螺母防松动方法及示意图

螺母防松动方法及示意图
螺母防松动方法及示意图

螺母防松动的方法及示意图

1、加装平垫片

垫圈指垫在被连接件与螺母之间的零件。一般为扁平形的金属环,用来保护被连接件的表面不受螺母擦伤,分散螺母对被连接件的压力。

2、加平垫圈和弹簧垫圈

弹簧垫圈在一般机械产品的承力和非承力结构中应用广泛,其特点是成本低廉、安装方便,适用于装拆频繁的部位。但是弹簧垫圈的防松能力很低!

3、自锁螺母

一般的螺母在使用过程由于振动等其它原因会自行松脱,如振动,为防止这种现象,于是就发明了自锁螺母。自锁螺母它的功能主要是防松、抗振。用于特殊场合。其工作原理一般是靠摩擦力自锁。自锁螺母按功能

分类的类型有嵌尼龙圈的、带颈收口的、加金属防松装置的。它们都属于有效力矩型防松螺母。自锁螺母由于其性质,拧的比较困难。

4、螺母防松液

将螺母防松液涂抹在螺栓拧紧处,再拧上螺母,可以达到防松的效果。

5、双螺母(左右旋)防松

通过一个左旋螺母和一个右旋螺母配合,进行拧紧防松,这也是一个不错的方法。

6、螺丝螺母钻孔加销固定

在机械中,销钉主要用作装配定位,也可用作连接、放松级安全装置中的过载剪断连接。销的类型有:圆柱销、圆锥销、带孔销、开口销和安全销等。

7、加热紧固

通过螺栓的中央加热孔,加热螺栓。待螺栓在热态下伸长后,在热态下紧固螺母。待冷态螺栓自然收缩,下形成预紧力。

+紧固件常用防松方法

224 第21章 螺纹紧固件连接的防松 一、松动机理 螺纹连接在工作状态下可能会经受所有类别的变动载荷,包括极为激烈的振动和冲击载荷。在变动载荷的作用下,螺纹连接的失效通常是由其自身的松动和疲劳破坏所引起的。在一般情况下,螺纹连接抗振松的寿命比其材料和结构的疲劳寿命短得多,远在疲劳破坏之前,就已经出现了因松动而造成螺纹连接的松脱失效,或者出现了因松动而导致连接件和被连接件的过早疲劳破坏。螺纹连接的失效会影响产品和设备的正常运转,甚至会造成严重的后果。如何防止螺纹连接的松动是研制和设计螺纹紧固件的重要任务之一。 在通常的螺纹连接中,摩擦力产生于内外螺纹接触面或螺纹紧固件支承面与被连接件的接触面上。当螺纹连接开始松转时,克服螺纹接触面上的摩擦所需的力矩M 1为: ()αρ-= tg Qd M 2 2 1……………………………(公式21-1) 式中:Q ——作用于螺栓或螺钉上的预紧力,又称轴力或紧固系统的夹紧力; d 2——螺纹中径; ρ——摩擦角,对于三角形螺纹,β ρcos 1 M tg = ,M 1是螺纹接触面之间的摩擦系数,β是牙型半角; α——螺纹螺旋线的升角,又称导角。 螺纹紧固件被拧紧后,由于螺母或螺钉头支承面上的摩擦而产生的附加力矩M 2为: 2 2 22D Q M μ= …………………………(公式21-2) 式中:μ 2——螺母或螺钉头支承面与被连接件接触面之间的摩擦系数; D 2——螺母或螺钉头支承面的平均直径,在接触压力均匀的情况下,D 2的精确值是: ??? ? ??--=223 3232n n R R R R D ωω ,R ω和R n 分别是支承面的外半径和内半径,如果支承面不平或接触压力不均匀,D 2就可能随着支承面的内半径到外半径而变化。 综上所述,决定螺纹连接开始松转时的总力矩M 为: ()??????+-=+=22 22221D tg d Q M M M μαρ…………………(公式21-3) 分析公式21-3可知,仅在总力矩M 等于或小于零的情况下,螺纹紧固件才开始自行松 转。对于连接用螺纹,在受静载荷作用时,即使润滑条件很理想,其摩擦角也始终大于升角:ρ>α,即满足螺纹的自锁条件,使公式21-3括号内的总值不会等于或小于零,螺纹紧固件也就不会自行松转。但是在经受动载荷时,例如在振动和冲击的作用下,螺纹紧固件在螺纹和支承面上产生了微观的滑移,这种相对的微观运动使摩擦系数由相对高的静态值变为很低的动态值,螺纹连接在各个方向上处于自由摩擦状态。此时,作用在螺纹上的轴向力在圆周方向上形成一个导致螺母松转的内松出力矩,使螺母开始松转,就像一个在斜面上的重物,由于摩擦力的变小或消失而往下滑动一样。这种松转称为螺纹连接的自松。千万次的振动循环耗尽了螺纹连接的防松摩擦阻力,使其从细微的松转直到完全的松脱。 螺纹件在螺纹面和支承面上的微观滑移是怎样产生的呢?对于承受轴向动载荷的螺纹

液压盘刹使用说明书

液控盘式刹车装置 使用操作维护手册 川油广汉宏华有限公司 CHUAN YOU GUANGHAN HONGHUA 二零零三年八月

目录 1、简介--------------------------------------------------------------------------- 1 2、主要性能参数--------------------------------------------------------------- 2 3、工作原理与结构特征------------------------------------------------------ 3 4、安装--------------------------------------------------------------------------- 11 5、调试--------------------------------------------------------------------------- 15 6、操作规程-------------------------------------------------------------- ----- - 18 7、维护与保养--------------------------------------------------------------

---- 20 8、故障检修---------------------------------------------------------------- ---- - 25 9、关键元器件的拆装与更换-------------------------------------------- ---- 26 10、推荐备件清单----------------------------------------------------------- ---- 31

十二种经典的螺栓防松设计

十二种经典的螺栓防松设计 常用的防松方法有三种:摩擦防松、机械防松和永久防松。机械防松和摩擦防松称为可拆卸防松,而永久防松称为不可拆卸防松。 常用的永久防松有:点焊、铆接、粘合等,这种方法在拆卸时大多要破坏螺纹紧固件,无法重复使用。常见摩擦防松有:利用垫片、自锁螺母及双螺母等。常见的机械防松方法:利用开口销、止动垫片及串钢丝绳等。 今天咱们分享12种比较流行或者说在网上分享比较多的防松设计,希望这些设计能给大家提供选择或者带来帮助。

