仿生水下机器人运动仿真技术研究

仿生水下机器人运动仿真技术研究
仿生水下机器人运动仿真技术研究

基于开源软件Ardusub的水下机器人ROV控制系统

基于开源软件Ardusub的水下机器人ROV控制系统 摘要:随着海洋资源开发以及水下领域作业任务的增加,水下机器人在水下作 业中发挥着越来越重要的作用。ROV作为水下作业的重要工具,对运动控制算法 要求较高,采用开源软件ArduSub,结合一种模糊串级PID控制算法实现ROV控 制系统的设计,重点对ArduSub的特点、适应配置及PID控制算法原理,包含运 动和姿态方面进行了阐述,能够良好实现ROV的水下控制。 1引言 随着海洋资源开发以及水下领域作业任务的增加,水下机器人在水下作业中 发挥着越来越重要的作用。其中ROV续航持久,成本相对较低,逐渐成为水下作 业的重要工具。ROV工作于水下环境,具有非线性、易受环境影响等特点,对运 动控制算法要求较高,同时要求整个控制系统要有较好的实时性和可靠性。 2开源软件ArduSub简介 ArduSub水下机器人的控制器是一个完整的开源解决方案,提供远程操作控 制(通过智能潜水模式)和全自动的执行任务。作为DroneCode软件平台的一部分,它能够无缝地使用地面控制站的软件,可以监控车辆遥测和执行强大的任务规划 活动。它还受益于DroneCode平台的其他部分,包括模拟器,日志分析工具,为 车辆管理和控制和更高层次的api。 其主要特点在于以下几个方面: 反馈控制和稳定性:ArduSub控制器基于多旋翼自动驾驶系统,具有精确的 反馈控制,可主动维持方向。 深度保持:使用基于压力的深度传感器,ArduSub控制器可以将深度保持在 几厘米内。 航向保持:默认情况下,ArduSub在未命令转动时自动保持其航向。 相机倾斜:通过操纵杆或游戏手柄控制器与伺服或万向节电机进行相机倾斜 控制。 灯光控制:通过操纵杆或游戏手柄控制器控制海底照明。 无需编程:ArduSub控制器适用于各种ROV配置,无需任何自定义编程。大 多数参数可以通过地面控制站轻松更改。 兼容性好:ArduSub兼容许多不同的ROV框架,支持PWM输出。 由于以上特征,使得ArduSub成为一款可以很好适用于水下机器人RPV控制 系统的开源软件。 ArduSub兼容基于串行和以太网的通信接口。使用的硬件自动驾驶仪必须支 持选择的选项。Pixhawk仅支持串行连接,但可以通过配套计算机连接到以太网。其他autopilots原生支持以太网。ArduSub软件主要用于通过ArduSub进行接口,ArduSub是一种开源的跨平台用户界面,适用于所有类型的无人机。该接口通过 系绳连接到ArduSub控制器并显示车辆状态信息,并允许更新参数和设置。最重 要的是,QGC与用于指挥车辆的操纵杆或游戏手柄控制器连接。 ArduSub包含一个高级的电机库,支持多个框架,例如具有6自由度推进器 定位的BlueROV配置(图1所示)、带有并排垂直推进器的矢量ROV(图2所示)、采用单垂直推进器的ROV(图3所示)等等。 在传感器和执行器方面,除了标准的板载传感器(IMU,指南针),ArduSub

