LTE网络的天馈系统_20120524

天馈系统基本概念和天线安装规范

天馈系统基本概念和天线安装规范 天馈系统是无线网络规划和优化中关键的一环,包含天线和与之相连传输信号的馈线。天馈系统的各种工程参数在进行网络优化和规划时的设计是影响网络质量的根本因素。因此,理解、学习天馈系统的基本知识是非常重要的。下面就逐一介绍天馈系统的各种概念。 1)天线的基本概念 a)天线辐射电磁波的基本原理(基本电振子的场强叠加); 当导线载有交变电流时,就可以形成电磁波的辐射,辐射的能力与导线的长短和形状有关。在理论上,如果导线无限小时,就形成线电流元, 线电流元又被称为基本电振子。在天线理论中,分析往往都是从基本电振 子开始的,因为任何长度的线天线都可以分解为许多无限小的线电流元; 而这些天线的辐射场强就是线电流元的场强叠加,因此,天线的辐射能力 是随着天线的长度变化而变化的。 根据麦克斯韦方程,考虑线电流元远区场(辐射区)的情况,当两根导线的距离很接近时(左下图),两导线所产生的感应电动势几乎可以 抵消,因此此时产生的总的辐射变得微弱。但如果将两根导线张开(右下 图),这时由于两导线的电流方向相同,由两导线所产生的感应电动势方 向也相同,因而此时产生的辐射较强。 当导线的长度L远小于产生的电磁波的波长时,导线的电流很小,因而所产生的辐射也很微弱.;而当导线的长度增大到可与波长相比拟时, 导线上的电流就显著增加,此时就能形成较强的辐射。我们把能产生较强 辐射的直导线称为振子。 当两根导线的粗细和长度相等时,这样的振子叫做对称振子。当振子的

每臂长度为四分之一波长,全长为二分之一波长时,称为半波对称振子(见下图)。当振子的全长与波长相等的振子,称为全波对称振子。将振子折合起来的,称之为折合振子。 对称振子是工程中用到的最简单的天线,它可以作为独立的天线使用,也可以作为复杂天线阵的组成部分或面天线的馈源。对称振子的方向性比基本电振子强一些,但仍然很弱。因此,为了加强某一方向的辐射强度,往往要把好几副天线摆在一起构成天线阵。在GSM 系统中,我们采用的就是各种类型的天线阵。 b) 天线的方向图和能量辐射方向的控制 在实际的工程中,我们往往需要天线只接受或只向某一个方向发射。因此,我们需要各种各样的具有方向性的天线。天线的方向性就是指天线向一定方向辐射电磁波的能力。对于接收天线而言,方向性表示天线对不同方向传来的电波所具有的接收能力。天线的方向性的特性曲线通常用方向图来表示.如下图所示,这就是工程意义上的典型的方向图。方向图又分为水平方向图和垂直方向图两种。 波长 1/2波长 一个1/2波长的对称振子 在 800MHz 约 200mm 长 400MHz 约 400mm 长

LTE网络无线参数及KPI指标优化(详)

一、LTE小区选择及相关参数 1.1 小区选择S准则 UE进行小区选择时,需要判断小区是否满足小区选择规则。小区选择规则的基础是EUTRAN小区参考信号的接收功率测量值,即:RSRP。 驻留小区的条件要求符合小区选择S准则:Srxlev>0。 Srxlev= Qrxlevmeas-(Qrxlevmin+Qrxlevminoffset)-Pcompensation; Pcompensation=max(PMax-UE Maximum Outpower,0) 各参数含义如下: 1、Srxlev:小区选择S值,单位dB; 2、Qrxlevmeas:测量小区的RSRP值,单位dBm; 3、Qrxlevmin:小区最小接收电平,单位dBm,目前集团规定为:-128;(该参数可影响用户接入) 4、Qrxlevminoffset:减少PLMN之间的乒乓选择,此参数只在UE驻留在访问PLMN (Visited PLMN)时, 周期性地搜寻更高级别的PLMN时使用.; 5、PMax:UE在小区中允许的最大上行发送功率; 6、UE Maximum Outpower:UE能力决定的最大上行发送功率 1.2 小区选择相关参数 小区选择相关参数如下: 二、LTE小区重选及相关参数 2.1 小区重选相关知识 2.1.1 小区重选知识

小区重选指(cell reselection)指UE在空闲模式下通过监测邻区和当前小区的信号质量以选择一个最好的小区提供服务信号的过程。当邻区的信号质量及电平满足S准则且满足一定重选判决准则时,终端将介入该小区驻留。UE驻留到合适的小区停留1S后,就可以进行小区重选的过程。小区重选过程包括测量和重选两部分过程,终端根据网络配置的相关参数,在满足条件时发起相应的流程。 2.1.2 重选的分类 1)系统内小区测量及重选; ●同频小区测量、重选 ●异频小区测量、重选 2)系统间小区测量及重选; 2.1.3 重选优先级概念 1)与2/3G网络不同,LTE系统中引入了重选优先级的概念 ●在LTE系统,网络可配置不同频点或频率组的优先级,通过广播在系统消息中告诉UE,对应参数为cellreselectionPriority,取值为(0….7);(注:0优先级为最低,现网同频设置为5;异频设置宏站加室分底层&高层设置为6,室分高层加宏站为4,室分底层加宏站为5.) ●优先级配置单位是频点,因此在相同载频的不同小区具有相同的优先级; ●通过配置各频点的优先级,网络便能方便地引导终端重选到高优先级的小区驻留达到均衡网络负荷、提升资源利用率,保障UE信号质量等作用; 2)重选优先级也可以通过RRCConnectionRelease消息告诉UE,此时UE忽略广播消息中的优先级信息,以该信息为准; 网络主动引导UE进行系统间小区重选,完成CS域语音呼叫等; 2.1.4 重选系统消息 LTE中,SIB3-SIB8全部为重选相关信息,具体如下:

4.6 室外天馈系统

4.6 室外天馈系统 室外天馈系统包括天线、塔放、馈线、跳线和避雷器等,见图4-16。天线知识前面已有介绍,下面介绍一下塔放和馈线。 图4-16 室外天馈系统的组成 4.6.1 塔放 塔放从技术原理上是降低基站接收系统噪声系数,从而提高基站接收系统灵敏度。塔放对上行链路的贡献需根据塔放自身的低噪放大器性能来区分,而不能单看其增益的大小。一般增加了塔放的上下行平衡要根据其实际灵敏度的测试方法进行修正计算。 根据不同频段选用分频段或全频段的塔放。 三工塔放原理见图4-17。该塔放收发信共用(只需要一根馈管),有旁路功能(出故障时自动旁路,此时接收增益为约-2dB。)

图4-17 三工塔放原理 4.6.2 馈线 蜂窝系统整体设计中馈线选取很重要,由于暴露在室外环境中,电缆要能经受水的冲刷。电缆内部压入泡沫作绝缘介质,也可用空气作绝缘介质。空气绝缘的电缆弯曲后易造成短路,因此较少采用。 1. 馈线的使用 常用的馈线有两种,即7/8" 馈线和5/4" 馈线,使用情况如下: (1)GSM900的馈线: 长度小于80m时使用7/8" 馈线;长度大于80m时使用 5/4" 馈线。 (2)GSM1800 的馈线: 长度小于50m时使用7/8" 馈线;长度大于50m时使用 5/4" 馈线。 2. 几种馈线的插损等技术指标

3. 馈线的安装 馈线的安装应使所用的馈线最短和安装、维护方便;馈线弯曲的曲率应该参照馈线厂家的曲率要求。无论天线安装在塔上、屋顶和任何其它位置,其馈线在进入机房时,都应将馈线的外导体良好接地。 4.7 分布式天线系统 随着移动通信的发展,用户对服务质量的要求也随之提高,人们希望任何时候、任何地点都能通话,但由于在某些地点(如大型建筑物内、隧道及地铁等一些多阻挡的复杂区域),如果仅仅靠室外基站天线的覆盖,会有许多信号不能到达的盲点,使得通话中断;在某些区域,由于来自不同基站的信号都较强,会使得移动台频繁切换,从而导致通话中断,有人称之为乒乓效应。为了解决以上问题,产生了分布式天线系统。此外,还可以通过分布式天线系统,把通讯容量过剩小区的能力转移到另一个区域,解决系统容量分配问题。

GPS天线安装规范

GPS天线安装规范 1.1 GPS天线的安装 图 1.1GPS天线安装示意图 1)GPS天线固定位置必须放置在避雷针45 o角保护范围内,距离TD天 线抱杆2-3米之间;

2)GPS天线不锈钢管的两侧需要进行防水处理,需要在防水处用黑色扎 带固定并涂抹硅胶; 3)GPS馈线出馈线窗前后都必须接地,自馈线窗每20cm长加一处接地。 当GPS抱杆附近有金属物、避雷等存在时,GPS蘑菇头下方馈线要接地。 1.2 馈缆安装 馈线必须正确安装,保证信号传输过程中损耗尽可能小,基站与天馈线接电缆比较多,比较容易错接,所以在连接馈缆和跳线时要正确按照相对应的关系连接。 1.3 避雷器的安装 雷电除了对直接被击中的对象会造成极大的危害外,还会给落雷点附近 较大的一片区域里的微电子设备带来严重影响。它是通过在馈缆、电源 线、信号数据线及其它导体中感应生成的瞬间强电压使设备损坏。良好 的避雷方案可以杜绝雷电从线缆上入侵,保护设备不受雷电产生的瞬态 电流的损坏。常用的避雷方式是使用避雷器,具体做法是从基站天线引 入机房的所有电缆都要串联避雷器,避雷器接至地线。避雷器根据使用 不同可分为:射频避雷器、电源避雷器以及信号线避雷器几种。ZXWR TB10系统使用的是馈电方式,其使用的防雷器主要包括馈电防雷器及信 号防雷器。 1.4 接地卡的安装 GPS天线天馈安装过程中室外单元都必须良好接地;基站工作接地应组 成联合接地系统,接地电阻应小于5Ω。良好的接地是保证系统稳定可靠

工作的前提,通常我们使用接地卡进行设备的良好接地。接地卡用来连接馈缆外导体和塔架或单独的导线柱,在遭遇雷电的情况下,提供电流到地的通道。一般要求在靠近天线的馈缆顶部、靠近塔底的馈缆末端、馈缆进入机房前须安装接地卡。对高于60m的馈缆,馈缆中间须接接地卡;对于长于30m的馈缆,自馈线窗每20cm长加一处接地,接地卡示意图如图 1.4所示。 主馈缆 接地卡抱环 接地卡 接地端 A B 图 1.4 接地卡示意图

网络优化常用方法及相关软件和参数

网络优化常用方法及相关软件和参数 网络优化的工作流程具体包括五个方面:系统信息收集,数据分析及处理,制定网络优化方案,系统调整,调整网络优化方案。 常用的优化方法有话务统计分析法、信令跟踪分析法及路测分析法。在实际优化中,常将三种方法结合起来用,以分析OMC_R话务统计报告,并辅以信令仪表K1205进行A接口或Abis接口跟踪分析和路测仪表Agilent 64XX进行路测分析,是进行网络优化常用的有效手段。 1话统计分析法 主要是用ALCATEL研发地OMC_RPROJ3.x.x工作平台话务统计工具来收集的无线话务报告数据和在OMC_R上收集的系统硬件告警信息和收集的参数分类处理,便于分析网络。 1.1OMC_RPROJ3.XX工作平台介绍 通过OMC_RPRJ3.X.X工作平台导出的话务统计报告中的各项指标(呼叫成功率、切换成功率、每时隙话务量、无线信道可用率、话音信道阻塞率和信令信道的可用率、掉话次数、干扰、掉话率及阻塞率等),可以了解到无线基站中存在的坏小区、话务分布及变化情况,从而发现异常,并结合信令跟踪及路测手段,分析出网络逻辑或物理参数设置的不合理、网络结构的不合理、话务量不均、频率干扰及硬件故障等情况。 OMC_RPRJ3.X.X工作平台导出Excel后的话务统计报告中的各项指标如以下各图:

180报告表 180 counter是整个网络小区间的切换数据。 CI_S-原小区CI LAC_S-原小区LAC CI_T-目标小区CI LAC_T-目标小区LAC C400-切换请求次数 C401-切换应答次数 C402-切换成功次数 C402_C400-切换成功率 180counter统计中可检查出切换异常的小区,结合信令和OMC_R上的观察,查找出问题的原因(参数,硬件,时钟是否准确等)。

基站系统安装规范和要求模板

基站工程施工规范和要求 本期山西联通GSM三、四期扩容工程采用MOTOROLA的设备, 对此质量保证部做出如下相应的规范: 一、基站室内外安装前的检查 1、检查机房的密封程度、干燥程度、有无安全隐患 2、与随工共同检查机房平面图是否合理, BTS有无扩容位置并便 于维护, 能否按图施工, 与实际有无出入; 如果发生变化, 现场画出实际的施工图, 并请随工签字确认。 3、检查室内是否有两个地排, 而且是否独立接入大地。检查地排 上入地线的线径是否合乎要求。 4、检查室外铁塔或抱杆位置是否与图纸一致, 有无接地。 5、天线的挂高是否与设计相符, 避雷针的高度是否达到要求。 6、天支的位置、垂直是否合理与设计是否相符。 二、基站施工要求 1、室内走线架高度、位置严格按设计图纸施工, 要求横平竖直, 光洁美观。 2、室内走线架横档弯钩须在横档同侧, 主走线架首尾须有横档, 吊挂上下在顺走线架方向上使用两个弯钩对墙和走线架进行加固, 走线架应接地到室内地排。 3、设备的安装应按图施工, 保证机柜水平和垂直, 机柜对地固定 应牢固可靠。 4、室内两个地排分别接开关电源柜的工作地和所有的设备及相

关的保护地。 具体如下图所示: 1: 其它未注明的设备保护地( 例如: 电池支撑、 馈线窗、 设备机架等) , 若厂家没有特殊要求的, 均采用ZRBVV110黄绿线。 2: 图中所标注的ZRBVV 表示阻燃双护套。 3: 室内工作地排和保护地排必须单独入地。 5、避雷架的接地必须接到室外的地排上, 避雷架应固定在走线 架上, 并应对走线架绝缘。 6、馈线窗应接一根地线到室外地排。 7、室内的跳线应保持自然平滑, 防止弯度过小损伤跳线。 8、室外走线架应保证多点接地, 焊接处应做防锈处理( 具体施工 参看相应室外走线架规范) 。 工作地排 保护地排 直流电源工作直流电源防雷直流电源保护防雷装置保

(完整word版)移动通信天馈系统

一引言 (2) 二基站天馈系统组成及匹配原理 (2) 1 基站天馈系统的组成 (2) 2.匹配原理 (3) 三天馈系统不匹配对移动通信系统的影响 (4) 1.不匹配对发射功率的影响 (4) 2.不匹配对通信质量的影响 (4) 3.不匹配对基站设备的影响 (4) 四影响天馈线系统匹配的主要因素及解决方法 (4) 1.影响天馈线系统匹配的主要因素 (4) 2.解决天馈系统不匹配的方法 (5) 3.现场检测天馈线系统方法 (5) 4.测试案例 (6)

移动通信天馈系统 天馈系统是移动通信系统的重要组成部分,其性能优劣对整体移动通信质量的影响至关重要。根据移动网运行质量统计结果分析,造成移动通信质量指标下降的主要原因来自天馈系统(约占一半以上),而在天馈系统中最为重要的指标就是匹配。因此,我们在无线网络建设和日常维护中,必须高度重视对天馈系统性能的检查,减小天馈系统器件间不匹配对系统的影响,最大限度发挥天馈系统的性能。 一引言 天馈系统是指天线向周围空间辐射电磁波。电磁波由电场和磁场构成。人们规定:电场的方向就是天线极化方向。一般使用的天线为单极化的。下图示出了两种基本的单极化的情况:垂直极化和水平极化。天线对空间不同方向具有不同的辐射或接收能力,这就是天线的方向性。衡量天线方向性通常使用方向图,在水平面上,辐射与接收无最大方向的天线称为全向天线,有一个或多个最大方向的天线称为定向天线。全向天线由于其无方向性,所以多用在点对多点通信的中心台。定向天线由于具有最大辐射或接收方向,因此能量集中,增益相对全向天线要高,适合于远距离点对点通信,同时由于具有方向性,抗干扰能力比较强。天馈系统主要包括天线和馈线系统两大类。 二基站天馈系统组成及匹配原理 基站天馈系统分为天线和馈线系统。天线本身性能直接影响整个天馈系统性能并起着决定性作用;馈线系统在安装时匹配好坏,直接影响天线性能的发挥。 1 基站天馈系统的组成 图1 是基站天馈系统示意图,其组成主要包括以下几部分: (1)天线,用于接收和发送无线信号,常见的有单极化天线、双极化天线和全向天线; (2)室外跳线,用于天线与7/8〞主馈线之间的连接,常用的跳线采用1/2馈线,长度一般为3m。 (3)主馈线,目前用于移动基站的馈线主要有7/8_馈线、5/4_馈线、15/8馈线;

通信无线网主设备安装工艺标准规范标准

目录 1安装工艺 (2) 1.1塔桅要求 (2) 1.2天馈线系统 (4) 1.3线缆走道 (5) 1.4设备安装 (6) 1.5电源 (7) 1.6传输 (8) 1.7线缆布放 (8) 1.8线缆连接 (9) 1.9监控系统 (10) 1.10防雷接地 (11) 1.11分布系统 (13) 2设备及线缆标签规范(参照网络资源命名规范) (13) 2.1设备标签规范 (13) 2.2设备线缆标签规范 (13)