1. 双螺母 对顶防松螺母原理:双螺母防松时产生两个摩擦力面,第一摩擦力面是螺母与被紧固件之间,第二摩擦力面是螺母与螺母之间。安装时,第一摩擦力面的预紧力为第二摩擦力面的80%。在冲击和振动载荷作用时,第一摩擦力面的摩擦力会减小和消失,但同时,第一螺母会被压缩导致第二摩擦力面的摩擦力进一步加大。螺母松退必须克服第一摩擦力和第二摩擦力,由于第一摩擦力减小的同时第二摩擦力会增大。这样防松效果就会比较好。

唐氏螺纹防松原理:唐氏螺纹紧固件也是采用双螺母防松,但是,两个螺母的旋转方向相反。在冲击和振动载荷作用时,第一摩摩擦力面的摩擦力会减小和消失, 第一螺母(图中右旋)会产生松退趋势,即螺母向左旋转。但是第二螺母(图中左旋)的旋向与第一螺母的旋向相反,因此第一螺母的松退力直接转换成第二螺母的拧紧力。这样,螺母万万不会松退。

2. 30°楔形螺纹防松技术 在30°楔形阴螺纹的牙底处有一个30度的楔形斜面,当螺栓螺母相互拧紧时,螺栓的牙尖就紧紧地顶在阴螺纹的楔形斜面上,从而产生了很大的锁紧力。

由于牙形的角度改变,使施加在螺纹间接触所产生的法向力与螺栓轴成60度角,而不是像普通螺纹那样的30度角。显然30°楔形螺纹法向压力远远大于扣紧压力,因此,所产生的防松摩擦力也就必然大大增加了。 施必牢螺纹结构示意图 从下面的图可以看到二个箭头所表示的力均为Pɑ,传统的60度角螺纹的法向压力P=1.15Pɑ;而30°楔形螺纹由于牙底有一个30度角的楔形斜面,其法向压力的角度、大小均有改变,法向压力P=2Pɑ。 这样,30°楔形螺纹与传统60度螺纹,二者的法向压力之比≈12∶7,防松摩擦力相应地增加了。30°楔形螺纹的楔形面还可以消除普通螺纹受力不均匀、脱扣咬死等问题。 3. 自锁螺母 自锁螺母一般是靠摩擦力自锁,咱们上面提到的30°楔形螺纹防松应该属于自锁螺母的范畴。

+紧固件常用防松方法

---------------------------------------------------------------最新资料推荐------------------------------------------------------ +紧固件常用防松方法 第 21 章螺纹紧固件连接的防松一、松动机理螺纹连接在工作状态下可能会经受所有类别的变动载荷,包括极为激烈的振动和冲击载荷。 在变动载荷的作用下,螺纹连接的失效通常是由其自身的松动和疲劳破坏所引起的。 在一般情况下,螺纹连接抗振松的寿命比其材料和结构的疲劳寿命短得多,远在疲劳破坏之前,就已经出现了因松动而造成螺纹连接的松脱失效,或者出现了因松动而导致连接件和被连接件的过早疲劳破坏。 螺纹连接的失效会影响产品和设备的正常运转,甚至会造成严重的后果。 如何防止螺纹连接的松动是研制和设计螺纹紧固件的重要任务之一。 在通常的螺纹连接中,摩擦力产生于内外螺纹接触面或螺纹紧固件支承面与被连接件的接触面上。 当螺纹连接开始松转时,克服螺纹接触面上的摩擦所需的力矩 M1 为:M1 ?Qd 2 tg ?? ? ? ? ……………………………(公式 21-1)2式中:Q——作用于螺栓或螺钉上的预紧力,又称轴力或紧固系统的夹紧力; d2——螺纹中径;ρ ——摩擦角,对于三角形螺纹, tg? ?M1 ,M1 是螺纹接触面之间的摩擦系数,β cos ?是牙型半角; 1/ 34

α ——螺纹螺旋线的升角,又称导角。 螺纹紧固件被拧紧后,由于螺母或螺钉头支承面上的摩擦而产生的附加力矩 M2 为:M2 ?Q? 2 D 2 …………………………(公式 21-2)2式中:?2——螺母或螺钉头支承面与被连接件接触面之间的摩擦系数; D2——螺母或螺钉头支承面的平均直径,在接触压力均匀的情况下,D2 的精确值是:D2 ?3 3 ? ? Rn 2 ? R? ? ? 2 2 ? ,Rω 和Rn 分别是支承面的外半径和内半径,如果支承面 3? R ? R n ? ? ?不平或接触压力不均匀,D2 就可能随着支承面的内半径到外半径而变化。 综上所述,决定螺纹连接开始松转时的总力矩 M 为:? D ? ?d M ? M 1 ? M 2 ? Q ? 2 tg ?? ? ? ? ? 2 2 ? …………………(公式 21-3)2 ? ?2分析公式 21-3 可知,仅在总力矩 M 等于或小于零的情况下,螺纹紧固件才开始自行松转。 对于连接用螺纹,在受静载荷作用时,即使润滑条件很理想,其摩擦角也始终大于升角:ρ >α ,即满足螺纹的自锁条件,使公式 21-3 括号内的总值不会等于或小于零,螺纹紧固件也就不会自行松转。 但是在经受动载荷时,例如在振动和冲击的作用下,螺纹紧固件在螺纹和支承面上产生了微观的滑移,这种相对的微观运动使摩擦系数由相对高的静态值变为很低的动态值,螺纹连接在各个方向上处于自由摩擦状态。 此时,作用在螺纹上的轴向力在圆周方向上形成一个导致螺母松

变牙型螺纹即施必牢螺母的几个概念

变牙型螺纹(即施必牢)螺母的几个概念 1、强度:螺母的强度就是保证螺母在一定载荷下不脱扣的能力,同等规格螺母强度级别越高则螺母越不容易脱扣。螺母的具体强度见GB/T3098.2或GB/T3098.4。 2、硬度:反映了螺母的刚性,硬度越高螺母的保证载荷就越大,螺母越不容易脱扣。它与强度级别有关,一般来说强度级别越高则要求螺母的硬度越高。螺母的具体硬度见GB/T3098.2或GB/T3098.4。 3、精度:精度反映了螺母的精密程度,也就是螺纹的精密精度,一般认为螺母的精度越高越好。(由于施必牢公司用的是美国丝锥,精度不是上海底特控制的)。精度应当是6级以上,也有可能是更好的4级精度,偏差应当是G或H,与螺母相匹配的螺栓是6g或以上精度的螺栓。 4、轴力:轴力就是螺栓螺母拧紧以后,螺栓所受到的轴向力,我们螺母必须保证与之相匹配的螺栓在其受最小拉力载荷(轴力)下不脱扣。 5、扭矩:螺母达到其防松能力时所需要的拧紧力矩。 6、扭矩系数K:利用轴力P、螺母的公称尺寸D和扭矩T换算出来的一个物理量(K=T/DP),它反映了相同公称尺寸情况下的轴力和扭矩的关系,扭矩系数越小达到相同的轴力所需的扭矩越小。 7、标准偏差: 标准偏差是一种量度数据分布的分散程度的标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。因此,对我们螺母的扭矩系数来说,标准偏差越小,说明扭矩系数越稳定,对应相同的安装力矩其所达到的轴力的偏差越小,紧固性能越好。 8、基本偏差: 基本偏差是指用以确定公差带相对于基准位置的上下偏差程度。基本偏差用拉丁字母表示。大写字母代表孔,小写字母代表轴。当公差带在零线上方时,基本偏差为下偏差;当公差带在零线下方时,基本偏差为上偏差。对紧固件来说,由于是间隙配合,常用的基本偏差螺栓为小写字母g或h;螺母为大写字母G 或H。