基于混合推进方式的水下仿生鱼机器人研究设计

基于混合推进方式的水下仿生鱼机器人研究设计 发表时间:2019-06-11T10:57:56.553Z 来源:《科技研究》2019年3期作者:姜志斌[导读] 论文以水下机器人为研究对象,简要地介绍了水下机器人的总体性能和历史背景,着重对其运动方式和外观设计展开了研究。 (南京工程学院 211100) 摘要:论文以水下机器人为研究对象,简要地介绍了水下机器人的总体性能和历史背景,着重对其运动方式和外观设计展开了研究。 关键词:混合推进式;仿生;机器人设计 1 水下仿生鱼机器人概述 1.1 水下机器人的背景 随着全球经济、科研活动的深入发展,地球的陆地资源正在逐步减少,有朝一日终将会被挖掘殆尽。而地球表面60%以上是海洋,海洋中蕴藏着比陆地上更加丰富的自然资源。 而面对海洋这么大的面积,使用机器取代人力是必然的发展趋势。目前机器人发展迅速,海底机器人正变得越来越重要。 1.2 仿生机器人的起源 科学家们通过将仿生学和机器人两大学科相结合,提出了水下仿生机器人这一概念,水下仿生机器人根据海洋生物的外形结构和运动方式进行设计,由于海洋生物进过了长期的进化,其外形结构能够很好地适应水下的环境,因此设备运用仿生的理念能帮助人类更好地了解海洋。 美国麻省理工学院(MIT)作为第一个研究机器鱼的科研机构,开启了水下仿生机器人研究的先河。研究人员于1994年研制成功了第一条仿生机械鱼,他们的主要着重点就是通过提高机器鱼在水下运转的高效性和灵活程度以模拟鱼类的运动形式。紧接着,英国赛克斯大学(Essex)就以鱼类结构为模板,按照鱼类的运动方式来解决和优化机器人在水下活动的直线和转向问题。而美国海洋学中心则是把对生物模仿得更加彻底,研制出与龙虾外形极为相似的“机器龙虾”,按照龙虾的身体部分来设计相关功能,大大提高了其在水下的稳定性与灵活性。 1.3 水下仿生鱼机器人的设计意义 水下仿生鱼机器人用途广泛,涉及到各个领域。在民用方面,通过采集水下图像可完成资源勘探、海洋生物研究、海底地势地貌绘制、海底管道检修、鱼群监测、地理研究、水质采用等等。在军用方面,可以为水下机器人加装声呐、排雷装置等,从而执行特定的军事任务,如定点监控、海底侦查、信息传输、协同作战等等。由此可见,水下仿生鱼机器人的设计具有很大的发展前景,如何合理地设计水下仿生鱼的外观结构,使其实现相应的功能尤为重要。 1.4水下仿生鱼机器人的使用设定 常规的水下仿生鱼机器人由于要实现各种功能导致其本身体积太大,从而引发了不够灵活、耗能严重等各种问题。比如“海筝Ⅱ型”遥控自治水下机器人,其主尺寸有1.2m*0.5m*0.25m,自带锂电池,但只能在水下工作6h,过短的作业时间成为其不足之处。因此,本次设计在功能方面只打算保留其摄像、信号发送接收这些基本功能,在设定上算是一种探测类机器人,好处是结合混合推进的运动方式其可以延长水下工作周期,大量地投放可以对某片区域进行长期的监测,通过信号传递告知人们其探测到的相关信息,然后再由工作人员对其传回的信息进行分析,针对某一问题进行解决,这样可以节省大量的人力物力。 2 混合推进运动方式概述 2.1 混合推进运动方式的概念 所谓混合推进这种运动方式即设备不仅仅是靠单一的推进方式来运动。首先,设计的水下仿生机器人在造型上选择模仿鳐鱼这类鱼类的外观,宽大的机身使得设备能够很好地悬浮在水中,然后通过周围水流的波动来带动设备前进后退等等,这方面即为外力推进。与此同时,设备本身留有一定的空间来放置发动电机,通过电机带动螺旋桨来推动设备前进,这点即为自身推进。设备总体而言就是靠这两种方式来实现自身运动。 2.2 混合推进方式的优点 混合推进式这个概念的提出是基于一个设备要在水下进行长期作业的大前提。目前已有的水下机器人设备有一个通病,即设备并不能在水下长期作业,要定期通过人工检测、维护、更换动力电源。因此针对这方面的缺陷现提出混合推进这一概念,设备投放至水下后,暂时先不启用其自身携带的推进装置,使其在洋流的推动下被动运动,这样设备就能在水下进行长期的作业,同时其运动的范围更加的广泛,采集到的数据更加随机,不刻意地设定探测区域往往能够带来一些意想不到的结果。只有在紧急状况下,通过水下机器人自身传回的信号提示,操作人员再通过手动操作的方式来启动其自身所携带的推进装置,对机器人进行回收、障碍撤离等等。多种推进方式相结合的模式拥有使设备的作业时间更长久,采集的数据更广泛等等优点。 3 外观设计要点 3.1 外观设计灵感 设备在外观方面采用了仿生的设计方式,造型模仿了鳐鱼这类鱼类的外观,具有扁平宽大的特点,这种造型使得设备具有一定的浮力,能够很好地悬浮于水下。同时仿生的外观可以使设备很好地融入进生物之间,不容易被水下生物所排斥,从而能够采集到更多的信息。另外仿生的造型也具有一定的隐蔽性,为设备在水下长期作业不被外界因素影响提供有力条件。 3.2 设计的优点 总的来说这种混合推进方式的水下仿生鱼机器人具有以下几点优点:1.作业时间长,能够在水下长时间地工作,从而使得采集到的信息更加完整;2.对能源的调配合理,设备在水下大部分的时间都是通过洋流的推进来改变自身的位置,能够很好地减少自身的能源消耗,从而达到长期作业的目的;3.设备适应面广泛,能够进行前后左右上下多姿态的调整,能够适应不同的状态;4.隐蔽性良好,仿生的设计使得设备能够更好地融入到环境中,这样其遭遇外力影响甚至破坏的几率就会相对降低。

