神经网络控制大作业_南航_智能控制

神经网络控制大作业_南航_智能控制
神经网络控制大作业_南航_智能控制

南京航空航天大学研究生实验报告

实验名称:神经网络控制器设计

姓名:

学号:

专业:

201 年月日

一、题目要求

考虑如下某水下航行器的水下直航运动非线性模型:

()||a m m v k v v u y v

++==

其中v R ∈为水下航行器的前进速度, u R ∈为水下航行器的推进器推力,y R ∈为水下航行器的输出,航行器本体质量、附加质量以及非线性运动阻尼系数分别为

100,15,10a m m k ===。

作业具体要求:

1、设计神经网络控制器,对期望角度进行跟踪。

2、分析神经网络层数和神经元个数对控制性能的影响。

3、分析系统在神经网络控制和PID 控制作用下的抗干扰能力(加噪声干扰、加参数不确定)、抗非线性能力(加死区和饱和特性)、抗时滞的能力(对时滞大小加以改变)。

二、神经网络控制器的设计

1.构建系统的PID 控制模型

在Simulink 环境下搭建水下航行器的PID 仿真模型,如下图1所示:

图1 水下航行器的PID 控制系统

其中,PID 控制器的参数设置为:K p =800,K i =100,K d =10。

需要注意的一点是,经过signal to workspace 模块提取出的数据的Save format 为Array 格式。

2.BP神经网络控制器的训练

首先将提取出的训练数据变为标准的训练数据形式,标准的训练数据分为输入和目标输出两部分。经过signal to workspace模块提取出的数据为一个训练数据个数乘以输入(或输出)个数的矩阵,因此分别将x、u转置后就得到标准训练数据x’,u’。

然后,新建m文件,编写神经网络控制器设计程序:

%----------------------------------------------------------------

p=x'; %input

t=u'; %input

net=newff(p,t,3,{'tansig','purelin'},'trainlm');

net.trainparam.epochs=2500;

net.trainparam.goal=0.00001;

net=train(net,x',u'); %train network

gensim(net,-1); %generate simulink block

%----------------------------------------------------------------

上述m文件建立了如下图所示的神经网络,包含输入层、1个隐含层和输出层,各层神经元节点分别为1、 3 和1。

图2 神经网络控制器结构及训练方法

神经网络控制器的训练过程如下:

1020304050607080

10

-5

10

10

5

Best Validation Performance is 7.3634 at epoch 84

M e a n S q u a r e d E r r o r (m s e )

84 Epochs

图3神经网络训练过程

由gensim(net,-1); %generate

simulink block 语句生成了Simulink 神经网络控制模块,如下图所示。

图4 神经网络控制模块

对神经网络训练完成后, 生成了Simulink 仿真模块, 将其取代了PID 控制器,得到神经网络控制系统模型如下图所示。

图5 水下航行器神经网络控制系统仿真模型

三、仿真结果与分析

1.PID 控制器和神经网络控制器的仿真效果

对比采用PID 控制器和神经网络控制器的仿真效果:

1234

5678910

00.20.40.60.8

11.2Time/s

y

图6 系统阶跃相应曲线

由图6的对比可知,神经网络控制达到了很好的控制效果。

2. 神经网络层数和神经元个数对控制性能的影响

考察神经网络层数和神经元个数对控制效果的影响。

(1)分别采用1隐层、5隐层和10隐层BP 神经网络,仿真结果如下:

0.5

1

1.5

2

2.5

3

3.5

4

00.20.40.60.811.21.4

图7 采用1、5、10隐层BP 神经网络仿真结果

(2)分别采用5隐层各3各神经元、10个神经元的BP 神经网络,仿真结果如下:

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

00.20.40.60.811.21.4

图8 采用5隐层各3各神经元、10个神经元的BP 神经网络

综上所述,神经网络层数和神经元节点数目对控制效果具有重要影响,增加神经网络层数或者增加神经元节点数目均可提高精度。

3. 神经网络的抗干扰、 非线性和时滞能力

(1)抗噪声和不确定干扰的能力:

1

2

3

4

56

7

8

910

-0.200.20.40.6

0.81

1.2Time/s

y

图9 系统阶跃响应曲线(加白噪声)

从图9可以看出,神经网络控制器比 PID 控制具有更好的抗噪声和不确定干扰的能力。

(2)抗饱和和死区非线性干扰的能力:

2

4

6

8

10

00.20.40.60.8

11.21.4Time/s

y

图10 系统阶跃响应曲线(饱和非线性)

