近十年年高考物理电磁感应压轴题

近十年年高考物理电磁感应压轴题
近十年年高考物理电磁感应压轴题

θ

v 0

x

y

O

M

a b

B

N

电磁感应

2006年全国理综 (北京卷)

24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某

实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁

场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。

(1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向;

(2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通

道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。

(3)船行驶时,通道中海水两侧的电压U /

=U -U 感计算,海水受到电磁力的80%可以转

化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。

解析24.(20分)

(1)根据安培力公式,推力F 1=I 1Bb ,其中I 1=

R U ,R =ρac

b 则F t =

8.796==B p

U Bb R U

ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2=

600)('4=-=pb

ac

b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W

2006年全国物理试题(江苏卷)

19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求:

(1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。

(4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t

t 时刻,导体棒的长度 l =x

导体棒的电动势 E =Bl v 0

回路总电阻 R =(2x +2x )r 电流强度 022E

I R r

==(+)

电流方向 b →a

(2) F =BlI =22

02

22E

I R r

==(+) (3)解法一

t 时刻导体的电功率 P =I 2

R =23

02

22E

I R r

==(+) ∵P ∝t ∴ Q =2P

t =232

02

2(22E I R r

==+) 解法二

t 时刻导体棒的电功率 P =I 2

R 由于I 恒定 R /

=v 0rt ∝t

因此 /

2

2

==2

R P I R I

Q =Pt =

232

(4)撤去外力持,设任意时刻t 导体的坐标为x ,速度为v ,取很短时间Δt 或很短距离Δx 解法一

在t ~t +时间内,由动量定理得 BIl Δt =m Δv

2

)2

lv t m v ??=

2

0S mv =

扫过的面积ΔS =2

2

000()()22

x x x x x x +--= (x =v 0t )

x 200()v t

设滑行距离为d ,则 0000)

2

v t v t d S d +?=

+(

即 d 2

+2v 0t 0d -2ΔS =0

解之 d =-v 0t 0 (负值已舍去)

得 x =v 0t 0+ d 200)v t 解法二

在x ~x +Δx ,由动能定理得 F Δx =

2211

()22

mv m v v mv v ?=?--(忽略高阶小量) 得 2

S m v ∑?=

2

022r

S mv ?=(+)

以下解法同解法一

解法三(1)

由牛顿第二定律得 F =ma =m

v

t

?? 得 F Δt =m Δv 以下解法同解法一 解法三(2)

由牛顿第二定律得 F =ma =m

v t ??=m v v x

?? 得 F Δx =mv Δv 以下解法同解法二

2008年(天津卷)

25.(22分)磁悬浮列车是一种高速低耗的新型交通工具.它的驱动系统简化为如下模型,

固定在列车下端的动力绕组可视为一个矩形纯电阻金属框,电阻为R ,金属框置于xOy 平面内,长边MN 长为L 平行于y 轴,宽为d 的NP 边平行于x 轴,如图1所示.列车轨道沿Ox 方向,轨道区域内存在垂直于金属框平面的磁场,磁感应强度B 沿O x 方向按正弦规律分布,其空间周期为λ,最大值为B 0,如图2所示,金属框同一长边上各处的磁感应强度相同,整个磁场以速度v 0沿Ox 方向匀速平移.设在短暂时间内,MN 、PQ 边所在位置的磁感应强度随时间的变化可以忽略,并忽略一切阻力.列车在驱动系统作用下沿Ox 方向加速行驶,某时刻速度为v(v

(1)简要叙述列车运行中获得驱动力的原理;

(2)为使列车获得最大驱动力,写出MN 、PQ 边应处于磁场中的什么位置及λ与d 之间应满足的关系式;

(3)计算在满足第(2)问的条件下列车速度为v 时驱动力的大小.

25.(22分)

(1)由于列车速度与磁场平移速度不同,导致穿过金属框的磁通量发生变化,由于电磁感应,金属框中会产生感应电流,该电流受到的安培力即为驱动力. (2)为使列车获得最大驱动力,MN 、PQ 应位于磁场中磁感应强度同为最大值且反向的地方,这会使得金属框所围面积的磁通量变化率最大,导致框中电流最强,也会使得金属框长边中电流受到的安培力最大,因此,d 应为λ/2的奇数倍,即

2(21)()221

d

d k k N k =+∈+或λλ=

(3)由于满足第(2)问条件,则MN 、PQ 边所在处的磁感应强度大小均为B 0且方向总相反,经

短暂时间Δt,磁场没Ox 方向平移的距离为v 0Δt,,同时,金属框沿Ox 方向移动的距离为

vΔt.