四足机器人研究现状及其展望

四足步行机器人研究现状及展望 (郑州轻工业学院机电工程学院河南郑州) 摘要:文章对国内外四足步行机器人研究现状进行了综述,归纳分析了四足机器人质心距离测量系统研究的关键技术,并展望了四足机器人的发展趋势。 关键词:四足步行机器人;研究现状;关键技术;发展趋势 引言:目前,常见的步行机器人以两足式、四足式、六足式应用较多。其中,四足步行机器人机构简单且灵活,承载能力强、稳定性好,在抢险救灾、探险、娱乐及军事等许多方面有很好的应用前景,其研制工作一直受到国内外的重视。1国内外研究四足步行机器人的历史和现状 20世纪60年代,四足步行机器人的研究工作开始起步。随着计算机技术和机器人控制技术的研究和应用,到了 20 世纪 80 年代,现代四足步行机器人的研制工作进入了广泛开展的阶段。 世界上第一台真正意义的四足步行机器人是由 Frank 和 McGhee 于 1977 年制作的。该机器人具有较好的步态运动稳定性,但其缺点是,该机器人的关节是由逻辑电路组成的状态机控制的,因此机器人的行为受到限制,只能呈现固定的运动形式[1]。 20 世纪 80、90 年代最具代表性的四足步行机器人是日本 Shigeo Hirose 实验室研制的 TITAN 系列。1981~1984年Hirose教授研制成功脚部装有传感和信号处理系统的TITAN-III[2]。它的脚底部由形状记忆合金组成,可自动检测与地面接触的状态。姿态传感器和姿态控制系统根据传感信息做出的控制决策,实现在不平整地面的自适应静态步行。 TITAN-Ⅵ[3]机器人采用新型的直动型腿机构,避免了上楼梯过程中各腿间的干涉,并采用两级变速驱动机构,对腿的支撑相和摆动相分别进行驱动。

仿生机器人的研究现状及其发展方向

第36卷第6期 上海师范大学学报(自然科学版)Vol.36,No.6 2007年12月 Journal of Shanghai Nor mal University(Natural Sciences)2007,Dec. 仿生机器人的研究现状及其发展方向 王丽慧,周 华 (上海师范大学机械与电子工程学院,上海201418) 摘 要:随着机器人智能化技术的进步,机器人应用领域的拓展,仿生机器人的研究正在引起世界各国研究者的关注.主要对仿生机器人的国内外研究状况进行了综述并对其未来的发展趋势作了展望. 关键词:仿生机器人;研究现状;发展方向 中图分类号:TP24 文献标识码:A 文章编号:100025137(2007)0620058205 人们对机器人的幻想与追求已有3000多年的历史,人类希望制造一种像人一样的机器,以便代替人类完成各种工作.1959年,第一台工业机器人在美国诞生,近几十年,各种用途的机器人相继问世,使人类的许多梦想变成了现实.随着机器人工作环境和工作任务的复杂化,要求机器人具有更高的运动灵活性和在特殊未知环境的适应性,机器人简单的轮子和履带的移动机构已不能适应多变复杂的环境要求.在仿生技术、控制技术和制造技术不断发展的今天,仿人及仿生物机器人相继被研制出来,仿生机器人已经成为机器人家族中的重要成员. 1 仿生机器人的基本概念 仿生机器人就是模仿自然界中生物的外部形状、运动原理和行为方式的系统,能从事生物特点工作的机器人.仿生机器人的类型很多,主要为仿人、仿生物和生物机器人3大类.仿生机器人的主要特点:一是多为冗余自由度或超冗余自由度的机器人,机构复杂;二是其驱动方式有些不同于常规的关节型机器人,通常采用绳索、人造肌肉或形状记忆合金等驱动. 2 仿生机器人的国内外研究现状 2.1 水下仿生机器人 水下机器人由于其所处的特殊环境,在机构设计上比陆地机器人难度大.在水下深度控制、深水压力、线路绝缘处理及防漏、驱动原理、周围模糊环境的识别等诸多方面的设计均需考虑.以往的水下机器人采用的都是鱼雷状的外形,用涡轮机驱动,具有坚硬的外壳以抵抗水压.由于传统的操纵与推进装置的体积大、重量大、效率低、噪音大和机动性差等问题一直限制了微小型无人水下探测器和自主式水下机器人的发展.鱼类在水下的行进速度很快,金枪鱼速度可达105k m/h,而人类最快的潜艇速度只有84km/h.所以鱼的综合能力是人类目前所使用的传统推进和控制装置所无法比拟的,鱼类的推进方式已成为人们研制新型高速、低噪音、机动灵活的柔体潜水器模仿的对象.仿鱼推进器效率可达到70%~ 收稿日期:2007209222 基金项目:上海师范大学理工科校级项目(SK200733). 作者简介:王丽慧(1972-),女,上海师范大学机械与电子工程学院副教授.

AUV水下机器人运动控制系统设计(李思乐)

中国海洋大学工程学院 机械电子工程研究生课程考核论文 题目:AUV水下机器人运动控制系统研究报告 课程名称:运动控制技术 姓名:李思乐 学号:21100933077 院系:工程学院机电工程系 专业:机械电子工程 时间:2010-12-26 课程成绩: 任课老师:谭俊哲

