形变,故称之为粘弹体,它的流变行为强烈地依赖于聚合物本身的结构、分子量及其分布、温度、压力、时间、作用力的性质和大小等外界条件的影响。 牛顿流体与非牛顿流体 9.1.1非牛顿流体 描述液体层流行为最简单的定律是牛顿流动定律。凡流动行为符合牛顿流动定律的流体,称为牛顿流体。牛顿流体的粘度仅与流体分子的结构和温度有关,与切应力和切变速率无关。 式中:——剪切应力,单位:牛顿/米2(N/㎡); ——剪切速率,单位:s-1; ——剪切粘度,单位:牛顿?秒/米2(N?s/㎡),即帕斯卡?秒(Pa?s)。 非牛顿流体:不符合牛顿定律的液体,即η是或时间t的函数。包括: 1、假塑性流体(切力变稀体) η随的↗而↙例:大多数聚合物熔体 2、膨胀性流体(切力变稠体) η随的↗而↗例:泥浆、悬浮体系、聚合物胶乳等。 3、宾汉流体。τ<τy,不流动;τ>τy,发生流动。

按η与时间的关系,非牛顿流体还可分为: (1)触变体:维持恒定应变速率所需的应力随时间延长而减小。 (2)流凝体:维持恒定应变速率所需的应力随时间延长而增加。 牛顿流体,假塑性流体与膨胀性流体的应力-应变速率关系可用幂律方程来描述: 式中:K为稠度系数 n:流动指数或非牛顿指数 n=1时,牛顿流体 k=η; n>1 时,假塑性流体; n<1 时,膨胀性流体。 定义表观粘度 聚合物的粘性流动 9.2.1聚合物流动曲线 聚合物的流动曲线可分为三个主要区域: 图9-1 聚合物流动曲线 1、第一牛顿区 低切变速率,曲线的斜率n=1,符合牛顿流动定律。

聚合物改性考试试题题

一、名称解释 20分 聚合物共混改性: 答:是以聚合物(聚合物或者共聚物)为改性剂,加入到被改性的聚合物材料(合成树脂,又叫基体树脂)中,采用合适的加工成型工艺,使两者充分混合,从而制得具有新颖结构特征和新颖性能的改性聚合物材料的改性技术。 相逆转: 答:聚合物共混物可在一定的组成范围内发生相的逆转,原来是分散相的组分变成连续相,而原来是连续相的组分变成分散相。在相逆转的组成范围内,常可形成两相交错、互锁的共连续形态结构,使共混物的力学性能提高。 热塑性塑料: 答:热塑性塑料是指加热后软化、可塑,冷却后硬化,再次加热可熔融软化,固化成型,具有反复可加工成型的特点。 增容作用: 答:使聚合物之间易于相互分散,能够得到宏观均匀的共混体系。改善聚合物之间相界面的性能,增加两相间的粘合力,使P-P共混物具有长期稳定的性能。 二、聚合物共混物的形态结构及特点 10分 答:单相连续结构:构成聚合物共混物的两个相或者多个相中只有一个相连续,其他的相分散于连续相中。单相连续结构又因分散相相畴的形状、大小以及与连续相结合情况的不同而表现为多种形式。 两相互锁或交错结构:这种结构中没有一相形成贯穿整个试样的连续相,而且两相相互交错形成层状排列,难以区分连续相和分散相。有时也称为两相共连续结构,包括层状结构和互锁结构。 相互贯穿的两相连续结构:共混物中两种组分均构成连续相,互穿网络聚合物(IPNs)是两相连续结构的典型例子。 三、聚合物共混物相容性分哪两类?各自的定义是什么?画出聚合物共混物的UCST、LCST相图。15分 答:分为热力学相容性和工艺相容性两类。 热力学相容性是指相互混合的组分以任意比混合,都能形成均相体系,这种相容性叫热力学相容性。 工艺相容性是指对于一些热力学相容性不太好的共混高聚物,经适当加工工艺,形成结构和性能稳定的共混高聚物,则称之为工艺相容性。 相图略 四、界面层的结构组成和独立相区的区别 10分 答:①界面层内两种分子链的分布是不均匀的,从相区内到界面形成一浓度梯度; ②界面层内分子链比各自相区内排列松散,因而密度稍低于两相聚合物的平均密度; ③界面层内往往易聚集更多的表面活性剂及其他添加剂等杂质,分子量较低的聚合物分子也易向界面层迁移。这种表面活性剂等低分子量物越多,界面层越稳定,但对界面粘结强度不利。 五、以PC/PP共混体系为例,举例说明哪些手段可以用来加强体系的相容性?10分 答:1. 通过共聚改变某聚合物的极性; 2. 通过化学改性的方法,在一组分或两组分上引入极性基团或反应基团; 3. 在某聚合物上引入特殊作用基团;加入第三组分进行增容; 4. 两相之间产生部分交联,形成物理或化学缠结; 5. 形成互穿网络结构(IPN); 6. 改变加工工艺,施加强烈的力剪切作用。 六、一般采有PP熔融接枝MAH单体,并挤出制备TPU/PP共混物,请阐明PP接枝MAH对共混物的形态结构及性能有何影响。为什么?10分 答:采用PP-g-MAH作为增容剂,熔融法制备TPU/PP共混物。发现,马来酸酐接枝聚丙烯是聚氨酯与聚丙烯共混体系有效的增容剂,有效地改善