因为v 0>v ,所以在Δt 时间内MN 边扫过磁场的面积 S=(v 0-v)LΔt

在此Δt 时间内,MN 边左侧穿过S 的磁通量移进金属框而引起框内磁通量变化 ΔΦMN =B 0L(v 0-v) Δt

同理,在Δt 时间内,PQ 边左侧移出金属框的磁通量引起框内磁通量变化 ΔΦPQ =B 0L(v 0-v) Δt

故在Δt 时间内金属框所围面积的磁通量变化 ΔΦ=ΔΦMN +ΔΦPQ

根据法拉第电磁感应定律,金属框中的感应电动势大小

E t φ?=

? 根据闭合电路欧姆定律有

E I R

=

根据安培力公式,MN 边所受的安培力 F MN =B 0IL

PQ 边所受的安培力 F PQ =B 0IL

根据左手定则,MN 、PQ 边所受的安培力方向相同,此时列车驱动力的大小 F=F MN +FPQ=2B 0IL 联立解得

22004()B l v v F R

-=

2007高考四川理综

25.(20分)目前,滑板运动受到青少年的追捧。如图是某滑板运动员在一次表演时的一

部分赛道在竖直平面内的示意图,赛道光滑,FGI 为圆弧赛道,半径R =6 .5m ,G 为最低点并与水平赛道BC 位于同一水平面,KA 、DE 平台的高度都为h =。B 、C 、F 处平滑连接。滑板a 和b 的质量均为m ,m 5kg ,运动员质量为M ,M =45kg 。表演开始,运动员站在滑板b 上,先让滑板a 从A 点静止下滑,t 1=后再与b 板一起从A 点静止下滑。滑上BC 赛道后,运动员从b 板跳到同方向运动的a 板上,在空中运动的时间t 2=。(水平方向是匀速运动)。运动员与a 板一起沿CD 赛道上滑后冲出赛道,落在EF 赛道的P 点,沿赛道滑行,经过G 点时,运动员受到的支持力N

员的速度是多大?⑵运动员跳上滑板a 后,在BC 大?⑶从表演开始到运动员滑至I

⑴v 0=s ⑵v 共=s (提示:设人离开b 时人和b 的速度分别为v 1、v 2,当时a 的速度为v =6 m/s ,人离a 的距离是,人追上a 用的时间,由此可得v 1=7m/s ;再利用人和b 动量守恒得v 2=-3m/s 。人跳上a 过程人和a 动量守恒,得共同速度v 共。)⑶(提示:b 离开人后机械能不变,全过程系统机械能改变是

()()gh m M v m M mv 22

1212022+-++。) 难 2007高考重庆理综

25.(20分)某兴趣小组设计了一种实验装置,用来研究碰撞问题。其模型如图所

示。用完全相同的轻绳将N 个大小相同、质量不等的小球并列悬挂于一水平杆,

球间有微小间隔,从从左到右,球的编号依次为1、2、3……N ,球的质量依次递减,每球质量与其相邻左球质量之比为k (k <1)。将1号球向左拉起,然后

由静止释放,使其与2号球碰撞,2号球再与3号球碰撞……所有碰撞皆为无机械能损

失的正碰。(不计空气阻力,忽略绳的伸长,g 取10m/s 2

)⑴设与n+1号球碰撞前n 号球的速度为v n ,求n+1号球碰撞后的速度。⑵若N =5,在1号球向左拉高h 的情况下,要使5号球碰撞后升高16h (16 h 小于绳长),问k 值为多少?⑶在第⑵问的条件下,悬挂哪个球的绳最容易断,为什么?解:

⑴n n v k

v +=

+12

1 ⑵k=(提示:14

512v k v ??

?

??+=)

⑶1号球。(提示:l v m g m F n n n n 2=-,因此nk n n E l

g m F 2

+=两项都是1号球最大。)

S 1S 22007高考广东物理试题

20.(18分)如图是某装置的垂直截面图,虚线A 1A 2是垂直截面与磁场区边界面的交线,

匀强磁场分布在A 1A 2的右侧区域,磁感应强度B =,方向垂直纸面向外。A 1A 2与垂直截面上的水平线夹角为45°。在A 1A 2左侧,固定的薄板和等大的挡板均水平放置,它们与垂直截面交线分别为S 1、S 2,相距L =。在薄板上P 处开一小孔,P 与A 1A 2线上点D 的水平距离为L 。在小孔处装一个电子快门。起初快门开启,一旦有带正电微粒刚通过小孔,

快门立即关闭,此后每隔T =×10-3

s 开启一次并瞬间关闭。从S 1S 2之间的某一位置水平发射一速度为v 0与档板发生碰撞而反弹,反弹速度大小是碰前的倍。⑴经过一次反弹直接从小孔射出的微粒,其初速度v 0应为多少?⑵求上述微粒从最初水平射入磁场到第二次离开磁场的时间。(忽略微粒所受重力影响,碰撞过程无电荷转移。已知微粒的荷质比q /m =×103

C/kg 微粒的运动)

⑴v 0=100m/s (提示:微粒在磁场中的半径满足:L

v 200

0=

m/s (n =1,2,3…),因此只能取n =2) ⑵t=×10-2

s (提示:两次穿越磁场总时间恰好是一个周期,在磁场外的时间是

0062/22v L v L v L =+)难

2007高考江苏物理 19.(16分)如图所示,一轻绳吊着粗细均匀的棒,棒下端离地面高H ,上端套着一个细环。

棒和环的质量均为m ,相互间最大静摩擦力等于滑动摩擦力kmg (k >1)。断开轻绳,棒和环自由下落。假设棒足够长,与地面发生碰撞时,触地时间极短,无动能损失。棒在整个运动过程中始终保持竖直,空气阻力不计。求:⑴棒第一次与地面碰撞弹起上升过程中,环的加速度。⑵从断开轻绳到棒与地面第二次碰撞的瞬间,棒运动的路程s 。⑶从断开轻绳到棒和环都静止,摩擦力对环及棒做的总功W 。

⑴a 环=(k-1)g ,竖直向上。⑵H k k s 13++=(提示:落地及反弹的瞬时速度gH v 21=,a 棒

=(k+1)g ,竖直向下,匀减速上升高度s 1=v 2

/2a 棒,而s=H+2s 1。)⑶1

2--=k kmgH W

(提示:用递推的方法。第一次碰地后,环和棒的加速度大小分别是a 环=(k-1)g 和a 环=(k+)g ,设经过时间t 1达到共速v 1′,方向向下。以向下为正方向,v 1′= v 1-a 环t 1=