AUV水下机器人运动控制系统设计 摘要:以主推加舵控制的小型自治水下机器人为研究对象,建立了水下机器人的数学模型并进行了分析。根据机器人结构的特点,对模型进行了必要的简化。设计了机器人的运动控制系统。以成功研制的无缆自治水下机器人(AUV) 为基础,对其航行控制和定位控制方法进行了较详细的分析. 同时介绍了它的推进器布置、控制系统结构、推力分配等方法。最后展示了它的运行实验结果。 关键词:水下机器人;总体设计方案;运动控制系统;电机仿真 1 引言 近年来国外水下机器人技术发展迅速,技术水平较高。其中,具有代表性的产品有:美国Video Ray 公司开发出的Scout、Explorer、Pro 等系列遥控式水下机器人,美国Seabotix公司研发的LBV-ROV 系列,英国AC-CESS 公司的AC-ROV系列。 随着海洋开发、探测的需求越来越强,水下机器人成为全世界研究的热门课题。小型自治水下机器人具有低成本、小型化、操作灵活等特点成为近年来国内外研究的热点。自治水下机器人(Autonomous Underwater Vehicles, AUV),载体采用模块化设计思想, 可根据需要适当增减作业或传感器模块, 载体采用鱼雷状流线外形, 总长约2 m, 外径25 cm, 基本模块包括推进器模块、能源模块、电子舱模块、传感器模块以及GPS、无线电通讯模块, 基本传感器有姿态传感器、高度计、深度计和视觉传感器, 支持光纤通讯, 载体可外挂声学设备, 通过光纤系统进行遥控操作可实现其半自主作业, 也可在预编程指令下实现自主作业。系统基本模块组成设计如图1-1 所示[1]。它具有开放式、模块化的体系结构和多种控制方式(自主/半自主/遥控),自带能源。这种小型水下机器人可在大范围、大深度和复杂海洋环境下进行海洋科学研究和深海资源调查,具有更广泛的应用前景。在控制系统的设计过程中充分考虑了系统的稳定性和操纵性。控制器具有足够的鲁棒性来克服建模误差,以及水动力参数变化。 图1-1 系统基本模块组成设计 2 机器人物理模型 2.1 AUV 物理模型 为了研究AUV 的运动规律,确定运行过程中AUV 的位置和姿态,需要建立AUV

水下机器人的运动方式

水下机器人的运动方式 水下机器人,也称无人遥控潜水器。一种工作于水下的极限作业机器人,能潜入水中代替人完成某些操作,又称潜水器。水下环境恶劣危险,人的潜水深度有限,所以水下机器人已成为开发海洋的重要工具。 无人遥控潜水器主要有,有缆遥控潜水器和无缆遥控潜水器两种,其中有缆遥控潜水器又分为水中自航式、拖航式和能在海底结构物上爬行式三种。 它的工作方式是由水面母船上的工作人员,通过连接潜水器的脐带提供动力,操纵或控制潜水器,通过水下电视、声呐等专用设备进行观察,还能通过机械手,进行水下作业。目前,无人遥控潜水器主要有,有缆遥控潜水器和无缆遥控潜水器两种,其中有缆遥控潜水器又分为水中自航式、拖航式和能在海底结构物上爬行式三种。 随着海洋开发活动越来越频繁和深进,在超越潜水极限的恶劣水下环境中,搭载传感器、仪器设备的水下机器人很自然地成为人类延伸自己感知能力的主要工具之一。水下机器人通过控制台上的多个旋钮即可控制机器人前进、后退、转弯、上升、下沉;灯光强弱和摄像头焦距;云台俯仰等;机器人可携带定位声纳、图像扫描声纳、多参数水质检测传感器(YSI)、辐射传感器、机械手、金属测厚计等;可实时进行水下视频检测和观测。 水下机器人运动控制中普遍采用的位置传感器为短基线或长基线水声定位系统,速度传感器为多普勒速度计。影响水声定位系统精度的因素主要包括声速误差、应答器响应时间的丈量误差、应答器位置即间距的校正误差。而影响多普勒速度计精度的因素主要包括声速c、海水中的介质物理化学特性、运载器的颠簸等。由于水下机器人运行的环境复杂,水声信号的噪声大,而各种水声传感器普遍存在精度较差、跳变频繁的缺点,因此水下机器人运动控制系统中,滤波技术显得极为重要。 传统的水下机器人滤波算法采用线性平滑、神经网络滤波等。固然在一定程度上解决了工程实践的需求,但由于没有考虑机器人系统的运动特性,滤波效果不十分理想。卡尔曼滤波方法由于在最优估计时充分利用了已经建立的系统运动模型,使滤波的实际效果更加接近真实数据的要求。但标准卡尔曼滤波方法必须清楚地了解系统噪声和量测噪声的统计特性,由于相关水声传感器受各种因素影响波动很大,噪声的统计特性不易获得。为此,引进带渐消因子的自适应卡尔曼滤波方法,可成功地解决这一题目。