1

2

3

4

56

7

8

9

10

00.20.40.60.811.2Time/s

y

图11 系统阶跃响应曲线(死区非线性)

从图中可以看出,神经网络控制器在抗饱和、死区非线性方面,并不比PID 控制有更佳的性能,这与控制器设计方式是有关的。

(3)抗输入时滞的能力:

24

6810

00.51

1.5

Time/s

y

图12 系统阶跃响应曲线(0.1s 输入时滞)

由图可知,神经网络控制与PID 控制对时滞均比较敏感。

4.总结

神经网络控制作为一种智能控制方法,与PID 控制相比,表现出它的优越性,如自组织、自适应和自整定能力等。将神经网络和PID 控制合理地结合起来构成复合控制策略,可实现高性能的控制系统。

智能控制技术作业

3-1 模糊逻辑控制器由哪几部分组成?各完成什么功能? 答:模糊控制系统的主要部件是模糊化过程、知识库(数据库和规则库)、推理决策和精确化计算。 1、模糊化过程 模糊化过程主要完成:测量输入变量的值,并将数字表示形式的输入量转化为通常用语言值表示的某一限定码的序数。 2、知识库 知识库包括数据库和规则库。 1)、数据库 数据库提供必要的定义,包含了语言控制规则论域的离散化、量化和正规化以及输入空间的分区、隶属度函数的定义等。 2)、规则库 规则库根据控制目的和控制策略给出了一套由语言变量描述的并由专家或自学习产生的控制规则的集合。它包括:过程状态输入变量和控制输出变量的选择,模糊控制系统的建立。 3、推理决策逻辑 推理决策逻辑是利用知识库的信息模拟人类的推理决策过程,给出适合的控制量。(它是模糊控制的核心)。 4、精确化过程 在推理得到的模糊集合中取一个能最佳代表这个模糊推理结果可能性的精确值的过程称为精确化过程。

{模糊控制器采用数字计算机。它具有三个重要功能: 1)把系统的偏差从数字量转化为模糊量(模糊化过程、数据库两块); 2)对模糊量由给定的规则进行模糊推理(规则库、推理决策完成); 3)把推理结果的模糊输出量转化为实际系统能够接受的精确数字量或模拟量(精确化接口)。} 3-2 模糊逻辑控制器常规设计的步骤怎样?应该注意哪些问题? 答:常规设计方法 设计步骤如下: 1、确定模糊控制器的输入、输出变量 2、确定各输入、输出变量的变化范围、量化等级和量化因子 3、在各输入和输出语言变量的量化域内定义模糊子集。 4、模糊控制规则的确定 5、求模糊控制表 3-3 已知由极大极小推理法得到输出模糊集为:0.30.810.50.112345 C = ++++-----.试用重心法计算出此推理结果的精确值z 。 重心法 重心法 是取模糊隶属度函数的曲线与横坐标围城面积的重心为模糊推理最终输出值。 连续:0()()v V v V v v dv v v dv μμ=??

智能控制技术第四章作业

4-1、神经元的种类有哪些?它们的函数关系如何? 4-2、为什么由简单的神经元连接而成的神经网络具有非常强大的功能? 4-3、神经网络按连接方式分有哪几类? 四、计算题 1、如图4-24所示的多层前向传播神经网络结构。假设对于期望的输入 12[,][13]x x =,12[,][0.90.3]d d y y =。网络权系数的初始值见图。试用BP 算法训练此网络。并详细写出第一次迭代学习的计算结果。这里,取神经元激励函数 1()1x f x e -=+。学习步长为1η=。最大迭代次数为iterafe max 。误差为e 。(四舍五入,精确到小数后1位) x 1 x 2 112 -20 3-1 -110-21-23o 1o 2y 1y 2 神经网络结构图w 11w 12w 21w 22 w 20 w 112w 122w 10w 102w 212w 222w 202 答案: 4-1、答案:神经元模型是生物神经元的抽象和模拟。它是模拟生物神经元的结构和功能、并从数学角度抽象出来的一个基本单元。它是神经网络的最基本的组成部分。 神经元一般是多输入-单输出的非线性器件。 模型可以描述为 i ij j i i j Net w x s θ=+-∑ ()i i u f Net = ()()i i i y g u h Net == 假设()i i g u u =,即()i i y f Net = i u 为神经元的内部状态;i θ为阀值;i x 为输入信号,1,...,j n =;ij w 为表示从j u 单元到i u 单元的连接权系数;i s 为外部输入信号。

