2013年植物生理学考研复习专用讲义

2013年植物生理学考研复习专用讲义
2013年植物生理学考研复习专用讲义

植物生理学考研参考

韦三立

第一章植物细胞的结构与功能

内容概况

了解高等植物细胞的特点与主要结构;了解植物细胞原生质的主要特性;熟悉植物细胞壁的组成、结构和功能以及胞间丝的结构和功能;了解生物膜的化学组成、结构和主要功能;了解植物细胞主要的细胞器如细胞核、叶绿体和线粒体、细胞骨架、内质网、高尔基体、中央液泡、微体、圆球体、核糖体等的结构和功能;熟悉植物细胞周期、细胞的阶段性和全能性,了解植物细胞的基因组、基因表达的特点。

名词解释

生物膜(biomembrane) 构成细胞的所有膜的总称。它由脂类和蛋白质等组成,具有特定的结构和生理功能。按其所处的位置可分为质膜和内膜。

内膜系统(endomembrane system) 是那些处在细胞质中,在结构上连续、功能上相关,由膜组成的细胞器的总称。主要指核膜、内质网、高尔基体以及高尔基体小泡和中央液泡等。

细胞骨架(cytoskeleton) 指真核细胞中的蛋白质纤维网架体系,包括微管、微丝和中间纤维等,它们都由蛋白质组成,没有膜的结构,互相联结成立体的网络,也称为细胞内的微梁系统(microtrabecular system)。

细胞器(cell organelle) 细胞质中具有一定形态结构和特定生理功能的细微结构。依被膜的多少可把细胞器分为:①双层膜细胞器,如细胞核、线粒体、质体等;②单层膜细胞器,如内质网、中央液泡、高尔基体、蛋白体等;③无膜细胞器,如核糖体、微管、微丝等。

质体(plastid) 植物细胞所特有的细胞器,具有双层被膜,由前质体分化发育而成,包括淀粉体、叶绿体和杂色体等。

原核细胞(prokaryotic cell) 无典型细胞核的细胞,其核质外面无核膜,细胞质中缺少复杂的内膜系统和细胞器。由原核细胞构成的生物称原核生物(prokaryote)。细菌、蓝藻等低等生物属原核生物。

真核细胞(eukaryotic cell) 具有真正细胞核的细胞,其核质被两层核膜包裹,细胞内有结构与功能不同的细胞器,多种细胞器之间有内膜系统联络。由真核细胞构成的生物称为真核生物(eukayote)。高等动物与植物属真核生物。

原生质体(protoplast) 除细胞壁以外的细胞部分。包括细胞核、细胞器、细胞质基质以及其外围的细胞质膜。

细胞壁(cell wall) 细胞外围的一层壁,是植物细胞所特有的,具有一定弹性和硬度,界定细胞的形状和大小。典型的细胞壁由胞间层、初生壁以及次生壁组成。

细胞程序化死亡(programmed cell death) 缩写为PCD,受细胞自身基因调控的衰老死亡过程。它有利于生物自身的发育,或有利于抵抗不良环境。

细胞周期(cell cycle) 从一次细胞分裂结束形成子细胞到下一次分裂结束形成新的子细胞所经历的时期。可以分为G1期、S期、G2期、M期四个时期。

周期时间(time of cycle) 完成一个细胞周期所需的时间。

问答题

1. 原生质的胶体状态与其生理代谢有什么联系?

答:原生质胶体有溶胶与凝胶两种状态,当原生质处于溶胶状态时,粘性较小,细胞代谢活跃,分裂与生长旺盛,但抗逆性较弱。当原生质呈凝胶状态时,细胞生理活性降低,但对低温、干旱等不良环境的抵抗能力提高,有利于植物度过逆境。当植物进入休眠时,原生质胶体从溶胶状态转变为凝胶状态。

2.细胞区域化对其生命活动有何重要意义?

答:细胞内部的区域化是指由生物膜把细胞内的空间分隔,形成各种细胞器,这样不仅使各区域内具有的pH、电位、离子强度、酶系和反应物不同,而且能使细胞的代谢活动“按室进行”,各自执行不同的功能。同时由于内膜系统的存在又将多种细胞器联系起来,使得各细胞器之间能协调地进行物质、能量交换与信息传递,有序地进行各种生命活动。

第二章植物的水分生理

内容概况

了解水的物理化学性质和水分在植物生命活动中的作用;了解水的化学势、水势的基本概念、植物生理学中引入水势的意义;了解植物细胞的水势的组成、溶质势、衬质势、压力势等的概念及其在植物细胞水势组成中的作用,了解并初步学会植物组织水势的测定方法;了解植物根系对水分吸收的部位、途径、吸水的机理以及影响根系吸水的土壤条件;了解植物的蒸腾作用的生理意义和气孔蒸腾是蒸腾的主要方式、蒸腾作用的指标、测定方法以及适当降低蒸腾速率的途径;了解植物体内水分从地下向地上部分运输的途径和速度、水分沿导管上升的机制;作物的需水规律、合理灌溉指标及灌溉方法以及发展节水农业促进水资源持续利用的重要性。

名词解释

水通道蛋白(water channel protein) 亦称水孔蛋白。存在在生物膜上的具有通透水分功能的内在蛋白。

吸胀作用(imbibition)亲水胶体物质吸水膨胀的现象称为吸胀作用。胶体物质吸引水分子的力量称为吸胀力。蛋白质类物质吸胀力最大,淀粉次之,纤维素较小。

内聚力学说(cohesion theory) 该学说由狄克逊(H.H.Dixon,)和伦尼尔(O.Renner,)在20世纪初提出,是以水分的内聚力(相同分子间相互吸引的力量)来解释水分在木质部中上升的学说。内聚力学说的基本论点是:①水分子之间有强大的内聚力,当水分被局限于具有可湿性内壁的细管(如导管或管胞)中时,水柱可经受很大的张力而不致断裂;②植物体内的水分是在被水饱和的细胞壁和木质部运输的,水分子从叶的蒸发表面到根的吸水表面形成一个连续的体系;③叶肉细胞蒸腾失水后细胞壁水势下降,使木质部的水分向蒸发表面移动,木质部的水分压力势下降而产生张力;④蒸发表面水势的降低,经连续的导水体系传递到根,使土壤水分通过根部循茎上升,最后到达叶的蒸腾表面。内聚力学说也称蒸

腾流-内聚力-张力学说。

水分临界期(critical period of water) 植物在生命周期中,对缺水最敏感、最易受害的时期。一般而言,植物的水分临界期多处于花粉母细胞四分体形成期,这个时期一旦缺水,就使性器官发育不正常。作物的水分临界期可作为合理灌溉的一种依据。

土壤-植物-大气连续体(soil-plant-atmosphere continuum) 缩写为SPAC,土壤的水分由根吸收,经过植物,然后蒸发到大气,这样水分在土壤、植物和大气间的运动就构成一个连续体。一般情况下,土壤的水势>根水势≥茎水势≥叶水势>大气水势,因此,土壤-植物-大气连续体就成为土壤中水分经植物体散失到大气的途径。

问答题

1.以下论点是否正确,为什么?

(1) 一个细胞的溶质势与所处外界溶液的溶质势相等,则细胞体积不变。

答:该论点不完全正确。因为一个成熟细胞的水势由溶质势和压力势两部分组成,只有在初始质壁分离ψp=0时,上述论点才能成立。通常一个细胞的溶质势与所处外界溶液的溶质势相等时,由于压力势(常为正值)的存在,使细胞水势高于外界溶液的水势(也即它的溶质势),因而细胞失水,体积变小。

(2) 若细胞的ψp=-ψs,将其放入某一溶液中时,则体积不变。

答:该论点不正确。因为当细胞的ψp=-ψs时,该细胞的ψw = 0。把这样的细胞放入任溶液中,细胞都会失水,体积变小。

(3) 若细胞的ψw=ψs,将其放入纯水中,则体积不变。

答:该论点不正确。因为当细胞的ψw =ψs时,该细胞的ψp = 0,而ψs 为负值,即其ψw < 0,把这样的细胞放入纯水中,细胞吸水,体积变大。

2.气孔开闭机理如何?植物气孔蒸腾是如何受光、温度、CO2浓度调节的?

答:关于气孔开闭机理主要有两种学说:

(1)无机离子泵学说又称K+泵假说。光下K+ 由表皮细胞和副卫细胞进入保卫细胞,保卫细胞中K+浓度显著增加,溶质势降低,引起水分进入保卫细胞,气孔就张开;暗中,K+由保卫细胞进入副卫细胞和表皮细胞,使保卫细胞水势升高而失水,造成气孔关闭。这是因为保卫细胞质膜上存在着H+_ATP酶,它被光激活后,能水解保卫细胞中由氧化磷酸化或光合磷酸化生成的ATP,产生的能量将H+从保卫细胞分泌到周围细胞中,使得保卫细胞的pH升高,质膜内侧的电势变低,周围细胞的pH降低,质膜外侧电势升高,膜内外的质子动力势驱动K+ 从周围细胞经过位于保卫细胞质膜上的内向K+通道进入保卫细胞,引发开孔。

(2)苹果酸代谢学说在光下,保卫细胞内的部分CO2被利用时,pH上升至8.0~8.5,从而活化了PEP羧化酶,PEP羧化酶可催化由淀粉降解产生的PEP与HCO3-结合形成草酰乙酸,并进一步被NADPH还原为苹果酸。苹果酸解离为2H+和苹果酸根,在H+/K+泵的驱使下,H+与K+交换,保卫细胞内K+浓度增加,水势降低;苹果酸根进入中央液泡和Cl-共同与K+在电学上保持平衡。同时,苹果酸的存在还可降低水势,促使保卫细胞吸水,气孔张开。当叶片由光下转入暗处时,该过程逆转。

气孔蒸腾显著受光、温度和CO2等因素的调节。

(1) 光:光是气孔运动的主要调节因素。光促进气孔开启的效应有两种,一

种是通过光合作用发生的间接效应;另一种是通过光受体感受光信号而发生的直接效应。光对蒸腾作用的影响首先是引起气孔的开放,减少内部阻力,从而增强蒸腾作用。其次,光可以提高大气与叶子温度,增加叶内外蒸气压差,加快蒸腾速率。

(2) 温度:气孔运动是与酶促反应有关的生理过程,因而温度对蒸腾速率影响很大。当大气温度升高时,叶温比气温高出2~10℃,因而,气孔下腔蒸气压的增加大于空气蒸气压的增加,这样叶内外蒸气压差加大,蒸腾加强。当气温过高时,叶片过度失水,气孔就会关闭,从而使蒸腾减弱。

(3) CO2:CO2对气孔运动影响很大,低浓度CO2促进气孔张开,高浓度CO2能使气孔迅速关闭(无论光下或暗中都是如此)。在高浓度CO2下,气孔关闭可能的原因是:

①高浓度CO2会使质膜透性增加,导致K+泄漏,消除质膜内外的溶质势梯度,

②CO2使细胞内酸化,影响跨膜质子浓度差的建立。因此CO2浓度高时,会抑制气孔蒸腾。

第三章植物的矿质与氮素营养

内容概况

了解高等植物矿质营养的概念、研究历史、植物必需元素的名称及其在植物体内的生理作用、植物缺乏必需元素所出现的特有症状;理解营养离子跨膜运输的机理、植物根系吸收养分的过程、特点以及根外营养的意义;了解NO3-、NH4+ 在植物体内的同化过程、同化部位,以及营养物质在体内的运输方式;了解影响植物吸收矿质养分的环境因素、作物生产与矿质营养的密切关系并理解合理施肥的生理基础,能够提出合理施肥的措施。

名词解释

必需元素(essential element)植物生长发育中必不可少的元素。国际植物营养学会规定的植物必需元素的三条标准是:①由于缺乏该元素,植物生长发育受阻,不能完成其生活史;②除去该元素,表现为专一的病症,这种缺素病症可用加入该元素的方法预防或恢复正常;③该元素在植物营养生理上表现直接的效果,不是由于土壤的物理、化学、微生物条件的改善而产生的间接效果离子泵(ionic pump) 是存在于植物细胞中的一种人为设定的“泵”,实际是在细胞上所存在的一种能够在某种条件下被激活的酶,它在不发生作用时处于钝化状态,一旦被激活便消耗能量,主动泵出相应的离子,因此被称为离子泵。例如,位于膜上的H+-ATPase。

有益元素(beneficial element)并非植物生命活动必需,但能促进某些植物的生长发育的元素。如Na、Si、Co、Se、V等。

水培法(water culture method)亦称溶液培养法或无土栽培法,是在含有全部或部分营养元素的溶液中培养植物的方法。

诱导酶(induced enzyme)指植物体内本来不含有,但在特定外来物质的诱导下可以生成的酶。如硝酸还原酶。水稻幼苗若培养在含硝酸盐的溶液中就会诱导幼苗产生硝酸还原酶,如用不含硝酸盐的溶液培养,则无此酶出现。

硝酸还原酶(nitrate reductase) 缩写为NR,催化硝酸盐还原为亚硝酸盐的酶。它是一种可溶性的钼黄素蛋白,由黄素腺嘌呤二核苷酸,细胞色素b557和钼复合体组成。硝酸还原酶是一种诱导酶。

问答题

1.下列化合物中含有哪些必需的矿质元素。

叶绿素碳酸酐酶细胞色素硝酸还原酶多酚氧化酶

ATP 辅酶A 蛋氨酸 NAD NADP

答:叶绿素中含N、Mg;碳酸酐酶中含N、Zn;细胞色素中含N、Fe;硝酸还原酶中含N、Mo;多酚氧化酶中含N、Cu;ATP中含N、P;辅酶A中含N、P、S;蛋氨酸中含N、S;NAD中含N、P;NADP中含N、P。