螺栓常用的防松方法有三种

常用的防松方法有三种:摩擦防松、机械防松和永久防松。 机械防松和摩擦防松称为可拆卸防松,而永久防松称为不可拆卸防松。 常用的永久防松有:点焊、铆接、粘合等。这种方法在拆卸时大多要破坏螺纹紧固件,无法重复使用。 常见摩擦防松有:利用垫片、自锁螺母及双螺母等。 常见的机械防松方法:利用开口销、止动垫片及串钢丝绳等。 机械防松的方法比较可靠,对于重要的联接要使用机械防松的方法。下面分述如下。 (1)摩擦防松 ①弹簧垫片防松 弹簧垫圈材料为弹簧钢,装配后垫圈被压平,其反弹力能使螺纹间保持压紧力和摩擦力,从而实现防松 ②对顶螺母防松 利用螺母对顶作用使螺栓式中受到附加的拉力和附加的摩擦力。由于多用一个螺母,并且工作不十分可靠,目前已经和少使用了。 ③自锁螺母防松 螺母一端制成非圆形收口或开缝后径向收口。当螺母拧紧后,收口胀开,利用收口的弹力使旋合螺纹间压紧。这种防松结构简单、防松可靠,可多次拆装而不降低防松性能。 ④弹性圈螺母防松 螺纹旋入处嵌入纤维或尼龙来增加摩擦力。该弹性圈还起防止液体泄漏的作用。 2 )机械防松 ①槽形螺母和开口销防松 槽形螺母拧紧后,用开口销穿过螺栓尾部小孔和螺母的槽,也可以用普通螺母拧紧后进行配钻销孔。 0 51-38用幵口俏羽賞酌松

②圆螺母和止动动垫片 使垫圈内舌嵌入螺栓(轴)的槽内,拧紧螺母后将垫圈外舌之一褶嵌于螺母的一个槽内。 ③止动垫片 螺母拧紧后,将单耳或双耳止动垫圈分别向螺母和被联接件的侧面折弯贴紧,实现防松。如果两个螺栓需要双联锁紧时,可采用双联止动垫片。 ④串联钢丝防松 用低碳钢钢丝穿入各螺钉头部的孔内,将各螺钉串联起来,使其相互制动。这种结构需要注意钢丝穿入的方向, 3 )永久防松 ①冲边法防松 螺母拧紧后在螺纹末端冲点破坏螺纹 ②粘合防松 通常采用厌氧胶粘结剂涂于螺纹旋合表面,拧紧螺母后粘结剂能够自行固化,防松效果良好。

螺栓常用的防松方法介绍

螺栓常用的防松方法介绍 螺栓常用的防松方法有三种:摩擦防松、机械防松和永久防松。机械防松和摩擦防松称为可拆卸防松,而永久防松称为不可拆卸防松。 常用的永久防松方法有:点焊、铆接、粘合等。这种方法在拆卸时大多要破坏螺纹紧固件,无法重复使用。 常见摩擦防松有:利用垫片、自锁螺母及双螺母等。 常见的机械防松方法:利用开口销、止动垫片及串钢丝绳等。机械防松的方法比较可靠,对于重要的联接要使用机械防松的方法。下面分述如下: (1)摩擦防松 ①弹簧垫片防松: 弹簧垫圈材料为弹簧钢,装配后垫圈被压平,其反弹力能使螺纹间保持压紧力和摩擦力,从而实现防松。

②对顶螺母(双螺母)防松: 利用螺母对顶作用使螺栓式中受到附加的拉力和附加的摩擦力。由于多用一个螺母,并且工作不十分可靠,目前已经很少使用了。 ③自锁螺母防松: 螺母一端制成非圆形收口或开缝后径向收口。当螺母拧紧后,收口胀开,利用收口的弹力使旋合螺纹间压紧。这种防松结构简单、防松可靠,可多次拆装而不降低防松性能。

④弹性圈螺母防松: 螺纹旋入处嵌入纤维或尼龙来增加摩擦力。该弹性圈还起防止液体泄漏的作用。 (2)机械防松 ①槽形螺母和开口销防松 槽形螺母拧紧后,用开口销穿过螺栓尾部小孔和螺母的槽,也可以用普通螺母拧紧后进行配钻销孔。

②圆螺母和止动垫片 使垫圈内舌嵌入螺栓(轴)的槽内,拧紧螺母后将垫圈外舌之一褶嵌于螺母的一个槽内。

③止动垫片 螺母拧紧后,将单耳或双耳止动垫圈分别向螺母和被联接件的侧面折弯贴紧,实现防松。如果两个螺栓需要双联锁紧时,可采用双联止动垫片。

④串联钢丝防松 用低碳钢钢丝穿入各螺钉头部的孔内,将各螺钉串联起来,使其相互制动。这种结构需要注意钢丝穿入的方向,原则就是:当一个螺栓有松动的趋势,它应该拉动铁丝,让临近的螺栓有旋紧的趋势。见下图所示: (3)永久防松 ①冲边法防松 螺母拧紧后在螺纹末端冲点破坏螺纹 ②粘合防松 通常采用厌氧胶粘结剂涂于螺纹旋合表面,拧紧螺母后粘结剂能够自行固化,防松效果良好。

