高二上椭圆与双曲线定义和性质对比

高二上椭圆与双曲线定义和性质对比
高二上椭圆与双曲线定义和性质对比

椭圆与双曲线定义和性质对比

双曲线几何性质 (1)

百度文库- 让每个人平等地提升自我! 1 双曲线的几何性质 学习目标:理解并掌握双曲线的几何性质,能根据性质解决一些基本问题,进一步体会数形结合的思想. 学习重点:双曲线的几何性质及其运用. 一、学习情境 类比椭圆几何性质和研究方法,我们应该如何去研究双曲线的几何性质? 二、学习任务(理P56—P58例3完;文P49—P51例3完) 问题1: 画出 1 3 42 2 2 2 = - y x 与 1 3 42 2 2 2 = - x y 的图形,观察图形你能得出双曲线的哪些性质? 问题2: 请分别从图形和方程两个角度解释这些性质. 标准方程 图象 范围 对称轴 对称中心 实虚轴 顶点 渐近线 离心率 a,b,c关系 A级理P61 (文P53) 1、2、3、4 B级习题理2.3 (文2.2) 3、4 选做题 1、已知椭圆方程 1 9 16 2 2 = + y x 和双曲线方程 1 9 16 2 2 = - x y 有下列说法: ①椭圆和双曲线的实轴长都是4,但椭圆和双曲线的实轴分别在x轴和y轴上; ②椭圆的长半轴长是4,双曲线的实轴长是3 ③它们的焦距都是10 其中说法正确的个数是() A、0 B、1 C、2 D、3个 2、根据下列条件,求双曲线方程 ①与双曲线1 4 16 2 2 = - y x 有公共焦点,且过点(2 3,2) ②与双曲线1 9 16 2 2 = - y x 有共同的渐近线,且过点(3 2,-3) 三、归纳反思 椭圆和双曲线几何性质的比较: 椭圆双曲线定义 标准方程 图形 (顶点坐 标) (焦点坐 标) 范围 轴 对称轴 (对称中 心) 离心率 及其范围 a,b,c关系 渐近线

双曲线的定义、标准方程及几何性质

高二数学学案 序号 112-113高二年级 班 教师 毕 环 学生 复习三十五 双曲线的定义、标准方程及几何性质 〖学习目的〗1、掌握双曲线的定义、标准方程及几何性质 2、会用定义和几何性质解决简单问题;会求双曲线的标准方程; 〖重点难点〗定义、几何性质的理解及应用 〖学习过程〗 一、复习归纳 1、双曲线的定义:到两定点距离之差的绝对值等于一个常数(小于两定点间距离)的动点 的轨迹为双曲线。 即:当21212F F a PF PF <=-时,P 的轨迹为双曲线;21F F 是焦距,c F F 221= 注: 1)双曲线有两支,设21,F F 分别是左、右焦点,则当a PF PF 221=-时表示右支; 当a PF PF 212=-时表示左支; 2)当21212F F a PF PF ==-时,P 的轨迹为以1F 、2F 为端点的两条射线; 3) 当21212F F a PF PF >=-时,P 的轨迹不存在; 2、双曲线的标准方程 1)当焦点在x 轴上时,双曲线的标准方程为)0,0(12222>>=-b a b y a x ,其中:焦点坐标是)0,(c ± 2)当焦点在y 轴上时,双曲线的标准方程为 )0,0(12 2 22>>=-b a b x a y ,其中:焦点坐标是),0(c ± 注意:(1)222 b a c += 注意与椭圆的区别。 (2)方程特征:左边是平方差的结构,右边是1;分母均大于0,但大小不定; (3)根据方程判断焦点的位置的方法:看系数的符号(正负); 即2x 的系数大于0则在x 轴上,且2x 的分母即是2a ; 反之,2y 的系数大于0则在y 轴上,且2y 的分母即是2a 。 3、求双曲线方程,先要判断焦点的位置,若两种均有可能,则分两种情况讨论; 有的问题也可用两种标准方程的统一形式:)0(122 <=+mn ny mx 来设方程。 4、常用小结论: 1)与双曲线 122 22 =-b y a x 共渐近线的双曲线系方程为:)0(22 22 ≠=-λλb y a x 2)、以x a b y ±= 渐近线的双曲线可设为:)0(2222≠=-λλb y a x 5、双曲线的标准方程与几何性质 二、例题讲解 例1、(1)已知两定点1(5,0)F -,2(5,0)F ,动点P 满足126PF PF -=,求动点P 的轨迹方程 (2)已知两定点1(5,0)F -,2(5,0)F ,动点P 满足1210PF PF -=,求动点P 的轨迹方程. (3)已知双曲线C 与双曲线14 162 2=-y x 有公共焦点,且过点)2,23(,求该双曲线的方程。 例2、方程 1112 2=-++k y k x 表示双曲线,则k 的取值范围是 ( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-