- v 1+ a 棒t 1,解得kg v t 11=,k v v 11=',该过程棒上升的高度H k

k t v v h 211111

2-=?'-=

环下降的高度H k

k t v v h 211121

2+=?'+=,相对滑动距离x 1=h 1+h 2=

k H 2。棒和环第二次与地碰撞时的速度v 22

-v 1′2

=2gh 1,得k

gH

v 22=

,与上同理可推得第二次相对滑动距离x 2=

2

2k H

,即x 1、x 2、x 3成无穷等比数列,其总和12111-=-=

k H k

x x ,W=-kmg ?x 可得结论。) 难

2008年(江苏省)

15.(16分)如图所示,间距为L 的两条足够长的平行金属导轨与水平面的夹角为θ,导轨光滑且电阻忽略不计.场强为B 的条形匀强磁场方向与导轨平面垂直,磁场区域的宽度为d 1,间距为d 2.两根质量均为m 、有效电阻均为R 的导体棒a 和b 放在导轨上,并与导轨垂直. (设重力加速度为g )

(1)若a 进入第2个磁场区域时,b 以与a 同样的速度进入第1个磁场区域,求b 穿过第1个磁场区域过程中增加的动能△E k .

(2)若a 进入第2个磁场区域时,b 恰好离开第1个磁场区域;此后a 离开第2个磁场区域时,b 又恰好进入第2个磁场区域.且a .b 在任意一个磁场区域或无磁场区域的运动时间均相.求b 穿过第2个磁场区域过程中,两导体棒产生的总焦耳热Q .

(3)对于第(2)问所述的运动情况,求a 穿出第k 个磁场区域时的速率v

15.⑴a 和b 不受安培力作用,由机械能守恒知 k 1sin E =mgd θ? ①

⑵设导体棒刚进入无磁场区域时的速度为1v ,刚离开无磁场区域时的速度为2v ,由能量守恒知

在磁场区域中,

2212111sin 22

m +Q=m +mgd θv v ②

在无磁场区域中

2221211sin 22

m =m +mgd θv v ③ 解得 ()12sin Q=mg d +d θ ④

⑶在无磁场区域,根据匀变速直线运动规律有 21sin -=gt θv v ⑤

且平均速度

122

2+d =t

v v ⑥ 有磁场区域,棒a 受到合力 sin F=mg -BIl θ ⑦ 感应电动势 =Bl εv ⑧ 感应电流 2I=

R

ε

解得 22

sin 2B l F=mg -R

θv ⑩ 根据牛顿第二定律,在t 到t+t ?时间内 F

=t m

∑?∑

?v ○

11 则有 22sin 2B l =g -t mR θ??

∑?∑?????

v v ○12 解得 22

121sin 2B l -=g -d mR

θv v ○13 联立⑤⑥○13解得 2221

12214sin 8mgRd B l d =-B l d mR

θv

备战高考物理电磁感应现象的两类情况-经典压轴题及答案

备战高考物理电磁感应现象的两类情况-经典压轴题及答案 一、电磁感应现象的两类情况 1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰) (1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离; (3)在两根杆相互作用的过程中,求回路中产生的电能. 【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】 (1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v 设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有 2h x v g =2h x s v g +=根据动量守恒 012mv mv mv =+ 求得: 210m/s v = (2)ab 杆运动距离为d ,对ab 杆应用动量定理 1BIL t BLq mv ==V 设cd 杆运动距离为d x +?

22BL x q r r ?Φ?= = 解得 1 22 2rmv x B L ?= cd 杆运动距离为 1 22 27m rmv d x d B L +?=+ = (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能 222 012111100J 222 Q mv mv mv =--= 2.如图所示,两根竖直固定的足够长的金属导轨ad 和bc ,相距为L=10cm ;另外两根水平金属杆MN 和EF 可沿导轨无摩擦地滑动,MN 棒的质量均为m=0.2kg ,EF 棒的质量M =0.5kg ,在两导轨之间两棒的总电阻为R=0.2Ω(竖直金属导轨的电阻不计);空间存在着垂直于导轨平面的匀强磁场,磁感应强度为B=5T ,磁场区域足够大;开始时MN 与EF 叠放在一起放置在水平绝缘平台上,现用一竖直向上的牵引力使MN 杆由静止开始匀加速上升,加速度大小为a =1m/s 2,试求: (1)前2s 时间内流过MN 杆的电量(设EF 杆还未离开水平绝缘平台); (2)至少共经多长时间EF 杆能离开平台。 【答案】(1)5C ;(2)4s 【解析】 【分析】 【详解】 解:(1)t=2s 内MN 杆上升的距离为 2 1 2 h at = 此段时间内MN 、EF 与导轨形成的回路内,磁通量的变化量为 BLh ?Φ= 产生的平均感应电动势为 E t ?Φ = 产生的平均电流为