1 安装工艺 1.1 塔桅要求 1.1.1 一般要求 1、塔桅基础应符合工程设计要求。 2、塔桅钢构件应符合设计要求和本规范的规定。运输、堆放和吊装等造成 的钢构件变形及涂层脱落,应进行矫正和修补。 3、塔桅钢结构安装工程可按塔段划分为一个或若干个检验批次。塔桅钢结 构的安装程序,必须确保结构的稳定性和不致永久性变形。 4、塔桅高度,平台、加挂支柱的安装高度及位置等均应符合工程设计要求。 安装平台上必须安装天线支臂及抱柱,用于安装通信天线。 5、天线支架、挂高、方位应符合设计要求,应与钢塔结构构件牢固连接。 所有栏杆与相邻板之间应牢固连接。 6、塔楼钢平台梁、平台板、栏杆的安装偏差应符合表1的规定。 表1 钢平台、栏杆安装偏差(mm) 7、采用法兰连接的节点,法兰接触面的贴合率不应少于75%,且边缘最大 间隙不应大于±1.5mm。法兰间隙超过0.8mm时应用垫片垫实,垫片应 镀锌,并作防腐处理。 8、采用结点板连接的节点,相接触的两平面贴合率不应少于75%。 9、塔桅连接螺栓应符合下列要求: (1)与塔桅基础连接的构件螺栓必须上双螺母。 (2)连接螺栓应顺畅穿入,不得强行敲击。当孔位偏差小于等于3mm 时可打过冲后再穿入螺栓,螺栓穿向应一致。 (3)螺母拧紧后螺栓外露丝扣为3~5扣。 (4)螺母紧固应符合工程设计的力矩要求: ①用力矩扳手检查力矩应符合工程设计要求值。

网络优化参数介绍

RSRP: Reference signal receive power. 衡量某扇区的参考信号的强度,在一定频域和时域上进行测量并滤波。可以用来估计UE离扇区的大概路损,LTE系统中测量的关键对象。在小区选择中起决定作用。 SINR:信号与干扰加噪声比(Signal to Interference plus Noise Ratio)是指:信号与干扰加噪声比(SINR)是接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值;可以简单的理解为“信噪比”。 信号与干扰加噪声比最初出现在多用户检测。假设有两个用户1,2,发射天线两路信号(cdma里采用码正交,ofdm里采用频谱正交,这样用来区分发给两个用户的不同数据);接收端,用户1接收到发射天线发给1的数据,这是有用的信号signal,也接收到发射天线发给用户2的数据,这是干扰interference,当然还有噪声。 RSSI(Received Signal Strength Indicator)是接收信号的强度指示 过接收到的信号强弱测定信号点与接收点的距离,进而根据相应数据进行定位计算的一种定位技术 如无线传感的ZigBee网络CC2431芯片的定位引擎就采用的这种技术、算法。 接收机测量电路所得到的接收机输入的平均信号强度指示。这一测量值一般不包括天线增益或传输系统的损耗。 RSRQ(ReferenceSignalReceivingQuality)表示LTE参考信号接收质量,这种度量主要是根据信号质量来对不同LTE候选小区进行排序。这种测量用作切换和小区重选决定的输入。 RSRQ被定义为N*RSRP/(LTE载波RSSI)之比,其中N是LTE载波RSSI测量带宽的资源快(RB)个数。RSRQ实现了一种有效的方式报告信号强度和干扰相结合的效果。 [1] PL为传播路径损耗(Pathloss),单位为dB采用0kumura_Hata模型来分析WCDMA系统的无线传播:PL=69.55+26.16lgF-13.82lgH+(44.9-6.55lgH)×lgD-C(F)其中,PL为传播路径损耗,单位为dB;F为系统工作频点,单位为Hz;D为小区半径,单位为m;H为基站天线高度,单位为m;C(F)为地物校正因子,一般取值:代入模型后,得到以CS64k业务为例,基站侧接收灵敏度为115.3dBm,假定90%地区覆盖,慢衰落储备为5.6dB,网络负荷为50%,干扰储备为3dB,软切换增益为5dB,汽车穿透损耗为8dB,直放站天线增益为18dBi,馈线损耗为3dB,直放站总输出功率为20W,控制信道为 5.2W,话务信道可用功率为14.8W,则每信道平均发射功率为14.8W/6=2.47W=33.9dBm,则PL=33.9-5.6-3+5-8+18-3+115.3=152.6dBm 通过计算得到:城市D=3km;郊区D=6.8km;农村D=25.6km。 power headroom 功率上升空间

天馈安装规范及注意事项

天馈系统工程安装规范(GSM/CDMA) 北京华通天畅工程监理咨询有限公司 2010年4月

目录 一、天支安装 (2) 二、天线安装 (2) 三、馈线安装 (3) 四、跳线安装 (4) 五、防雷接地装置的安装 (4) 六、避雷器的安装 (5) 七、胶泥、胶带的使用 (5) 八、方位角的调整 (5) 九、俯仰角的调整 (6) 十、安装测试 (6) 十一、安全注意事项 (6) 十二、天馈线安装规范的制订依据 (7) 附件、天馈系统安装工具清单 (8)

天馈系统工程安装规范文件 一、天支安装 1.1 天支的位置应与设计相符。 1.2 天支应保证施工人员安装天线时的安全和方便。 1.3 天支安装必须垂直。(允许误差0.5°) 1.4 全向站天支到塔身的距离应大于3米。 1.5 定向站天支应符合定向天线安装距离要求。 1.6单极化天线天支必须符合安装标准,同一扇区两个支架的水平间距必须保持在3.5m 以上,相邻的两个扇区支架之间的水间距必须保持在1.0m以上。 二、天线安装 2.1 全向天线 2.1.1 铁塔顶平台安装全向天线时,天线水平间距必须大于4M。 2.1.2 天线安装于铁塔塔身平台上时,天线与塔身的水平距离应大于3M 2.1.3 同平台全向天线与其它天线的间距应大于2.5m。 2.1.4 上下平台全向天线的垂直距离应大于1M。如果上平台天线为(GSM:900MHz)下 平台天线为(CDMA:800MHz)时上下平台天线的垂直间距应≥5m 2.1.5 天线的固定底座上平面应与天支的顶端平行。(允许误差±5cm) 2.1.6 全向天线安装时必须保证天线垂直。(允许误差±0.5°) 2.2 定向天线 2.2.0 天线的空间隔离度按照如下的原则: 2.2.1 同系统共站的天线 a. 同扇区天线:GSM900系统水平隔离度 3.5米以上;DCS1800系统水平隔离度 1.5米以上 b. 不同扇区的天线:GSM900系统水平隔离度2.5米以上;DCS1800系统水平隔离 度2米以上