高中数学解析几何双曲线性质与定义

双曲线 双曲线是圆锥曲线的一种,即双曲线是圆锥面与平行于轴的平面相截而得的曲线。 双曲线在一定的仿射变换下,也可以看成反比例函数。 双曲线有两个定义,一是与平面上两个定点的距离之差的绝对值为定值的点的轨迹,二是到定点与定直线的距离之比是一个大于1的常数的点之轨迹。 一、双曲线的定义 ①双曲线的第一定义 一动点移动于一个平面上,与该平面上两个定点F 1、F 2的距离之差的绝对值始终为一定值2a(2a 小于F 1和F 2之间的距离即2a<2c )时所成的轨迹叫做双曲线。 取过两个定点F 1、F 2的直线为x 轴,线段F 1F 2的垂直平分线为y 轴建立直角坐标系。 设M(x ,y)为双曲线上任意一点,那么F1、F2的坐标分别是(-c ,0)、(c ,0).又设点M 与F1、F2的距离的差的绝对值等于常数2a 。 将这个方程移项,两边平方得: 两边再平方,整理得:()() 22222222a c a y a x a c -=-- 由双曲线定义,2c >2a 即c >a ,所以c 2-a 2>0.设222b a c =- (b >0),代入上式得: 双曲线的标准方程:122 22=-b y a x 两个定点F 1,F 2叫做双曲线的左,右焦点。两焦点的距离叫焦距,长度为2c 。坐标轴上 的端点叫做顶点,其中2a 为双曲线的实轴长,2b 为双曲线的虚轴长。 实轴长、虚轴长、焦距间的关系:222b a c +=,

②双曲线的第二定义 与椭圆的方法类似:对于双曲线的标准方程:122 22=-b y a x ,我们将222b a c +=代入, 可得:()a c c a x c x y =± ±+2 2 所以有:双曲线的第二定义可描述为: 平面内一个动点(x,y )到定点F (±c,0)的距离与到定直线l (c a x 2 ±=)的距离之比为 常数()0c e c a a =>>的点的轨迹是双曲线,其中,定点F 叫做双曲线的焦点,定直线l 叫做双 曲线的准线,常数e 是双曲线的离心率。 1、离心率: (1)定义:双曲线的焦距与实轴长的比a c a c e == 22,叫做双曲线的离心率; (2)范围:1>e ; (3)双曲线形状与e 的关系: 1122222-=-=-==e a c a a c a b k ; 因此e 越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔。由此可知,双曲线的离心率越大,它的开口就越阔; (1)双曲线的形状张口随着渐近线的位置变化而变化; (2)渐近线的位置(倾斜)情况又受到其斜率制约; 2、准线方程: 对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 2 1:-=,相对于右焦点 )0,(2c F 对应着右准线c a x l 2 2:=; 位置关系:02>>≥c a a x ,焦点到准线的距离c b p 2 =(也叫焦参数); 对于12222=-b x a y 来说,相对于下焦点),0(1c F -对应着下准线c a y l 2 1:-=;相对于上焦点),0(2c F 对 应着上准线 a y l 2 2:=。

《双曲线的简单几何性质》教学设计.

《双曲线的简单几何性质》教学设计 首都师范大学附属丽泽中学宛宇红靳卫红 一、教材分析 1.教材中的地位及作用 本节课是学生在已掌握双曲线的定义及标准方程之后,在此基础上,反过来利用双曲线的标准方程研究其几何性质。它是教学大纲要求学生必须掌握的内容,也是高考的一个考点,是深入研究双曲线,灵活运用双曲线的定义、方程、性质解题的基础,更能使学生理解、体会解析几何这门学科的研究方法,培养学生的解析几何观念,提高学生的数学素质。 2.教学目标的确定及依据 平面解析几何研究的主要问题之一就是:通过方程,研究平面曲线的性质。教学参考书中明确要求:学生要掌握圆锥曲线的性质,初步掌握根据曲线的方程,研究曲线的几何性质的方法和步骤。根据这些教学原则和要求,以及学生的学习现状,我制定了本节课的教学目标。 (1)知识目标:①使学生能运用双曲线的标准方程讨论双曲线的范围、对称性、 顶点、离心率、渐近线等几何性质; ②掌握双曲线标准方程中c ,的几何意义,理解双曲线的渐近 a, b 线的概念及证明; ③能运用双曲线的几何性质解决双曲线的一些基本问题。 (2)能力目标:①在与椭圆的性质的类比中获得双曲线的性质,培养学生的观察 能力,想象能力,数形结合能力,分析、归纳能力和逻辑推 理能力,以及类比的学习方法; ②使学生进一步掌握利用方程研究曲线性质的基本方法,加深对 直角坐标系中曲线与方程的概念的理解。