液压式紧固螺母(螺栓)的设计

学位论文诚信声明书 本人郑重声明:所呈交的学位论文(设计说明书)是我个人在导师指导下进行的研究(设计)工作及其取得的研究(设计)成果。尽我所知,除了文中加以标注和致谢的地方外,论文(设计说明书)中不包含其他人或集体已经公开发表或撰写过的研究(设计)成果,也不包含本人或其他人在其它单位已申请学位或为其它用途使用过的成果。与我一同工作的同志对本研究(设计)所做的任何贡献均已在论文中做了明确的说明并表示了致谢。 申请学位论文与资料若有不实之处,本人愿承担一切相关责任。 学位论文作者签名:刘博日期:2010/5/20 学位论文知识产权声明书 本人完全了解学校有关保护知识产权的规定,即:在校期间所做论文(设计)工作的知识产权单位属于西安科技大学。学校有权保留并向国家有关部门或机构送交论文的复印件和电子版。本人允许论文(设计说明书)被查阅和借阅;学校可以公布本学位论文(设计说明书)的全部或部分内容并将有关内容编入有关数据库进行检索,可以采用影印、缩印或其它复制手段保存和汇编本学位论文。 保密论文待解密后适用本声明。 学位论文作者签名:刘博指导教师签名: 2010年月日

题目:液压式紧固螺母(螺栓)的设计 专业:机械设计制造及其自动化 学生:(签名) 指导教师:(签名) 摘要 基于大螺栓联接使用中预紧力不足而导致联接失效的问题,提出并设计了一种超高压液压螺母,对螺母体、活塞体及紧圈等主要组成件进行了结构设计和强度计算,介绍了色标位置的确定,并探讨了组合密封问题。与传统的螺栓预紧工具相比,具有操作简单,使用方便,安全性高等特点。运用它可以很容易地实现螺栓的拉伸和螺母的预紧。 关键词:液压;螺母;联接;预紧 Subject: Hydraulic Preten sion Method of Nuts Abstract Based on the use of the bolt connection inadequate preload link failure caused the problem, and todesign a super—IligIl hydraulic nut;of the nut and the tight circle of detroit and other major components of the structural design and strengtIl, a color—location setting is introduced,and to explore the combination of sealing problem。Compared with the traditional pretension methods, it has some adwantages such as simplicity of operation,convenient for application and high is easy to stretch and fasten bolts using hydraulic – stretching equipment. Keywords:Hydraulic;Nut;Connection;pretension

施必牢螺母在电动汽车和混合动力汽车电池连接中的重要作用-防松螺母

施必牢螺母在电动汽车和混合动力汽车电 池连接中的重要作用 如果电动汽车的电池寿命和过热问题能够得以解决,那么电动汽车和混合动力技术将在政府几近翻倍的燃料节约标准中担任极其关键的角色。那么提高连接可靠性的螺纹连接固定模式的创新应用或许成为解决电池寿命和过热问题的一个重要的途径。 当汽车生产商用各种技术改进节约燃料的时候,电动汽车和混合动力车吸引力更多的支持环保的客户,因为他们希望能够减少或者限制燃料的消耗。 电动汽车和混合动力汽车上的电池所带电量所能产生的能量大概相当于8升不到的汽油产生的能量,因此为了有效利用每个毫安的电量而不发热,从技术上还需要下很大的功夫。为了履行电动汽车和混合动力技术对汽车制造企业降低燃料消耗的承诺,电池的电导率,连接可靠性和寿命都需要加以改进,也许一种螺纹锁紧的方式的创新就是解决这些问题的关键。 然而,普通紧固件很难保证电池的导电性和连接可靠性,因为普通紧固件很容易失去预紧力。根据STANLEY工程师的研究发现,汽车长期的振动和热循环,普通紧固件将迅速衰减50%的预紧力。 电动汽车和混合动力车的锂或酸基以捆扎的形式串联。如果其中一个连接由于螺纹松动而失效,意味着不单单丢失一个电池,而是真个串联的电池都失效。

另一个严重的问题是,当电动车或者混合动力车的电池固定紧固件预紧力消失,那么电池就会失去供电能力。充足的供电电流难免发热,引起电弧的产生,这是发生火灾的潜在威胁。 为确保足够的预紧力和从电池的排列到电池末端的连接构件的整体性,以提高电池的导电功效,工程师找到一个解决的方法,就是使用一种叫施必牢的螺母。 传统的防松紧固件由于60°螺纹结构的局限无法避免松动的基本问题,也就是说,阳螺纹的牙尖与阴螺纹的牙底存在间隙,会引起振动诱发的松动,从而导致预紧力衰减并促使电动汽车和混合动力汽车电池连接部位的发热。头几个螺纹的应力集中和疲劳强度下降是另一个严重问题,尤其在比较软的金属上,螺纹的轴向受力使其遭受严重的剪切作用。温度的升高会使材料或表面发生热胀冷缩效应,同样是电池连接部位松动的潜在威胁。 关于以上问题,工程师通过引入施必牢螺母完美解决了传统紧固件的问题。这一方法在电动汽车和混合动力汽车的供电系统上应用超过5年,而且在航空电池系统上的应用则超过了十年。 而之所以施必牢螺母具有如此可靠的防松性能,其原因在于30°楔形螺纹结构,即在螺母的螺纹牙底设计一个30°的斜面,当与螺栓的外螺纹相互作用时,导致外螺纹的牙尖顶到30°斜面上,发生微小变形,形成一种称之为spiral线的全螺纹带状接触。这种螺纹接触方式使得预紧力更加均匀地分布在整个螺纹上,而不是主要集中于头几个螺纹,从而改善抗横向振动松动的能力,提高轴向扭转载荷和

[世飞液压]采煤机液压螺母使用说明

一、 二、 二、液压螺母安装步骤(以下使用的各名称如上图所示): 1、计算确定螺栓安装实际预紧力和相应的螺栓理论拉伸长度。 2、选择液压螺母的的注油方向(有轴向注油和径向注油两种方式)。 3、将液压螺母上的防尘帽取下(如为径向注油,请将径向注油孔上的堵头(螺纹规格为M10X1)旋出,安装在径向注油孔上,注意先装钢球),装上紫铜垫圈、过渡接头和快速公接头并旋紧(防止漏油)。 4、将液压螺母旋入(安装时,自锁螺母朝设备方向)到设备上,用拨杆插入液压螺母拨孔1 内并旋紧液压螺母,用力扳紧压靠设备,使液压螺母端面与设备端面之间基本无间隙。 5、连接快速接头,使用动力源进行加压,螺栓在弹性变形范围内被拉伸长,此时切忌液压螺母活塞伸出超过最大行程,防止活塞脱缸。待液压螺母达到预紧力后,动力源保持稳定状态,停止加压。