网络优化基本知识

无线网络优化是通过对现已运行的网络进行话务数据分析、现场测试数据采集、参数分析、硬件检查等手段,找出影响网络质量的原因,并且通过参数的修改、网络结构的调整、设备配置的调整和采取某些技术手段(采用MRP的规划办法等),确保系统高质量的运行,使现有网络资源获得最佳效益,以最经济的投入获得最大的收益。 二GSM无线网络优化的常规方法 网络优化的方法很多,在网络优化的初期,常通过对OMC-R数据的分析和路测的结果,制定网络调整的方案。在采用图1的流程经过几个循环后,网络质量有了大幅度的提高。但仅采用上述方法较难发现和解决问题,这时通常会结合用户投诉和CQT测试办法来发现问题,结合信令跟踪分析法、话务统计分析法及路测分析法,分析查找问题的根源。在实际优化中,尤其以分析OMC-R话务统计报告,并辅以七号信令仪表进行A接口或Abis接口跟踪分析,作为网络优化最常用的手段。网络优化最重要的一步是如何发现问题,下面就是几种常用的方法: 1.话务统计分析法:OMC话务统计是了解网络性能指标的一个重要途径,它反映了无线网络的实际运行状态。它是我们大多数网络优化基础数据的主要根据。通过对采集到的参数分类处理,形成便于分析网络质量的报告。通过话务统计报告中的各项指标(呼叫成功率、掉话率、切换成功率、每时隙话务量、无线信道可用率、话音信道阻塞率和信令信道的可用率、掉话率及阻塞率等),可以了解到无线基站的话务分布及变化情况,从而发现异常,并结合其它手段,可分析出网络逻辑或物理参数设置的不合理、网络结构的不合理、话务量不均、频率干扰及硬件故障等问题。同时还可以针对不同地区,制定统一的参数模板,以便更快地发现问题,并且通过调整特定小区或整个网络的参数等措施,使系统各小区的各项指标得到提高,从而提高全网的系统指标。 2.DT (驱车测试):在汽车以一定速度行驶的过程中,借助测试仪表、测试手机,对车内信号强度是否满足正常通话要求,是否存在拥塞、干扰、掉话等现象进行测试。通常在DT中根据需要设定每次呼叫的时长,分为长呼(时长不限,直到掉话为止)和短呼(一般取60秒左右,根据平均用户呼叫时长定)两种(可视情况调节时长),为保证测试的真实性,一般车速不应超过40公里/小时。路测分析法主要是分析空中接口的数据及测量覆盖,通过DT测试,可以了解:基站分布、覆盖情况,是否存在盲区;切换关系、切换次数、切换电平是否正常;下行链路是否有同频、邻频干扰;是否有小岛效应;扇区是否错位;天线下倾角、方位角及天线高度是否合理;分析呼叫接通情况,找出呼叫不通及掉话的原因,为制定网络优化方案和实施网络优化提供依据。

天馈系统安装标准施工规范华为

天馈系统安装标准施工模型V1.0 (铁塔型安装场景) HUAWEI TECHNOLOGIES Co., Ltd.

2 安装工具 一字螺丝刀十字螺丝刀活动扳手 斜口钳 卷尺 剪线钳 美工刀 钢锯梯子指南针长皮尺馈线刀 定滑轮色环胶带绝缘胶带防水胶带 套筒扳手 老虎钳倾角仪驻波比测试仪

3 天馈系统安装流程 开始 结束 00:00-00:10 组装天线 00:25-00:55 吊装天线 00:55-01:45 安装天线 00:55-01:45 制作馈线接头/ 粘贴色环 02:15-02:45 安装馈线固定夹 01:45-02:15 吊装馈线 02:45-05:25 安装室外馈线和馈线接地 05:25-05:45 馈线入室 05:45-06:25 安装室内馈线和跳线 06:25-06:40 天馈系统安装检查 1.本手册以在约40米高的铁塔上安装3副定向天线(有主分集且采用定长跳线)、馈线长度为40米的天馈系统为例介绍安装过程。 2. 安装天馈系统需4名安装人员,其中 2人具有铁塔登高资格。 00:10-00:25 连接天线侧跳线/ 粘贴色环 02:15-02:45连接馈线至天线侧跳线

天馈系统标准施工模型 4

1 组装天线安装人员A\B\C\D 10分钟 1.此处以华为公司的800MHz定向天线为例介绍安装过程,其他天线 的安装可参考厂家的说明书。 2.组装3副天线的过程在地面上完成。 a组装支架 b安装支架至天线 安装上支架 安装下支架完成后效果图 5

6 缠绕三层防水胶带缠绕三层绝缘胶带绑扎线扣 1.缠绕胶带时,须保证上一层胶带覆盖下一层的50%以上。 2. 缠绕防水胶带时,均匀拉伸防水胶带,使其宽度为原 宽度的1/2后再缠绕。每缠一层都要拉紧压实。 2 连接天线侧跳线 安装人员A\B\C\D 15分钟 a 连接跳线至天线 1.使用6根定长跳线。 2. (可选)若现场无定长跳线,则需裁剪合适长度的跳线,并在跳线两端制作DIN 公型接头。 b 粘贴色环 c 密封接头 1. 缠绕色环应方向一致,不能错位,每道缠绕2~3层,相邻两道色环间距为10mm ~15mm 。2. 在距跳线接头200mm 处粘贴对应扇区的色环。 可选 完成后效果图

5G通信网络优化载波聚合特性参数描述

5G RAN 载波聚合特性参数描述 1 变更信息 变更信息不包含参数/性能指标/术语/参考文档等章节的内容变更,提供其他章节的如下变更: ?技术变更 技术变更描述不同版本间的功能和对应参数变更。 ?文字变更 文字变更是在功能没有变更时,仅对文字内容进行优化或修改描述问题。 1.1 5G RAN 2.1 Draft A (2018-12-30) 相对于5G RAN2.0 02 (2018-10-30),本版本变更如下。 技术变更