(3)德育目标:培养学生对待知识的科学态度和探索精神,而且能够运用运动的,变化的观点分析理解事物。 3.重点、难点的确定及依据 对圆锥曲线来说,渐近线是双曲线特有的性质,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。因此,在教学过程中我把渐近线的发现作为重点,充分暴露思维过程,培养学生的创造性思维,通过诱导、分析,巧妙地应用极限思想导出了双曲线的渐近线方程。这样处理将数学思想渗透于其中,学生也易接受。因此,我把渐近线的证明作为本节课的难点,根据本节的教学内容和教学大纲以及高考的要求,结合学生现有的实际水平和认知能力,我把渐近线和离心率这两个性质作为本节课的重点。 4.教学方法 这节课内容是通过双曲线方程推导、研究双曲线的性质,本节内容类似于“椭圆的简单的几何性质”,教学中可以与其类比讲解,让学生自己进行探究,得到类似的结论。在教学中,学生自己能得到的结论应该让学生自己得到,凡是难度不大,经过学习学生自己能解决的问题,应该让学生自己解决,这样有利于调动学生学习的积极性,激发他们的学习积极性,同时也有利于学习建立信心,使他们的主动性得到充分发挥,从中提高学生的思维能力和解决问题的能力。 渐近线是双曲线特有的性质,我们常利用它作出双曲线的草图,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。因此,在教学过程中着重培养学生的创造性思维,通过诱导、分析,从已有知识出发,层层设(释)疑,激活已知,启迪思维,调动学生自身探索的内驱力,进一步清晰概念(或图形)特征,培养思维的深刻性。 例题的选备,可将此题作一题多变(变条件,变结论),训练学生一题多解,开拓其解题思路,使他们在做题中总结规律、发展思维、提高知识的应用能力和发现问题、解决问题能力。

双曲线的简单几何性质总结归纳(人教版)教学教材

双曲线的简单几何性质 一.基本概念 1 双曲线定义: ①到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹 (21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点. ②动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线 这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线 2、双曲线图像中线段的几何特征: ⑴实轴长122A A a =,虚轴长2b,焦距122F F c = ⑵顶点到焦点的距离:11A F =22A F c a =-,12A F =21A F a c =+ ⑶顶点到准线的距离:21122 a A K A K a c ==-;21221 a A K A K a c ==+ ⑷焦点到准线的距离:22 11221221 a a F K F K c F K F K c c c ==-==+或 ⑸两准线间的距离: 2 122a K K c = ⑹21F PF ?中结合定义a PF PF 221=-与余弦定理21cos PF F ∠,将 有关线段1PF 、2PF 、21F F 和角结合起来,122 12 2 PF F F PF S b ?∠= ⑺离心率: 121122121122PF PF A F A F c e PM PM A K A K a ======∈(1,+∞) ⑻焦点到渐近线的距离:虚半轴长b ⑼通径的长是a b 22,焦准距2b c ,焦参数2b a (通径长的一半)其中 22b a c +=a PF 221=- 3 双曲线标准方程的两种形式: ①22 a x -22 b y =1, c =22b a +,焦点是F 1(-c ,0),F 2(c ,0) ②22a y -22 b x =1, c =22b a +,焦点是F 1(0,-c )、F 2(0,c ) 4、双曲线的性质:22 a x -22b y =1(a >0,b >0) ⑴范围:|x |≥a ,y ∈R ⑵对称性:关于x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点A 1(-a ,0),A 2(a ,0) ⑷渐近线: ①若双曲线方程为12222=-b y a x ?渐近线方程?=-02222b y a x x a b y ±= ②若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x ③若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上)

双曲线的定义、方程和性质(精)

双曲线的定义、方程和性质 执教:钱如平班级:高二(3) 地点:本教室时间:2000.4.6 一、学习目标: 掌握双曲线的定义、方程和性质,注意与椭圆的区别和联系。 二、知识要点: 1.定义 (1)第一定义:平面内到两定点F1、F2的距离之差的绝对值等于定长2a(小于|F1F2|)的点的轨迹叫双曲线。 说明: ①||PF1|-|PF2||=2a(2a<|F1F2|)是双曲线; 若2a=|F1F2|,轨迹是以F1、F2为端点的射线;2a>|F1F2|时无轨迹。 ②设M是双曲线上任意一点,若M点在双曲线右边一支上,则|MF1|>|MF2|,|MF1|-|MF2|=2a; 若M在双曲线的左支上,则|MF1|<|MF2|,|MF1|-|MF2|=-2a,故|MF1|-|MF2|=±2a,这是与椭圆不同的地方。 (2)第二定义:平面内动点到定点F的距离与到定直线L的距离之比是常数e(e>1)的点的轨迹叫双曲线,定点叫焦点,定直线L叫相应的准线。 3.几个概念 (1)等轴双曲线:实、虚轴相等的双曲线。等轴双曲线的渐近线为y=±x,离心率为2。