用拨杆插入液压螺母拨孔2 旋紧自锁螺母,使自锁螺母端面紧靠油缸端面基本无间隙,方可缷去动力源压力。 7、若需要多次拉伸的,在液压螺母额定范围内按上述步骤进行预紧。 三、液压螺母拆卸 1、连接快速接头,使用动力源进行加压(压力比安装时的压力略大即可),螺栓在弹性变形范围内继续被拉伸长,此时切忌液压螺母活塞伸出超过最大行程。 2、用拨杆插入拨孔2 内,反旋旋松自锁螺母至活塞上端面齐平。 3、动力源缷去压力,撤去快速母接头,用拨杆插入拨孔1 内旋出液压螺母,将过渡接头旋下,装上防尘帽,清洗表面污垢涂抹防锈油保存,至此,液压螺母拆卸完毕。 四、维护和保养注意事项 1、使用液压螺母时按照以上操作说明正确使用,勿用锤子或他钝器击打,禁止不规范操作使用。 2、施工工作完成后,请及时盖上注油孔防尘帽,以免异物进入液压缸内。 3、液压螺母使用完毕,请及时清理表面,涂抹防锈油保存。、 五、安全警示 操作前须仔细阅读此说明书,用户有责任将此说明交到操作人员手中。 1、由专业人员操作,操作时须佩戴护目镜等防护用品。 2、一般操作步骤也存在危险的可能性(液压拉螺母在工作时,正上6、方严谨站人或正对人体其他部位)。 3、液压螺母在操作时不得超负荷、超行程使用。

螺纹防松结构

螺纹防松方法 生产和生活中,应用到的螺纹防松方法有多种形式,但归纳以来,一般就 有四种。 第一种是摩擦防松,主要依靠增加摩擦力; 第二种是机械防松,主要是用销、垫片、钢丝将螺母卡死; 而是防脱落。 拆御力矩是预紧力矩的80%,说明螺栓的松比紧要容易。 常见的螺纹连接防松方法如下表所示: 在常见的螺母放松结构中,还有很多禁忌。如下图所示:对于要求比较高一些的防松,更有细节的禁忌。如下图所示: 以上介绍的各种相关防松方式,其根本一点是依靠第三者力的防松。第三

者力有多大,防松效果就有多好。其效果,无非是通过增加摩擦力,直至焊死 而已。 能不能不依靠第三者而突破传统螺纹防松方式呢? 答案就是第四种防松方式,即结构防松方式:唐氏螺纹防松。 实际上,螺纹的防松原理大家能认可,关键是对强度的担心。我们一般想象受力面积减小了,强度一定也会减小。唐氏螺纹的受力面积减小了,强度肯 定会很差,事实不是这样的。 33.1%,第二圈受力为22.5%,最后一圈受力为1~ 增加30%;悬置螺母,受力面积增加, 40%。 环槽螺母强度增加的原因是因为其下部螺母结构变软,前几圈螺纹易于变形;内斜螺母强度增加的原因是下部螺纹受力面积减小,前几圈螺纹易于变形;悬置螺母强度增加的原因是改变了受力点,前几圈螺纹由受压变成受拉,与螺

栓变形一致。 唐氏螺纹受力面积小,螺纹易于变形,各螺纹段受力较普通螺纹均匀,强度不象我们想向的那小。唐氏螺纹的强度可达普通螺纹强度的90%以上。 唐氏螺纹防松 1.唐氏螺纹的作用和意义 螺纹发明一千多年了,谁是发明者已经无法考证了。 而唐氏螺纹是由我国唐宗才先生发明的。 螺纹结构“单旋向、连续、等截面” 而是独立的形成了第四种防松方式。 成锁紧螺母的拧紧力。它完全依靠螺纹自身结构,而不依靠第三者力,是一种 纯结构式的防松形式。 唐氏螺纹紧固件利用螺纹自身矛盾,以松动制约松动,起到“以毒攻毒”的效果。它的发明标志着紧固件领域振松问题得到突破性的进展。这是螺纹防松领域的一场革命,它开创了螺纹结构防松的新时代。

常见的螺栓螺母连接防松方法

常见的螺栓螺母连接防松方法 常用的防松方法有三种:摩擦防松、机械防松和永久防松。 机械防松和摩擦防松称为可拆卸防松,而永久防松称为不可拆卸防松。 常用的永久防松有:点焊、铆接、粘合等。这种方法在拆卸时大多要破坏螺纹紧固件,无法重复使用。 常见摩擦防松有:利用垫片、自锁螺母及双螺母等。 常见的机械防松方法:利用开口销、止动垫片及串钢丝绳等。 机械防松的方法比较可靠,对于重要的联接要使用机械防松的方法。 下面分述如下。 (1)摩擦防松 ①弹簧垫片防松 弹簧垫圈材料为弹簧钢,装配后垫圈被压平,其反弹力能使螺纹间保持压紧力和摩擦力,从而实现防松 ②对顶螺母防松 利用螺母对顶作用使螺栓式中受到附加的拉力和附加的摩擦力。由于多用一个螺母,并且工作不十分可靠,目前已经和少使用了。 ③自锁螺母防松 螺母一端制成非圆形收口或开缝后径向收口。当螺母拧紧后,收口胀开,利用收口的弹力使旋合螺纹间压紧。这种防松结构简单、防松可靠,可多次拆装而不降低防松性能。 ④弹性圈螺母防松 螺纹旋入处嵌入纤维或尼龙来增加摩擦力。该弹性圈还起防止液体泄漏的作用。2)机械防松 ①槽形螺母和开口销防松 槽形螺母拧紧后,用开口销穿过螺栓尾部小孔和螺母的槽,也可以用普通螺母拧紧后进行配钻销孔。 ②圆螺母和止动动垫片 使垫圈内舌嵌入螺栓(轴)的槽内,拧紧螺母后将垫圈外舌之一褶嵌于螺母的一个槽内。 ③止动垫片 螺母拧紧后,将单耳或双耳止动垫圈分别向螺母和被联接件的侧面折弯贴紧,实现防松。如果两个螺栓需要双联锁紧时,可采用双联止动垫片。 ④串联钢丝防松 用低碳钢钢丝穿入各螺钉头部的孔内,将各螺钉串联起来,使其相互制动。这种结构需要注意钢丝穿入的方向, 3)永久防松 ①冲边法防松 螺母拧紧后在螺纹末端冲点破坏螺纹 ②粘合防松 通常采用厌氧胶粘结剂涂于螺纹旋合表面,拧紧螺母后粘结剂能够自行固化,防松效果良好。