聚合物共混改性原理知识点

聚合物共混改性原理知识点 By Jimluoyu 亚稳态是指聚合物共混在达到平衡状态之前,因动力学的原因或局部能量低处于暂时稳定的状态。 聚合物共混物(Polymer Blend)是将两种或两种以上的聚合物按适当的比例,通过共混,以得到单一聚合物无法达到的性能的材料。 聚合物共混物的研究呈现出在共混过程中对材料的相态进行控制的趋势,因为决定新材料性能的关键因素是共混物中的形态结构。 聚合物共混物的形态控制主要由热力学和动力学两方面的因素决定。 高分子—高分子共混原则: (1) 极性相匹配原则。与选择溶剂的情形类同,两相高分子材料极性相似,有助于混溶。 (2) 表面张力相近原则,这是一条胶体化学原则。因为表面张力相近,易在两种混合高分子颗粒表面接触处形成较稳定的界面层,从而提高共混稳定性。 (3) 扩散能力相近原则,这是一条分子动力学原则。已知在界面层上两相高分子链段相互渗透,扩散。若扩散能力相近,易形成浓度变化较为对称的界面扩散层,提高材料物理、力学性能。 (4) 等粘度原则,这是一条流变学原则。指两相高分子熔体或溶液粘度接近,易混合均匀混合。若粘度相差较大、易发生“软包硬”,或粒子迁移等流动分级现象,影响共混质量。 (5) 溶解度参数相近原则。这是一条热力学原则。两相高分子共混不同于高分子溶液。两相共混的目的是取长补短,升发新性能,因此并不要求两相一定达到分子级的均匀混合,而希望各相保持各自的特性,一般要求达到微米级的多相结构即可,即所谓“宏观均相,微观非均相”的分相而又不分离的状态。但是,为了混合的稳定性,为了提高力学性能,要求两相颗粒界面之间有一定的微小混溶层。溶解度参数相近有助于稳定混溶层的形成。 聚合物共混物相容性概念 所谓聚合物之间的相容性(Miscibility),从热力学角度而言,是指在任何比例混合时,都能形成分子分散的、热力学稳定的均相体系,即在平衡态下聚合物大分子达到分子水平或链段水平的均匀分散。 机械相容性(Compatibility),是指能得到具有良好物理、机械性能的共混材料时聚合物共混物之间的相容性。这时,共混时聚合物各组分间存在一定的相界面亲合力、且分散较为均匀,分散相粒子尺寸不太大。 对于非晶态高分子共混物可用溶解度参数较准确地预测其相容性,而含有结晶高分子时就有偏差。 影响聚合物共混物相容性的因素: 1、溶度参数,高分子间溶度参数越相近,其相容性越好。 2、共聚物组成,共聚物组成不同导致不同的分子间和分子内作用力,从而影响共混物的相容性。 3、极性,高分子的极性愈相近,其相容性愈好极性越大,分子间作用力越大。 4、表面张力,共混组分的表面张力愈接近,两相间的浸润、接触和扩散愈好,界面结合愈好。

相关文档
最新文档