文字变更 无。 2 文档介绍 2.1 文档声明 文档目的 特性文档目的如下: ?让读者了解特性相关参数原理。

?让读者了解特性使用场景、增益衡量以及对网络和功能的影响。 ?让读者了解特性对运行环境的要求。 ?让读者了解特性开通以及开通后的观测与监控。 说明: 由于特性部署及增益验收与具体网络场景相关,本特性文档仅用于指导 特性激活。如果想要达到理想的增益效果,请联系华为专业服务支撑。 软件接口 特性文档中的MO、参数、告警和性能指标与文档发布时的最新软件版本一致。 如需获取当前软件版本的MO、参数、告警和性能指标信息,请参见随当前版本 配套发布的产品文档。 体验特性 体验特性是由于产业链配套(终端/核心网)等原因在当前版本无法正式商用,但可以满足客户测试和商用网络体验的特性。客户如要体验,需和华为沟通, 正式体验前需要和华为签署MOU声明。此类特性在当前版本不销售,客户可免 费体验。 客户承认并接受,体验特性因缺乏商用网络验证存在一定风险,客户使用体验 特性前应充分了解其预期增益和对网络可能带来的影响。同时客户承认并接受,因华为对体验特性并没有向客户收取相应费用,华为不对客户因不能使用或/和使用体验特性造成的任何损失承担任何赔偿责任。体验特性本身出现问题,华 为不承诺本版本内解决。华为保留在后续R/C版本中,将体验特性改为商用特 性的权利。后续版本中若体验特性转为商用特性,客户需支付许可费,购买相 应的License,方可使用。如果客户未购买License,新版本升级后体验特性自动失效。 2.2 特性映射 本文档描述以下特性: 3 概述 定义

网络优化常见问题及优化方案

网络优化常见问题及优化方案 建立在用户感知度上的网络优化面对的必然是对用户投诉问题的处理,一般有如下几种情况: 1.电话不通的现象 信令建立过程 在手机收到经PCH(寻呼信道)发出的pagingrequest(寻呼请求)消息后,因SDCCH拥塞无法将pagingresponse(寻呼响应)消息发回而导致的呼损。 对策:可通过调整SDCCH与TCH的比例,增加载频,调整BCC(基站色码)等措施减少SDCCH的拥塞。 因手机退出服务造成不能分配占用SDCCH而导致的呼损。 对策:对于盲区造成的脱网现象,可通过增加基站功率,增加天线高度来增加基站覆盖;对于BCCH频点受干扰造成的脱网现象,可通过改频、调整网络参数、天线下倾角等参数来排除干扰。 鉴权过程 因MSC与HLR、BSC间的信令问题,或MSC、HLR、BSC、手机在处理时失败等原因造成鉴权失败而导致的呼损。 对策:由于在呼叫过程中鉴权并非必须的环节,且从安全角度考虑也不需要每次呼叫都鉴权,因此可以将经过多少次呼叫后鉴权一次的参数调大。 加密过程 因MSC、BSC或手机在加密处理时失败导致呼损。 对策:目前对呼叫一般不做加密处理。 从手机占上SDCCH后进而分配TCH前 因无线原因(如RadioLinkFailure、硬件故障)使SDCCH掉话而导致的呼损。 对策:通过路测场强分析和实际拨打分析,对于无线原因造成的如信号差、存在干扰等问题,采取相应的措施解决;对于硬件故障,采用更换相应的单元模块来解决。 话音信道分配过程 因无线分配TCH失败(如TCH拥塞,或手机已被MSC分配至某一TCH上,因某种原因占不上TCH而导致链路中断等原因)而导致的呼损。 对策:对于TCH拥塞问题,可采用均衡话务量,调整相关小区服务范围的参数,启用定向重试功能等措施减少TCH的拥塞;对于占不上TCH的情况,一般是硬件故障,可通过拨打测试或分析话务统计中的CALLHOLDINGTIME参数进行故障定位,如某载频CALLHOLDINGTIME值小于10秒,则可断定此载频有故障。另外严重的同频干扰(如其它基站的BCCH与TCH同频)也会造成占不上TCH信道,可通过改频等措施解决。 2.电话难打现象 一般现象是较难占线、占线后很容易掉线等。这种情况首先应排除是否是TCH 溢出的原因,如果TCH信道不足,则应增加信道板或通过增加微蜂窝或小区裂变的形式来解决。

第三章 移动通信天馈系统

第三章 移动通信天馈系统 ?天馈系统是任何一个无线通信系统不可或缺的一个组成部分。在发信端,它将高频传导电流转变为空间的电磁波而发送出去;在接收端,它反过来将空间电磁波转变成高频信号的传导电流输入接收机。 通常,一个移动通信的天馈系统由天线,共用设备,以及传输线共同组成。由于天线系统在理论上涉及较深的电磁场理论,我们将不多叙述,而仅以工程实用为主,介绍其一些基本参数及主要性能。 第一节 传输线 传输线的作用主要是将无线电收发设备与天线相连接。对传输线的主要要求是损耗小,两端阻抗相匹配,足够的功率容限,阻燃防火等。在某些特殊场合,传输线还可用来作阻抗变换用途。 一、传输线的基本参数 移动通信频段使用的传输线绝大多数是同轴电缆。它是一种外导体接地作为屏蔽层的不对称传输线。其等效电路如图3-1所示。图中L 、R 、C 、G 都是分布参数,分别代表传输线单位长度、电感、电阻、电容和电导。 当传输线的损耗足够小时,即ωL>>R ,ωC>>G,其特性阻抗。 图3-1 不对称传输线的等效电路 C L Z ≈0 (3-1) 当两导体间全部充满相同的介质时,同轴电缆的分布电感和分布电容为: ) (2)(2m F d D n C m H d D n L πεπμ== (3-2) ?式中,D 和d分别为同轴电缆的外导体和内导体直径;μ和ε分别为内外导体之间介质的绝对导磁率和绝对介电常数。在一般情况下,介质均为非磁性物质,因此,