2.植物缺素病症有的出现在顶端幼嫩枝叶上,有的出现在下部老叶上,为什么?举例加以说明。

答:植物体内的矿质元素,根据它在植株内能否移动和再利用可分为二类。一类是非重复利用元素,如钙、硫、铁、铜等;一类是可重复利用的元素,如氮、磷、钾、镁等。在植株旺盛生长时,如果缺少非重复利用元素,缺素病症就首先出现在顶端幼嫩叶上,例如,大白菜缺钙时心叶呈褐色。如果缺少重复利用元素,缺素病症就会出现在下部老叶上,例如,缺氮时叶片由下而上褪绿发黄。

3.试述矿质元素如何从膜外转运到膜内的。

答:物质通过生物膜有三种方式,一是被动运转,是顺浓度梯度的运转,包括简单扩散与协助扩散;二是主动运转,是逆浓度梯度的运转;三是膜动运转,包括内吞和外排。

矿质元素从膜外转运到膜内主要通过前二种方式:被动吸收和主动吸收。前者不需要代谢提供能量,后者需要代谢提供能量。二者都可通过载体运转,由载体进行的转运若是顺电化学势梯度,则属于被动吸收过程,若是逆电化学势梯度,则属于主动吸收。

(1) 被动吸收被动吸收有扩散作用和协助扩散两种方式。

①扩散作用指分子或离子沿着化学势或电化学势梯度转移的现象。

②协助扩散是小分子物质经膜转运蛋白顺浓度梯度或电化学势梯度的跨膜

转运。膜转运蛋白有通道蛋白和载体蛋白两类,它们都是细胞膜中一类内在蛋白。通道蛋白构成了离子通道。载体蛋白通过构象变化转运物质。

(2) 主动吸收矿质元素的主动吸收需要ATP提供能量,而ATP的能量释放依赖于ATP酶。ATP酶是质膜上的插入蛋白,它既可以在水解ATP释放能量的同时直接转运离子,也可以水解ATP时释放H+建立△μH+后启动载体(传递体)转运离子。通常将质膜ATP酶把细胞质内的H+向膜外泵出的过程称为原初主动运转。而把以△μH+为驱动力的离子运转称为次级共运转。进行次级共运转的传递体有共向传递体、反向传递体和单向传递体等,它们都是具有运转功能的蛋白质。矿质元素可在△μH+的驱动下通过传递体以及离子通道从膜外转运到膜内。

4.用实验证明植物根系吸收矿质元素存在着主动吸收和被动吸收。

答:将植物的根系放入含有矿质元素的溶液中,首先有一个矿质迅速进入根的阶段,称为第一阶段,然后矿质吸收速度变慢且较平稳,称为第二阶段。在第一阶段,矿质通过扩散作用进入质外体,而在第二阶段矿质又进入原生质和中央液泡。如果将植物根系从溶液中取出转入水中,进入组织的矿质会有很少一部分很快地泄漏出来,这就是原来进入质外体的部分。如果将植物的根系处于无O2、

低温中,或用抑制剂来抑制根系呼吸作用时,会发现:矿质进入质外体的第一阶段基本不受影响,而矿质进入原生质和中央液泡的第二阶段会被抑制。这一实验表明,矿质进入质外体与其跨膜进入细胞质和中央液泡的机制是不同的。前者是由于扩散作用而进行的吸收,这是不需要代谢来提供能量的顺电化学势梯度被动吸收矿质的过程;后者是利用呼吸释放的能量逆电化学势梯度主动吸收矿质的过程。

5.试述矿质元素在光合作用中的生理作用。

答:矿质营养在光合作用中的功能极为广泛,归纳起来有以下方面:

(1) 叶绿体结构的组成成分如N、P、S、Mg是叶绿体结构中构成叶绿素、蛋白质以及片层膜不可缺少的元素。

(2) 电子传递体的重要成分如PC中含Cu、Fe-S中心、Cytb、Cytf和Fd 中都含有Fe,因而缺Fe会影响光合电子传递速率。

(3) 磷酸基团在光、暗反应中具有突出地位如构成同化力的ATP和NADPH,光合碳还原循环中所有的中间产物,合成淀粉的前体ADPG,合成蔗糖的前体UDPG 等,这些化合物中都含有磷酸基团。

(4) 光合作用所必需的辅酶或调节因子如Rubisco,FBPase的活化需要Mg2+;放氧复合体不可缺少Mn2+和Cl-;而K+和Ca2+调节气孔开闭;另外,Fe3+影响叶绿素的合成;K+促进光合产物的转化与运输等。

6.试分析植物失绿的可能原因。

答:植物呈现绿色是因其细胞内含有叶绿体,而叶绿体中含有绿色的叶绿素的缘故。因而凡是影响叶绿素代谢的因素都会引起植物失绿。可能的原因有:

(1) 光光是影响叶绿素形成的主要条件。从原叶绿素酸酯转变为叶绿酸酯需要光,而光过强,叶绿素反而会受光氧化而破坏。

(2) 温度叶绿素的生物合成是一系列酶促反应,受温度影响。叶绿素形成的最低温度约为2℃,最适温度约为30℃,最高温度约为40℃。高温和低温都会使叶片失绿。在高温下叶绿素分解加速,褪色更快。

(3) 营养元素氮和镁都是叶绿素的组成成分,铁、锰、铜、锌等则在叶绿素的生物合成过程中有催化功能或其它间接作用。因此,缺少这些元素时都会引起缺绿症,其中尤以氮的影响最大,因此叶色的深浅可作为衡量植株体内氮素水平高低的标志。

(4) 氧缺氧能引起Mg-原卟啉Ⅸ或Mg-原卟啉甲酯的积累,影响叶绿素的合成。

(5) 水缺水不但影响叶绿素的生物合成,而且还促使原有叶绿素加速分解。

此外,叶绿素的形成还受遗传因素控制,如水稻、玉米的白化苗以及花卉中的花叶不能合成叶绿素。有些病毒也能引起花叶病。

第四章植物的光合作用

内容概况

了解光合作用的概念、意义、研究历史、光合作用总反应式;了解叶绿体的结构、光合色素的种类;了解光合作用过程以及能量吸收转变的情况;了解光合

碳同化的基本生化途径以及不同碳同化类型植物的特性;理解光呼吸的含义、基本生化途径和可能的生理意义;了解光合作用的测定方法;了解影响光合作用的内部和外部因素;理解光合作用与作物产量的关系;掌握提高光能利用率的途径与措施。

名词解释

量子效率(quantum efficiency) 又称量子产额(quantum yield),是指光合作用中吸收一个光量子所能引起的光合产物量的变化,如放出的氧分子数或固定的CO2的分子数。

光合单位(photosynthetic unit) 最初是指释放1个O2分子所需要的叶绿素数目,测定值为2500chl/O2。若以吸收1个光量子计算,光合单位为300个叶绿素分子;若以传递1个电子计算,光合单位为600个叶绿素分子。而现在把存在于类囊体膜上能进行完整光反应的最小结构单位称为光合单位。它应是包括两个反应中心的约600个叶绿素分子(300×2)以及连结这两个反应中心的光合电子传递链。它能独立地捕集光能,导致氧的释放和NADP的还原。

光合磷酸化(photosynthetic phosphorylation) 光合作用中与电子传递过程相偶联的,即由ADP与Pi形成ATP的过程,称为光合磷酸化。在此过程中形成的ATP所需之能量来自光照。光合磷酸化通常被分为两种类型,一种为循环光合磷酸化,另一种为非循环光合磷酸化。

光合膜(photosynthetic membrane) 即类囊体膜,这是因为光合作用的光反应是在叶绿体中的类囊体膜上进行的。

光系统Ⅰ(photosystem Ⅰ)缩写为PSⅠ,高等植物的PSⅠ由反应中心、LHCⅠ、铁硫蛋白、Fd、FNR等组成。PSⅠ的生理功能是吸收光能,进行光化学反应,产生强的还原剂,用于还原NADP+,实现PC到NADP+的电子传递。

光系统Ⅱ(photosystem Ⅱ)缩写为PSⅡ,是含有多亚基的蛋白复合体,它由聚光色素复合体Ⅱ、中心天线、反应中心、放氧复合体、细胞色素和多种辅助因子组成。PSⅡ的生理功能是吸收光能,进行光化学反应,产生强的氧化剂,使水裂解释放氧气,并把水中的电子传至质体醌。

光抑制(photoinhibition) 当光合机构接受的光能超过它所能利用的量时,光会引起光合效率的降低,这个现象就叫光合作用的光抑制。

红降现象(red drop) 光合作用的量子产额在波长大于680nm时急剧下降的现象。

荧光(fluorescence)激发态的叶绿素分子回到基态时,可以光子形式释放能量。处在第一单线态的叶绿素分子回至基态时所发出的光称为荧光。

磷光(phosphorescence) 激发态的叶绿素分子回到基态时,处在三线态的叶绿素分子回至基态时所发出的光称为磷光。

反应中心(reaction center) 发生原初反应的最小单位,它是由反应中心色素分子、原初电子受体、次级电子受体与次级电子供体等电子传递体,以及维持这些电子传递体的微环境所必需的蛋白质等组分组成的。

磷酸烯醇式丙酮酸(phosphoenolpruvate) 缩写为PEP,C4途径中CO2的受体。

磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase) 缩写为PEPC,主要存在C4植物叶肉细胞的细胞质中,催化PEP与HCO-3形成草酰乙酸的反应。

水氧化钟(water oxidizing clock) 亦称Kok钟。是解释H2O在光合作用中氧化机制的模型。在20世纪60年代,法国学者Pieree Joliot发现,对预先保持

在黑暗状态中的叶绿体给予一系列的闪光照明,第一次闪光后没有O2释放,第二次有少量O2释放,第三次则有大量的O2释放,在第四次闪光后就出现一次高峰。尔后Kok 等人据此提出了水的氧化机制模型。

问答题

1.如何证实光合作用中释放的O2来自水?

答:以下三方面的研究可证实光合作用中释放的O2来自水。

(1) 尼尔(C.B.V an Niel)假说尼尔将细菌光合作用与绿色植物的光合作用

加以比较,提出了以下光合作用的通式:

CO2+2H2A ————→(CH2O)+2A+H2O

光养生物

这里的H2A代表一种还原剂,可以是H2S、有机酸等,对绿色植物而言,H2A就是H2O,2A就是O2。

(2) 希尔反应希尔(Robert.Hill)发现在叶绿体悬浮液中加入适当的电子受

体(如草酸铁),照光时可使水分解而释放氧气:

4Fe3++2H2O——————→4Fe2++4H++O2

破碎的叶绿体

这个反应称为希尔反应。此反应证明了氧的释放与CO2还原是两个不同的过程,O2的释放来自于水。

(3) 18O的标记研究用氧的稳定同位素18O标记H2O或CO2进行光合作用的实验,发现当标记物为H218O时,释放的是18O2,而标记物为C18O2时,在短期内释放的则是O2。这清楚地指出光合作用中释放的O2来自于H2O。

CO2+2H218O——————→(CH2O)+18O2+H2O

光合细胞

2.如何证明光合电子传递由两个光系统参与?

答:以下几方面的事例可证明光合电子传递由两个光系统参与。

⑴红降现象和双光增益效应红降现象是指用大于680nm的远红光照射时,光合作用量子效率急剧下降的现象;而双光效应是指在用远红光照射时补加一点稍短波长的光(例如650nm的光),量子效率大增的现象,这两种现象暗示着光合机构中存在着两个光系统,一个能吸收长波长的远红光,而另一个只能吸收稍短波长的光。

⑵光合放氧的量子需要量大于8从理论上讲一个量子引起一个分子激发,放出一个电子,那么释放一个O2,传递4个电子只需吸收4个量子(2H2O→4H++4e+O2↑)而实际测得光合放氧的最低量子需要量为8~12。这也证实了光合作用中电子传递要经过两个光系统,有两次光化学反应。

⑶类囊体膜上存在PSⅠ和PSⅡ色素蛋白复合体现在已经用电镜观察到类囊体膜上存在PSⅠ和PSⅡ颗粒,能从叶绿体中分离出PSⅠ和PSⅡ色素蛋白复合体,在体外进行光化学反应与电子传递,并证实PSⅠ与NADP+的还原有关,而PSⅡ与水的光解放氧有关。

3. 光对CO2同化有哪些调节作用?

答:(1) 光通过光反应对CO2同化提供同化力。

(2) 调节着光合酶的活性C3循环中的Rubisco、PGAK、GAPDH、FBPase,SBPase,Ru5PK都是光调节酶。光下这些酶活性提高,暗中活性降低或丧失。光对酶活性的调节大体可分为两种情况,一种是通过改变微环境调节,即光驱动的电子传递使H+向类囊体腔转移,Mg2+则从类囊体腔转移至基质,引起叶绿体基质的pH从7上升到8,Mg2+浓度增加。较高的pH与Mg2+浓度使Rubisco等光合酶活化。另一种是通过产生效应物调节,即通过Fd-Td(铁氧还蛋白-硫氧还蛋白)系统调节。FBPase、GAPDH、Ru5PK等酶中含有二硫键(-S-S-),当被还原为2个巯基(-SH)时表现活性。光驱动的电子传递能使基质中Fd还原,进而使Td还原,被还原的Td又使FBPase和Ru5PK等酶的相邻半胱氨酸上的二硫键打开变成2个巯基,酶被活化。在暗中则相反,巯基氧化形成二硫键,酶失活。

4.为什么C4植物的光呼吸速率低?