(2) 共轴双曲线:以已知双曲线的实轴为虚轴,虚轴为实轴的双曲线叫原双曲线的共轴 双曲线,例:12222=-b y a x 的共轴双曲线是122 22-=-b y a x 。 ① 双曲线及其共轴双曲线有共同的渐近线。但有共同的渐近线的两双曲线,不一定是共 轴双曲线;②双曲线和它的共轴双曲线的四个焦点在同一个圆周上。 三、 解题方法指导: 例1.设双曲线方程为12 22 =-y x ,则中心坐标为 ,焦点坐标为 ,顶点坐标为 ,实轴长为 ,虚轴长为 ,离心率为 ,准线方程为 ,渐近线方程 ,对称轴方程为 ,实轴方程为 ,共轴双曲线方程为 。 解:中心(0,0),焦点坐标(±3 ,0),顶点坐标(±2 ,0),实轴长为22,虚轴 长为2,离心率为 26,准线方程为332±=x ,准线间距离为3 3 4,渐近线方程为x y 2 2 ± =,对称轴方程x=0,y=0,实轴方程y=0, (22≤≤-x ),共轴双曲线1222-=-y x ,即12 22 =-x y 。 说明:根据双曲线的方程熟练地写出其性质,是学习双曲线基本要求,也是一项重要基本功,对知识要点中的性质部分要熟记。 例2.设曲线C 的方程为Ax 2+By 2=|(A·B ≠0),则 ① C 表示椭圆的充要条件是 ②C 表示焦点在X 轴上的椭圆的充要条件是 ③C 表示焦点在Y 轴上的椭圆的充要条件是 ④C 表示双曲线的充要条件是 ⑤C 表示焦点在X 轴上的双曲线的充要条件是 ⑥C 表示焦点在Y 轴上的双曲线的充要条件是 ⑦C 表示圆的充要条件是 解:C 的方程可化为)0(1112 2≠=+AB B y A x 则①C 表示椭圆的充要条件是B 1 A 1 ,0B 1 ,0A 1 ≠>>,即B A ,0B ,0A ≠>>, ②B >A >0, ③A >B >0, ④AB <0, ⑤A >0,B <0, ⑥A <0,B >0, ⑦A =B >0,

双曲线的简单几何性质 (第二课时) 教案 2

课 题:8.4双曲线的简单几何性质 (二) 教学目的: 1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质 2.掌握等轴双曲线,共轭双曲线等概念 3.并使学生能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题 4.通过教学使同学们运用坐标法解决问题的能力得到进一步巩固和提高,“应用数学”的意识等到进一步锻炼的培养 教学重点:双曲线的渐近线、离心率 教学难点:渐近线几何意义的证明,离心率与双曲线形状的关系 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.范围、对称性 由标准方程122 22=-b y a x ,从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方 向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭 圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心 2.顶点 顶点:()0,),0,(21a A a A - 特殊点:()b B b B -,0),,0(21 实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做虚半轴长 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异 3.渐近线 过双曲线122 22=-b y a x 的两顶点21,A A ,作Y 轴的平行线a x ±=,经过21,B B 作X 轴的 平行线b y ±=,四条直线围成一个矩形 矩形的两条对角线所在直线方程是x a b y ± =( 0=±b y a x ),这两条直线就是双曲线的渐近线 4.等轴双曲线 定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e x y Q B 1 B 2A 1A 2N M O

(完整版)双曲线简单几何性质知识点总结

四、双曲线 一、双曲线及其简单几何性质 (一)双曲线的定义:平面内到两个定点F 1,F 2的距离差的绝对值等于常数2a (0<2a <|F 1F 2|)的点的轨 迹叫做双曲线。 定点叫做双曲线的焦点;|F 1F 2|=2c ,叫做焦距。 ● 备注:① 当|PF 1|-|PF 2|=2a 时,曲线仅表示右焦点F 2所对应的双曲线的一支(即右支); 当|PF 2|-|PF 1|=2a 时,曲线仅表示左焦点F 1所对应的双曲线的一支(即左支); ② 当2a=|F 1F 2|时,轨迹为以F 1,F 2为端点的2条射线; ③ 当2a >|F 1F 2|时,动点轨迹不存在。 双曲线12222=-b y a x 与122 22=-b x a y (a>0,b>0)的区别和联系