常用的神经元非线性特性有以下四种 阀值型 10()00 i i i Net f Net Net ?>?=?≤?? 0 1 Neti 阀值函数f 分段线性型 00max 0()i i i i i i il i il Net Net f Net kNet Net Net Net f Net Net ?≤?=≤≤??≥? 0 f max Neti 线性函数f Net i1Net i0 Sigmoid 函数型 1()1i i Net T f Net e -= + Neti Sigmoid 函数f 10.5 Tan 函数型 ()i i i i Net Net T T i Net Net T T e e f Net e e -- -=+

智能控制指导作业

语言变量X ,Y ,Z 的隶属度函数. 设计带有纯延迟的一阶惯性环节(假设T=6,=0.02): G(s)=s e s 6102.0+ 的模糊控制器,观察仿真结果。 编程如下: %被控系统建模 num=1; den=[6,1]; [a1,b,c,d]=tf2ss(num,den);%传递函数转换到状态空间 x=[0]; %系统参数 T=0.01;h=T;td=0.02;N=1000; nd=td/T;%系统纯延迟 R=ones(1,N);%参考输入 %定义输入和输出变量及隶属度函数

a=newfis('Simple'); a=addvar(a,'input','e',[-4 4]); a=addmf(a,'input',1,'NB','trimf',[-4,-4,-2]); a=addmf(a,'input',1,'NS','trimf',[-4,-2,0]); a=addmf(a,'input',1,'ZO','trimf',[-2,0,2]); a=addmf(a,'input',1,'PS','trimf',[0,2,4]); a=addmf(a,'input',1,'PB','trimf',[2,4,4]); a=addvar(a,'input','de',[-4 4]); a=addmf(a,'input',2,'NB','trimf',[-4,-4,-2]); a=addmf(a,'input',2,'NS','trimf',[-4,-2,0]); a=addmf(a,'input',2,'ZO','trimf',[-2,0,2]); a=addmf(a,'input',2,'PS','trimf',[0,2,4]); a=addmf(a,'input',2,'PB','trimf',[2,4,4]); a=addvar(a,'output','u',[-4 4]); a=addmf(a,'output',1,'NB','trimf',[-4,-4,-2]); a=addmf(a,'output',1,'NS','trimf',[-4,-2,0]); a=addmf(a,'output',1,'ZO','trimf',[-2,0,2]); a=addmf(a,'output',1,'PS','trimf',[0,2,4]); a=addmf(a,'output',1,'PB','trimf',[2,4,4]); %模糊规则矩阵 rr=[5 5 4 4 3 5 4 4 3 3 4 4 3 3 2 4 3 3 2 2 3 3 2 2 1]; r1=zeros(prod(size(rr)),3);k=1; for i=1:size(rr,1) for j=1:size(rr,2) r1(k,:)=[i,j,rr(i,j)]; k=k+1; end end [r,s]=size(r1); r2=ones(r,2); rulelist=[r1,r2]; a=addrule(a,rulelist); %采用模糊控制器的二阶系统仿真 e=0;de=0; ke=30;kd=5;ku=1; for k=1:N %输入变量变换至论域 e1=ke*e; de1=kd*de; if e1>=4

智能控制(神经网络)-作业

智能控制作业 学生: 学 号: 专业班级: 7-2 采用BP 网路、RBF 网路、DRNN 网路逼近线性对象 2) 1(1)1(9.0)1()(-+-?--=k y k y k u k y ,分别进行matlab 仿真。 (一)采用BP 网络仿真 网络结构为2-6-1。采样时间1ms ,输入信号)6sin(5.0)(t k u ?=π,权值21,W W 的初值随机取值,05.0,05.0==αη。 仿真m 文件程序为: %BP simulation clear all; clear all; xite=0.5; alfa=0.5; w1=rands(2,6); % value of w1,initially by random w1_1=w1;w1_2=w1; w2=rands(6,1); % value of w2,initially by random w2_1=w2;w2_2=w2_1; dw1=0*w1; x=[0,0]'; u_1=0; y_1=0; I=[0,0,0,0,0,0]'; % input of yinhanceng cell Iout=[0,0,0,0,0,0]'; % output of yinhanceng cell FI=[0,0,0,0,0,0]'; ts=0.001; for k=1:1:1000 time(k)=k*ts;