(完整word版)高考物理压轴题电磁场汇编

24、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向 垂直于纸面,磁感应强度为B 。一质量为m ,带有电量 q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP =d )射入磁场(不计重力影响)。 ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 24、⑴由于粒子在P 点垂直射入磁场,故圆弧轨道的圆心在AP 上,AP 是直径。 设入射粒子的速度为v 1,由洛伦兹力的表达式和牛顿第二定律得: 2 11/2 v m qBv d = 解得:12qBd v m = ⑵设O /是粒子在磁场中圆弧轨道的圆心,连接O /Q ,设O / Q =R /。 由几何关系得: / OQO ?∠= // OO R R d =+- 由余弦定理得:2 /22//()2cos OO R R RR ?=+- 解得:[] / (2) 2(1cos )d R d R R d ?-= +- 设入射粒子的速度为v ,由2 /v m qvB R = 解出:[] (2) 2(1cos )qBd R d v m R d ?-= +- 24.(17分) 如图所示,在xOy 平面的第一象限有一匀强电场,电场的 方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d 。接着,质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。 24.质点在磁场中偏转90o,半径qB mv d r = =φsin ,得m qBd v φsin =; v

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析 一、电磁感应现象的两类情况 1.如图所示,无限长平行金属导轨EF、PQ固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。一质量m=2kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.5,ab连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。现用一质量M=6kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放物体,当物体下落高度h=2.0m时,ab开始匀速运动,运动中ab始终垂直导轨并与导轨接触良好。不计空气阻力,sin37°=0.6,cos37°=0.8,g取10m/s2。 (1)求ab棒沿斜面向上运动的最大速度; (2)在ab棒从开始运动到开始匀速运动的这段时间内,求通过杆的电量q; (3)在ab棒从开始运动到开始匀速运动的这段时间内,求电阻R上产生的焦耳热。 【答案】(1) (2)q=40C (3) 【解析】 【分析】 (1)由静止释放物体,ab棒先向上做加速运动,随着速度增大,产生的感应电流增大,棒所受的安培力增大,加速度减小,棒做加速度减小的加速运动;当加速度为零时,棒开始匀速,速度达到最大。据法拉第电磁感应定律、闭合电路的欧姆定律、安培力公式、平衡条件等知识可求出棒的最大速度。 (2)本小问是感应电量的问题,据法拉第电磁感应定律、闭合电路的欧姆定律、电流的定义式、磁通量的概念等知识可进行求解。 (3)从ab棒开始运动到匀速运动,系统的重力势能减小,转化为系统增加的动能、摩擦热和焦耳热,据能量守恒定律可求出系统的焦耳热,再由焦耳定律求出电阻R上产生的焦耳热。 【详解】 (1)金属棒ab和物体匀速运动时,速度达到最大值,由平衡条件知 对物体,有;对ab棒,有 又、 联立解得: (2) 感应电荷量

高考物理压轴题电磁场汇编

1、在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁 感应强度为B。一质量为m带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP= d)射入磁场(不计重力影响)。 ⑴如果粒子恰好从A点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q 点切线 方向的夹角为φ (如图)。求入射粒子的速度。 解:⑴由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP 是直径。 设入射粒子的速度为V1,由洛伦兹力的表达式和牛顿第二定律得: v12 m qBv1 d/2 解得:v1-q B d 2m ⑵设O是粒子在磁场中圆弧轨道的圆心,连接 由几何关系得:QQQ Z = QQ^R Z R_d 由余弦定理得:/ 2 2 /2/ (QQ ) =R R -2RR COSr 解得:P Z d(2R-d) 2 ∣R(1 cos J - d 1 2 设入射粒子的速度为v,由m~v√ = qvB R Z 解出: qBd (2R-d) V 2m [R(1 + cos c P) -d 】 2、(17分)如图所示,在XQy平面的第一象限有一匀强电场,电场的方向 平行于y轴向下;在X轴和第四象限的射线QC之间有一匀强磁场,磁 感应强度的大小为B,方向垂直于纸面向外。有一质量为m,带 有 电荷量+q的质点由电场左侧平行于X轴射入电场。质点到达X轴上A 点时,速度方向与X轴的夹角为φ , A点与原点Q的距离为d。接着, 质点进入磁场,并垂直于QC飞离磁场。不计重力影响。若QC与X 轴 的夹角也为φ ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的 场强大小。 D V

高考物理压轴题之电磁学专题(5年)(含答案分析).

25.2014新课标2 (19分)半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m且质量分布均匀的直导体棒AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯 视图如图所示.整个装置位于一匀强磁场中,磁感应强度的 大小为B,方向竖直向下,在内圆导轨的C点和外圆导轨的 D点之间接有一阻值为R的电阻(图中未画出).直导体棒 在水平外力作用下以速度ω绕O逆时针匀速转动、转动过 程中始终与导轨保持良好接触,设导体棒与导轨之间的动摩 擦因数为μ,导体棒和导轨的电阻均可忽略,重力加速度大 小为g.求: (1)通过电阻R的感应电流的方向和大小; (2)外力的功率.

25.(19分)2013新课标1 如图,两条平行导轨所在平面与水平 地面的夹角为θ,间距为L。导轨上端接 有一平行板电容器,电容为C。导轨处于 匀强磁场中,磁感应强度大小为B,方向 垂直于导轨平面。在导轨上放置一质量为 m的金属棒,棒可沿导轨下滑,且在下滑 过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系。 24.(14分)2013新课标2 如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行。a、b为轨道直径的两端,该直径与电场方向平行。一电荷为q(q>0)的质点沿轨道内侧运动.经过a 点和b点时对轨道压力的大小分别为Na和Nb不计重力,求电场强度的大小E、质点经过a点和b点时的动能。