仿生水下机器人运动控制方法研究

仿生水下机器人运动控制方法研究 o 成 巍 李喜斌 孙俊岭 袁建平 徐玉如 哈尔滨工程大学水下机器人技术实验室 [摘 要] 近年来仿生技术在水下机器人上的应用已经成为水下机器人的重要研究方向之一。仿生水下机器 人采用尾鳍提供前进动力和改变航向,比传统的桨舵具有高效性和高机动性。本文根据仿生水下机器人水池 试验结果讨论了其运动性能,并在此基础上提出了仿生水下机器人运动控制方法,最后通过仿真试验验证了 该方法的可行性。运动控制研究,是仿生水下机器人其它使命的基础,具有重要的意义。 [关键词]水下机器人;仿生推进;智能控制 [Abstract] The application of the bionic technology in the fields of the Underwater Vehicle has been more attractive recently. Compared to the traditional propeller and rudder, the bionic UV inspired by the fish cruises and turns by its caudal fin, which gives more efficiency and more maneuverability. First we discuss the movement capability of the bionic UV according to the results of its water tank tests. Then we give a method of its motion control here. And the feasibility of the method was proved by simulation experiments at last. Motion control is meaningful for the bionic UV to complete other tasks. [Key Words] underwater vehicle, bionic propulsion, intelligent control. 0.引言 近年来,模仿水生动物推进方式的仿鱼尾推进系统应用于水下无人探测器的可行性已经得到了初步的验证。如美国MIT的RoboTuna [1]、美国Draper实验室的VCUUV[2]、日本东京工业大学的机器海豚[3]、哈尔滨工程大学的“仿生-Ⅰ”[4]等,都采用了具有较高巡游速度的金枪鱼或海豚作为模型,研究仿生推进和操纵系统,以期改善传统水下机器人推进和操纵性能,增强水下机器人的运动能力。仿生水下机器人采用尾鳍提供前进的动力和改变航向,与传统的采用桨舵的水下机器人在运动性能和控制方法上都有很大的差别。因此,研究仿生水下机器人的操纵控制方法成为其重要的研究方向之一。本文以“仿生-I”为研究对象,根据其船模试验水池(108×7×4m)试验了解其运动性能,并在此基础上讨论其运动控制方法。 1.“仿生-I”结构 仿生水下机器人“仿生-I”号,以蓝鳍金枪鱼为蓝本,长2.4m,最大直径0.62m,排水量329kg,负载能力70kg,潜深10m,配有月牙形 [作者简介] 成巍(1977–),河北张家口,博士生,研究领域:机器人运动控制与仿真、生物流体力学。

仿生机器人的研究综述

仿生机器人的研究综述 华明亚 (上海大学机电工程与自动化学院,上海200072) 摘要:在人类认识世界和改造世界的过程中,存在人类无法到达的地方和可能危及人类生命的特殊场合,如星球探测、深海探测、减灾救援和反恐活动等,而仿生机器人为解决上述问题提供了一条有效途径。随着机器人技术和仿生学的发展,仿生机器人的研究正受到学者们的普遍关注。在对仿生机器人进行分类的基础上,从地面仿生机器人、水下仿生机器人以及空中仿生机器人3个方而简要介绍了国内外典型仿生机器人的研究进展,并介绍其发展趋势。 关键词:仿生机器人;机器人运动;发展趋势; Research review on bionic robot Hua Mingya (School of mechanical engineering and automation, Shanghai University, Shanghai 200072, China) Abstract:: In the human understanding and transforming the world in the process, the existence of human beings can not reach the place and special occasions may endanger human life, such as planetary exploration, deep sea exploration,disaster relief and anti terrorist activities, and bionic robot provides an effective way for solving the above problems. With the development of robot technology and bionic, bionic robot research has received wide attention of scholars. In the classification based on bionic robot, bionic robot, bionic robot from air groundbionic robot, underwater 3 party and briefly introduced the research progress oftypical bionic robot at home and abroad, and introduces its development trend. Key words: Bionic robot; robot movement; development trend; 1 机器人的研究现状 1.1 机器人国外研究现状 由于仿生机器人所具有的灵巧动作对于人类的生产和科学研究活动有着极大的帮助,所以,自80年代中期以来,机器人科学家们就开始了有关仿生机器人的研究。 自1983年以来,美国Robotics Research Corporation以拟人臂组合化为设想,基于系列关节研制出K-1607等系列7自由度拟人单臂和K/ B 2017双臂一体机器人,其单臂K/ B 2017已用于空间站实验。

四足仿生移动机器人结构设计

毕业设计说明书 作者:学号: 系:机械工程学院 专业:机械设计制造及其自动化 题目:四足仿生移动机器人结构设计 指导者:副教授 评阅者:

目次 1 概述 ................................................ 错误!未定义书签。 1.1 绪论........................................... 错误!未定义书签。 1.2 国内外研究现状及关键技术....................... 错误!未定义书签。 1.3 本课题主要研究内容............................. 错误!未定义书签。 2 四足仿生移动机器人的结构设计原则及要求 ............... 错误!未定义书签。 2.1 四足仿生移动机器人的总体方案确定............... 错误!未定义书签。 2.2 机器人机械结构及传动设计....................... 错误!未定义书签。 3 电机的确定 .......................................... 错误!未定义书签。 3.1 各关节最大负载转矩计算......................... 错误!未定义书签。 3.2 机器人驱动方案的对比分析及选择................. 错误!未定义书签。 3.3 驱动电机的选择................................. 错误!未定义书签。 4. 带传动设计 .......................................... 错误!未定义书签。 4.1 各参数设计及计算............................... 错误!未定义书签。 4.2 带型选择及带轮设计............................. 错误!未定义书签。5工作装置的强度校核.................................... 错误!未定义书签。 5.1 轴的强度校核................................... 错误!未定义书签。 5.2 轴承的选型..................................... 错误!未定义书签。结论 ................................................. 错误!未定义书签。参考文献 ............................................ 错误!未定义书签。致谢 ................................................. 错误!未定义书签。