(二)双曲线的简单性质 1.范围: 由标准方程122 22=-b y a x (a >0,b >0),从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的 方向来看,随着x 的增大,y 的绝对值也无限增大。 x 的取值范围________ ,y 的取值范围______ 2. 对称性: 对称轴________ 对称中心________ 3.顶点:(如图) 顶点:____________ 特殊点:____________ 实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做半虚轴长 双曲线只有两个顶点,而椭圆则有四个顶点 4.离心率: 双曲线的焦距与实轴长的比 a c a c e = = 22,叫做双曲线的离心率 范围:___________________ 双曲线形状与e 的关系:1122 222-=-=-==e a c a a c a b k ,e 越大,即渐近线的斜率的绝对值就越 大,这时双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔 5.双曲线的第二定义: 到定点F 的距离与到定直线l 的距离之比为常数 )0(>>= a c a c e 的点的轨迹是双曲线 其中,定点叫做双 曲线的焦点,定直线叫做双曲线的准线 常数e 是双曲线的离心率. 准线方程: 对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 2 1:-=, 相对于右焦点)0,(2c F 对应着右准线 c a x l 2 2:= ; 6.渐近线 过双曲线122 2 2=-b y a x 的两顶点21,A A ,作x 轴的垂线a x ±=,经过21,B B 作y 轴的垂线b y ±=,四条直线 围成一个矩形 矩形的两条对角线所在直线方程是____________或(0 =±b y a x ),这两条直线就是双曲线 的渐近线 双曲线无限接近渐近线,但永不相交。

双曲线的几何性质(一)

双曲线的几何性质(一) 教学目标 1.掌握双曲线的几何性质 2.能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程. 教学重点 双曲线的几何性质 教学难点 双曲线的渐近线 教学过程 I.复习回顾: 双曲线的标准方程、研究椭圆的几何性质的方法与步骤 II.讲授新课: 1.范围: 双曲线在不等式x ≥a 与x ≤-a 所表示的区域内. 2.对称性: 双曲线关于每个坐标轴和原点都对称, 这时,坐标轴是双曲线的对称轴,原点是 双曲线的对称中心,双曲线的对称中心叫 双曲线的中心。 3.顶点: 双曲线和它的对称轴有两个交点A 1(-a ,0)、A 2(a ,0),它们叫做双曲线的顶点. 线段A 1A 2叫双曲线的实轴,它的长等于2a ,a 叫做双曲线的实半轴长;

线段B 1B 2叫双曲线的虚轴,它的长等于2b ,b 叫做双曲线的虚半轴长. 4.渐近线 ①我们把两条直线y=± x a b 叫做双曲线的渐近线; ②从图可以看出,双曲线122 22=-b y a x 的各支向 外延伸时,与直线y =±x a b 逐渐接近. ③“渐近”的证明:略 ④等轴双曲线: 实轴和虚轴等长的双曲线叫做等轴双曲线. ⑤ 利用双曲线的渐近线,可以帮助我们较准确地画出双曲线的草图.具体做法是:画出双曲线的渐近线,先确定双曲线顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限内从渐近线的下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线. 注意:⑴求渐近线方程的简便方法:令方程左边等于零即0b y a x 22 22=- ⑵等轴双曲线一般可设为k y x 22=- 等轴双曲线的性质:①离心率为2 ②等轴双曲线的相伴矩形是正方形 ③渐近线方程为y =±x 且互相垂直 ④两条渐近线平分双曲线实轴和虚轴所成的角。 5.离心率:

双曲线的定义及其基本性质

双曲线的定义及其基本性质 一、双曲线的定义: (1)到两个定点F 1与F 2的距离之差的绝对值等于定长(< 2 1F F )的点的轨迹。两定点叫双曲线的焦点。 a PF PF 221=-<2 1F F (2)动点P 到定点F 的距离与到一条定直线的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线。这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线。 二、双曲线的方程: 双曲线标准方程的两种形式: ① 12 222=-b y a x ,2 2b a c +=,焦点是 F 1(-c,0),F 2(c,0) 12222=-b x a y , 22b a c +=, 焦点是F 1(0, -c),F 2(0, c) 三、双曲线的性质: (1)焦距F 1F 2=2c,实轴长A 1A 2=2a,虚轴长2b,且a 2+b 2=c 2 (2)双曲线的离心率为e= a c ,e>1恒成立。 (3)焦点到渐近线的距离:虚半轴长b ,通径长EF = a b 2 2 (4)有两条准线,c a x l 21:- =c a x l 2 2:= 四、双曲线的渐近线: (1)若双曲线为12222=-b y a x ?渐近线方程为x a b y ±=, (2)若已知某双曲线与12222=-b y a x 有公共渐近线,则可设此双曲线为λ=-22 22b y a x , (3)特别地当a=b 时?2=e ?两渐近线互相垂直,分别为y =±x ,此时双曲线为等轴双曲线 五、共轭双曲线: 双曲线A 的实轴为双曲线B 的虚轴,双曲线A 的虚轴为双曲线B 的实轴,即11 122=+B A e e 。 K 2 O F 1 F 2 x y O F 1F 2 x y