电磁感应压轴题

v (m/s) 10 8 6 4 2 M (kg) 0 0.1 0.2. 0.3 0.4 0.5 电磁感应难题训练1 1. 如图所示,两根与水平面成θ=30角的足够长光滑金属导轨平行放置,导轨间距为L =1m ,导轨底端接有阻值为的电阻R ,导轨的电阻忽略不计。整个装置处于匀强磁场中,磁场方向垂直于导轨平面斜向上,磁感应强度B =1T 。现有一质量为m =0.2 kg 、电阻为的金属棒用细绳通过光滑滑轮与质量为M =0.5 kg 的物体相连,细绳与导轨平面平行。将金属棒与M 由静止释放,棒沿导轨运动了2 m 后开始做匀速运动。运动过程中,棒与导轨始终保持垂直接触。(取重力加速度g=10m/s 2)求: (1)金属棒匀速运动时的速度; (2)棒从释放到开始匀速运动的过程中,电阻R 上 产生的焦耳热; . (3)若保持某一大小的磁感应强度B 1不变,取不同 质量M 的物块拉动金属棒,测出金属棒相应的 做匀速运动的v 值,得到实验图像如图所示, 请根据图中的数据计算出此时的B 1; (4)改变磁感应强度的大小为B 2,B 2=2B 1,其他条件不变, 请在坐标图上画出相应的v —M 图线,并请说明图线与M 轴的 交点的物理意义。 ~ ; $ B θ m R

2. 如图所示,两根足够长且平行的光滑金属导轨与水平面成53°角固定放置,导轨间连接一阻值为4Ω的电阻R,导轨电阻忽略不计.在两平行虚线L1、L2间有一与导轨所在平面垂直、磁感应强度为B的匀强磁场,磁场区域的宽度为d=0.5m.导体棒a的质量为ma=0.6kg,电阻Ra=4Ω;导体棒b的质量为mb=0.2kg,电阻Rb=12Ω;它们分别垂直导轨放置并始终与导轨接触良好.现从图中的M、N处同时将它们由静止开始释放,运动过程中它们都能匀速穿过磁场区域,当b刚穿出磁场时,a正好进入磁场(g取10m/s2,sin53°=,且不计a、b之间电流的相互作用).求: (1)在整个过程中,a、b两导体棒分别克服安培力做的功; (2)在a穿越磁场的过程中,a、b两导体棒上产生的焦耳热之比; (3)在穿越磁场的过程中,a、b两导体棒匀速运动的速度大小之比; (4)M点和N点之间的距离. / 。 #

近十年年高考物理电磁感应压轴题

θ v 0 y M a B 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =2.0m ,b =0.15m 、c =0.10m 。工作时,在通道内沿z 轴正方 向加B =8.0T 的匀强磁场;沿x 轴正方向加匀强电场,使两金属板间的电压U =99.6V ;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=0.22Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =5.0m /s 的速度匀速前进。若以船为参照物,海水以5.0m /s 的速率涌入进 水口由于通道的截面积小球进水口的截面积,在通道内海水速率增加到v d =8.0m /s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U /=U -U 感计算,海水受到电磁力的80%可以 转化为对船的推力。当船以v s =5.0m /s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b=9.6 V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2R = 23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2R 由于I 恒定 R /=v 0rt ∝t

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附详细答案

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附详细答案 一、法拉第电磁感应定律 1.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。求: (1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离; (3)ab 棒开始下滑至EF 的过程中回路中产生的热量。 【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。 【解析】 【详解】 (1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。 (2)ab 棒在到达区域Ⅱ前做匀加速直线运动, a = sin mg m θ =gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得: 1Blv t ?Φ =? 2(sin )x x B l I BI g t t θ??= 解得 2sin x l t g θ = ab 棒在区域Ⅱ中做匀速直线运动的速度

高考物理压轴题专题复习—电磁感应现象的两类情况的推断题综合

高考物理压轴题专题复习—电磁感应现象的两类情况的推断题综合 一、电磁感应现象的两类情况 1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=?,间距为d =0.2m ,且电阻不计。导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求: (1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。 【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】 (1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。 由平衡条件 sin mg BId θ=① 导体棒切割磁感线产生的电动势为 E =Bdv ② 由闭合电路欧姆定律得 E I R r = +③ 联立①②③得 v =20m/s ④ 由欧姆定律得 U =IR ⑤ 联立①⑤得 U =7V ⑥ (2)由电流定义式得 Q It =⑦ 由法拉第电磁感应定律得 E t ?Φ = ?⑧

B ld ?Φ=?⑨ 由欧姆定律得 E I R r = +⑩ 由⑦⑧⑨⑩得 Q =0.02C ? 2.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒 ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的 过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求: (1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L v θ=2)sin sin t gvt v v CgR θθ=+ 【解析】 试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流E I R = ,棒所受的安培力F BIL = 联立可得22B L v F R =,由平衡条件可得F mgsin θ=,解得2 mgRsin B L v θ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t 则电容器板间电压为 U E BLv ='= 此时电容器的带电量为 Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q V

备战高考物理压轴题专题复习——法拉第电磁感应定律的推断题综合附详细答案

一、法拉第电磁感应定律 1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力. (1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少? (2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少? (3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少? 【答案】(1)1.2 V(2)3.2 J(3)0.9 J 【解析】 【详解】 (1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为: 10.44V=1.6 V E BLv ==?? 因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压: U eb=3 4 E=1.2 V. (2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力: F安=BLI 根据闭合电路欧姆定律有: I=E R 联立解得解得F安=4 N

压轴题08 电磁场综合专题(原卷版)-2020年高考物理挑战压轴题(尖子生专用)