答:(1) 维管束鞘细胞中有高的CO2浓度C4植物的光呼吸代谢是发生在BSC中,由于C4途径的脱羧使BSC中CO2浓度提高,这就促进了Rubisco的羧化反应,抑制了Rubisco 的加氧反应。

(2) PEPC对CO2的亲和力高由于C4植物叶肉细胞中的PEPC对CO2的亲和力高,即使BSC中有光呼吸的CO2释放,CO2在未释放出叶片前也会被叶肉细胞中的PEPC再固定。

第五章植物的呼吸作用

内容概况

了解呼吸作用的概念及其生理意义;了解线粒体的结构和功能;熟悉糖酵解、三羧酸循环和戊糖磷酸循环等呼吸代谢的生化途径;熟悉呼吸链的概念、组成、电子传递多条途径和末端氧化系统的多样性;了解氧化磷酸化、呼吸作用中的能量代谢和呼吸代谢的调控;了解呼吸作用的生理指标及其影响因素;掌握测定呼吸速率的基本方法;了解种子、果实、块根、块茎等器官的呼吸特点和这些器官贮藏保鲜的关系,了解呼吸作用和光合作用的关系

名词解释

末端氧化酶(terminal oxidase) 处于生物氧化一系列反应的最末端的氧化酶。除了线粒体内膜上的细胞色素氧化酶和抗氰氧化酶之外,还有存在于细胞质中的酚氧化酶、抗坏血酸氧化酶、乙醇酸氧化酶等。

巴斯德效应(Pasteur effect) 法国的科学家巴斯德(L.Pasture)最早发现从有氧条件转入无氧条件时酵母菌的发酵作用增强,反之,从无氧转入有氧时酵母菌的发酵作用受到抑制,这种氧气抑制酒精发酵的现象叫做巴斯德效应。

呼吸商(respiratory quotient,RQ) 又称呼吸系数,植物组织在一定时间内,放出二氧化碳的量与吸收氧气的量的比值叫做呼吸商。

生长呼吸(growth respiration) 用来合成细胞组成成分以及进行细胞分裂、分化和生长的那部分呼吸。种子萌发到苗期,生长呼吸占总呼吸比例较高,随着营养体的生长,比例逐渐下降,而维持呼吸所占的比例增加。

呼吸跃变(respiratory climacteric) 果实成熟过程中,呼吸速率突然增高,然后又迅速下降的现象。呼吸跃变的产生与外界温度和果实内乙烯的释放密切相

关。呼吸跃变是果实进入完熟的一种特征,在果实贮藏和运输中,重要的问题是降低温度,抑制果实乙烯的产生,推迟呼吸跃变的发生,降低其发生的强度,延迟果实的完熟。

磷氧比(P/O ratio)缩写为P/O,氧化磷酸化的活力指标,指每吸收一个氧原子所能酯化的无机磷的数目,即有几个无机磷与ADP形成了ATP。呼吸链中两个质子和两个电子从NADH+H+开始传至氧生成水,一般可形成3分子的ATP,其P/O比为3。

三羧酸循环(tricarboxylic acid cycle) 缩写为TCAC,在有氧条件下丙酮酸在线粒体基质中彻底氧化分解的途径。三羧酸循环又称柠檬酸循环(citric acid cycle)或Krebs 循环(Krebs cycle)。它是需氧生物利用糖或其它物质获得能量的最有效方式,是糖、脂、蛋白质等物质转化的枢纽。

细胞色素(cytochrome)缩写为Cyt,一类含有铁卟啉的复合蛋白,有典型的吸收光谱,在辅基中的铁能通过价态的变化可逆地传递电子,是生物氧化中重要的电子传递体。

问答题

1.试述呼吸作用的生理意义。植物呼吸代谢的多条路线有何生物学意义?

答:呼吸作用对植物生命活动具有十分重要的意义,主要表现在以下三个方面:

(1) 为植物生命活动提供能量除绿色细胞可直接从光合作用获取能量外,其它生命活动所需的能量都依赖于呼吸作用。呼吸过程中有机物质氧化分解,释放的能量一部分以ATP形式暂贮存起来,以随时满足各种生理活动对能量的需要;另一部分能量则转变为热能散失,以维持植物体温,促进代谢,保证种子萌发、幼苗生长、开花传粉、受精等生理过程的正常进行。

(2) 中间产物为合成作用提供原料呼吸过程中有机物的分解能形成许多

中间产物,其中的一部分用作合成多种重要有机物质的原料。呼吸作用在植物体内的碳、氮和脂肪等物质代谢活动中起着枢纽作用。

(3) 在植物抗病免疫方面有着重要作用植物受伤或受到病菌侵染时,呼吸作用的一些中间产物可转化为能杀菌的植保素,以消除入侵病菌分泌物中的毒性。旺盛的呼吸还可加速细胞木质化或栓质化,促进伤口愈合。

植物的呼吸代谢有多条途径,如表现在呼吸底物的多样性、呼吸生化历程的多样性、呼吸链电子传递系统的多样性、末端氧化酶的多样性等。不同的植物、器官、组织、不同的条件或生育期,植物体内物质的氧化分解可通过不同的途径进行。呼吸代谢的多样性是在长期进化过程中,植物形成的对多变环境的一种适应性,具有重要的生物学意义,使植物在不良的环境中,仍能进行呼吸作用,维持生命活动。例如,氰化物能抑制生物正常呼吸代谢,使大多数生物死亡,而某些植物具有抗氰呼吸途径,能在含有氰化物的环境中生存。

2.为什么长时间的无氧呼吸会使陆生植物受伤,甚至死亡?

答:(1) 无氧呼吸释放的能量少,要依靠无氧呼吸释放的能量来维持生命活动的需要就要消耗大量的有机物,以至呼吸基质很快耗尽。

⑵无氧呼吸生成氧化不彻底的产物,如酒精、乳酸等。这些物质的积累,对植物会产生毒害作用。

⑶无氧呼吸产生的中间产物少,不能为合成多种细胞组成成分提供足够的原料。

第六章同化物的运输、分配及信号的传导

内容概况

了解植物体内有机物质的两种运输系统,即短距离运输系统和长距离运输系统;了解韧皮部运输的机理、韧皮部同化物运输的方式、运输的物质种类、运输的方向和速度;了解韧皮部装载和卸出途径;了解光合细胞和库细胞中同化物的相互转化关系;了解植物体内代谢源和代谢库之间的关系;了解同化物的分配规律和影响因素;了解植物体内的信号传导的途径。

名词解释

源(source) 即代谢源,是产生或提供同化物的器官或组织,如功能叶、萌发种子的子叶或胚乳。

库(sink) 即代谢库,是指消耗或积累同化物的器官或组织,如根、茎、果实、种子等。

比集转运速率(specific mass transfer rate)缩写为SMTR,单位时间单位韧皮部或筛管横切面积上所运转的干物质的数量。

韧皮部装载(phloem loading) 同化物从合成部位通过共质体或质外体胞间运输,进入筛管的过程。

韧皮部卸出(phloem unloading) 同化物从筛管分子-伴胞复合体进入库细胞的过程。

源库单位(source-sink unit) 在同化物供求上有对应关系的源与库合称为源-库单位。

源强(source strength)是指源器官同化物形成和输出的能力;

库强(sink strength) 是指库器官接纳和转化同化物的能力。

信号转导(signal transduction)细胞内外的信号,通过细胞的转导系统转换,引起细胞生理反应的过程。

化学信号(chemical signals) 细胞感受刺激后合成并传递到作用部位引起生理反应的化学物质。

物理信号(physical signal) 细胞感受到刺激后产生的能够起传递信息作用的电信号和水力学信号等物理性因子。

G蛋白(G protein) 全称为GTP结合调节蛋白(GTP binding regulatory protein),此类蛋白由于其生理活性有赖于与三磷酸鸟苷(GTP)的结合以及具有GTP水解酶的活性而得名。在受体接受胞间信号分子到产生胞内信号分子之间往往要进行信号转换,通常认为是通过G蛋白偶联起来,故G蛋白又称为偶联蛋白或信号转换蛋白。

第二信使(second messenger) 能被胞外刺激信号激活或抑制的、具有生理调节活性的细胞内因子。第二信使亦称细胞信号传导过程中的次级信号。

筛管分子-伴胞复合体(sieve element-companion cell)缩写为SE-CC,筛管通常与伴胞配对,组成筛管分子-伴胞复合体。源库端的SE-CC是同化物装载和卸出的埸所,茎和叶柄等处中的筛管是同化物长距离运输的通道。

蔗糖载体(sucrose carrier) 缩写为SC,存在于质膜或液胞膜上的内在蛋白,

在质子电动势的驱动下运输蔗糖。

问答题

1.如何证明高等植物的同化物长距离运输是通过韧皮部途径的?

答:可用以下实验证明同化物的运输途径是由韧皮部担任的:

(1) 环割试验剥去树干(枝)上的一圈树皮(内有韧皮部),这样阻断了叶片形成的光合同化物的向下运输,而导致环割上端韧皮部组织因光合同化物积累而膨大,环割下端的韧皮部组织因得不到光合同化物而死亡。

(2) 放射性同位素示踪法让叶片同化14CO2,数分钟后将叶柄切下并固定,对叶柄横切面进行放射性自显影,可看出14CO2标记的光合同化物位于韧皮部。

2.试述光合细胞中蔗糖合成途径和主要调节酶。

答:蔗糖的合成是在细胞质内进行的。光合中间产物磷酸丙糖通过叶绿体被膜上的磷酸丙糖转运器进入细胞质。在细胞质中,磷酸二羟丙酮(DHAP)在磷酸丙糖异构酶作用下转化为磷酸甘油醛(GAP),DHAP和GAP处于平衡状态,二者在醛缩酶催化下形成果糖-1,6-二磷酸(F1,6BP)。F1,6BP C1位上的磷酸被果糖-1,6-二磷酸酯酶(FBPase)水解而形成果糖-6-磷酸(F6P)。这一步反应是不可逆的,也是调节蔗糖合成的第一步反应,FBPase是这一反应的调节酶。F6P

在磷酸葡萄糖异构酶和磷酸葡萄糖变位酶作用下,形成葡萄糖-6-磷酸(G6P)和葡萄糖-1-磷酸(G1P),G1P和UDP由UDPG焦磷酸化酶(UGP)催化下合成蔗糖所需的葡萄糖供体UDPG。UDPG和F6P结合形成蔗糖-6-磷酸(S6P),催化该反应的酶是蔗糖磷酸合成酶(SPS),SPS是蔗糖合成途径中另一个重要的调节酶。蔗糖合成的最后一步反应是S6P由蔗糖磷酸酯酶水解形成蔗糖。

3.试述同化物分配的一般规律。

答:(1) 同化物分配的总规律是由源到库由某一源制造的同化物主要流向与其组成源-库单位中的库。多个代谢库同时存在时,强库多分,弱库少分,近库先分,远库后分。

(2) 优先供应生长中心各种作物在不同生育期各有其生长中心,这些生长中心通常是一些代谢旺盛、生长速率快的器官或组织,它们既是矿质元素的输入中心,也是同化物的分配中心。

(3) 就近供应一个库的同化物来源主要靠它附近的源叶来供应,随着源库间距离的加大,相互间供求程度就逐渐减弱。一般说来,上位叶光合产物较多地供应籽实、生长点;下位叶光合产物则较多地供应给根。

(4) 同侧运输同一方位的叶制造的同化物主要供给相同方位的幼叶、花序和根。

4.植物细胞信号传导可分为哪几个阶段?

答:细胞信号传导的途径,可分为四个阶段,即:

(1) 胞间信号传递化学信号或物理信号在细胞间的传递。

(2) 膜上信号转换把胞间信号转换成胞内信号的过程。

(3) 胞内信号转导将胞内信号转换为具有调节生理生化功能的调节因子

的过程。

(4) 蛋白质可逆磷酸化对靶酶进行磷酸化或去磷酸化的反应,使靶酶执行生理功能。

第七章植物生长物质

内容概况

了解植物生长物质、植物激素、植物生长调节剂、极性运输、生长素的“二重作用”及乙烯的“三重反应”、偏上生长、激素受体等基本概念;了解植物生长物质的种类、结构和性质;掌握研究植物生长物质的方法;了解植物激素在植物体内的分布与运输的基本特征;了解植物激素的发现过程和作用机理;熟知植物激素和植物生长调节剂各自的主要生理效应;了解植物激素间的相互关系;掌握植物生长物质在农业生产上的应用技术及注意事项。

名词解释

靶细胞(target cell) 将能够接受激素作用,从而直接发生原初反应,并且产生生理变化的细胞称为靶细胞。例如,禾本科植物种子的糊粉层细胞,即为赤霉素作用的靶细胞。激素与靶细胞结合后,可以触发植物体内的一系列生理生化反应,最终使植物发生形态上的变化。

第二信使(second messenger) 把细胞的受体在接受第一信使的刺激后,就将信号传递给了第二信使,从而使植物体发生相应的生理生化反应,或诱导新的mRNA的转录,生成新的蛋白质。

极性运输(polar transport) 物质只能从植物形态学的一端向另一端运输而不能倒过来运输的现象,如植物体内生长素的向基性运输。

乙烯的“三重反应”(triple response) 乙烯对植物生长具有的抑制茎的伸长生长、促进茎或根的增粗和使茎横向生长(即使茎失去负向地性生长)的三方面效应。

生长延缓剂(growth retardant) 抑制植物亚顶端分生组织生长的生长调节剂,它能抑制节间伸长而不抑制顶芽生长,其效应可被活性GA所解除。生产中广泛使用的生长延缓剂有矮壮素、烯效唑、缩节安等。

生长抑制剂(growth inhibitor) 抑制顶端分生组织生长的生长调节剂,它能干扰顶端细胞分裂,引起茎伸长的停顿和破坏顶端优势,其作用不能被赤霉素所恢复,常见的有脱落酸、青鲜素、水杨酸、整形素等。

激素受体(hormone receptor) 能与激素特异结合并引起特殊生理效应的物质,一般是属于蛋白质。

乙烯(ethylene) 缩写为ETH,是一种气体植物激素,有促进果实成熟、促进植物器官的衰老、脱落等生理作用。

茉莉酸(jasmonic acid) 缩写为JA,化学名称为3-氧-2-(2'-戊烯基)-环戊烷乙酸。有抑制植物生长、萌发、促进衰老、提高抗性等生理作用。

水杨酸(salicylic acid) 缩写为SA,即邻羟基苯甲酸。有生热、诱导开花和作为抗病的化学信号等功能。

油菜素类质类(brassinosteroids)缩写为BR,被认为是第六类植物激素,最早在油菜花粉中发现,并被提取。有促进细胞伸长和分裂,促进光合作用,提高抗逆性等生理功能。

问答题

1.简要说明生长素的作用机理。

答:关于生长素的作用机理有两种假说:“酸生长理论”和“基因活化学说”。

(1) 酸生长理论(acid growth theory)的要点是:

①原生质膜上存在着非活化的质子泵(H+-ATP酶),生长素作为泵的变构效

应剂,与泵蛋白结合后使其活化;

②活化了的质子泵消耗能量(ATP),将细胞内的H+泵到细胞壁中,导致细胞壁基质溶液的pH下降;

③在酸性条件下,H+一方面使细胞壁中对酸不稳定的键(如氢键)断裂,另一方面(也是主要的方面)使细胞壁中的某些多糖水解酶(如纤维素酶)活化或增加,从而使连接木葡聚糖与纤维素微纤丝之间的键断裂,细胞壁松弛;

④细胞壁松弛后,细胞的压力势下降,导致细胞的水势下降,细胞吸水,体积增大而发生不可逆增长。

(2) 基因活化学说认为:

①生长素与质膜上或细胞质中的受体结合;

②生长素-受体复合物诱发肌醇三磷酸(IP3)产生,IP3打开细胞器的钙通道,释放中央液泡中的Ca2+,增加细胞溶质Ca2+水平;③Ca2+进入中央液泡,置换出H+,刺激质膜ATP酶活性,使蛋白质磷酸化;④活化的蛋白质因子与生长素结合,形成蛋白质-生长素复合物,移到细胞核,合成特殊mRNA,最后在核糖体形成蛋白质(酶),合成组成细胞质和细胞壁的物质,引起细胞的生长。

3.五大类植物激素合成的前体各是什么物质?