巨鱿仿生水下机器人

浙江海洋学院 “巨鱿”水下机器人“Architeuthis Dux” Underwater Vehicle 船舶与海洋工程--智慧海洋研发团队 2012-6-1——2012-8-29

起 点 终点 第一期,挑战竞赛设计 Underwater Vehicle 设计要求 比赛场地: 海洋航行器按申报功能进行5分钟的实航。室内游泳池(长50米,宽21米,深2米,池壁等间距布设8台水下摄像机)。比赛场地上有若干限宽门,门宽1m ,高度为从池底起出水0.5m ,涂装醒目的颜色。比赛中除非航行器沉底,否则不得人工干预比赛。 起点--终点 限宽门布设图→→→ 技术要求,各种设计不做限制。 动力装置:鼓励采用除螺旋桨之外的推进器; 姿态控制:鼓励采用除鳍舵之外的姿态控制方式; 控制方式:鼓励采用除人工遥控控制之外的控制方式; 数据传输:安装数据链路,在地面实时显示航行轨迹。 系统使用频率要求:系统使用频率应符合国家无线电管理委员会的频率分配规定,参赛者应在规定时间上报系统使用频率,一经上报不能改变。现场不能随意开机,届时赛场将备扫频仪和GPS 信号监视设备,违例将被取消参赛资格。 评分要点:根据航行器航行姿态、航线航行、穿越限宽门(或避障碍)、动力方式、航行控制的方式、航行控制的精确性和稳定性、抗过载结构设计等内容评分,设加分项。分值包含航行评分、功能评分,系评分项 加分项 1. 使用新型推进方式 5-10 2. 使用新型导航控制方式 5-10 3. 装载前视或下视或侧视摄像装置,且可实时下传图像供地面显示 3-5 4. 具备下潜持续航行能力 2-5 5. 总体设计新颖 2-5 6. 加工水平 2-5 7. 航海文化创意 1-5 8. 其它功能(每项) 1-2

仿生四足机器人的研究:回顾与展望(3)

仿生四足机器人的研究:回顾与展望 摘要:本文侧重于仿生四足机器人。在这一领域的主要挑战是如何设计高动力性和高负载能力的仿生四足机器人。本文首先介绍了仿生四足机器人,尤其是具有里程碑意义的四足机器人的历史。然后回顾了仿生四足机器人驱动模式的现代技术。随后,描述了四足机器人的发展趋势。基于仿生四足机器人的技术现状,简要回顾了四足机器人的技术难点。又介绍了山东大学研制的液压四足机器人。最后是总结和展望未来的四足机器人。 一、导言 代替人类在复杂和危险的环境中工作的移动机器人的需求引起越来越多的关注,如煤矿井下,核电站,以及打击恐怖主义的战争。一般移动机器人可分为三种类型:空中机器人,水下机器人和地面机器人。地面机器人的开发主要是运用轨道或轮子。轮式和履带式机器人可以在平整地面工作,但大多数是无法在凹凸不平的地面上工作。换句话说,现有的地面机器人只能在部分地面工作。与轮式和履带式机器人相比,腿式机器人有可能适应更为广泛的地形,就像如同有腿的动物,几乎可以行走在所有的地形。例如,羚羊具有很强的运动能力,即便在高度复杂的环境中也一样。因此,近些年人们积极地投入腿式机器人的研究中。腿式机器人可以去动物能够到达的地方,应该要构建并运用于实际。尽管机器人技术领域取得了巨大成就,腿式机器人仍然远远落后于它们的仿生学 [1,2]。 基于机械结构,腿式机器人可分为步行机器人和爬行机器人。与爬行动物的机器人相比,步行机器人几乎与躯干垂直的腿被认为更适应载重。步行机器人可以有效地承受更大的载重。具有联合执行机构的步行机器人具有良好的行走速度和运输能力。因此,基于哺乳类动物的仿生机器人的研究已成为机器人领域的重要发展方向。 现已有一、二、三、四甚至更多条腿的腿式机器人。最普遍的是具有高效率步态和稳定性能的偶数条腿的腿式机器人[3]。在腿式机器人中,四足机器人具

仿生蜘蛛机器人的设计与研究

毕业设计(论文)仿生蜘蛛机器人的设计与研究 姓名:寇艳虎 学号: 专业:机械工程与自动化 系别:机械与电气工程系 指导教师:孔繁征 2021年4月

摘要 本文总结了背景和目标,仿生蜘蛛机器人的简单介绍。通过研究机器人的六足仿生的运动,这种设计已确定脚结构,使用3自由度的分析实现向前运动,把运动的机器人。想象的组件和装配映射仿生蜘蛛机器人以与相关部件的检查,确保机械设计的可行性都包含在总设计。 关键词:仿生;机器人;机构