00εεεμμμ?=?=r r 和 式中μr 和εr 分别为介质的相对导磁率和相对介电常数,而μ0和ε0为真空的导磁率和介电常数: )(9410) (1049070m F m H ?=?=--πεπμ 将上述数值及式(3-2)代入式(3-1),则可得: d D n d D n Z r r εμεμπ60210== (3-3) 或者当1→r μ时,d D n Z r ε600= 二、传输线的一般性能 ?当传输线的终端负载为ZL 时,在终端处的电压和电流分别为V L和I L,对于特性阻抗为Z0的传输线,在线上任何位置的电压和电流可以表示为: ax Z V j ax I I ax Z jI ax V V L L x L L x sin cos sin cos 00?+?=??+?= (3-4) ?式中,a 为相移常数,x为离终端的距离。 ?图3-2画出了当Z L 分别等于∞、0、Z 0、R L 和XL等五种情况下传输线上电流和电压的分布情况。 如图所示,我们可以归结为: 1) 只有当Z L =Z 0时,传输线上电流和电压都是行波 2) 当Z L =∞或0时,传输线上电流和电压都是驻波 3) 当Z L =RL或XL 时,传输线上也是驻波,但其峰值与谷值视RL 和XL 值的大小而异 传输线上各点的反射波与入射波之比称为该点的反射系数。当损耗很小时, ax j L L i r i r e Z Z Z Z I I V V P 200?+-=== (3-5) 在终端负载处的反射系数 00Z Z Z Z P L L +-= (3-6)

无线网络天线安装规范

基站天线、直放站天线与室内天线 板状天线天线的基本知识 无论是GSM 还是CDMA,板状天线是用得最为普遍的一类极为重要的基站天线。这种天线的优点是:增益高、扇形区方向图好、后瓣小、垂直面方向图俯角控制方便、密封性能可靠以及使用寿命长。 板状天线也常常被用作为直放站的用户天线,根据作用扇形区的范围大小,应选择相应的天线型号。 基站板状天线基本技术指标示例 板状天线高增益的形成 A. 采用多个半波振子排成一个才垂直放置的直线阵

B. 在直线阵的一侧加一块反射板(以带反射板的二半波振子垂直阵为例) C.为提高板状天线的增益,还可以进一步采用八个半波振子排阵 前面已指出,四个半波振子排成一个垂直放置的直线阵的增益约为 8 dB;一侧加有一个反射板的四元式直线阵,即常规板状天线,其增益约为 14 ~ 17 dB 。一侧加有一个反射板的八元式直线阵,即加长型板状天线,其增益约为 16 ~ 19 dB . 不言而喻,加长型板状天线的长度,为常规板状天线的一倍,达 2.4 m 左右。 高增益栅状抛物面天线 从性能价格比出发,人们常常选用栅状抛物面天线作为直放站施主天线。由于抛物面具有良好的聚焦作用,所以抛物面天线集射能力强,直径为 1.5 m 的栅状抛物面天线,在900兆频段,其增益即可达 G = 20 dB . 它特别适用于点对点的通信,例如它常常被选用为直放站的施主天线。 抛物面采用栅状结构,一是为了减轻天线的重量,二是为了减少风的阻力。 抛物面天线一般都能给出不低于 30 dB 的前后比,这也正是直放站系统防

自激而对接收天线所提出的必须满足的技术指标。 八木定向天线 八木定向天线,具有增益较高、结构轻巧、架设方便、价格便宜等优点。因此,它特别适用于点对点的通信,例如它是室内分布系统的室外接收天线的首选天线类型。 八木定向天线的单元数越多,其增益越高,通常采用 6 ~ 12 单元的八木定向天线,其增益可达 10~15 dB 。 室内吸顶天线 室内吸顶天线必须具有结构轻巧、外型美观、安装方便等优点。 现今市场上见到的室内吸顶天线,外形花色很多,但其内芯的购造几乎都是一样的。这种吸顶天线的内部结构,虽然尺寸很小,但由于是在天线宽带理论的基础上,借助计算机的辅助设计,以及使用网络分析仪进行调试,所以能很好地满足在非常宽的工作频带内的驻波比要求,按照国家标准,在很宽的频带内工作的天线其驻波比指标为VSWR ≤ 2 。当然,能达到VSWR ≤ 1.5 更好。顺便指出,室内吸顶天线属于低增益天线, 一般为 G = 2 dB 。

网络优化总结分析报告

山东移动淄博分公司 2015年度总结分析报告 山东移动淄博网络部 2015 年 版权所有侵权必究 All rights reserved 目录 1网格优化工作总结 (10) 1.1淄博网格概述 (10) 1.2省巡检指标分析 (12) 1.3主要优化工作: (14) 1.3.1工参核查 (14) 1.3.2拉网测试 (14) 1.3.3天馈调整 (15) 1.3.4参数调整 (15) 1.4网络问题反馈 (15) 1.4.1缺少基站导致弱覆盖 (16)

1.4.2美化罩无法调整导致周围SINR差 (16) 1.4.3超高站覆盖过远导致SINR差 (17) 1.4.4超低站导致周围弱覆盖 (17) 1.5网格优化案例 (18) 1.5.1覆盖优化 (18) 1.5.2SINR优化 (19) 1.5.3覆盖优化 (21) 1.6总结 (22) 2MR弱覆盖优化整治 (22) 2.1MR弱覆盖问题点分析 (23) 2.1.1楼宇较密集导致弱覆盖 (23) 2.1.2站间距过大导致弱覆盖 (24) 2.1.3站点数据删除导致弱覆盖 (24) 2.1.4超高超低站导致弱覆盖 (24) 2.1.5天馈线问题 (25)

2.2MR弱覆盖整改计划 (25) 2.3MR弱覆盖处理 (26) 2.3.1参数类 (26) 2.3.2天馈类 (28) 2.3.3新加站类 (30) 3KPI指标分析优化 (32) 3.1指标监控内容和KPI指标定义 (32) 3.2TOP小区查找和分析处理 (33) 3.2.1接入性top分析处理 (34) 3.2.2保持性top分析处理 (36) 3.2.3移动性top分析处理 (37) 4VOLTE工作总结 (39) 4.1省公司VOLTE工作部署落实情况 (39) 4.2V O LTE优化开展与问题总结 (41) 4.2.1日常网格、CQT点测试 (41) 4.2.2VoLTE场景化测试 (41)