压轴题08电磁场综合专题 1.如图所示,真空区域中存在匀强电场与匀强磁场;每个磁场区域的宽度均为0.20m h =,边界水 平,相邻两个区域的距离也为h ,磁感应强度大小 1.0T B =、方向水平且垂直竖直坐标系xoy 平面向里;电场在x 轴下方的整个空间区域中,电场强度的大小 2.5N/C E =、方向竖直向上。质量41.010kg m -=?、电荷量4 4.010C q -=?的带正电小球,从y 轴上的P 点静止释放,P 点与x 轴的距离也为h ;重力加速度g 取10m/s 2,sin 370.6=,cos370.8=,不计小球运动时的电磁辐射。求小球: (1)射出第1区域时的速度大小v (2)射出第2区域时的速度方向与竖直方向之间的夹角θ (3)从开始运动到最低点的时间t 。 2.如图甲所示,平行金属板M 、N 水平放置,板长L =5 m 、板间距离d =0.20m 。在竖直平面内建立xOy 直角坐标系,使x 轴与金属板M 、N 的中线OO ′重合,y 轴紧靠两金属板右端。在y 轴右侧空间存在方向垂直纸面向里、磁感应强度大小B =5.0×10-3T 的匀强磁场,M 、N 板间加随时间t 按正弦规律变化的电压u MN ,如图乙所示,图中T 0未知,两板间电场可看作匀强电场,板外电场可忽略。比荷q m =1.0×107C/kg 、带正电的大量粒子以v 0=1.0×105m/s 的水平速度,从金属板左端沿中线OO ′连续射入电场,进入磁场的带电粒子从y 轴上的 P 、Q (图中未画岀,P 为最高点、Q 为最低点)间离开磁场。在每个粒子通过电场区域的极短时间内,电场可视作恒定不变,忽略粒子重力,求: (1) 进入磁场的带电粒子在电场中运动的时间t 0及在磁场中做圆周运动的最小半径r 0; (2) P 、Q 两点的纵坐标y P 、y Q ; (3) 若粒子到达Q 点的同时有粒子到达P 点,满足此条件的电压变化周期T 0的最大值。

电磁感应压轴题

v (m/s) 10 8 6 4 2 M (kg) 0 0.1 0.2. 0.3 0.4 0.5 电磁感应难题训练1 1. 如图所示,两根与水平面成θ=30角的足够长光滑金属导轨平行放置,导轨间距为L =1m ,导轨底端接有阻值为 的电阻R ,导轨的电阻忽略不计。整个装置处于匀强磁场中, 磁场方向垂直于导轨平面斜向上,磁感应强度B =1T 。现有一质量为m =0.2 kg 、电阻为的金属棒用细绳通过光滑滑轮与质量为M =0.5 kg 的物体相连,细绳与导轨平面平行。将金属棒与M 由静止释放,棒沿导轨运动了2 m 后开始做匀速运动。运动过程中,棒与导轨始终保持垂直接触。(取重力加速度g=10m/s 2 )求: (1)金属棒匀速运动时的速度; (2)棒从释放到开始匀速运动的过程中,电阻R 上 产生的焦耳热; (3)若保持某一大小的磁感应强度B 1不变,取不同 质量M 的物块拉动金属棒,测出金属棒相应的 做匀速运动的v 值,得到实验图像如图所示, 请根据图中的数据计算出此时的B 1; (4)改变磁感应强度的大小为B 2,B 2=2B 1,其他条件不变, 请在坐标图上画出相应的v —M 图线,并请说明图线与M 轴的 交点的物理意义。 B θ m R

2. 如图所示,两根足够长且平行的光滑金属导轨与水平面成53°角固定放置,导轨间连接一阻值为4Ω的电阻R,导轨电阻忽略不计.在两平行虚线L1、L2间有一与导轨所在平面垂直、磁感应强度为B的匀强磁场,磁场区域的宽度为d=0.5m.导体棒a的质量为ma=0.6kg,电阻Ra=4Ω;导体棒b的质量为mb=0.2kg,电阻Rb=12Ω;它们分别垂直导轨放置并始终与导轨接触良好.现从图中的M、N处同时将它们由静止开始释放,运动过程中它们都能匀速穿过磁场区域,当b刚穿出磁场时,a正好进入磁场(g取10m/s2,sin53°=,且不计a、b之间电流的相互作用).求: (1)在整个过程中,a、b两导体棒分别克服安培力做的功; (2)在a穿越磁场的过程中,a、b两导体棒上产生的焦耳热之比; (3)在穿越磁场的过程中,a、b两导体棒匀速运动的速度大小之比; (4)M点和N点之间的距离.

电磁感应部分 压轴题考法

1.电磁感应加速器(共2题) (20 分)在如图甲所示的半径为r的竖直圆柱形区域内,存在竖直向上的匀强磁场,磁感应强度大小随时间的变化关系为B=kt(k>0 且为常量)。 (1)将一由细导线构成的半径为r、电阻为R0 的导体圆环水平固定在上述磁场中,并使圆环中心与磁场区域的中心重合。求在T 时间内导体圆环产生的焦耳热(2)上述导体圆环之所以会产生电流是因为变化的磁场会在空间激发涡旋电场,其电场线是在水平面内的一系列沿顺时针方向的同心圆(从上向下看),圆心与磁场区域的中心重合。同一条电场线上各点的场强大小相等,涡旋电场场强与电势差的关系与匀强电场相同。如图丙所示,在磁场区域的水平面内固定一个内壁光滑的绝缘环形真空细管道,其内环半径为r,管道中心与磁场区域的中心重合,细管道直径远小于r。某时刻,将管道内电荷量为q 的带正电小球由静止释放(小球的直径略小于真空细管道的直径),假设小球在运动过程中其电荷量保持不变,忽略小球受到的重力、小球运动时激发的磁场以及相对论效应。若小球由静止经过一段时间加速,获得动能E m,求小球在这段时间内在真空细管道内运动的圈数 (3)若在真空细管道内部空间加有方向竖直向下的恒定匀强磁场,小球开始运动后经过时间t0,小球与环形真空细管道之间恰好没有作用力,求在真空细管道内部所加磁场的磁感应强度的大小