ABSTRACT The paper has summarized the background and the goal of its topic and has made the simple introduction of the bionic hexapod robot. Through the research of the motion of the six feet of the robot, This design has determined the foot structure,using the analysis of 3 degrees of freedom realizes the forward motion and turning motion of the robot . Picturing of the component and assembly mapping of the bionic hexapod robot as well as the inspection of related parts which ensures the feasibility of the machinery design are both included in the total design. KEYWORDS:bionics ;hexapod robot ;machinery

水下机器人的发展现状

水下机器人的发展现状 摘要:介绍了国内外典型水下机器人的性能特点,阐述了国内外水下机器人发展的历史及现状,总结了水下机器人发展中存在的一些关键问题,并对未来水下机器人领域的发展动向作出了展望. 0引言 机器人技术是集运动学与动力学理论、机械设计与制造技术、计算机硬件与软件技术、控制理论、电动伺服随动技术、传感器技术、人工智能理论等科学技术为一体的综合技术.它的研究与开发标志着一个国家科学技术的发展水平,而其在各种机械领域的普及应用,则显示了这个国家的经济和科技发展的实力.世界上许多国家为了推进本国的机器人开发事业,打入竞争日益激烈的国际高科技市场,不惜投入巨大的人力、财力来推动机器人技术的发展,开发出了许多类型的机器人.机器人的应用领域也逐渐从人工环境扩展到了水下和宇宙.随着人口数量的增长和科学技术水平的不断提高,人类已把海洋作为生存和发展的新领域,海洋的开发与利用已经成为决定一个国家兴衰的基本因素之一.从而使水下机器人具有更加广阔的应用前景.水下机器人设计是一项综合性的复杂工程,技术密集度高,是公认的高科技,它的研制水平体现了一个国家的综合技术力量. 水下机器人一般可以分为两大类:一类是有缆水下机器人,

习惯称为遥控潜水器(RemoteOperatedVehicle,简称ROV);另一类是无缆水下机器人,习惯称为自治潜水器(AutonomousUnderwaterVehicle,简称AUV).此外,按使用的目的分,有水下调查机器人(观测、测量、试验材料的收集等)和水下作业机器人(水下焊接、拧管子、水下建筑、水下切割等作业);按活动场所分,有海底机器人和水中机器人. 水下机器人在20世纪50年代初诞生时,由于所涉及的新技术还不够成熟,电子设备的故障率高,通信的匹配以及起吊回收等问题没有很好解决,因此发展不快,没有受到人们的重视.到了60年代,国际上开始两大开发技术,即宇宙和海洋开发,促使远距离操纵型机器人得到了很快的发展,到了80年代,由于海洋开发与军事上的需要,尤其是水下机器人本体所需的各种材料及技术已得到了较好的解决,水下机器人才得到了很大发展,开发出了一批能工作在各种不同深度,进行多种作业的机器人,可用于石油开采、海底矿藏调查、救捞作业、管道敷设和检查、电缆敷设和检查、海上养殖、江河水库的大坝检查及军事等领域.目前,水下机器人大部分是框架式和类似于潜艇的回转细长体,随着仿生科技技术的不断发展,仿生鱼形态甚至是运动方式的水下机器人将会不断发展。水下机器人工作在充满未知和挑战的海洋环境中,风、浪、流、深水压等各种复杂的海洋环境对机器人的运动和控制干扰严重,使得水下机器人的通信和导航定位十分困难,这是与陆地机器人最大的

四足仿生移动机器人结构设计

河工大 毕业设计说明书 作者:学号: 系:机械工程学院 专业:机械设计制造及其自动化 题目:四足仿生移动机器人结构设计 指导者:张副教授 评阅者: 2013年 5月 29日

目次 1 概述 ................................................ 错误!未定义书签。 1.1 绪论........................................... 错误!未定义书签。 1.2 国内外研究现状及关键技术....................... 错误!未定义书签。 1.3 本课题主要研究内容............................. 错误!未定义书签。 2 四足仿生移动机器人的结构设计原则及要求 ............... 错误!未定义书签。 2.1 四足仿生移动机器人的总体方案确定............... 错误!未定义书签。 2.2 机器人机械结构及传动设计....................... 错误!未定义书签。 3 电机的确定 .......................................... 错误!未定义书签。 3.1 各关节最大负载转矩计算......................... 错误!未定义书签。 3.2 机器人驱动方案的对比分析及选择................. 错误!未定义书签。 3.3 驱动电机的选择................................. 错误!未定义书签。 4. 带传动设计 .......................................... 错误!未定义书签。 4.1 各参数设计及计算............................... 错误!未定义书签。 4.2 带型选择及带轮设计............................. 错误!未定义书签。5工作装置的强度校核.................................... 错误!未定义书签。 5.1 轴的强度校核................................... 错误!未定义书签。 5.2 轴承的选型..................................... 错误!未定义书签。结论 ................................................. 错误!未定义书签。参考文献 ............................................ 错误!未定义书签。致谢 ................................................. 错误!未定义书签。