答:生长素、赤霉素、细胞分裂素、脱落酸、乙烯合成的前体物质分别是色氨酸、甲瓦龙酸、异戊烯基焦磷酸和AMP、甲瓦龙酸、甲硫氨酸。赤霉素和脱落酸的前体都来自甲瓦龙酸,所不同的是甲瓦龙酸在长日条件下形成赤霉素,而在短日条件下形成脱落酸。

4.试述ETH的生物合成途径及其调控因素。

答:ETH的生物合成途径为:

蛋氨酸→S-腺苷蛋氨酸(SAM)→1-氨基环丙烷-1-羧酸(ACC)→乙烯(ETH)。

调控乙烯生物合成的因素有发育因素和环境因素。

(1) 发育因素

①在植物正常生长发育的某些时期,如种子萌发、果实后熟、叶的脱落和花的衰老等阶段都会诱导乙烯的产生。

②IAA可通过诱导ACC合成酶合成,以诱导乙烯产生。

(2)环境因素

①O2缺氧将阻碍乙烯的形成。

②A VG(氨基乙氧基乙烯基甘氨酸)、AOA(氨基氧乙酸)AVG和AOA

能抑制ACC的生成,从而也抑制乙烯的形成。

③无机元素在无机离子中,Co2+、Ni2+、Ag+都能抑制乙烯的生成。

④逆境各种逆境如低温、干旱、水涝、切割、碰撞、射线、虫害等。

第八章植物的生长生理

内容概况

了解生长、分化和发育的概念,以及控制细胞生长和分化的因素;了解组织培养的原理和基本过程;了解种子萌发的特点和影响种子萌发的外界条件;了解植物的生长大周期和生长周期性的表现形式;了解地上部分与地下部分、主茎与侧枝、营养生长与生殖生长等植物生长的相关性;了解影响生长的环境因素;了解光敏色素的性质及其在光形态建成中的作用;了解植物向性运动和感性运动的概念及其向重性和向光性的机理。

名词解释

生长(growth) 在生命周期中,植物的细胞、组织和器官的数目、体积或干重的不可逆增加过程称为生长。例如根、茎、叶、花、果实和种子的体积扩大或干重增加都是典型的生长现象。

分化(differentiation) 从一种同质的细胞类型转变成形态结构和功能与原来不相同的异质细胞类型的过程称为分化。它可在细胞、组织、器官的不同水平上表现出来。例如:从受精卵细胞分裂转变成胚;从生长点转变成叶原基、花原基;从形成层转变成输导组织、机械组织、保护组织等。这些转变过程都是分化现象。

发育(development) 在生命周期中,生物的组织、器官或整体,在形态结构和功能上的有序变化过程。它泛指生物的发生与发展

极性(polarity) 细胞、器官和植株内的一端与另一端在形态结构和生理生化存在差异的现象。如扦插的枝条,无论正插还是倒插,通常是形态学的下端长根,形态学的上端长枝叶。

胚状体(embryoid) 在特定条件下,由植物体细胞分化形成的类似于合子胚的结构。胚状体又称体细胞胚(somatic embryo) 或体胚。胚状体由于具有根茎两个极性结构,因此可一次性再生出完整植株。

人工种子(artificial seeds) 将植物组织培养产生的胚状体、芽体、及小鳞茎等包裹在含有养分的胶囊内,这种具有种子的功能,并可直接播种于大田的颗粒称为人工种子,又称人造种子或超级种子。

生物钟(biological clock) 生命活动中有内源性节奏的周期变化现象。亦称生理钟(physiological clock)。由于这种内源性节奏的周期接近24小时,因此又称为近似昼夜节奏(circadian rhythum)。

光形态建成(photomorphogenesis) 由光调节植物生长、分化与发育的过程称为植物的光形态建成,或称光控发育作用。

根冠比(root top ratio,R/T) 植物地下部分与地上部分干重或鲜重的比值,它能反映植物的生长状况以及环境条件对地上部与地下部生长的不同影响。

顶端优势(apical dominance) 植物的顶芽生长占优势而抑制侧芽生长的现象。

相对生长速率(relative growth rate) 缩写为RGR,在单位时间内植株或器官的增量占原有植株或器官数量的比值。RGR可作为植株生长能力的指标。

协调最适温度能使植株生长最健壮的温度。协调最适温度通常要比生长最

适温度低。

叶面积比(leaf area ratio) 缩写为LAR,是总叶面积除以植株干重的商。LAR代表了植物光合组织与呼吸组织之比。

问答题

1.细胞的分化受哪些因素控制?

答:(1) 遗传基因的表达细胞分化是具有相同基因的细胞有着不同蛋白质产物的表达结果。基因表达要经过两个过程,即转录与翻译。然而在细胞分化时的基因表达控制主要发生在转录水平上,因此,细胞分化的本质就是不同类型的细胞专一地激活了某些特定基因,再使它转录成特定的mRNA的过程。

(2) 细胞极性极性是细胞分化的前提,细胞极性的建立会引发不均等分裂,使两个子细胞的大小和内含物不等,由此引起分裂细胞的分化。

(3) 环境条件光照、温度、营养、pH、离子、电势以及地球的引力等环境条件都能影响细胞的分化。如短日照处理,可诱导菊花提前开花;低温处理,能使小麦通过春化而进入幼穗分化;对作物多施氮肥,则能使其延迟开花。

(4) 植物激素植物激素能诱导细胞的分化,如IAA有诱导维管组织分化的作用;改变培养基中生长素和细胞激动素的比例,可改变愈伤组织的向根还是向芽的分化。

2.产生顶端优势的可能原因是什么?

答:(1) 产生顶端优势的原因有多种假说用来解释,但一般都认为这与营养物质的供应和内源激素的调控有关。

①“营养”假说认为顶芽是一个“营养库”,它在胚中就形成,发育早,输导组织也较发达,能优先获得营养而生长,侧芽则由于养分缺乏而被抑制。

②“激素抑制”假说认为顶端优势是由于生长素对侧芽的抑制作用而产生的。植物顶端形成的生长素,通过极性运输,下运到侧芽,侧芽对生长素比顶芽敏感而使生长受抑制。

③营养转移假说认为:生长素既能调节生长,又能控制代谢物的定向运转,植物顶端是生长素的合成部位,高浓度的IAA使其保持为生长活动中心和物质交换中心,将营养物质调运至茎端,因而不利侧芽的生长。

④细胞分裂素假说认为细胞分裂素能促进侧芽萌发,解除顶端优势。已知生长素可影响植物体内细胞分裂素的含量与分布。顶芽中含有高浓度的生长素,其一方面可促使由根部合成的细胞分裂素更多地运向顶端;另一方面,影响侧芽中细胞分裂素的代谢或转变。

⑤原发优势假说认为器官发育的先后顺序可以决定各器官间的优势顺序,即先发育的器官的生长可以抑制后发育器官的生长。顶端合成并且向外运出的生长素可以抑制侧芽中生长素的运出,从而抑制侧芽生长。

多种假说有一点是共同的,即都认为顶端是信号源。这信号源就是由顶端产生并极性向下运输的生长素,它直接或间接地调节着其它激素、营养物质的合成、运输与分配,从而促进顶端生长而抑制侧芽的生长。

3.试述光对植物生长的影响。

答:(1) 间接作用即为光合作用。由于植物必须在较强的光照下生长一定的时间才能合成足够的光合产物供生长需要,所以说,光合作用对光能的需要是一种“高能反应”。

(2) 直接作用指光对植物形态建成的作用。由于光形态建成只需短时间、较弱的光照就能满足,因此,光形态建成对光的需要是一种“低能反应”。

光对植物生长的直接作用表现在以下几方面:

①影响种子萌发需光种子的萌发受光照的促进,而需暗种子的萌发则受光抑制。

②黄化苗的转绿植物在黑暗中生长呈黄化,表现出茎叶淡黄、茎杆细长、叶小而不伸展等状态。若给黄化植株照光就能使茎叶逐渐转绿,这主要是叶绿素和叶绿体的形成需在光下形成。

③控制植物的形态叶的厚度和大小,茎的高矮,分枝的多少、长度、根冠比等都与光照强弱和光质有关。如UV-B能使核酸分子结构破坏,多种蛋白质变性,IAA氧化,细胞的分裂与伸长受阻,从而使植株矮化、叶面积减少。

④日照时数影响植物生长与休眠绝大多数多年生植物都是长日照条件下促进生长、短日照条件诱导休眠。

⑤与植物的运动有关如向光性,即植物器官对受单方向光照射所引起的弯曲生长现象,通常茎叶有正向光性,而根有负向光性。另外,一些豆科植物叶片的昼开夜合,气孔运动等都受光的调节。

第九章植物的成花生理

内容概况

了解春化作用的概念、反应类型、植物通过春化的条件、春化作用的机理以及春化作用在农业生产上的应用。了解光周期现象的发现和光周期类型、光周期诱导的机理、光敏色素在成花诱导中的作用以及光周期理论在农业生产上的应用。了解花器官形成和性别表现,了解从营养生长到生殖生长的过渡、性别分化与表达的一般规律以及了解一些有效的调控措施。

名词解释

花熟状态(ripeness to flower state)植物经过一定的营养生长期后具有了能感受环境条件而诱导开花的生理状态被称为花熟状态。花熟状态是植物从营养生长转为生殖生长的转折点。

春化作用(vernalization)低温诱导促使植物开花的作用叫春化作用。一般冬小麦等冬性禾谷类作物和某些二年生植物以及一些多年生草本植物的开花都需要经过春化作用。

春化处理(vernalization)对萌动的种子或幼苗进行人为的低温处理,使之完成春化作用促进成花的措施称为春化处理。

解除春化(devernalization)在植物春化过程结束之前,将植物放到较高的生长温度下,低温的效果会被减弱或消除,这种现象称为去春化作用或解除春化。

再春化作用(revernalization)大多数去春化的植物返回到低温下,又可重新进行春化,而且低温的效应是可以累加的,这种解除春化后,再进行春化的现象称再春化作用。

光周期现象(photoperiodism)自然界一昼夜间的光暗交替称为光周期。昼夜的相对长度对植物生长发育的影响叫做光周期现象。植物的开花、休眠和落

叶,以及鳞茎、块茎、球茎的形成,都受日照长度调节,即都存在光周期现象。但其中研究得最多的是植物成花的光周期诱导。

日中性植物(day-neutral Plant,DNP) 成花对日照长度不敏感,只要其它条件满足,在任何长度的日照下均能开花的植物。如月季,黄瓜等。

临界日长(critical daylength)引起长日植物成花的最短日照长度或引起短日植物成花的最长日照长度。如长日植物天仙子的临界日长约为11小时,短日植物苍耳的临界日长约为15.5小时。

临界暗期(critical dark period)引起短日植物成花的最短暗期长度或长日植物成花的最长暗期长度。同临界日长相比,临界暗期对诱导成花更为重要。

光周期诱导(photoperiodic induction)植物在达到一定的生理年龄时,经过一定天数的适宜光周期处理,以后即使处于不适宜的光周期下,仍能保持这种刺激的效果而开花,这种诱导效应叫做光周期诱导。

成花决定态(floral determinated state)植物经过一定时期的营养生长后,就能感受外界信号(低温和光周期)产生成花刺激物,成花刺激物被运输到茎端分生组织,在那里发生一系列诱导反应,使分生组织进入一个相对稳定的能诱导成花的状态,这种状态被称为成花决定态。

问答题

1.设计一个简单实验来证明植物感受低温的部位为茎尖生长点。

答:低温诱导促使植物开花的作用就叫春化作用。植物感受低温的部位是茎的生长点或其它能进行细胞分裂的组织。将植物放在温暖的室内,只对某一部位进行低温处理,若能使植物开花,即能证明处理部位为低温感受部位。

例如可选用盆栽芹菜进行实验,将芹菜植物放在温暖的室内,茎尖用胶管缠绕,通入冷水,芹菜茎尖经低温处理可开花,反之,如果将芹菜植株放入低温室内,向缠绕茎尖的胶管通入温水,芹菜则不能开花。上述结果能证明植物感受低温的部位是茎尖生长点。

2.为什么说光敏色素在植物的成花诱导中起重要作用?