动生切割中的电容问题(2题) 12.(20分)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。两根固定于水平面内的光滑平行金属导轨间距为l,电阻不计。炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。首先开关S接1,使电容器完全充电。然后将S 接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN开始向右加速运动。当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨。问: (1)磁场的方向; (2)MN刚开始运动时加速度a的大小; (3)MN离开导轨后电容器上剩余的电荷量Q是多少。

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

物理压轴题电磁场

1、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向 垂直于纸面,磁感应强度为B 。一质量为m ,带有电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP =d )射入磁场(不计重力影响)。 ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半 圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 2.(17分) 如图所示,在xOy 平面的第一象限有一匀强电场,电场的方 向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场, 磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有 电荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d 。接着, 质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场 的场强大小。 3.(18分)如图所示,在第一象限有一匀强电场,场强大小为E ,方向与y 轴平行;在x 轴下方有一匀强磁场,磁场方向与纸面垂直。一质 量为m 、电荷量为-q (q >0)的粒子以平行于x 轴的速度从y 轴上的 P 点处射入电场,在x 轴上的Q 点处进入磁场,并从坐标原点O 离 开磁场。粒子在磁场中的运动轨迹与y 轴交于M 点。已知OP=l , OQ=23l 。不计重力。求:⑴M 点与坐标原点O 间的距离;⑵粒子 从P 点运动到M 点所用的时间。 命题点:带电粒子在组合场中的运动——电场中的加速、偏转;磁场中的圆周 运动 07—25.(18分)飞行时间质谱仪可以对气体分子进行分析。 如图所示,在真空状态下,脉冲阀P 喷出微量气体,经激光照 射产生不同价位的正离子,自a 板小孔进入a 、b 间的加速电 场,从b 板小孔射出,沿中线方向进入M 、N 板间的偏转控制 区,到达探测器。已知元电荷电量为e ,a 、b 板间距为d ,极 板M 、N 的长度和间距均为L 。不计离子重力及进入a 板时的 初速度。 ⑴当a 、b 间的电压为U 1时,在M 、N 间加上适当的电压U 2, 使离子到达探测器。请导出离子的全部飞行时间与比荷K (K =ne /m )的关系式。 ⑵去掉偏转电压U 2,在M 、N 间区域加上垂直于纸面的匀强磁 x

2018年高考理综物理电磁场压轴专项练习集(二)

2018年高考理综物理电磁场压轴专项练习集(二) 1.如图所示,平面直角坐标系xOy 中,平行板电容器位于y 轴左侧,其中线O 1O 与x 轴重合,y 轴右侧存在一与y 轴相切的圆形磁场区域,圆心O 2在x 轴上,PQ 为与x 轴垂直的直径的两个端点,磁场方向垂直纸面向外,已知电容器两板长为L ,两板间距为d ,下板接地,上板的电势随时间变化的关系如图所示,磁场区域的半径为 4 3 d .从t=0时刻开始,大量的电荷量为q 、质量为m 的带负电粒子从Q 1以速度v 0沿x 轴方向持续射入电场,粒子在电场中的运动时间与电场的变化周期相等,发现t=0时刻射入的粒子恰由下板边缘飞出,通过磁场后由P 点离开,求: (1)U 0的值; (2)磁场的磁感应强度B 0的值; (3)将磁场的磁感应强度变为2 B ,请确定在磁场中运动时间最长的粒子进入磁场时位置的横坐标.

2.一足够长的条状区域内存在匀强电场和匀强磁场,其在xoy 平面内的截面如图所示:中 间是磁场区域,其边界与y 轴垂直,宽度为l ,磁感应强度的大小为B ,方向垂直于xoy 平面;磁场的上、下两侧为电场区域,宽度均为,电场强度的大小均为E ,方向均沿x 轴正方向;M 、N 为条形区域边界上的两点,它们的连线与y 轴平行。一带正电的粒子以某一速度从M 点沿y 轴正方向射入电场,经过一段时间后恰好以从M 点入射的速度从N 点沿y 轴正方向射出。不计重力。 (1)定性画出该粒子在电磁场中运动的轨迹; (2)求该粒子从M 点射入时速度的大小; (3)若该粒子进入磁场时的速度方向恰好与x 轴正方向的夹角为6 ,求该粒子的比荷及其从M 点运动到N 点的时间。