u(k)=0.5*sin(3*2*pi*k*ts); y(k)=(u_1-0.9*y_1)/(1+y_1^2); for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; %output of network e(k)=y(k)-yn(k); % error calculation w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); % rectify of w2 for j=1:1:6 FI(j)=exp(-I(j))/(1+exp(-I(j))^2); end for i=1:1:2 for j=1:1:6 dw1(i,j)=e(k)*xite*FI(j)*w2(j)*x(i); % dw1 calculation end end w1=w1_1+dw1+alfa*(w1_1-w1_2); % rectify of w1 % jacobian information yu=0; for j=1:1:6 yu=yu+w2(j)*w1(1,j)*FI(j); end dyu(k)=yu; x(1)=u(k); x(2)=y(k); w1_2=w1_1;w1_1=w1; w2_2=w2_1;w2_1=w2; u_1=u(k); y_1=y(k); end figure(1); plot(time,y,'r',time,yn,'b'); xlabel('times');ylabel('y and yn');

19春北理工《智能控制基础》在线作业答案

(单选题)1: 一般认为,人工神经网络适用于() A: 线性系统 B: 多变量系统 C: 多输入多输出系统 D: 非线性系统 正确答案: (单选题)2: 递阶控制系统的结构是根据下列原理设计的() A: 精度随智能降低而提高 B: 精度随智能提高而提高 C: 精度随智能降低而降低 D: 精度与智能无关 正确答案: (单选题)3: 智能控制成为国际上独立新学科的时间为20世纪() A: 60年代 B: 70年代 C: 80年代 D: 90年代 正确答案: (单选题)4: 基于模式识别的控制系统属于() A: 学习控制系统 B: 专家控制系统 C: 进化控制系统 D: 模糊控制系统 正确答案: (单选题)5: 能够在系统运行过程中估计未知信息,并据之进行优化与控制,以便逐步改进系统性能的控制叫做() A: 最优控制 B: 反馈控制 C: 随机控制 D: 学习控制 正确答案: (单选题)6: 最早提出人工神经网络思想的学者是() A: McCulloch-Pitts B: Hebb C: Widrow-Hoff D: Rosenblatt 正确答案: (单选题)7: 解决自动控制面临问题的一条有效途径就是把人工智能等技术用于自动控制系统,其核心是() A: 控制算法 B: 控制结构 C: 控制器智能化 D: 控制系统仿真 正确答案: (单选题)8: 智能控制的“四元交集结构”的四元,指的是() A: 计算机科学、自动控制、人工智能、神经网络 B: 人工智能、自动控制、信息论、系统论 C: 人工智能、自动控制、信息论、机器学习 D: 自动控制、人工智能、信息论、运筹学 正确答案: (单选题)9: 模糊控制是以模糊集合为基础的,提出模糊集合的科学家是()

2020年数字信号处理大作业新版修订

2019~2020年度《数字信号处理》大作业题目与要求 大作业要求: 本学期大作业总分40分,学生可选择任意数量的题目完成,只要所选题目总分达到40分即可,所选题目总分如果超过40分,超过的部分不计入大作业总分。大作业以电子版的形式提交,内容应包括详细的程序设计思路与题目分析(题目分析指的是对该题目中所用到的知识点的说明,不要照搬书上或网上的内容,写出你自己对该知识点的理解。),程序截图,程序源码,其中设计思路和程序截图可写在同一个文档中,程序源码可以是.txt或.m 文件,并在源码中标注代码注释。另:题目中有GUI设计要求的部分占该题目分值的20%,功能实现部分占该题目分值的80%。 注:以下题目均用MATLAB完成。 大作业题目: 1、实现有限长序列的基本运算(包括:加法、乘法、累加、移位、翻褶、抽取、插值、卷积和),并以GUI的形式将这些运算整合起来,使用者可通过向GUI输入任意有限长序列得到对应的运算结果。(5分) 2、设计一个GUI,实现奈奎斯特采样定理,要求:1、在GUI中输入任意一个模拟信号,显示该模拟信号的时域和频域谱图;2、在GUI中设置任意采样频率,对输入的模拟信号进行采样处理,显示采样信号的时域和频域谱图; 3、在GUI中实现采样信号向模拟信号的恢复功能,要求显示恢复后的模拟信号的时域和频域谱图。(10分) 3、通过GUI动态展示z变换与s变换之间的所有关系。(5分) 4、设计一个GUI,通过向GUI输入任意系统函数,得到其对应系统的相关信息(包括:系统频率响应中的幅度响应和相位响应、系统零极点的分布、系统的稳定性判定)。(10分) 5、设计一个GUI,实现利用DFT(或FFT)完成任意时域信号的频谱分析,要求:1、可在GUI中输入时域数字或模拟信号;2、可设置DFT点数;3、在GUI中显示输入信号经DFT(或FFT)处理后的频谱图;3、若输入信号为模拟信号,需完成对该模拟信号的采样,采样频率可在GUI中设置。(10分) 6、在GUI中,实现IIR滤波器的直接型、级联型和并联型三种结构之间的任意转换,要求:在GUI中输入任意一型的系统函数后可在该GUI中显示出对应的另外两型的系统函数。(10分) 7、实现巴特沃斯样本模拟低通滤波器及其对应的数字低通滤波器的设计,以GUI的形式给出。要求:输入所需的模拟低通滤波器参数指标后,程序能将该指标转化为数字低通滤波器指标(在GUI中应能选择转化方式:冲激响应不变法、双线性变换法),并在GUI中显示出所给参数下巴特沃斯样本模拟低通滤波器及其对应的数字低通滤波器的频率响应中幅度响应的频谱图。(15分) 8、已知某组数字信号(见大作业数据压缩包中HWDATA.mat文件),该信号中除了目标信号之外还掺杂有强噪声,但噪声与目标信号的频率不重叠,要求采用本学期已学的知识对该信