高中数学双曲线的标准方程及其几何性质

双曲线的标准方程及其几何性质 一、双曲线的标准方程及其几何性质. 1.双曲线的定义:平面内与两定点F 1、F 2的距离差的绝对值是常数(大于零,小于|F 1F 2|)的点的轨迹叫双曲线。两定点F 1、F 2是焦点,两焦点间的距离|F 1F 2|是焦距,用2c 表示,常数用2a 表示。 (1)若|MF 1|-|MF 2|=2a 时,曲线只表示焦点F 2所对应的一支双曲线. (2)若|MF 1|-|MF 2|=-2a 时,曲线只表示焦点F 1所对应的一支双曲线. (3)若2a =2c 时,动点的轨迹不再是双曲线,而是以F 1、F 2为端点向外的两条射线. (4)若2a >2c 时,动点的轨迹不存在. 2.双曲线的标准方程:22 a x -22b y =1(a >0,b >0)表示焦点在x 轴上的双曲线; 22a y -2 2b x =1(a >0,b >0)表示焦点在y 轴上的双曲线. 判定焦点在哪条坐标轴上,不像椭圆似的比较x 2 、y 2 的分母的大小,而是x 2 、y 2 的系数 的符号,焦点在系数正的那条轴上. 4.直线与双曲线的位置关系,可以通过讨论直线方程与双曲线方程组成的方程组的实数解的个数来确定。 (1)通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式?,则有:?>?0直线与双曲线相交于两个点;?=?0直线与双曲线相交于一个点;?

(3)直线l 被双曲线截得的弦长2 212))(1(x x k AB -+=或2 212 ))(11(y y k -+ ,其中k 是直线l 的斜率,),(11y x ,),(22y x 是直线与双曲线的两个交点A ,B 的坐标,且 212212214)()(x x x x x x -+=-,21x x +,21x x 可由韦达定理整体给出. 二、例题选讲 例1、中心在原点,焦点在x 轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距 离为2,则双曲线方程为 ( ) A .x 2-y 2=1 B .x 2-y 2=2 C .x 2-y 2= 2 D .x 2-y 2=1 2 解析:由题意,设双曲线方程为x 2a 2-y 2 a 2=1(a >0),则c =2a ,渐近线y =x , ∴ |2a | 2 =2,∴a 2=2.∴双曲线方程为x 2-y 2=2. 答案:B 例2、根据以下条件,分别求出双曲线的标准方程. (1)过点)2,3(-P ,离心率2 5= e . (2)1F 、2F 是双曲线的左、右焦点,P 是双曲线上一点,双曲线离心率为2且 ?=∠6021PF F ,31221=?F PF S . 解:(1)依题意,双曲线的实轴可能在x 轴上,也可能在y 轴上,分别讨论如下. 如双曲线的实轴在x 轴上,设122 22=-b y a x 为所求. 由25=e ,得4522=a c . ① 由点)2,3(-P 在双曲线上,得 12 922 =-b a .②, 又222c b a =+,由①、②得12=a ,4 1 2= b . ③ 若双曲线的实轴在y 轴上,设12222=-b y a x 为所求. 同理有4522=a c ,19 222=-b a , 222c b a =+.解之,得2 17 2- =b (不合,舍去). ∴双曲线的实轴只能在x 轴上,所求双曲线方程为142 2 =-y x . (2)设双曲线方程为12222=-b y a x ,因c F F 221=,而2==a c e ,由双曲线的定义,得

双曲线的几何性质.

双曲线的几何性质 (4) 教学目标:能综合应用所学知识解决较综合的问题,提高分析问题与解决问题 的能力. 教学过程 例1 中心在原点,一个焦点为F (1,0)的双曲线,其实轴长与虚轴长之比为 m , 求双曲线标准方程. 例2 已知点A(3,2),F(2,0),在双曲线22 13y x -=上求一点 P ,使1||||2 PA PF +的值最小. 例3 已知双曲线2 2 12 y x -=,求过定点A (2,1)的弦的中点P 的轨迹方程. 例4 在双曲线22 11312 x y - =-的一支上有三个不同点A (x 1,y 1)、B (x 2,6)、C (x 3,y 3)与焦点F 1(0,5)的距离成等差数列,求y 1+y 3的值. 例5已知梯形ABCD 中,AB//CD,|AB|=2|CD|,点 E 满足 ,双曲线 过 C 、 D 、 E 三点,且以 A 、 B 为焦点,当23 34 λ≤≤时,求双曲线离心率 的取值范围. 课堂练习 1.设直线y =kx 与双曲线4x 2―y 2=16相交,则实数k 的取值范围是 (A )―2

双曲线及其性质知识点及题型归纳总结

双曲线及其性质知识点及题型归纳总结 知识点精讲 一、双曲线的定义 平面内与两个定点21,F F 的距离的差的绝对值.....等于常数(大于零且小于21F F )的点的轨迹叫做双曲线(这两个定点叫双曲线的焦点).用集合表示为 {})20(22121F F a a MF MF M <<=-. 注(1)若定义式中去掉绝对值,则曲线仅为双曲线中的一支. (2)当212F F a =时,点的轨迹是以1F 和2F 为端点的两条射线;当02=a 时,点的轨迹是线段21F F 的垂直平分线. (3)212F F a >时,点的轨迹不存在. 在应用定义和标准方程解题时注意以下两点: ①条件“a F F 221>”是否成立;②要先定型(焦点在哪个轴上),再定量(确定2a ,2b 的值),注意222c b a =+的应用. 二、双曲线的方程、图形及性质 双曲线的方程、图形及性质如表10-2所示.