答:当植物处于适宜的光照条件下诱导成花,并用各种单色光在暗期进行闪光处理,几天后观察花原基的发生,结果显示:阻止短日植物和促进长日植物成花的作用光谱相似,都是以600~660nm波长的红光最有效;且红光促进开花的效应可被远红光逆转。这表明光敏色素参与了成花反应。光的信号是由光敏色素接受的。光敏色素对成花的作用与Pr和Pfr的可逆转化有关,成花作用不是决定于Pr和Pfr的绝对量,而是受Pfr/Pr比值的影响。低的Pfr/Pr比值有利短日植物成花,而相对高的Pfr/Pr比值有利长日植物成花。

3.用实验说明暗期和光期在植物的成花诱导中的作用。

答:对植物进行不同时间长度的光暗处理,可以发现:①短日植物需暗期长于一定时数才能开花,如暗期长度缩短将不能开花;②光暗的相对长度不是光周期现象中的决定因子;③用短时间的黑暗打断光期,并不影响光周期成花诱导;

④用闪光处理中断暗期,则使短日植物不能开花,继续营养生长,相反地,反而诱导了长日植物开花。这些结果说明,在植物的光周期诱导成花中,暗期的长度是植物成花的决定因素。

以上强调了暗期的重要性,并不是说光期不重要,只有在适当暗期以及昼夜交替作用下,植物才能正常开花。暗期的长度决定植物是否发生花原基,而光期长度决定了花原基的数量,如果没有光期的光合作用,那么花原基分化所需的养

料也就没有了。光期的作用不仅与光合作用有关,而且对成花诱导本身也有关系。如大豆固定在16小时暗期和不同长度光期条件下生长,结果指出:①当光期长度小于2小时时,植株不能开花;②在2~10小时的范围内,随光期长度增加开花数也增加;③当光期长度大于10小时后,开花数反而下降。实验表明,只有在适当的光暗交替条件下,植物才能正常开花。

4.简述光周期反应类型与植物原产地的关系。

答:一般起源于热带和亚热带地区的植物多属于短日植物,因为这些地区终年的日照长度都接近12小时,没有更长的日照条件;起源于寒带地区的植物多属于长日植物,因为这些地区的生长季节正好处于较长日照的时期;中纬度地区则长日短日植物共存。在同一纬度地区,长日植物多在日照较长的春末和夏季开如小麦、油菜等;而短日植物则都在日照较短的秋季开花,如晚稻、大豆、菊花等。

第十章植物的生殖和衰老

内容概况

了解花粉的构造、主要成分、花粉萌发和花粉管的生长;掌握被子植物中存在的两种自交不亲和性及其特点,了解克服不亲和的方法;了解胚和胚乳的发育,以及种子中贮藏物质的积累过程;熟悉果实的生长模式、单性结实现象和果实成熟时的变化;掌握种子和芽的休眠并了解其调控方法;熟悉植物衰老时的生理生化变化和引起衰老的原因、影响衰老的因素;掌握器官脱落的细胞学及生物化学过程,并了解影响脱落的内外因素及调控方法。

名词解释

识别反应(recognition response) 识别是细胞分辨“自己”与“异己”的一种能力,表现在细胞表面分子水平上的化学反应和信号传递。本文中的识别反应是指花粉粒与柱头间的相互作用,即花粉壁蛋白和柱头乳突细胞壁表层蛋白薄膜之间的辨认反应,其结果表现为“亲和”或“不亲和”。亲和时花粉粒能在柱头上萌发,花粉管能伸入并穿过柱头进入胚囊受精;不亲和时,花粉则不能在柱头上萌发与伸长,或不能进入胚囊发生受精作用。

集体效应(group effect) 在一定面积内,花粉数量越多,花粉萌发和花粉管的生长越好的现象。

无融合生殖(apomixis) 被子植物中由未经受精的卵或胚珠内某些细胞直接发育成胚的现象。

单性结实(parthenocarpy) 不经过受精作用,子房直接发育成果实的现象。单性结实一般都形成无籽果实,故又称“无籽结实”。

强迫休眠(epistotic dormancy) 由于不利于生长的环境条件引起的植物休眠。如秋天树木落叶后芽的休眠。

生理休眠(physiological dormancy) 在适宜的环境条件下,因为植物本身内部的原因而造成的休眠。如刚收获的小麦种子的休眠。

顽拗性种子(recalcitrant seed) 指成熟时有较高的含水量,贮藏中忌干燥和低温的种子,如茭白、菱、椰子、芒果等种子。这些种子采收后不久便可自动进入萌发状态,一旦脱水即影响其萌发,导致生活力迅速丧失。因而人们曾称

考研农学联考植物生理学真题参考复习资料

2011 年考研农学联考植物生理学真题参考答案 一、单项选择题:I?15小题,每小题1分,共15分。下列每题给出的四个选项中,只有一个选项是符合题目要求的。 1. G- 蛋白是一类具有重要生理调节功能的蛋白质,它在细胞信号转导中的作用是 A. 作为细胞质膜上的受体感受胞外信号 B. 经胞受体激活后完成信号的跨膜转换 C. 作为第二信号 D. 作为蛋白激酶磷酸化靶蛋白 【参考答案】B 【考查知识点】植物细胞信号转导一GTP结合调节蛋白作用 2. 植物细胞进行无氧呼吸时 A. 总是有能量释放,但不一定有C02释放 B. 总是有能量和C02释放 C. 总是有能量释放,但不形成ATP D. 产生酒精或乳酸,但无能量释放 【参考答案】A 【考查知识点】植物呼吸代谢及能量转换—无氧呼吸特点 3. 以下关于植物细胞离子通道的描述,错误的是 A. 离子通道是由跨膜蛋白质构成的

B. 离子通道是由外在蛋白质构成的 C. 离子通道的运输具有一定的选择性 D. 离子通道的运输只能顺电化学势梯度进行 【参考答案】B 【考查知识点】植物细胞跨膜离子运输一离子通道的特点 4. C3植物中,RuBp竣化酶催化的C02固定反应发生的部位是 A. 叶肉细胞基质 B. 叶肉细胞叶绿体 C. 维管束鞘细胞机制 D. 维管束鞘细胞叶绿体 【参考答案】B 【考查知识点】光合作用一RuBP竣化酶催化部位 5. 细胞壁果胶质水解的产物主要是 A. 半乳糖醛酸 B.葡萄糖 C.核糖 D.果糖 【参考答案】A 【考查知识点】细胞壁一细胞壁的果胶质水解产物 6. 叶片衰老过程中最先解体的细胞器是 A. 高尔基体 B.内质网 C.叶绿体 D.线粒体

植物生理学复习题

第一章水分生理 一、选择题 1、每消耗1 kg 的水所生产的干物质克数,称为()。 A. 蒸腾强度 B. 蒸腾比率 C. 蒸腾系数 D. 相对蒸腾量 2、风干种子的水势为()。 A . ψW =ψs B. ψW =ψm C. ψW =ψp D. ψW=ψs+ψp 3、微风促进蒸腾,主要因为它能()。 A. 使气孔大开 B. 降低空气湿度 C. 吹散叶面水汽 D. 降低叶温 4、植物从叶尖、叶缘分泌液滴的现象称为()。 A. 吐水 B. 伤流 C. 排水 D. 流水 5、一植物细胞的ψw = - 0.37 MPa,ψp = 0.13 MPa,将其放入ψs = - 0.42 MPa的溶液(体积很大)中,平 衡时该细胞的水势为()。 A. -0.5 MPa B. -0.24 MPa C. -0.42 MPa D. -0.33 MPa 6、在同一枝条上,上部叶片的水势要比下部叶片的水势()。 A. 高 B. 低 C. 差不多 D. 无一定变化规律 7、植物细胞吸水后,体积增大,这时其Ψ s()。 A. 增大 B. 减小 C. 不变 D. 等于零 8、微风促进蒸腾,主要因为它能()。 A. 使气孔大开 B. 降低空气湿度 C. 吹散叶面水汽 D. 降低叶温 9、一植物细胞的ψW = - 0.3 MPa,ψp = 0.1 MPa,将该细胞放入ψs = - 0.6 MPa的溶液中,达到平衡时 细胞的()。 A. ψp变大 B. ψp不变 C. ψp变小 D. ψW = -0.45 Mpa 10、植物的水分临界期是指()。 A. 植物需水最多的时期 B. 植物水分利用率最高的时期 C. 植物对水分缺乏最敏感的时期 D . 植物对水分需求由低到高的转折时期 11、在土壤水分充分的条件下,一般植物的叶片的水势为()。 A. - 0.2~ - 0.8 MPa B. - 2 ~ - 8 MPa C. - 0.02 ~ - 0.08 MPa D. 0.2~0.8 MPa 12、根据()就可以判断植物组织是活的。 A. 组织能吸水 B. 表皮能撕下来 C. 能质壁分离 D. 细胞能染色 二、是非题 1、等渗溶液就是摩尔数相等的溶液。() 2、细胞间水分流动的方向取决于它们的水势差。() 3、蒸腾拉力引起被动吸水,这种吸水与水势梯度无关。() 4、将一充分吸水饱和的细胞放入比其细胞浓度低10倍的溶液中,其体积变小。() 5、蒸腾效率高的植物,一定是蒸腾量小的植物。() 6、根系是植物吸收水和矿质元素唯一的器官。() 7、空气相对湿度增大,空气蒸汽压增大,蒸腾加强。() 8、没有半透膜即没有渗透作用。() 9、植物对水分的吸收、运输和散失过程称为蒸腾作用。() 10、在正常晴天情况下,植物叶片水势从早晨到中午再到傍晚的变化趋势为由低到高再到低。 () 11、共质体与质外体各是一个连续的系统。() 12、在细胞为水充分饱和时,细胞的渗透势为零。() 三、填空题 1、将一植物细胞放入ψW = -0.8 MPa的溶液(体积相对细胞来说很大)中,吸水达到平衡时测得细胞的 ψs = -0.95 MPa,则该细胞的ψp为(),ψW为()。 2、水分通过气孔扩散的速度与气孔的()成正比。 3、植物体内自由水/束缚水比值降低时,植物的代谢活动()。 4、利用质壁分离现象可以判断细胞(),测定植物的()以及观测物质透过原生质层的难易程度。 5、植物体内自由水/束缚水比值升高时,抗逆性()。 6、根系吸水有主动吸水和被动吸水两种方式,前者的动力是(根压),后者的动力 是()。

考研中医综合方剂学(理血剂)模拟试卷3

考研中医综合方剂学(理血剂)模拟试卷3 (总分:66.00,做题时间:90分钟) 一、 A1型题(总题数:16,分数:32.00) 1.桃核承气汤中没有的药物是 (分数:2.00) A.大黄 B.桂枝 C.枳实√ D.芒硝 解析:解析:桃核承气汤的组成是桃仁、大黄、桂枝、炙甘草、芒硝;此题注意区分承气方类:大承气汤,小承气汤,调胃承气汤。 2.桃核承气汤的君药是 (分数:2.00) A.大黄、桃仁√ B.桂枝、桃仁 C.桃仁、炙甘草 D.芒硝、大黄 解析:解析:桃核承气汤的功用:逐瘀泻热,主治:下焦蓄血证;桃仁苦甘平,活血破瘀;大黄苦寒,下瘀泻热;二者合用,瘀热并治,共为君药,如此可更好的体现了主治和功用。 3.血府逐瘀汤的主治 (分数:2.00) A.瘀阻头面证 B.胸中血瘀证√ C.瘀阻膈下证 D.瘀痹阻经络 解析:解析:血府逐瘀汤主治:胸中血瘀证;通窍活血汤主治:瘀阻头面证;膈下逐瘀汤主治:瘀血阻滞膈下证;身痛逐瘀汤主治瘀血痹阻经络证。 4.复元活血汤的组成不包含 (分数:2.00) A.柴胡 B.瓜蒌根 C.穿山甲 D.三七√ 解析:解析:复元活血汤的组成:柴胡、瓜蒌根、当归、红花、甘草、穿山甲、酒大黄、桃仁。复元活血汤的趣味方歌:柴贵人山楼打草(柴胡当归桃仁穿山甲瓜蒌根大黄甘草)。 5.温经汤的药物组成不包含 (分数:2.00) A.吴茱萸 B.当归 C.芍药 D.肉桂√ 解析:解析:温经汤的药物组成是:吴茱萸、当归、芍药、川芎、人参、桂枝、阿胶、牡丹、生姜、甘草、半夏、麦冬。 6.下列药物属于生化汤的药物组成 (分数:2.00) A.干姜 B.生姜

C.高良姜 D.炮姜√ 解析:解析:生化汤的组成:全当归、川芎、桃仁、炮姜、炙甘草。 7.生化汤的君药是 (分数:2.00) A.全当归√ B.川芎 C.桃仁 D.炮姜 解析:解析:生化汤的功用:养血祛瘀,温经止痛;主治:血虚寒凝,瘀血阻滞证;重用全当归补血活血,化瘀生新,行滞止痛,为君药。 8.补阳还五汤的功用不包含 (分数:2.00) A.补气 B.活血 C.通络 D.温阳√ 解析:解析:补阳还五汤的功用是:补气,活血,通络;主治:中风之气虚血瘀证。不能误认为补阳就具有温阳的作用。 9.补阳还五汤中君药黄芪的作用是 (分数:2.00) A.补益元气√ B.升阳举陷 C.益胃固表 D.利尿生肌 解析:解析:补阳还五汤的功用是:补气,活血,通络;主治:中风之气虚血瘀证;重用生黄芪,补益元气,意在气旺则血行,瘀去络通,为君药。 10.槐花散的药物组成不包含 (分数:2.00) A.槐花 B.柏叶 C.荆芥穗 D.枳实√ 解析:解析:槐花散的药物组成:槐花、柏叶、荆芥穗、枳壳。注意不同证型中用枳实、枳壳的意义。11.复元活血汤中柴胡的功用是 (分数:2.00) A.解表退热 B.升举阳气 C.疏肝引经√ D.消瘀散结 解析:解析:复元活血汤的主治:跌打损伤,瘀血阻滞证。胁肋瘀肿,痛不可忍,病变部位胁下;柴胡疏肝行气,并可引诸药入肝经。与荡涤凝瘀败血,导瘀下行,推陈致新的酒制大黄两药合用,一升一降,以攻散胁下(病位)之瘀滞,共为君药。体现主治,病位在胁下,用的柴胡,胁肋瘀肿,痛不可忍,用柴胡配酒,均值得深思和学习。 12.生化汤中全当归的功用不包括 (分数:2.00) A.补血活血 B.化瘀生新 C.行滞止痛

园林植物生理学复习资料2017.