专家控制系统课后大作业

5-1 什么是专家系统?它具有哪些特点和优点? 专家系统(Expert System) 是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。 专家系统的特点如下: (1)启发性。不仅能使用逻辑知识,也能使用启发性知识,它运用规范的专门知识和直觉的评判知识进行判断、推理和联想,实现问题求解; (2)透明性。它使用户在对专家系统结构不了解的情况下,可以进行相互交往,并了解知识的内容和推理思路,系统还能回答用户的一些有关系统自身行为的问题; (3)灵活性。专家系统的知识与推理机构的分离,使系统不断接纳新的知识,从而确保系统内知识不断增长以满足商业和研究的需要; (4)实用性。可长期保存人类专家的知识与经验,且工作效率高、可靠性好、能汇集众多专家的特长,达到高于任何单个专家的水平,是保存、传播、使用及提高专家知识与经验的有效工具; (5)符号操作。与常规程序进行数据处理和数字计算不同,专家系统强调符号处理和符号操作。使用符号表示知识,用符号集合表示问题的概念,一个符号是一串程序设计,并可用于表示现实世界中的概念; (6)不确定性推理。领域专家求解问题的方法大多数是经验性的,经验知识一般用于表示不精确性且存在一定概率的问题。此外,其提供的有关信息往往是不确定的。而专家系统能够综合应用模糊和不确定的信息与知识进行推理; 专家系统的优点如下: (1)专家系统能够高效率、准确、周到、迅速和不知疲倦地进行工作; (2)专家系统解决实际问题时不受周围环境的影响,也不可能遗漏忘记; (3)军事专家系统的水平是一个国家国防现代化的重要标志之一;

神经网络控制大作业_南航_智能控制

南京航空航天大学研究生实验报告 实验名称:神经网络控制器设计 姓名: 学号: 专业: 201 年月日

一、题目要求 考虑如下某水下航行器的水下直航运动非线性模型: ()||a m m v k v v u y v ++== 其中v R ∈为水下航行器的前进速度, u R ∈为水下航行器的推进器推力,y R ∈为水下航行器的输出,航行器本体质量、附加质量以及非线性运动阻尼系数分别为 100,15,10a m m k ===。 作业具体要求: 1、设计神经网络控制器,对期望角度进行跟踪。 2、分析神经网络层数和神经元个数对控制性能的影响。 3、分析系统在神经网络控制和PID 控制作用下的抗干扰能力(加噪声干扰、加参数不确定)、抗非线性能力(加死区和饱和特性)、抗时滞的能力(对时滞大小加以改变)。 二、神经网络控制器的设计 1.构建系统的PID 控制模型 在Simulink 环境下搭建水下航行器的PID 仿真模型,如下图1所示: 图1 水下航行器的PID 控制系统 其中,PID 控制器的参数设置为:K p =800,K i =100,K d =10。 需要注意的一点是,经过signal to workspace 模块提取出的数据的Save format 为Array 格式。