仿生机器人的研究现状及其发展方向

学号1210111188 论文题目仿生机器人的研究进展及发展趋势学生姓名颛孙鹏 院别机械工程学院 专业班级12机自(3)班 指导教师周妍

仿生机器人的研究进展及其发展趋势 摘要:随着机器人智能化技术的进步,机器人应用领域的拓展,仿生机器人的研究正在引起世界各国研究者的关注。主要对仿生机器人的国内外研究状况进行了综述并对其未来的发展趋势作了展望。 关键词:仿生机器人;研究现状;发展方向 人们对机器人的幻想与追求已有3000多年的历史,人类希望制造一种像人一样的机器,以便代替人类完成各种工作。1959年,第一台工业机器人在美国诞生,近几十年,各种用途的机器人相继问世,使人类的许多梦想变成了现实。随着机器人工作环境和工作任务的复杂化,要求机器人具有更高的运动灵活性和在特殊未知环境的适应性,机器人简单的轮子和履带的移动机构已不能适应多变复杂的环境要求。在仿生技术、控制技术和制造技术不断发展的今天,仿人及仿生物机器人相继被研制出来,仿生机器人已经成为机器人家族中的重要成员。 1 仿生机器人的基本概念 仿生机器人就是模仿自然界中生物的外部形状、运动原理和行为方式的系统,能从事生物特点工作的机器人。仿生机器人的类型很多,主要为仿人、仿生物和生物机器人3大类。仿生机器人的主要特点:一是多为冗余自由度或超冗余自由度的机器人,机构复杂;二是其驱动方式有些不同于常规的关节型机器人,通常采用绳索、人造肌肉或形状记忆合金等驱动。 2 仿生机器人的国内外研究现状 2.1 水下仿生机器人 水下机器人由于其所处的特殊环境,在机构设计上比陆地机器人难度大。在水下深度控制、深水压力、线路绝缘处理及防漏、驱动原理、周围模糊环境的识别等诸多方面的设计均需考虑。以往的水下机器人采用的都是鱼雷状的外形,用涡轮机驱动,具有坚硬的外壳以抵抗水压。由于传统的操纵与推进装置的体积大、重量大、效率低、噪音大和机动性差等问题一直限制了微小型无人水下探测器和自主式水下机器人的发展。鱼类在水下的行进速度很快,金枪鱼速度可达105km/h,而人类最快的潜艇速度只有84km/h。所以鱼的综合能力是人类目前所使用的传统推进和控制装置所无法比拟的,鱼类的推进方式已成为人们研制新型高速、低噪音、机动灵活的柔体潜水器模仿的对象。仿鱼推进器效率可达到70%~90%,与水的相对速度比螺旋桨推进器小得多,有效地解决了噪音问题。美国麻省理工学院和日本都研制出了仿鱼机器人。在国内,中科院沈阳自动化研究所和北京航空航天大学机器人研究所已研制了机器鱼样机。

浅谈仿生机器人的发展

《学科前沿》论文 浅谈仿生机器人的发展 机器人技术作为一门新兴学科,在工业飞速发展的今天扮演着非常重要的作用,而其发展与机械电子、机电一体化、控制原理等多学科的发展息息相关。仿生机器人作为机器人领域的一大分支,可以说是本世纪一个不可忽视的领域,也将是机器人日后发展的大方向。 仿生学是20世纪60年代出现的一门综合性边缘学科,它由生命科学与工程技术科学相互渗透、相互结合而成。它在精密雷达、水中

声纳、导弹制导等许多应用领域中都功不可没。仿生学将有关生物学原理应用到对工程系统的研究与设计中,尤其对当今日益发展的机器人科学起到了巨大的推动作用。当代机器人研究的领域已经从结构环境下的定点作业中走出来,向航空航天、星际探索、军事侦察攻击、水下地下管道、疾病检查治疗、抢险救灾等非结构环境下的自主作业方面发展.未来的机器人将在人类不能或难以到达的已知或未知环境里为人类工作。人们要求机器人不仅适应原来结构化的、已知的环境,更要适应未来发展中的非结构化的、未知的环。除了传统的设计方法,人们也把目光对准了生物界,力求从丰富多彩的动植物身上获得灵感,将它们的运动机理和行为方式运用到对机器人运动机理和控制的研究中,这就是仿生学在机器人科学中的应用。这一应用已经成为机器人研究领域的热点之一,势必推动机器人研究的蓬勃展。 自然界生物的运动行为和某些机能已成为机器人学者进行机器 人设计、实现其灵活控制的思考源泉,导致各类仿生机器人不断涌现。仿生机器人就是模仿自然界中生物的外部形状或某些机能的机器人 系统。仿生机器人的类型很多,按其模仿特性分为仿人类肢体和仿非人生物两大类。由于仿生机器人所具有的灵巧动作对于人类的生产和科学研究活动有着极大的帮助,所以,自80年代中期以来,机器人科学家们就开始了有关仿生机器人的研究。仿人型步行机器人是目前机器人技术的前沿课题,是具有挑战性的技术难题之一。日本本田公司和大阪大学联合推出的P2和P9型仿人步行机器人代表了当今世界的最高水平。仿非人生物机器人的研究近二十年来一直是一个非常活跃的

相关文档
最新文档