一:名词解释 自由水:与细胞组分之间吸附力较弱,可以自由移动的水。 压力:植物细胞中由于静水质的存在而引起的水势增加的值。 束缚水:与细胞组分紧密结合不能自由移动、不易蒸发散失的水。 蒸腾拉力:由于蒸腾作用产生的一系列水势梯度使导管中水分上升的力量。 .蒸腾作用:水分通过植物体表面(主要是叶片)以气体状态从体内散失到体外的现象。蒸腾效率:植物在一定生育期内所积累干物质量与蒸腾失水量之比,常用g?kg-l表示。蒸腾系数:植物每制造1g干物质所消耗水分的g数,它是蒸腾效率的倒数,又称需水量。抗蒸腾剂:能降低蒸腾作用的物质,它们具有保持植物体中水分平衡,维持植株正常代谢的作用。抗蒸腾剂的种类很多,如有的可促进气孔关闭。 水分代谢:植物对水分的吸收、运输、利用和散失的过程。 水势:相同温度下一个含水的系统中一偏摩尔体积的水与一偏摩尔体积纯水之间的化学势差称为水势。把纯水的水势定义为零,溶液的水势值则是负值。 渗透势:溶液中固溶质颗粒的存在而引起的水势降低的值。 根压:由于植物根系生理活动而促使液流从根部上升的压力。伤流和吐水现象是根压存在的证据。 渗透作用:溶液中的溶剂分子通过半透膜扩散的现象。对于水溶液而言,是指水分子从水势高处通过半透膜向水势低处扩散的现象。 .衬质势:由于衬质(表面能吸附水分的物质,如纤维素、蛋白质、淀粉等)的存在而使体系水势降低的数值。 .吐水:从未受伤的叶片尖端或边缘的水孔向外溢出液滴的现象。 伤流:从受伤或折断的植物组织伤口处溢出液体的现象。 水分临界期:植物在生命周期中,对缺水最敏感、最易受害的时期。一般而言,植物的水分临界期多处于花粉母细胞四分体形成期,这个时期一旦缺水,就使性器官发育不正常。作物的水分临界期可作为合理灌溉的一种依据。

植物生理学与生物化学历年研究生考试真题

2008年全国硕士研究生人学统一考试 植物生理学与生物化学 植物生理学 一、单项选择题:1一15小题,每小题1分,共15分。下列每题给出的四个选项中,只有一个选项是符合题目要求的。 1.下列元素缺乏时,导致植物幼叶首先出现病症的元素是 A.N B.P. C.Ca D.K 2.能诱导果实发生呼吸跃变的植物激素是 A.ABA B.IAA C.ETH D.CTK 3.植物一生的生长进程中,其生长速率的变化规律是 A.快一慢一快 B.快一慢 C.慢一快一慢 D.慢一快4.植物细胞中质子泵利用ATP水解释放的能量,逆电化学势梯度跨膜转运H+,这一过程称为 A.初级主动运输 B.次级主动运输 C.同向共运输 D.反向共运输5.植物叶片中进行亚硝酸还原的主要部位是 A.线粒体 B.细胞基质 C.液泡 D.叶绿体 6.高等植物光系统Ⅱ的作用中心色素分子是 A.P680 B.P700 C.A0 D.Pheo 7.植物光呼吸过程中,氧气吸收发生的部位是 A.线粒体和叶绿体 B.线粒体和过氧化物酶体 C.叶绿体和乙醛酸循环体 D.叶绿体和过氧化物酶体 8.类胡萝卜素对可见光的吸收范围是 A.680~700nm B.600~680 nm C.500~600 nm D.400~500nm 9.1mol NADH + H+经交替氧化途径将电子传给氧气时,可形成A.4molATP B.3molATP C.2.molATP D.1molATP 10.若某一植物组织呼吸作用释放C02摩尔数和吸收O2摩尔数的比值小于1,则该组织在此阶段的呼吸底物主要是 A.脂肪B.淀粉C.有机酸D.葡萄糖

11.某植物制造100g干物质消耗了75kg水,其蒸腾系数为 A.750 B.75 C.7.5 D.0.75 12.下列蛋白质中,属于植物细胞壁结构蛋白的是 A.钙调蛋白B.伸展蛋白C.G蛋白D.扩张蛋白 13.在植物的光周期诱导过程中,随着暗期的延长 A.Pr含量降低,有利于LDP开花 B.Pfr含量降低,有利于SDP开花C.Pfr含量降低,有利于LDP开花D.Pr含量降低,有利于SDP开花 14.根据花形态建成基因调控的“ABC模型”,控制花器官中雄蕊形成的是A.A组基因B.A组和B组基因 C.B组和C组基因D.C组基因15.未完成后熟的种子在低温层积过程中,ABA和GA含量的变化为 A.ABA升高,GA降低 B.ABA降低,GA升高 C.ABA和GA均降低 D.ABA和GA均升高 二、简答题:16—18小题,每小题8分,共24分。 16.把一发生初始质壁分离的植物细胞放入纯水中,细胞的体积、水势、渗透势、压力势如何变化? 17.简述生长素的主要生理作用。 18.简述韧皮部同化物运输的压力流动学说。 三、实验题:19小题,10分。 19.将A、B两种植物分别放置在密闭的光照生长箱中,定期抽取生长箱中的气体样品,分析其中的C02含量。以C02含量对光照时间作图,得到下列曲线图。据图回答: (1)分析图中曲线变化的原因。 (2)推测两种植物的光合碳同化途径。 (3)请用另一种实验方法验证你的推测。

植物生理学复习资料

植物生理学复习资料 第一章植物的水分生理 根系是植物吸水的主要器官,其中根毛区为主要吸水区域。 根毛细胞壁含有丰富的果胶质,有利于与土壤接触并吸水。 根毛区有成熟的疏导组织,便于水分运输。 根毛极大的增加了根的吸收面积。 主动吸水:由根系自身的生理代谢活动引起的需要利用代谢能量的吸水过程,称为植物的主动吸水。 主动吸水的动力是根压。 被动吸水:由于枝叶的蒸腾作用而引起的根部吸水称为被动吸水。 被动吸水的动力是蒸腾拉力。 蒸腾作用:植物体内的水分以气态的方式通过植物体表面散失到外界环境的过程称为蒸腾作用。蒸腾作用是植物散失水分的主要方式。 蒸腾作用的意义: 第一,是植物吸收和运输水分的主要动力,特别是对于高大的植物,没有蒸腾作用较高处就无法得到水分。 第二,能促进植物对矿质盐类(养分)的吸收和运输。 第三,能调节植物的体温,避免叶片在直射光下因温度过高而受害。 第二章植物的矿质营养 1、矿质营养:植物对矿质盐的吸收、运输和同化,叫做矿质营养。 2、植物的必须元素的条件:①不可缺少性:缺乏该元素,植物不能完成其生活史。②不可 代替性:无该元素,表现专一缺乏症,当提供该元素时,可预防和纠正此缺乏症,而这种作用不能被其他元素所代替。③直接功能性: 3、必须矿质元素的生理作用: ①细胞结构物质和功能物质的组成成分。②植物生命活动的调节者,参与酶的活动。③起电化学平衡和信号传导作用。 4、主动吸收:细胞直接利用能量代谢,逆电化学势梯度吸收矿质的过程。 主动运输的特点:①运输速度超过根据透性和电化学势梯度预测的速度。②转运达到衡态时,膜两侧电化学势不平衡。③在运输量和消耗能量之间存在定量关系。 5、原初主动运输:质膜H+→A TP酶利用A TP水解产生的能量,把细胞质内的H+向膜外“泵”出(质子泵)。H+→ATPase不断运输的结果:(1)膜内外两侧形成H+化学势差(△PH)。(2)膜内外两侧形成电势梯度差(△E)。 6、次级主动吸收:是以质子驱动力为动力的分子或离子的吸收。原初主动运输为次级主动吸收蓄积了动力(质子动力势),而次级主动吸收利用质膜两侧质子动力势梯度逆电化学梯度运输离子。 7、根系吸收矿质元素的特点 (1)根系吸收矿质与吸收水分既有关又无关。 (2)根系对离子的选择吸收。 (3)单盐毒害和离子拮抗。 8、单盐毒害:单一盐溶液对植物的毒害现象称为单盐毒害。 9、离子拮抗:在盐溶液中加入少量其他离子,就会减弱或消除毒害,离子间的这种相互消除毒害的现象称为离子拮抗。 第三章植物的光合作用

植物生理学考试资料

水势:每偏摩尔体积水的化学势差(为负值),以符号Ψw表示。 蒸腾作用:水分以气态通过植物体表面从体内散失到体外的现象。 水分临界期:植物对水分缺乏最为敏感的时期,通常为花粉母细胞四分体形成期。 必需元素:植物生长发育过程中必不可缺少的元素。 平衡溶液:把植物必须的营养元素按照一定的比例一定的浓度和适宜的PH配成的适于植物生长的混合溶液。 生理酸性盐:由于根系的选择性吸收阳离子多于阴离子,而使介质升高的盐类。 磷光现象:叶绿素受光激发后其激发电子从三线态回到基态时所发射的光即为磷光,当荧光出现后立即中断光源,用灵敏的光学仪器还能看到短暂的“余辉”此为磷光现象。 原初反应:指光合分子被光激发到引起第一个光化学反应的过程,完成了光能定向电能的转换,其实质是光引起的氧化还原反应,包括光能的吸收、传递与转换。 红将现象:指用长波红光(大于685nm)照射植物时虽然仍被叶绿素大量吸收,但量子效率明显降低的现象。 希尔应反:1937年Hill发现,指在适当电子受体存在时离体叶绿体在光下能使H2O分解,并释放O2的反应。 光补偿点:光和过程吸收的二氧化碳与呼吸过程中释放的二氧化碳等量净光合速率为零时的外界光强。 光饱和点:光合速率随光照的增强而增加当光合速率不再增加时的外界光强光强。 呼吸商:亦称呼吸系数,指植物组织在一定时间内放出二氧化碳与吸收二氧化碳的数量体积或摩尔之比。 抗氰呼吸:指某些植物的器官或组织对氰化物很不敏感即在氰化物存在的条件下依然进行呼吸。其末端氧化酶为抗氰氧化酶。 生长中心:指生长旺盛,代谢强烈的部位,例如茎尖,根尖的生长点。 比集运转速率:指单位时间内通过韧皮部单位截面积累的有机物质的量。 植物激素:指在植物体内合成,并从产生部位至其它部位,对生长发育产生显著作用的一类微量有机化合物。 三重反应:指在ETH的作用下,双子叶的黄化苗,抑制其上胚轴的伸长生长,促其横向加粗,并失去负向地性而横向生长。ETH浓度越高三重反应的现象越明显可以作为ETH的生物鉴定法。 植物生长调节剂:指人工合成的具有植物激素活性(调节生长发育)的一类有机化合物。包括促进剂、延缓剂、与乙烯释放剂 根冠比:指植物地下部分(R)与地上部分(T)的重量之比,它能反映出植物的生长状况以及环境的影响。 生长的周期:指植物细胞、组织、器官、个体乃至群体,在整个生长过程中,其生长速率初期缓慢,以后加快,达到最高,之后缓慢最后停止,,呈现慢快慢的特性。其生长曲线呈S 形。 去春化作用:在植物春化过程结束之前,将植物用较高温处理,使低温诱导效应减弱或消除的现象。 再春化作用:指已去除春化的植物再次用零上低温处理而达到成花诱导的现象。 逆境:凡是对植物生存与生长不利的环境因子总称为逆境。它包括高温、低温、干旱、水涝、盐渍、病虫、污染等。 交叉适应:指植物对逆境间的相互适应作用,即植物经历了某种逆境之后能够提高对另外一些逆境的抵御能力。 1)简述植物体内水分存在状态及其生理意义。 (1)水分的存在状态:在植物细胞内,水分以两种状态存在:一是束缚水,距生物胶粒很近不能自由移动的水;二是自由水,距生物胶体很远可以自由移动的水。(2)生理意义:束

植物生理学复习资料全

植物生理学复习资料 1、名词解释 杜衡:细胞可扩散正负离子浓度乘积等于细胞外可扩散正负离子浓度乘积时的平衡,叫做杜衡。 水势:每偏摩尔体积水的化学势与纯水的化学势的差值。 渗透作用:水分从水势高的系统通过半透膜流向水势低的系统的现象。 蒸腾作用:植物通过其表面(主要是叶片)使水分以气体状态从体散失到体外的现象。 光合作用: 绿色植物利用太阳的光能,将CO2和H2O转化成有机物质,并释放O2的过程 呼吸作用:是植物体一切活细胞经过某些代途径使有机物质氧化分解,并释放能量的过程。有氧呼吸:活细胞利用分子氧(O2 )把某些有机物质彻底氧化分解,生成CO2与H2O,同时释放能量的过程。 无氧呼吸:在无氧(或缺氧)条件下活细胞把有机物质分解为不彻底的氧化产物,同时释放出部分能量的过程。 蒸腾速率:也叫蒸腾强度,是指植物在单位时间、单位叶面积上通过蒸腾而散失的水量。矿质营养:植物对矿质元素的吸收、运转与同化的过程,叫做矿质营养 光合速率:指单位时间、单位叶面积吸收co2的量或放出o2的量,或者积累干物质的量 呼吸速率:呼吸速率又称呼吸强度,是指单位时间单位鲜重(FW)或干重(DW)植物组织吸收O2或放出CO2的数量(ml或mg)。 诱导酶:植物本来不含某种酶,但在特定外来物质(如底物)的影响下,可以生成这种酶。植物激素:是指在植物体合成,并经常从产生部位输送到其它部位,对生长发育产生显著作用的微量有机物。 种子休眠:一个具有生活力的种子,在适宜萌发的外界条件下,由于种子的部原因而不萌向性运动: 春化作用:低温诱导花原基形成的现象(低温促进植物开花的作用) 二、植物在水分中的状态? 在植物体,水分通常以束缚水和自由水两种状态存在。 三、水分在植物生命活动中的作用 1.水是细胞原生质的重要组分 2.水是代过程的反应物质 3.水是植物吸收和运输物质的溶剂 4.水使植物保持挺立姿态 5.水的某些理化性质有利于植物的生命活动 四、水势(ψw):每偏摩尔体积水的化学势与纯水的化学势的差值。 纯水的水势规定为0。水势最大 细胞水势(ψw)、衬质势(ψm )、渗透势(ψπ或ψs )、压力势(ψp)之间的关系为: ψw = ψm + ψπ + ψp 水势单位:Pa(帕)或MPa(兆帕)。 1 MPa =106Pa 五、植物细胞吸水方式③代性吸水②渗透性吸水①吸胀性吸水