2.BP神经网络控制器的训练 首先将提取出的训练数据变为标准的训练数据形式,标准的训练数据分为输入和目标输出两部分。经过signal to workspace模块提取出的数据为一个训练数据个数乘以输入(或输出)个数的矩阵,因此分别将x、u转置后就得到标准训练数据x’,u’。 然后,新建m文件,编写神经网络控制器设计程序: %---------------------------------------------------------------- p=x'; %input t=u'; %input net=newff(p,t,3,{'tansig','purelin'},'trainlm'); net.trainparam.epochs=2500; net.trainparam.goal=0.00001; net=train(net,x',u'); %train network gensim(net,-1); %generate simulink block %---------------------------------------------------------------- 上述m文件建立了如下图所示的神经网络,包含输入层、1个隐含层和输出层,各层神经元节点分别为1、 3 和1。 图2 神经网络控制器结构及训练方法

智能控制作业

1、已知某一炉温控制系统,要求温度保持在600 度恒定。 针对该控制系统有以下控制经验: (1)若炉温低于600 度,则升压;低的越多升压越高。 (2)若炉温高于600 度,则降压;高的越多降压越低。 (3)若炉温等于600 度,则保持电压不变。设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。输入、输出变量的量化等级为7 级,取5 个模糊集。试设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表。 解:1)确定变量 定义理想温度为600 C,实际温度为T,则温度误差为 E=600-T。 将温度误差E 作为输入变量 2)输入量和输出量的模糊化 将偏差E分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。将偏差E 的变化分为7 个等级:-3 -2 -1 0 1 2 3,从而得到温度模糊表如表1 所示。

表1温度变化E划分表 控制电压也分为个模糊集:、、、、,分 别为负小、负大、零、正小、正大。将电压u的变化分为7 个等级:-3 -2 -1 0 1 2 3,从而得到电压变化模糊表如表2所示。 表2电压变化u划分表

表3 模糊控制规则表 E PB PS ZO NS NB u PB PS ZO NS NB Edit or: Un+ it 1 e J. 歼cw OptigT

叮叮小文库

叮叮小文库 2、利用MATLAB,为下列两个系统设计模糊控制器使其稳态 误差为 零,超调量不大于 1%,输出上升时间w 0.3s 。假定被 控对象的传递函数分别为: Gg e 0亦 (s 1)2 G2(S ) 4.228 (s 0.5)( s 2 1.64 s 8.456) 解: 在matlab 窗口命令中键入 fuzzy ,得到如下键面: 设e 的论域范围为[-1 1] , de 的论域范围为[-0.1 0.1] , u 的论 域范围为[ 0 2]。 将e 分为8个模糊集,分别为 NB ,NM, NS, NZ, PZ, PS, PM, PB; de 分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB; u 分为7个模糊集,分别为 NB ,NM ,NS, Z ,PS ,PM ,PB;

西电数字信号处理大作业

第二章 2.25 已知线性时不变系统的差分方程为 若系统的输入序列x(x)={1,2,3,4,2,1}编写利用递推法计算系统零状态响应的MATLAB程序,并计算出结果。 代码及运行结果: >> A=[1,-0.5]; >> B=[1,0,2]; >> n=0:5; >> xn=[1,2,3,4,2,1]; >> zx=[0,0,0];zy=0; >> zi=filtic(B,A,zy,zx); >> yn=filter(B,A,xn,zi); >> figure(1) >> stem(n,yn,'.'); >> grid on;

2.28图所示系统是由四个子系统T1、T2、T3和T4组成的,分别用单位脉冲响应或差分方程描述为 T1: 其他 T2: 其他 T3: T4: 编写计算整个系统的单位脉冲响应h(n),0≤n≤99的MATLAB程序,并计算结果。 代码及结果如下: >> a=0.25;b=0.5;c=0.25; >> ys=0; >> xn=[1,zeros(1,99)]; >> B=[a,b,c]; >> A=1; >> xi=filtic(B,A,ys); >> yn1=filter(B,A,xn,xi); >> h1=[1,1/2,1/4,1/8,1/16,1/32]; >> h2=[1,1,1,1,1,1]; >> h3=conv(h1,h2); >> h31=[h3,zeros(1,89)]; >> yn2=yn1+h31; >> D=[1,1];C=[1,-0.9,0.81]; >> xi2=filtic(D,C,yn2,xi); >> xi2=filtic(D,C,ys); >> yn=filter(D,C,yn2,xi); >> n=0:99; >> figure(1) >> stem(n,yn,'.'); >> title('单位脉冲响应'); >> xlabel('n');ylabel('yn');