天馈系统的安装流程

天馈系统的安装流程 一、天馈系统安装前的准备 1、基站环境的检查 2、货物的检查 3、工具的准备 4、人员准备 二、天线的组装与安装 1、天线的组装 2、天线的安装 三、馈线布放 1、馈线卡安装 2、馈线头制作 3、馈线布放 4、进馈窗 5、接地制作 6、防水制作 四、自检

一、天馈系统安装前的准备 1、基站环境的检查 在天馈系统安装前,需先就基站的环境进行检查,也就是对施工环境的检查。 1.1 铁塔、抱杆、增高架的检查 检查铁塔平台上、增高架上是否具有天馈安装的抱杆,检查抱杆是否固定牢靠。 1.2 走线架的检查 检查室外走线架是否安装,是否符合要求。 1.3 馈窗的检查 检查馈窗是否有足够的馈线穿线孔供馈线布放使用。 1.4 室内馈线走线位置的检查 检查室内走线架机柜位置,以确定每个扇区的馈线线序。 1.5 安全检查 检查馈窗入线后是否有障碍物。 1.6 确定馈线的长度 馈线的长度以实际长度多预留3%为宜。 2、货物的检查 2.1 天线的检查 打开天线外包装,检查天线表面有无裂缝,接头有无撞坏的痕迹等。若有损伤,应更换天线。 2.2 馈线的检查 检查馈线是否在运输有划伤、变形,若有损伤、变形,应更换馈线。 2.3 附件的检查 检查馈线头、馈线卡是否足够、是否有损坏,1/2跳线是否足够、是否有破损,胶泥、胶带、扎带是否足够使用。 3、工具的准备 滑轮、大绳、罗盘、角度仪、馈线刀、钢锯、32开口扳、13开口扳、大、小开口扳、安全带、安全帽、斜口钳、壁纸刀、内六方、平挫、工具包。 4、人员的准备 人员不许穿宽松衣服及易打滑的鞋;天馈安装现场所有人员必须头戴安全帽;高空作业人员必须佩带安全带。 二、天线的组装与安装 1、天线的组装 1.1 全向天线的组装 (1) 装配全向天线的两个固定夹。 (2) 紧固与天线配合的部分,如图

天馈系统不匹配

天馈系统不匹配对移动通信的影响及解决方法 天馈系统不匹配对移动通信的影响及解决方法 天馈系统是移动通信系统的重要组成部分,其性能优劣对整体移动通信质量的影响至关重要。根据移动网运行质量统计结果分析,造成移动通信质量指标下降的主要原因来自天馈系统(约占一半以上),而在天馈系统中最为重要的指标就是匹配。因此,我们在无线网络建设和日常维护中,必须高度重视对天馈系统性能的检查,减小天馈系统器件间不匹配对系 统的影响,最大限度发挥天馈系统的性能。 一、基站天馈系统组成及匹配原理 基站天馈系统分为天线和馈线系统。天线本身性能直接影响整个天馈系统性能并起着决定性作用;馈线系统在安装时匹配好坏,直接影响天线性能的发挥。 1.基站天馈系统的组成 其组成主要包括以下几部分: (1)天线,用于接收和发送无线信号,常见的有单极化天线、双极化天线和全向天线; (2)室外跳线,用于天线与7/8〞主馈线之间的连接,常用的跳线采用1/2″馈线,长度 一般为3m; (3)主馈线,目前用于移动基站的馈线主要有7/8″馈线、5/4″馈线、15/8″馈线; (4)接头密封件,用于室外跳线两端接头(与天线和主馈线相接)的密封,常用的材料 有绝缘防水胶带(3M2228)和PVC绝缘胶带(3M33+); (5)室内超柔跳线,用于主馈线(经避雷器)与基站主设备之间的连接,常用的跳线采 用1/2〞超柔馈线,长度一般为2~3m; (6)其他配件,主要有接地装置(7/8〞馈线接地件)、7/8〞馈线卡子、走线架、馈线 过窗器、防雷保护器(避雷器)、各种尼龙扎带等。 2.匹配原理

所谓匹配就是馈线终端所接负载阻抗Z等于馈线特性阻抗Z。匹配原理是在传输系统中的阻抗不连续处引入匹配设备,在原来的不连续的基础上而引入另一种不连续性,使它产生的反射波,正好与原来的反射波干涉抵消,从而达到阻抗匹配。当使用的终端负载是天线时,如果天线振子较粗,输入阻抗随频率的变化就较小,容易和馈线保持匹配,这时振子的工作 频率范围就较宽。反之,则较窄。 在实际工作中,天线的输入阻抗还会受周围物体存在和杂散电容的影响。为了使馈线与天线严格匹配,在架设天线时还需要通过测量,适当地调整天线的结构,或加装匹配装置。 天馈系统匹配性能好坏一般用反射系数或驻波比的大小来衡量,通常采用驻波比。终端负载阻抗和特性阻抗越接近,反射系数越小,驻波比越接近于1,匹配也就越好。 二、天馈系统不匹配对移动通信系统的影响 https://www.360docs.net/doc/226238173.html,*中国网管博客 在移动通信系统中,天馈系统对系统的影响最为敏感和直接,而天馈系统匹配好坏对移动通信质量的影响尤其显著,概括起来主要有以下几个方面。 1.不匹配对发射功率的影响 当馈线和天线匹配时,高频能量全部被负载吸收,馈线上只有入射波,没有反射波。馈线上传输的是行波,馈线上各处的电压幅度相等,馈线上任意一点的阻抗都等于它的特性阻 抗。 而当天线和馈线不匹配时,也就是天线阻抗不等于馈线特性阻抗时,负载就不能全部将馈线上传输的高频能量吸收,而只能吸收部分能量。入射波的一部分能量反射回来形成反射波。其结果是降低了发射机的有效功率,缩小了单基站的有效覆盖面积。 2.不匹配对通信质量的影响 天馈线系统不匹配会对基站覆盖、手机语音质量、无线数据速率产生一定影响,一般手机会出现接收电平低、回声、上网速度慢等现象。 3.不匹配对基站设备的影响 天馈线系统不匹配对基站功放器件寿命影响比较大,馈线的回波电压过大加快基站功放器件老化,天馈线系统严重不匹配时会使功放器件烧毁。

相关文档
最新文档