最新方剂学考研复习资料

方剂学复习资料 一、几本具有代表的著作: 《五十二病方》:现存最早记载方剂的医书《内经》:最早记载治法及组成原则的医书 《伤寒杂病论》:“方书之祖”集理,法,方药于一体的医书 《太平惠民和剂局方》:第一部由政府编制而成的药典,第一部中成药典 《普济方》:载方最多的古代医书《伤寒明理论。药方论》:第一部剖析组方原则之书 《医学心悟》:首先归纳“八法”之书 二、方剂比较 四逆散——四逆汤——当归四逆汤 相同点:以“四逆”为名,治四逆之证 四逆散:治邪热内传,阳气内郁不达四末致之“四逆’证。其冷在肢端,不过肘膝,故以透解郁热,调和肝脾治疗以输布阳气透达四肢 四逆汤:治阳气衰微,阴寒内胜失以温养之“四肢厥逆“证。其肢冷严重,冷过肘膝, 见一身虚寒征象。故急用大辛达热以回阳救逆,以速达回阳之效,使阳复厥除 当归四逆汤:治血虚阳弱,寒凝经脉之“手足厥寒“证。其寒不在脏,肢厥程度较四逆汤轻,并见面白舌淡,脉细等。故用温经散寒,养血通脉法,使阴血充,阳气振,经脉通,手足温,脉亦复 血府逐瘀汤——隔下逐瘀汤——身痛逐瘀汤 相同点:皆为王清任创制的活血化瘀名方,常与通窍活血汤一同被称为五逐瘀汤。各方均以桃仁、红花、川芎、赤芍、当归等为基础药物,都有活血祛瘀止痛作用,主治淤血所致的病证。不同点 血府逐瘀汤:治胸中血瘀证。胸痛,头痛,日久不愈,痛如针刺而有定处,或呃逆日久不止,或饮水即呛,干咳,或内热瞀闷,或心悸怔忡,失眠多梦,急躁易怒,入暮潮热,晨暗或两目暗黑,舌质暗红,或舌有瘀斑、斑点,脉涩或弦紧 隔下逐瘀汤:治淤血阻滞隔下证。隔下淤血蓄积;或腹中胁下有痞块;或肚腹疼痛,痛处不移;或卧则腹坠似有物者 身痛逐瘀汤:治淤血痹阻经络证。肩痛、臂痛、腰痛、腿痛、或周身疼痛经久不愈 大承气汤——小承气汤——调胃承气汤 相同点:三方均能清泻热结,用治阳明实热,积滞内结之便秘证;临证以大便秘结,腹痛拒按,苔黄厚,脉实有力等证候为特征。 不同点 大承气汤:硝、黄相须为用,且大黄后下,泻热攻积力强,功善峻下热结;主治实热、积滞壅结肠胃所致之阳明腑实证及热结旁流、痉病、热厥、发狂,以痞、满、燥、实证俱在为特征者。 小承气汤:无芒硝,枳、朴用量减轻,且大黄同煎,故其泻热攻下之力较逊,功能轻下热结;

植物生理学研究生考试题及答案

植物生理学2015年研究生考试题及答案 一、填空题(每空1分,共计28分) 1、海芋植物的佛焰花序比一般植物的呼吸放出的热量比一般植物高,是因 为存在抗氧呼吸的缘故。 2、与植物耐旱性有重要相关性的氨基酸是,它能增强细胞 的。 3、植物叶绿体的丙酮提取液透射光下呈,反射光下 呈。 4、根据种子的吸水量,可将种子的萌发分为吸胀吸水阶段、停止吸水阶段,重 新吸水阶段。 5、GA和ABA生物合成的前体是甲瓦龙酸,在短光照下形成ABA。 6、膜脂的组成与膜脂的抗冷性有关,不饱和程度,固化温度 高,不利发生膜变相,植物的抗冷性越小。 7、植物组织培养的理论基础是细胞全能性,用来培养的植物体部分叫外植 体。 8、保卫细胞质的膜上存在着 H+ATP 酶,在光照下,将H+分泌到保卫细胞外, 使保卫细胞 HP升高,驱动 H+ 进入保卫细胞,导致保卫细胞吸水,气孔张开。 9、跨膜信号传导主要是通过和完成。 10、土壤缺氮时,根冠比高,水分过多时,根冠比低。 11、具有远红光和红光逆转效应的是,它的生色团与叶绿体 的 结构相似。 12、成熟的水果变甜,是因为淀粉转化成糖,未成熟的水果有涩味是因为 含有单宁。 13、植物组织培养的理论依据是细胞全能性,用来培养的植物的部分叫外 植体。 二、单项选择(每题1分,共计20分) 略! 三、名词解释(每题3分,共计30分) 1、次级共运转(次级主动运输):以质子动力作为驱动力的跨膜离子运转,使质 膜两边的渗透能增加,该渗透能是离子或者中性分子跨膜转运的动力。 2、细胞信号传导:偶联各种胞外刺激信号与其相应的生理反应之间的一系列分 子反应。 3、希尔反应:离体叶绿体在光下所进行的分解水并放出氧气的反应。 4、渗透调节:植物细胞通过主动增加溶质降低渗透势,增强吸水和保水能力, 以维持正常细胞膨压的作用。 5、交叉适应:植物经历了某种逆境之后,能提高对另一逆境的抵抗能力,对不 同逆境间的相互适应作用。 6、光饱和点:在一定范围内,光合速率随着光照强度的增加而加快,光合速率 不再继续增加是的光照强度称为光饱和点。 7、光的形态建成:依赖光控制细胞分化、结构和功能的改变,最终汇集成组织 和器官的建成,就称为光形态建成。 8、极性运输:生长素只能从植物体形态学上端向下端运输,不能反之。

植物生理学复习提纲(综合版)

植物生理学复习提纲(2016年夏) (13/14级水保13级保护区14级梁希材料) 第一章植物水分代谢 1、植物体内水分存在形式及其与细胞代谢的关系: 1)水分在植物体内通常以自由水和束缚水两种形式存在。自由水是距离胶体颗粒较远,可以自由移动的水分。束缚水是较牢固地被细胞胶体颗粒吸附,不易流动的水分。 2)代谢关系:自由水参与各种代谢作用。可用于蒸腾,可作溶剂,作反应介质,转运可溶物质,故它的含量制约着植物的代谢强度;自由水占总含水量的比例越大则植物代谢越旺盛。束缚水不参与代谢活动,不易丧失,不起溶剂作用,高温不易气化,低温不易结冰,但是植物要求低微的代谢强度度过不良的外界条件,因此束缚水含量越大植物的抗逆性越大。 2、植物生理学水势的概念(必考):同温度下物系中的水与纯水间每偏摩尔体积的化学势差。 3、植物细胞水势的组成(逐一解释):植物细胞水势由溶质势、压力势、衬质势和重力势构成。(溶质势是指由于溶质颗粒的存在而使水势降低的值;压力势是指由于细胞壁压力的作用增大的细胞水势值;衬质势是指由衬质所造成的水势降低值;重力势是指水分因重力下降与相反力量相等时的力量,增加细胞水势的自由能,提高水势的值。) 成熟细胞水势组成:溶质势、压力势 典型细胞水势组成:溶质势、压力势、衬质势 干燥种子水势组成:衬质势 4、细胞吸收水分的三种方式及动力: 渗透吸水(主要方式),主要动力是水势差(压力势和溶质势); 吸胀吸水,主要动力是水势差(衬质势); 代谢吸水,主要动力是呼吸供能。 5、细胞在纯水中的水势变化:外界水势> 细胞水势,细胞吸水,细胞溶质势上升,压力势上升;细胞水势与外界水势平衡时,细胞水势=外界水势=0 ,细胞水势=溶质势+压力势=0,溶质势=压力势; 细胞在高浓度蔗糖(低水势)溶液中的水势变化:外界水势<细胞水势,细胞失水,浓度上升,溶质势下降,压力势下降,原生质持续收缩,当压力势下降=0,发生质壁分离,细胞水势=溶质势+压力势,细胞水势=溶质势+0,细胞水势=细胞溶质势,外界水势=外界溶质势(开放溶液系统),外界水势=细胞水势,外界溶质势=细胞溶质势(可测定渗透势); 细胞间的水分流动方向:相邻两细胞的水分移动,取决于两细胞间的水势差异,水势高的细胞中的水分向水势低的细胞流动。 6、植物吸水的器官:根系,主要部位根尖(根冠,分生区,根毛区和伸长区) 植物吸水的途径:两种途径 非质体途径(质外体途径):没有原生质的部分,包括细胞壁、细胞间隙和木质部导管或管胞。水分自由扩散,又称自由空间。 共质体途径(细胞途径,跨膜途径):生活细胞的原生质通过胞间连丝组成整体。

植物生理学复习资料

植物生理学 名词解释: 水势:每偏摩尔体积水的化学势差。 渗透势:由于溶质颗粒的存在,降低了水的自由能,因而其水势低于纯水的水势。 根压:靠根部水势梯度使水沿导管上升的动力。 水分临界期:植物对水分不足特别敏感的时期。 渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。 矿质营养:植物对矿物质的吸收、转运、和同化。 胞饮作用:细胞通过膜的内陷从外界直接摄取物质进入细胞的过程。 生物固氮:某些微生物把空气中的游离氮固定转化为含氮化合物的过程。 诱导酶:指植物本来不含某种酶,但在特定外来物质的诱导下,可以生成这种酶。 营养元素临界含量:作物获得最高产量的最低养分含量。 光合作用:绿色植物吸收阳光的能量,同化二氧化碳和水,制造有机物质并释放氧气的过程。吸收光谱:反映某种物质吸收光波的光谱。 增益效应:两种波长的光协同作用而增加光和效率的现象。 希尔反应:离体叶绿体在光下进行水解并放出氧的反应。 反应中心:是光能转变化学能的膜蛋白复合体,包含参与能量转换的特殊叶绿素a. 聚光色素:聚光复合物中的色素(没有光化学活性,只有吸收和传递光能的作用)。 Co2补偿点:当光合吸收的co2量等于呼吸放出的co2量,这个时候外界的co2含量就叫做co2补偿点。 呼吸作用:指活细胞内的有机物,再酶的参与下逐步氧化分解并释放能量的过程。 糖酵解:细胞质基质中的己糖经过一系列酶促反应步骤分解成丙酮酸的过程。 呼吸商:植物在一定的时间内,放出二氧化碳的物质的量与吸收氧气的物质的量的比率。巴斯的效应:氧可以降低糖类的分解代谢和减少糖酵解产物的积累的现象。 能荷:A TP-ADP-AMP系统中可利用的高能磷酸键的度量。 代谢源:能够制造并输出同化物的组织,器官或部位。 代谢库:指消耗或贮藏同化物的组织,器官或部位。 库强度:等于库容量和库活力的乘积。 植物生长物质:一些调节植物生长发育的物质。 生长素的极性运输:指生长素只能从植物体的形态学上端向下端运输。 三重反应:乙烯抑制伸长生长,促进横向生长,地上部分失去负向重力性生长。 植物生长调解剂:一些具有植物激素活性的人工合成的物质。 生物胁迫:指病害、虫害和杂草等对植物产生伤害的生物环境。 植物抗性生理:指逆境对植物生命活动的影响,以及植物对逆境的抵抗性能力。 耐逆性:指植物在不良环境中,通过代谢的变化来阻止、降低甚至修复由逆境造成的损伤,从而保证正常的生理活动。 避逆性:指植物通过各种方式避开或部分避开逆境的影响。 1.灌溉 答:农业上用灌溉来保证作物水分供应,作物需水量因物种种类而异:大豆和水稻的需水量较多,高粱和玉米的最少。同一作物在不同生长发育时期对水分的需要量也有很大的差别。叶片水势、细胞汁液浓度、渗透势和气孔开度都能比较灵敏地反映出作物体的水分状况,可作为灌溉生理指标。我国提出节水农业,用较少的水源得到较大的收益,提高水分利用率;有以下几种节水技术:喷灌、滴灌、调亏灌溉以及控制性分根交替灌溉。