螺母防松问题

一:化学防松——粘合 二:永久防松:端铆、冲点(破坏螺纹)、点焊 三:机械防松:开槽螺母与启齿销,圆螺母与止动垫圈,弹簧垫片,轴用带翅垫片, 止动垫片,串联钢丝等。 四:摩擦防松——双螺母、弹簧垫圈、尼龙垫圈、自锁螺母等尼母垫圈——除防松外还可起密封作用,螺母一端做成非圆形收口或开峰后径面收口,螺母拧紧后收口涨开,利用收口的弹力使旋合螺纹间压紧 [最后修改于 2009-11-18 11:31:55] 签名档: mtangzc 身份:一般 用户类型:个人用户 注册时间:2010-9-27 经验值:88 发帖总数: 2 回复总数: 6 第1楼 回复发表于 2010-8-11 13:39:23 引用回复 螺纹防松方法有四种。 第一种是摩擦防松,主要依靠增加摩擦力;第二种是机械防松,主要是用销、垫片、钢丝将螺母卡死;第三种是铆冲防松,主要是将螺纹副铆死和焊死。第四种是结构防松,即唐氏螺纹防松。 前三种方法是传统防松方法,第四种是新型防松方法,目前还不为大多数人了解。 从我国专利的角度来看,每年我国在螺纹防松问题上都要推出近百项螺纹防松专利,大家纷纷提出方案,并声称解决了螺纹防松问题。但是,研究仍然在继续,方案仍然在推出。为什么已经标准化这么多年的产品防松仍然无法解决呢? 因为,传统螺纹防松方式已经走上绝路。 第三种方式的使用范围十分有限,很多场合无法使用。 第二种方式的主要问题是其防松方式没有预紧力,即当螺栓松退到防松位置时,防松方式才能发生效果。因此,这种方式实际上不是防松,而是防脱落。 第一种方式依靠增加摩擦力,而摩擦力的增加是有限度的,如何将摩擦力增加得足够大而又不破坏螺栓,这本身是一个两难的问题。况且,一般螺栓的拆御力矩是预紧力矩的80%,说明螺栓的松比紧要容易。 以上的这三种防松方式,其根本一点是依靠第三者力防松,第三者力有多大,防松效果有多好。其效果无非是通过增加摩擦力直至焊死。 能不能不依靠第三者而突破传统螺纹防松方式呢?唐氏螺纹防松方式给出了答案,这就是第四种防松方式,即结构防松方式。 唐氏螺纹是中国人在机械基础件上的一大发明,更是螺纹领域自螺纹发明以来的最

施必牢防松螺母使用指南

上海底特精密紧固件有限公司 第 1 页 共 1 页 2010-12-24 施必牢? 防松螺母设计和使用指南 ◆ 施必牢防松螺母只适用于刚性连接,不适用于柔性连接,见右图。 ◆ 施必牢防松螺母是有方向性的,只有按正确方向旋入紧固才具有 防松效果,见右下图。为了辨别方向,常规的施必牢螺母外形只 有两种:凸缘和法兰面外形。一般情况下建议不要使用六角螺母。 ◆ 安装扭矩 ◇ 安装力矩是根据配用螺栓的性能等级和螺母的表面处理确定的。 不同的表面处理安装力矩不同。常用表面处理的安装力矩见 《施必牢螺母常用表面处理安装力矩表》。 ◇ 对特定的应用,我们将给出专用的安装扭矩。 ◆ 装配工具 ◇ 电动或液压定扭矩扳手 ◇ 力矩扳手 ◇ 气动或电动扳手预装,然后用力矩扳手紧固至规定的力矩 ◆ 螺栓螺母性能等级应匹配。性能高的螺母可替代性能低的螺母。 螺栓、螺母性能等级匹配 螺栓性能等级 5.8 8.8 10.9 12.9 螺母性能等级 5 8 10 12

◆ 配套螺栓:螺栓外螺纹精度等级:镀(涂)前6g (注:许多制造厂对螺纹的检查仅限于螺纹通止规,这是不完全的。因为,螺纹通止环规仅检查了螺纹作用中径,不能对螺纹大径进行检查。螺纹大径的检查需用外径千分尺或游标卡尺进行) ◆使用施必牢螺母后,可不需弹簧垫圈、锁片和其它防松零件(形式)。如果需用平垫圈时,请使用硬度级别为300HV的平垫圈。 ◆ 施必牢螺母的防松性能来源于其楔形结构的螺纹。只要螺纹合格,螺母就具有防松性能。由于施必牢螺纹结构特殊,因此,施必 牢螺纹的检测必须使用专用的施必牢螺纹塞规。施必牢螺纹塞规为三件一套:一支通规、一支斜面止规、一支中径止规。施必牢螺纹塞规旋入被测螺母的方向与螺栓旋入螺母的方向现同。其使用规则见下表。 螺纹量规名称外形特征使用规则 螺纹通规螺纹牙顶尖a、应与工件内螺纹旋合通过;* b、如果量规可以通过,但有一定的阻滞,亦为合格。 螺纹斜面止规螺纹牙顶尖允许与工件那螺纹旋合,但旋合量应不超过三扣螺纹。 螺纹中径止规螺纹牙顶较平a、与工件内螺纹旋合不能通过; b、在有一定阻滞的情况下,止规完全通过亦为合格。但感受到阻 滞应在第三牙之前。 * 表面有镀(涂)层的产品如果螺纹通规不通,去除镀(涂)层后螺纹通规通亦为合格。 ◆零件基体上攻制施必牢螺孔时,底孔应符合推荐的底孔直径。底孔直径和施必牢丝锥外形尺寸见《施必牢螺纹标准丝锥》。 上海底特精密紧固件有限公司第 2 页共 2 页 2010-12-24

防松螺母的类型与特点

防松螺母的类型与特点 “ 一般连接副的锁紧作用是依靠螺纹之间的摩擦力而起作用,但是在高频振动的动态载荷环境下,普通螺母的螺纹连接并不可靠。本文将介绍带有防松功能的锁紧螺母。” 一、全金属锁紧螺母 FS全钢自锁螺母工艺为冷挤压一次成型,此款螺母内部顶端内置一弹性螺纹锁紧环在较高的动态载荷下该螺母的抗震性能表现尤为突出。 该款全金属锁紧螺母在设计上综合考虑抗震性、耐腐蚀性、耐热性等环境因素,目前已广泛用于轨道交通,风力发电等领域。 防松原理 弹性锁紧环在自由状态时向下呈一定角度且其本身内径略小于螺栓大径。在拧紧螺栓时,锁紧环自动向上抬升且水平切向螺栓螺纹。同时由于螺栓的拧入,螺母会对螺栓螺纹产生向下的压紧力,这样就使螺栓受到全方位360度锁紧,从而达到锁紧效果。 产品特点 ◆双重锁紧–锁紧环在径向和轴向均匀地形成360°预紧力。 ◆带有螺纹的弹性安全环可防止退牙损伤。 ◆符合ISO2320有效力矩锁紧螺母机械特性,且在第5次拧出试验依然能保持很好锁紧