题型归纳及思路提示 题型1 双曲线的定义与标准方程 思路提示 求双曲线的方程问题,一般有如下两种解决途径: (1)在已知方程类型的前提下,根据题目中的条件求出方程中的参数a ,b ,c ,即利用待定系数法求方程. (2)根据动点轨迹满足的条件,来确定动点的轨迹为双曲线,然后求解方程中的参数,即利用定义法求方程. 例10.11 设椭圆1C 的离心率为 13 5 ,焦点在x 轴上且长轴长为26,若曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为( ) A. 13422 22=-y x B. 151322 22=-y x C. 14322 22=-y x D. 112 1322 22=-y x 解析 设1C 的方程为)0(122 22>>=+b a b y a x , 则?????==13 5262a c a ,得???==513c a .

双曲线的画法和性质

50 第十章 双曲线的画法和性质 一.双曲线的定义: 1.在平面内,到两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线。这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距。 2.双曲线的标准方程: 设M (x , y )是双曲线是上任意一点,双曲线的焦距为2c (c >0),则如图建立直角坐标系,又F 1、F 2的坐标分别是F 1(-c , 0), F 2(c , 0),若M 点与F 1、F 2两点的距离的差的绝对值等于2a (c >a >0),则 ||MF 1|-|MF 2||=2a , ∴ a y c x y c x 2)()(2222=+--++, 图10-1 整理化简,并且设b 2=c 2-a 2得双曲线的标准方程 12 2 22 =-b y a x . 3.双曲线的第二定义: 设动点M (x , y )与定点F (c , 0)的距离和它到 定直线l : x =c a 2 的距离的比是常数 a c (c >a >0),则点M 的轨迹是双曲线。点F 是双曲线的一个焦点,直线l 是双曲线中对应于 焦点F 的准线。常数e =a c (e >1)是双曲线的离 心率。 图10-2 4.双曲线的参数方程: 以原点为圆心,分别以a 、b (a , b >0)为半径作两个圆,|OA |=a , |OB |=b , 点P 是以a 为半径的圆上的一个点,点C 是OA 与半径为bd 圆的交点,过点C 作CN ⊥Ox ,交直线OP 于N ,过点N 作OX 轴的平行线, 过点P 作PR ⊥OP ,交Ox 轴于R ,过点R 作直线RM 交过点N 的x 轴的平行线于点 M ,当点P 在圆上运动时,M 点的轨迹是双 曲线。 设点M 的坐标是(x , y ),φ是以Ox 为始边,OP 为终边的正角,取φ为参数,那么 x =|OR |=|OP |se c φ=a se c φ, y =|RM |=|CN |=|OC |t g φ=bt g φ,

直线方程及圆、椭圆、双曲线、抛物线定义、性质及标准方程

直线方程及圆、椭圆、双曲线、抛物线定义、性质及标准方程 归纳整理:杜响 1.斜率公式 21 21 y y k x x -= -(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 11 2121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ?=≠; ②1212120 l l A A B B ⊥?+=; 4.夹角公式 (1)21 21 tan | |1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)1221 1212 tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120 A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2 π . 5. 1l 到2l 的角公式 (1)21 21 tan 1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)1221 1212 tan A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120 A A B B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2 π . 6.四种常用直线系方程 (1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.

双曲线的几何性质(习题)

双曲线的几何性质 年级__________ 班级_________ 学号_________ 姓名__________ 分数____ — 一、选择题(共34题,题分合计170分) ) 1.双曲线9y 2-x 2 -2x -10=0的渐近线方程是 =±3(x +1) =±3(x -1) =±31(x +1) =±31 (x -1) 2.若双曲线x 2-y 2 =1右支上一点P (a ,b )到直线y =x 的距离为2,则a +b 的值是 A.-21 B.21 C.-21或21 或-2 ( 3.过(0,3)作直线 L ,若L 与双曲线 342 2y x =1,只有一个公共点,则L 共有