中医考研方剂复习重点总结

几本具有代表的著作 《五十二病方》:现存最早记载方剂的医书 《内经》:最早中医理论著作,最早记载治法及组成原则的医书 《伤寒杂病论》:“方书之祖”集理,法,方药于一体的医书,辨证论治《太平惠民和剂局方》:第一部由政府编制而成的药典,第一部中成药典《普济方》:载方最多的古代医书 《伤寒明理论·药方论》:第一部剖析组方原则之书,开创方论之先河《医学心悟》:首先归纳“八法”之书 所治病证的病机 治咳嗽——杏苏散(风寒燥邪犯肺,肺失宣降) 麻黄汤(风寒束表,肺气不宣) 清燥救肺汤(燥热伤肺,气阴两伤,肺失宣降) 止嗽散(风邪犯肺,肺失宣降) 治咳喘——小青龙汤(风寒束表,水饮内停) 苏子降气汤(痰涎雍盛,肾气不足,肺失宣降) 定喘汤(风寒外束,痰热内蕴,肺失宣降) 麻黄汤(风寒束表,肺气不宣) 麻杏甘石汤(风热袭肺,或风寒郁而化热,热壅于肺,肺失宣降) 治泄泻——参苓白术散(脾胃气虚,湿浊阻滞) 藿香正气丸(风寒束表,湿阻中焦) 四神丸(肾阳虚衰,不温脾土)——火不生土 真人养脏汤——(脾肾虚寒,固摄无权) 理中丸——(中焦虚寒,脾胃纳运乏力,升降失常) 补中益气汤——(脾胃气虚,中气下陷) 治呕逆——温胆汤(胆胃不和,痰热内扰) 吴茱萸汤(胃中虚寒,浊阴上逆) 旋覆代赭汤(胃虚,痰阻,气逆) 橘皮竹茹汤(胃虚有热,气机上逆) 治月经不调——温经汤(冲任虚寒,瘀血内阻) 归脾汤(思虑过度,劳伤心脾,气血两虚,脾虚不摄) 四物汤(营血虚滞) 逍遥散(肝气郁结,血虚脾弱) 治便秘——麻子仁丸(肠胃燥热,脾津不足) 黄龙汤(热结阳明,气血不足) 增液承气汤(热结阴亏,无水舟停) 大承气汤(实热积滞壅结肠胃;热盛津伤) 治“四逆”——四逆散(肝脾不和,阳气内郁) 四逆汤(阴寒内盛,阳气衰微)

植物生理学复习资料

绪论 生长发育:生长发育是植物生命活动的外在表现。生长是指增加细胞数目和扩大细胞体积而导致植物体积和质量的增加。发育是指细胞不断分化,形成新组织、新器官,即形态建成,具体表现为种子萌发,根、茎、叶生长,开花,结实,衰老死亡等过程。 信号转导:信号转导是指单个细胞水平上,信号与受体结合后,通过信号转导系统,产生生理反应。 农业生产实践原理:“多粪肥田”、“积力于田畴,必且粪灌”——施肥与灌溉 “种,伤湿、郁,热则生虫也”——种子安全贮藏的基本原则 “曝使极燥”——降低种子含水量 “日曝令干,及热埋之”——热进仓窑麦法 “正月一日日出时,反斧斑驳驳椎之”——嫁接技术/使树干韧皮部受轻伤,有机物质向下 运输减少,地上枝条有机营养相应增多,促使花 芽分化,有利于开花结实。 第一章 植物体内水分存在的状态 束缚水(bound water):靠近胶粒而被胶粒吸附束缚不易自由流动的水分 自由水(free water):距离胶粒较远而可以自由流动的水分。 自由水/束缚水比值高,植物代谢强度大 自由水/束缚水比值低,植物抗逆性强 植物细胞对水分的吸收 理解水分跨膜运输的途径 渗透作用(osmosis):水分从水势高的系统通过半透膜向水势低的系统移动的现象。 细胞吸水情况取决于细胞水势:典型细胞水势=溶质势+压力势+重力势+衬质势 相邻两细胞间的水分移动方向,取决于两细胞间的水势差异,水势高的细胞中的水分向水势低的细胞流动。 根系吸水和水分向上运输 根系吸水的途径有三条:质外体途径、跨膜途径、共质体途径 根压(root pressure):因根部细胞生理活动导致皮层细胞和中柱细胞之间产生水势梯度,从而引起水分进入中柱产生的压力,称为根压。 根压的证明;伤流、吐水 蒸腾拉力(transpiration pull):因叶片蒸腾作用导致叶片和根部之间的组织、细胞产生水势梯度而引起根部吸水的动力称为蒸腾拉力。 蒸腾作用(transpiration):水分以气态形式通过植物体表(主要是叶片)从体内散失到体外的现象。 蒸腾作用的生理意义:1.植物对水分吸收和运输的主要动力 2.植物对矿物质盐类吸收和运输的主要动力 3.降低叶片温度

植物生理学考研复习资料第一章 植物的水分生理教学文案

第一章植物的水分生理 一、名词解释 1.水势 2.渗透势 3.压力势 4.衬质势 5.自由水 6.束缚水 7.渗透作用 8.吸胀作用 9.代谢性吸水 10.水的偏摩尔体积 11.化学势 12.自由能 13.根压 14.蒸腾拉力 15.蒸腾作用 16;蒸腾速率 17.蒸腾比率 18.蒸腾系数 19.水分临界期20.生理干旱 21.内聚力学说 22.初干 23.萎蔫 24.水通道蛋白 二、写出下列符号的中文名称 1.atm 2.bar 3.MPa 4.Pa 5.PMA 6.RH 7.RWC 8.μw 9.Vw 10.Wact 11.Ws 12.WUE 13.Ψm 14.Ψp 15.Ψs 16.Ψw 17.Ψπ 18.SPAC 三、填空题 1.植物细胞吸水方式有、和。 2.植物调节蒸腾的方式有、和。 3.植物散失水分的方式有和。 4.植物细胞内水分存在的状态有和。 5.植物细胞原生质的胶体状态有两种,即和。 6.细胞质壁分离现象可以解决下列问题、和。 7.自由水/束缚水的比值越大,则代谢,其比值越小,则植物的抗逆性。 8.一个典型的细胞的水势等于。 9.具有液泡的细胞的水势等于。 10.形成液泡后,细胞主要靠吸水。 11.干种子细胞的水势等于。 12.风干种子的萌发吸水主要靠。 13.溶液的水势就是溶液的。 14.溶液的渗透势决定于溶液中。 15.在细胞初始质壁分离时,细胞的水势等于,压力势等于。 16.当细胞吸水达到饱和时,细胞的水势等于,渗透势与压力势绝对值。 17.将一个Ψp=-Ψs的细胞放入纯水中,则细胞的体积。 18.相邻两细胞间水分的移动方向,决定于两细胞间的。 19.在根尖中,以区的吸水能力最大。 20.植物根系吸水方式有:和。 21.根系吸收水的动力有两种:和。 22.证明根压存在的证据有和。 23.叶片的蒸腾作用有两种方式:和。 24.水分在茎、叶细胞内的运输有两种途径:。和。 25.小麦的第一个水分临界期是。 26.小麦的第二个水分临界期是。 27.常用的蒸腾作用的指标有、和。 28.影响气孔开闭的主要因子有、和。 29.影响蒸腾作用的环境因子主要是、、和。 30.C3植物的蒸腾系数比C4植物。 31.可以较灵敏地反映出植物的水分状况的生理指标有:、、 及等。 四、选择题 1.植物在烈日照射下,通过蒸腾作用散失水分降低体温,是因为( )。

最新植物生理学期末复习资料

植物生理学 一、名词解释 1、水势:每偏摩尔体积水的化学势差。 2、自由水:距离胶粒较远而可以自由流动的水分。 3、束缚水:靠近胶粒而被胶粒吸附束缚不易自由流动的水分。 4、蒸腾作用:是指水分以气体状态通过植物体的表面从体内散失到大气的过程。 5、蒸腾速率:植物在一定时间内单位叶面积蒸腾的水量。 6、小孔扩散规律:当水分子从大面积上蒸发时,其蒸发速率与蒸发面积成正比。但通过气孔表面扩 散的速率,不与小孔的面积成正比,而与小孔的周长成正比。 7、必需元素:维持正常生命活动不可缺少的元素. 8、单盐毒害:任何植物,假若培养在某一单盐溶液中,不久即呈现不正常状态,最后死亡。 9、平衡溶液:植物只有在含有适当比例的多种盐的溶液中才能正常生长发育,这种溶液叫平衡溶 液。 10、生理酸性盐:植物对各种矿质元素的吸收表现出明显的选择性。若供给( NH4 ) 2SO4,植物对其阳离子的吸收大于阴离子,在吸收NH4的同时,根细胞会向外释放氢离子,使PH 下降。 11、生理碱性盐:供给NANO3时,植物吸收,NO3-而环境中会积累,NA+,同时也会积累OH- 或HCO3-,从而使介质PH升高。 12、光合作用:绿色植物吸收太阳光能,同化CO2和H2O,合成有机化合物质,并释放O2的过程。 13、光合磷酸化:叶绿体利用光能将无机磷酸和ADP合成ATP的过程。 14、光补偿点:随着光强的增加光合速率相应提高,当达到某一光强时,叶片的光合速率等 于呼吸速率,即CO2吸收量等于CO2释放量,表现光合速率为0。 15、co2补偿点:随着CO2的浓度增加,当光合作用吸收的CO2与呼吸释放的CO2相等时环境中的CO2浓度。 16、光能利用率:指单位土地面积上,农作物通过光合作用所产生的有机物中所含的能量 ,与这块土地所接受的太阳能的比 17、集流运输速率:是指单位截面积筛分子在单位时间内运输物质的量,常用g/(m2.h)或g/(mm2.s)表示。 18、代谢源与代谢库:是产生和提供同化物的器官或组织;是消耗或积累同化物的器官和组织。 19、呼吸作用:是指一切生活在细胞内的有机物,在一系列酶的参与下,逐步氧化分解为简 单物质,并释放能量的过程。 20:、有氧呼吸:是指生活细胞在氧气的参与下,把某些有机物质彻底氧化分解,放出二氧化碳并形成水,同时释放能量的过程。 21、呼吸速率:每消耗1G葡萄糖可合成的生物大分子的克数。 22、呼吸商:植物组织在一定时间内,放出CO2的量与吸收O2的量的比率。 23、EMP途径:细胞质基质中的已糖经过一系列酶促反应步骤分解成丙酮酸的过程。 24、抗氰呼吸:在氰化物质存在下,某些植物呼吸不受抑制,所以把这种呼吸称为。 25、氧化磷酸化:在生物氧化中,电子经过线粒体电子传递链传递到氧,伴随ATP合酶催化,使ADP和磷酸合成ATP的过程。 26、呼吸跃变:当果实成熟到一定程度时,呼吸速率首先是降低,然后突然升高,然后又降低的现象。

植物生理学各年考试试题(真题)

名词解释 渗透作用 .渗透势 . 蒸腾作用 .气孔蒸腾 . 水分临界期 再度利用元素 . 矿质营养 . 同向运输器 . 反向运输器 . 生物固氮 .硝酸还原作用 平衡溶液单盐毒害 光合作用光合磷酸化原初反应光合反应中心光饱和现象光合速率光呼吸暗呼吸Rubisco:光补偿点光饱和点 PQ穿梭:PQ为质体醌,是光合莲中含量最多的电子递体,既可传递电子也可传递质子,具有亲脂性,能在类囊体膜内移动.它在传递电子时,也将质子从叶绿体间质输入类囊体内腔,PQ在类囊体上的这种氧化还原反复变化称PQ穿梭。 氧化磷酸化有氧呼吸无氧呼吸氧化磷酸化生物氧化末端氧化酶系统末端氧化酶呼吸链细胞色素氧化酶 植物信号受体信号受体植物激素植物生长调节剂 ACC 三重反应植物生长物质 4. 生长素极性运输自由生长素束缚生长素光形态建成 植物细胞全能性脱分化生长大周期生长的温周期性生长最适温度协调最适温度春化作用光周期诱导光周期现象临界暗期短日植物长日植物临界日长临界夜长临界暗期呼吸骤(跃)变跃变型果实非跃变型果实 寒害冻害抗性锻炼交叉适应抗性锻炼 1. 在水分充足的条件下,影响气孔开闭的因子主要有_光照温度 CO2_和激素ABA等。 2. 诊断作物缺乏某种矿质元素的方法有:化学分析__诊断法和病症诊断法。 3. 植物缺氮的生理病症首先出现在老叶叶上,植物缺钙严重时生长点坏死。 6. 常用于研究有机物运输的方法有:同位素示踪法、蚜虫吻刺法和环割法。可证明有机物运输是由韧皮部担任。运输的有机物形式主要为蔗糖。 9. 促进植物茎伸长的植物激素是.赤霉素(GA) 10. 已知植物体内至少存在三种光受体,一是_光敏色素,感受红光和远红光区域的光;二是隐花色素;三是UVB受体。 13.. 植物对逆境的抵抗主要包括避逆性和耐逆性两个方面,前者是指植物对不良环境在时间或空间上躲避开;后者是指植物能够忍受逆境的作用。 ()1.调节植物叶片气孔运动的主要因素是()。 A.光照 B.湿度 C.氧气 D.二氧化碳 ()2、离子通道运输理论认为,离子顺着()梯度跨膜运输。 A.水势 B.化学势 C.电势 D.电化学势 ()3.光合产物主要是糖类,其中以蔗糖和淀粉最为普遍。一般认为()合成。 A.蔗糖和淀粉都在叶绿体中 B. 蔗糖在叶绿体中和淀粉在胞质溶胶中 C. 蔗糖和淀粉都在胞质溶胶中 D. 蔗糖在胞质溶胶中和淀粉在叶绿体中 ()4.植物体内的末端氧化酶是一个具有多样性的系统,最主要的末端氧化酶是()。 A.在胞质溶胶中的抗坏血酸氧化酶 B. 在线粒体膜上的细胞色素C氧化酶 C. 在线粒体膜上的交替氧化酶 D. 在胞质溶胶中的酚氧化酶 ()5. 外界刺激或胞外化学物质被细胞表面受体接受后,主要是通过膜上G蛋白偶联激活膜上的酶或离子通道,产生(),完成跨膜信号转换。 A.细胞信使 B. 胞外信使 C.胞内信使 D. 级联信使 ()6.当土壤水分充足、氮素供应多时,植株的根冠比()。 A.增大 B.减小 C.不变 D.大起大落 ()7. 植物的形态建成受体内外多种因素影响,其中()是最重要的外界因子。 A.光照 B. 水分 C. 温度 D. 植物激素

相关文档
最新文档