智能控制大作业-神经网络

智能控制与应用实验报告神经网络控制器设计

一、 实验内容 考虑一个单连杆机器人控制系统,其可以描述为: 0.5sin()Mq mgl q y q τ+== 其中20.5M kgm =为杆的转动惯量,1m kg =为杆的质量,1l m =为杆长, 29.8/g m s =,q 为杆的角位置,q 为杆的角速度,q 为杆的角加速度, τ为系统的控制输入。具体要求: 1、设计神经网络控制器,对期望角度进行跟踪。 2、分析神经网络层数和神经元个数对控制性能的影响。 3、分析系统在神经网络控制和PID 控制作用下的抗干扰能力(加噪声干扰、加参数不确定)、抗非线性能力(加死区和饱和特性)、抗时滞的能力(对时滞大小加以改变)。 4、为系统设计神经网络PID 控制器(选作)。 二、 对象模型建立 根据公式(1),令状态量121=,x q x x = 得到系统状态方程为: 12121 0.5**sin() x x mgl x x M y x τ=-= = (1) 由此建立单连杆机器人的模型如图1所示。

图1 单连杆机器人模型 三、系统结构搭建及神经网络训练 1.系统PID结构如图2所示: 图2 系统PID结构图 PID参数设置为Kp=16,Ki=10,Kd=8得到响应曲线如图3所示:

01234 5678910 0.2 0.4 0.6 0.8 1 1.2 1.4 t/s a n g l e /r a d 图3 PID 控制响应曲线 采样PID 控制器的输入和输出进行神经网络训练 p=[a1';a2';a3']; t=b'; net=newff([-1 1;-1 1;-1 1],[3 8 16 8 1],{'tansig' 'tansig' 'tansig' 'logsig' 'purelin'}); net.trainparam.epochs=2500; net.trainparam.goal=0.00001; net=train(net,p,t); gensim(net,-1) 产生的神经网络控制器如图4所示:

智能控制翻译

智能控制导论大作业 学号:021151** 姓名:** 任课教师:吴**

目录 一、说明………………………………………………………………… I.文章出处………………………………………………………… 二、论文翻译…………………………………………………………… I.摘要……………………………………………………………… II.引言……………………………………………………………… III.背景信息…………………………………………………………… IV.神经网络整体结构……………………………………………… V.神经网络的整体的标定中的应用……………………………… VI.总结……………………………………………………………… 三、课程与论文关系…………………………………………………… 四、智能导论课程总结…………………………………………………

一、说明 本次大作业针对“Improved Calibration of Near-Infrared Spectra by Using Ensembles of Neural Network Models”文章进行翻译。这篇文章摘自IEEE SENSORS JOURNAL, VOL. 10, NO. 3, MARCH 2010。作者是Abhisek Ukil, Member, IEEE, Jakob Bernasconi, Hubert Braendle, Henry Buijs, and Sacha Bonenfant。 二、论文翻译 利用神经网络模型整体对近红外光谱校正改进 摘要: 红外(IR)或近红外(NIR)光谱技术是用来识别一种混合物或来分析材料的组成的方法。NIR光谱的校准是指利用光谱的多变量描述来预测各组分的浓度。建立一个校正模型,最先进的软件主要使用线性回归技术。对于非线性校正问题,基于神经网络的模型已经被证明是一个有意义的选择。在本文中,我们提出了一个新的基于神经网络的扩展传统的方法,利用神经网络模型整体。个别神经网络是从重采样与引导或交叉验证技术训练信息数据中获得。在一个现实的校准实施例中得到的结果表明,该集合为基础的方法,会产生一个比传统的回归方法更显著更精确和鲁棒性强的校准模型。 关键词: 自举,校准,计量学,交叉验证,傅立叶变换,近红外(NIR),近红外光谱仪,神经网络,光谱。 I.引言: 红外(IR)或近红外(NIR)光谱技术是用来识别一种混合物或来分析材料的组成的方法。这是通过学习物质与红外光间相互作用而完成的。红外/近红外光谱是指红外光的吸收为波长的函数。在红外光谱中,考虑的频率范围通常是14000和10厘米分之一。注意,所施加的频率刻度是波数(以厘米倒数为单位),而不是波长(以微米为单位)。该材料在不同频率下的吸收测定中的百分比。“化学计量学”是数学和统计方法的应用,以化学数据的分析,例如,多元校正,信号处理/调节,模式识别,实验设计等。 在化学计量学,校准是通过使用光谱多变量描述符来预测不同成分的浓度来实现。在本文中,我们提出并分析采用基于神经网络的校正模型整体。整体的个别型通过重新取样与引导或交叉验证技术的原始训练数据的实现。该集成模型被示为导致显著改善预测精度和鲁棒性,当与常规的校准方法相比。 在本文的其余部分安排如下。在第二节中,提供有关工作的背景信息。这包括使用的光谱仪,数据采样,目前最先进的校准方法和基于神经网络的校准模型的信息。第三节介绍了