备战高考物理法拉第电磁感应定律-经典压轴题附详细答案

备战高考物理法拉第电磁感应定律-经典压轴题附详细答案 一、法拉第电磁感应定律 1.如图甲所示,一个电阻值为R,匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路。线圈的半径为r1。在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t0和B0。导线的电阻不计,求0至t1时间内 (1)通过电阻R1上的电流大小及方向。 (2)通过电阻R1上的电荷量q。 【答案】(1) 2 02 3 n B r Rt π 电流由b向a通过R1(2) 2 021 3 n B r t Rt π 【解析】【详解】 (1)由法拉第电磁感应定律得感应电动势为 2 202 2 n B r B E n n r t t t π π ?Φ? === ?? 由闭合电路的欧姆定律,得通过R1的电流大小为 2 02 33 n B r E I R Rt π == 由楞次定律知该电流由b向a通过R1。 (2)由 q I t =得在0至t1时间内通过R1的电量为: 2 021 1 3 n B r t q It Rt π == 2.光滑平行的金属导轨MN和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP间接有阻值R=2.0Ω的电阻,其它电阻不计,质量 m=2.0kg的金属杆ab垂直导轨放置,如图(a)所示.用恒力F沿导轨平面向上拉金属杆ab,由静止开始运动,v?t图象如图(b)所示.g=10m/s2,导轨足够长.求: (1)恒力F的大小; (2)金属杆速度为2.0m/s时的加速度大小; (3)根据v?t图象估算在前0.8s内电阻上产生的热量.

高考物理压轴题电磁场汇编(可编辑修改word版)

φQ R P O y E φA φ B C 24、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向 垂直于纸面,磁感应强度为B。一质量为m,带有电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点 (AP=d)射入磁场(不计重力影响)。 A D ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在 Q点切线方向的夹角为φ(如图)。求入射粒子的速度。 24、⑴由于粒子在 P 点垂直射入磁场,故圆弧轨道的圆心在 AP 上,AP 是直径。 设入射粒子的速度为 v1 v2 m1=qBv 1 d / 2 qBd φ Q R/ R 解得:v1 = 2m P D A O/ O ⑵设 O/是粒子在磁场中圆弧轨道的圆心,连接O/Q,设O/Q=R/。 由几何关系得:∠OQO/= OO/=R/+R -d 由余弦定理得:(OO/ )2=R2+R/2 - 2RR/ cos 解得:R/ d (2R -d ) = 2[R(1+ cos) -d ] 设入射粒子的速度为 v,由m v R/ =qvB 解出:v = qBd (2R -d ) 2m[R(1+c os) -d] 24.(17 分)如图所示,在xOy 平面的第一象限有一匀强电场,电场的方 向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场, 磁感应强度的大小为B,方向垂直于纸面向外。有一质量为m,带有电 荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时, 速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d。接着,质点 O x 进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹 角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。 24.质点在磁场中偏转90o,半径r=d sin=mv ,得v= qBd sin; qB m v 2

高考物理法拉第电磁感应定律-经典压轴题含答案

一、法拉第电磁感应定律 1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求: (1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R . 【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】 (1)由题意及图象可知,当0t =时刻ab 边的受力最大,为: 10.02N F BIL == 可得: 10.02A 0.2A 1.00.1 F I BL = ==? 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒: Q W =安310.020.1J 2.010J F L -==?=? (2) 金属框拉出的过程中产生的热量: 2Q I Rt = 线框的电阻: 3 22 2.010Ω 1.0Ω0.20.05 Q R I t -?===? 2.如图所示,电阻不计的相同的光滑弯折金属轨道MON 与M O N '''均固定在竖直平面内,二者平行且正对,间距为L =1m ,构成的斜面ONN O ''跟水平面夹角均为30α =?,两 侧斜面均处在垂直斜面向上的匀强磁场中,磁感应强度大小均为B =0.1T .t =0时,将长度也为L =1m ,电阻R =0.1Ω的金属杆ab 在轨道上无初速释放.金属杆与轨道接触良好,轨道足够长.重力加速度g =10m/s 2;不计空气阻力,轨道与地面绝缘. (1)求t =2s 时杆ab 产生的电动势E 的大小并判断a 、b 两端哪端电势高 (2)在t =2s 时将与ab 完全相同的金属杆cd 放在MOO'M'上,发现cd 杆刚好能静止,求ab 杆的质量m 以及放上cd 杆后ab 杆每下滑位移s =1m 回路产生的焦耳热Q

高考物理压轴题电磁场汇编

Q 1、在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于 φ纸面,磁感应强度为B。一质量为m,带有电量q的粒子以一 定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁 R 场(不计重力影响)。 ⑴如果粒子恰好从A点射出磁场,求入射粒子的速度。A O P D ⑵如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 解:⑴由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP是直径。 设入射粒子的速度为v1,由洛伦兹力的表达式和牛顿第二定律得: Q 2 v φ 1 mqBv 1 d/2 / R R qBd v 解得:1 2m / AO O ⑵设O/是粒子在磁场中圆弧轨道的圆心,连接O/Q,设O/Q=R/。 P D / 由几何关系得:OQO // OORRd 由余弦定理得: 2 /22// (OO)RR2RRcos 解得: /d(2Rd) 2R(1cos)d R 设入射粒子的速度为v,由 2 v mqvB / R 解出:v qBd(2Rd) 2mR(1cos)d y 2、(17分)如图所示,在xOy平面的第一象限有一匀强电场,电场的方 向平行于y轴向下;在x轴和第四象限的射线OC之间有一匀强磁场, E 磁感应强度的大小为B,方向垂直于纸面向外。有一质量为m,带有 电荷量+q的质点由电场左侧平行于x轴射入电场。质点到达x轴上A 点时,速度方向与x轴的夹角为φ,A点与原点O的距离为d。接着,O φ A φ x

质点进入磁场,并垂直于OC飞离磁场。不计重力影响。若OC与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场 的场强大小。 B C 解:质点在磁场中偏转90o,半径 mv rdsin,得 qB v q Bd sin m ; v

相关文档
最新文档