性。 ◆该螺母在设计上可供多种不同的特殊耐热材质,以适用于不同的高温环境且可供的表面涂层多样化。 ◆满足铁路标准BN205107-1。 二、双开槽锁紧螺母 该螺母因本身存在两个起到锁紧作用的锁紧槽而被形象的称为双开槽自锁螺母,是由同种材料一体加工成型,无需内嵌金属或非金属锁圈。 双开槽锁紧螺母如下图所示,是一款专用于铁道机车等行业的金属锁紧螺母。 防松原理 双开槽在自由状态下呈闭合形式且缝隙很小,在螺栓拧入过程中受轴向力被撑开,同时由于其自身回弹也给予了螺栓反作用力。 螺母、螺栓、垫圈组装成连接副后,连接副如果出现松动,就需要克服螺栓施加给双开槽处的轴向张力以及双开槽的反作用力。在无外界施加力的情况下,即便处于振动严重的环境中,仅靠连接副本身是很难克服这两个力的。因此该锁紧结构是一个非常安全有效的锁紧机制。

最新的螺纹防松原理和应用

施必牢螺纹的防松原理和应用 一、施必牢螺纹的防松原理 各种机器及部件在连接装配中离不开紧固件。紧固件给机械工业带来了方便,但是,它 有一个不可避免的弱点,即在剧烈震动中会自行松脱,致使部件或一台完整的设备损坏、解体,甚致酿成事故。 为解决紧固件的松脱问题,从螺纹紧固件诞生开始,世界上许多国家的科学家和工程师作 了大量的试验和研究,他们采用锁片、销钉、尼龙嵌入、变形螺纹、化学涂胶等方法,在一定 程度上延缓了紧固件自行松脱的时间,但是,没有根本解决问题。 螺纹紧固件的松脱问题的关键在于螺纹的结构形状。为此,美国工程师在研究了紧固件螺 纹的形状及受力情况后,重新设计内螺纹的几何形状,发明了这种现在被称为施必牢的防松螺 母,从根本上解决了紧固件的松脱问题。 施必牢防松螺母为什么能有效地解决松动问题呢?这是因为它的独特的结构。在阴螺纹的牙底处有一个30度的楔形斜面,当螺栓螺母相互拧紧时,螺栓的牙尖就紧紧地顶在施必牢螺纹 的楔形斜面上,从而产生了很大的锁紧力。由于牙形的角度改变,使施加在螺纹间接触所产生 的法向力与螺栓轴线成60度角,而不是像普通螺纹那样的30度角。显然施必牢螺纹法向压力远 远大于扣紧压力,因此,所产生的防松摩擦力也就必然大大增加了。同时,阳螺纹牙顶在与施必 牢阴螺纹咬合时,牙顶处齿尖易变形,使载荷均匀地分布在接触的螺旋线全长上(见图1),避免了普通标准螺纹咬合时,80%以上的总载荷集中作用在第一和第二牙的螺纹面上的现象。因此,施必牢螺纹联结副不仅克服了普通标准联结副在振动条件下易于自松的缺点,而且还可延长使 用寿命。 图 1 普通螺纹与施必牢螺纹受力图 施必牢螺母的防松性能用振动实验进行检测,为便于对比,我们同时对标准螺母、螺母+垫圈、标准双螺母、压三点螺母、尼龙螺母进行防松性能检测。所有实验都按国标标准GB/T 10431-1989《紧固件横向振动试验方法》执行的。实验条件也完全一致,即测试螺母尺寸为M16×2.0;性能级别为10级;振动频率为12.5赫兹;振动幅度为 1.6mm,振动力为8.2KN。实验结果如图所示。标准螺母、螺母+垫圈、标准双螺母和压三点螺母自振动开始后,200秒内轴力都衰 减至0,轴力消失说明螺母松动失效。尼龙螺母自振动开始后,轴力迅速衰减,至20kN后基本保持不变,轴力总体衰减70.5%。这说明尼龙螺母性能比前面四种螺母稍佳。而施必牢螺母自振动 开始后,轴力只有微小衰减,在整个振动周期内轴力保持60kN以上,轴力总体衰减不到10%,防松效果基本保持初始状态。由此可见,施必牢螺母的防松性能比其他螺母更加优异。 图 2 螺母振动特性曲线图 锁紧螺母 1

液压扳手使用方法

液压扭力扳手工作原理使用说明 液压扭力扳手工作原理使用说明 液压扳手是专门为需要高扭力和狭小空间约束的当地描绘的,液压东西的描绘中有一个多方向杠杆用于抵销液压缸发生的反力。液压缸一切的高压力是由空气泵或是电动泵供给的。液压活塞同一个转变的爪衔接,这个爪与棘轮的齿衔接然后转变螺母或螺栓的头部。能够准确的锁紧松开螺栓或螺母。 液压螺栓拉伸器 液压螺栓拉伸器是张紧力在螺栓衔接中最继续和最正确的使用办法,它通常有四有些组成:1、桥2、螺母旋转套筒3、拉伸器4、缸,液压螺栓拉伸器供给一个正确安全的办法并确保衔接的完整性。描绘是经过缸和拉伸器直接拉伸螺杆,当螺杆在拉伸状况时,然后经过一个轻质杆转变螺母直至的确锁紧衔接面,然后液压体系卸载,由于锁紧螺母螺杆能回复到本来的长度,所以拉伸力在螺栓中得以坚持。螺栓拉伸器能够有多个衔接在一起,能够确保一切螺栓一起拉紧。 螺母破切器工作原理及使用方法 液压螺母劈开器关于拆开那些锈蚀的、破坏的、腐蚀的螺母,往常的扭力东西和拉伸东西无法翻开的部位是十分好的东西。劈开器在描绘的布局中有十分有力的液压活塞。驱动一个锐角刀头切入螺母的平面处。这个劈开器刀头是用高等级的合金钢制作的有很长的寿数。能够轻松取下进行刃磨或进行替换。刀头视点的描绘,使在劈开螺母时,防止螺栓遭到损伤。气动 /电动力矩扳手 空气或电能驱动的扭力扳手,由于速度快,是工业领域中使用最广泛的拆锁螺栓东西了。手动力矩扳手 在世界范围内,紧固螺纹螺栓,这是最常用的办法,手动力矩扳手的描绘和制作是依据力乘间隔来描绘的。通常只能供给 2000N.M的扭力,当力矩大于2000N.M时,因力臂过长对空间及使用者带来不方便。 手动扭力倍增器 手动扭力倍增器是一个机械设备,它能够扩展者用手动力矩扳手输入的扭力。它是经过一组或多组“行星”齿轮传动,将输入的扭力增大,越多的星形齿轮级,相关于输入力就会有越大的输出力矩,所以又被称为增力扳手。 螺栓拉伸器的正确选择 怎么选择适合自己的螺栓拉伸器