条 条 条 条 4.双曲线2mx 2 -my 2 =2,有一条准线方程是y =1,则m 应等于 是 21 34 5.双曲线15)1(422=--y x ,经过第一象限内的点) 217 , (m P ,则P 点到双曲线右焦点的距离是__________. 6.双曲线11692 2=-y x 的一个焦点到一条渐近线的距离等于 A.3 7.已知双曲线中心在原点且一个焦点为 )0,7(F ,直线y =x -1与其相交于M ?N 两点,MN 中点的横坐标为, 32 -则此双曲线的方程是 … A.14322=-y x B.13422=-y x C.12522=-y x D.1522 2=-y x 8.双曲线虚轴的一个端点为M,两个焦点为F,F ,∠FMF =120°则双曲线的离心率为 A.3 B.26 C.36 D.33 9.双曲线的渐近线方程为y =±2(x -1),一焦点坐标为(1+25,0),则该双曲线的方程是 A.116)1(422=--y x B.1164)1(22=--y x C.1416)1(22=--y x D.116)1(42 2=--y x 10.过双曲线1 22 2 =-y x 的右焦点F 作直线l 交双曲线于A ?B 两点,若|AB |=4,则这样的直线l 有 条 条 条 条 11.以椭圆114416922=+y x 的右焦点为圆心,且与双曲线116922=-y x 的渐近线相切的圆的方程是 / A. 91022=+-+x y x B. 91022=--+x y x C. 091022=-++x y x

高中数学双曲线知识点与性质大全

双曲线与方程 【知识梳理】 1、双曲线的定义 (1)平面内,到两定点1F 、2F 的距离之差的绝对值等于定长()1222,0a F F a a >>的点的轨迹称为双曲线,其中两定点1F 、2F 称为双曲线的焦点,定长2a 称为双曲线的实轴长,线段12F F 的长称为双曲线的焦距.此定义为双曲线的第一定义. 【注】12122PF PF a F F -==,此时P 点轨迹为两条射线. (2)平面内,到定点的距离与到定直线的距离比为定值()1e e >的点的轨迹称为双曲线,其中定点称为双曲线的焦点,定直线称为双曲线的准线,定值e 称为双曲线的离心率.此定义为双曲线的第二定义. 3、渐近线 双曲线()22221,0x y a b a b -=>的渐近线为22220x y a b -=,即0x y a b ±=,或b y x a =±. 【注】 ①与双曲线22221x y a b -=具有相同渐近线的双曲线方程可以设为()22 220x y a b λλ-=≠; ②渐近线为b y x a =±的双曲线方程可以设为()22220x y a b λλ-=≠; ③共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.共轭双曲线具有相同的渐近线. ④等轴双曲线:实轴与虚轴相等的双曲线称为等轴双曲线. 4、焦半径 双曲线上任意一点P 到双曲线焦点F 的距离称为焦半径.若00(,)P x y 为双曲线()22 221,0x y a b a b -=>上的任意一点, 1(,0)F c -,2(,0)F c 为双曲线的左、右焦点,则10||PF ex a =+,20||PF ex a =-,其中c e a = . 5、通径 过双曲线()22 221,0x y a b a b -=>焦点F 作垂直于虚轴的直线,交双曲线于A 、B 两点,称线段AB 为双曲线的通径, 且2 2b AB a =.

高中数学双曲线的简单几何性质(经典)

双曲线的简单几何性质 【知识点1】双曲线22a x -2 2b y =1的简单几何性质 (1)范围:|x |≥a,y∈R. (2)对称性:双曲线的对称性与椭圆完全相同,关于x 轴、y 轴及原点中心对称. (3)顶点:两个顶点:A 1(-a,0),A 2(a,0),两顶点间的线段为实轴长为2a ,虚轴长为2b ,且c 2 =a 2 +b 2 . (4)渐近线:双曲线特有的性质,方程y =±a b x ,或令双曲线标准方程22a x -2 2b y =1中的1为零即得渐近线方程. (5)离心率e =a c >1,随着e 的增大,双曲线张口逐渐变得开阔. (6)等轴双曲线(等边双曲线):x 2-y 2=a 2 (a≠0),它的渐近线方程为y =±x,离心率e =2. (7)共轭双曲线:方程22a x -22b y =1与22a x -2 2b y =-1表示的双曲线共轭,有共同的渐近线和相等的焦距,但需注 意方程的表达形式. 注意:(1)与双曲线22a x -22b y =1共渐近线的双曲线系方程可表示为22a x -2 2b y =λ(λ≠0且λ为待定常数) (2)与椭圆22a x +22b y =1(a >b >0)共焦点的曲线系方程可表示为λ-22a x -λ-22b y =1(λ<a 2,其中b 2 -λ>0时 为椭圆, b 2 <λ<a 2 时为双曲线) (3)双曲线的第二定义:平面内到定点F(c,0)的距离和到定直线l :x =c a 2的距离之比等于常数e =a c (c >a >0)的点的轨迹是双曲线,定点是双曲线的焦点,定直线是双曲线的准线,焦准距(焦参数)p =c b 2 ,与椭圆相同. 1、写出双曲线方程125492 2 -=-y x 的实轴长、虚轴的长,顶点坐标,离心率和渐近线方程 2、已知双曲线的渐近线方程为x y 4 3 ±=,求双曲线的离心率

相关文档
最新文档