施必牢螺纹

美国30°楔形螺纹防松技术专利权已失效,防松市场是否迎来价格走低? 30°楔形螺纹技术的防松原理 各种机器及部件在连接装配中离不开紧固件。紧固件给机械工业带来了方便,但是,它有一个不可避免的弱点,在剧烈震动中会自行松脱,致使部件或设备在运转中损坏甚至酿成重大事故。

为什么30°楔形螺纹能有效地解决松动问题呢? 这是因为它的独特的结构。在30°楔形阴螺纹的牙底处有一个30度的楔形斜面,当螺栓螺母相互拧紧时,螺栓的牙尖就紧紧地顶在阴螺纹的楔形斜面上,从而产生了很大的锁紧力。 由于牙形的角度改变,使施加在螺纹间接触所产生的法向力与螺栓轴成60度角,而不是像普通螺纹那样的30度角。显然30°楔形螺纹法向压力远远大于扣紧压力,因此,所产生的防松摩擦力也就必然大大增加了。

从下面的图2可以看到二个箭头所表示的力均为Pɑ,传统的60度角螺纹的法向压力P=1.15Pɑ;而30°楔形螺纹由于牙底有一个30度角的楔形斜面,其法向压力的角度、大小均有改变,法向压力P=2Pɑ。

这样,30°楔形螺纹与传统60度螺纹,二者的法向压力之比≈12∶7,防松摩擦力相应地增加了。30°楔形螺纹的楔形面还可以消除普通螺纹受力不均匀、脱扣咬死等问题。 普通常规的60度V形螺纹,在其第一螺纹啮合面和第二螺纹啮合面承载了70-80%的负荷,而以后几个啮合面承受的负荷很少。 这样,普通螺纹紧固件在工作振动负荷条件下,就很容易克服螺纹接触面上的锁紧力而产生转动,进而松脱。这就是普通螺纹紧固件松脱的原因所在。

由于普通螺纹紧固件主要受力仅仅是螺母的第一第二牙螺纹接触处,其余各牙基本上不受力,因此,当拧紧力矩较大时,应力集中在第一牙螺纹处,第一牙螺纹很容易产生弯曲和剪切变形,只有这样,才使第二牙螺纹面承受应力并产生锁紧力。 以此类推,承载负荷面,将受力依次一个个传递,相应造成螺纹依次的剪切和磨损,各牙的剪切和磨损破坏十分严重,导致螺母的螺纹强度大幅度下降,最终产生滑牙。 而30°楔形螺纹由于结构独特,全部螺栓牙尖紧紧地顶在30度楔形斜面上,而且螺旋线上每牙承受的负载都比较均匀,同样负荷能分散到每个面,每个点上,使螺纹上各处产生防松摩擦力相近,能够有效抗击横向振动。 在紧固件正常工作中,螺纹每牙能均匀承受负载,不存在应力集中。因此,就不会产生松脱或滑牙问题,疲劳强度也得到成倍的改善(见图2)。 在实验室实验中,用容克式(JUNKERS)振动试验机作了横向负载振动试验,30°楔形螺纹显示出它具有非常优异的抗振动能力。

施必牢防松螺母原理

施必牢技术的产生及防松原理 6 一、施必牢技术的产生及防松原理 各种机器及部件在连接装配中离不开紧固件。紧固件给机械工业带来了方便,但是,它有一个不可避免的弱点,即在剧烈震动中会自行松脱,致使部件或一台完整的设备损坏、解体,甚致酿成事故。 为解决紧固件的松脱问题,从螺纹紧固件诞生开始,世界上许多国家的科学家和工程师作了大量的试验和研究,他们采用锁片、销钉、尼龙嵌入、变形螺纹、化学涂胶等方法,在一定程度上延缓了紧固件会自行松脱的时间,但是,没有根本解决问题。 螺纹紧固件的松脱问题的关键在于螺纹的结构形状。为此,美国工程师在研究了紧固件螺纹的形状及受力情况后,重新设计螺纹的几何形状,于七十年代末发明了这种现在被称为“ 施必牢”的螺纹技术,从根本上解决了紧固件的松脱问题。 施必牢紧固件为什么能有效地解决松动问题呢?这是因为它的独特的结构。在阴螺纹的牙底处有一个30度的楔形斜面,当螺栓螺母相互拧紧时,螺栓的牙尖就紧紧地顶在施必牢螺纹的楔形斜面上,从而产生了很大的锁紧力。由于牙形的角度改变,使施加在螺纹间接触所产生的法向力与螺栓轴线成60度角,而不是像普通螺纹那样的30度角。显然施必牢螺纹法向压力远远大于扣紧压力,因此,所产生的防松摩擦力也就必然大大增加了。同时,阳螺纹牙顶在与施必牢阴螺纹咬合时,牙顶处齿尖易变形,使载荷均匀地分布在接触的螺旋线全长上(见图1),避免了普通标准螺纹咬合时,80%以上的总载荷集中作用在第一和第二牙的螺纹面上的现象。因此,施必牢螺纹联结副不仅克服了普通标准联结副在振动条件下易于自松的缺点,而且还可延长使用寿命。(见图1)

在实验室实验中,用容克式(JUNKERS)振动试验机作了横向负载振动试验,施必牢螺纹显示出它具有非常优异的抗振动能力(见图2)。他们试验了三种基本的螺母:一种是普通的标准螺母,一种是有效力矩锁紧螺母和一种施必牢螺帽。用同样的标准螺栓、同样的紧固负载力矩、同样的振幅频率和同样的实验室,同一台试验机上,控制二分钟的试验时间。结果是:普通标准螺母几乎立即全部松脱了,失去了全部锁紧能力;有效力矩锁紧螺母失去了70%的锁紧能力;而施必牢螺母在两分钟试验期间仍保持了他们应有的自锁能力。 在以上试验的基础上,对三种螺纹的重复使用性作进一步的横向振动试验:施必牢全螺纹自锁螺帽能够重复使用,经过反复拧紧和拧松,仍然不减少其锁紧力,保持螺母原有的锁紧效果;而普通螺母和有效力矩锁紧螺母在几次拧紧和拧松后,锁紧力不断减少,乃至完全丧失锁紧能力。 二、施必牢螺母(螺纹)的优点: 1.可靠的抗震防松性能;

相关文档
最新文档