智能控制(神经网络)作业

智能控制作业 学生姓名: 学 号: 专业班级: 7-2 采用BP 网路、RBF 网路、DRNN 网路逼近线性对象 2 )1(1)1(9.0)1()(-+-?--=k y k y k u k y ,分别进行matlab 仿真。 (一)采用BP 网络仿真 网络结构为2-6-1。采样时间1ms ,输入信号)6sin(5.0)(t k u ?=π,权值21,W W 的初值随机取值,05.0,05.0==αη。 仿真m 文件程序为: %BP simulation clear all; clear all; xite=0.5; alfa=0.5; w1=rands(2,6); % value of w1,initially by random w1_1=w1;w1_2=w1; w2=rands(6,1); % value of w2,initially by random w2_1=w2;w2_2=w2_1; dw1=0*w1; x=[0,0]'; u_1=0; y_1=0; I=[0,0,0,0,0,0]'; % input of yinhanceng cell Iout=[0,0,0,0,0,0]'; % output of yinhanceng cell FI=[0,0,0,0,0,0]'; ts=0.001; for k=1:1:1000 time(k)=k*ts; u(k)=0.5*sin(3*2*pi*k*ts); y(k)=(u_1-0.9*y_1)/(1+y_1^2); for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; %output of network e(k)=y(k)-yn(k); % error calculation w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); % rectify of w2 for j=1:1:6

智能控制作业

1、已知某一炉温控制系统,要求温度保持在600度恒定。针对该控制系统有以下控制经验: (1)若炉温低于600度,则升压;低的越多升压越高。(2)若炉温高于600度,则降压;高的越多降压越低。(3)若炉温等于600度,则保持电压不变。 设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。输入、输出变量的量化等级为7级,取5个模糊集。试设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表。 解:1)确定变量 定义理想温度为600℃,实际温度为T,则温度误差为E=600-T。 将温度误差E作为输入变量 2)输入量和输出量的模糊化 将偏差E分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。将偏差E的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到温度模糊表如表1所示。

表1 温度变化E划分表 控制电压u也分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。将电压u的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到电压变化模糊表如表2所示。 表2 电压变化u划分表

表3 模糊控制规则表 E PB PS ZO NS NB u PB PS ZO NS NB

2、利用MATLAB,为下列两个系统设计模糊控制器使其稳态误差为零,超调量不大于1%,输出上升时间≤0.3s 。假定被控对象的传递函数分别为: 2 55 .01)1()(+=-s e s G s ) 456.864.1)(5.0(228 .4)(22+++= s s s s G 解: 在matlab 窗口命令中键入fuzzy ,得到如下键面: 设e 的论域范围为[-1 1],de 的论域范围为[-0.1 0.1],u 的论域范围为[0 2]。 将e 分为8个模糊集,分别为NB ,NM, NS, NZ, PZ, PS, PM, PB; de 分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB; u 分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB;

智能控制题目及解答

智能控制题目及解答 第一章绪论作业 作业内容 1.什么就是智能、智能系统、智能控制? 2.智能控制系统有哪几种类型,各自的特点就是什么? 3.比较智能控制与传统控制的特点。 4.把智能控制瞧作就是AI(人工智能)、OR(运筹学)、AC(自动控制)与 IT(信息论)的交集,其根据与内涵就是什么? 5.智能控制有哪些应用领域?试举出一个应用实例,并说明其工作原理与 控制性能。 1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作与思维。 智能系统:就是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。 智能控制:智能控制就是控制理论、计算机科学、心理学、生物学与运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理与自适应的能力。就是将传统的控制理论与神经网络、模糊逻辑、人工智能与遗传算法等实现手段融合而成的一种新的控制方法。 2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应与自组织的功能。 (2)人-机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。 (3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解与规划、环境建模、传感器信息分析与低层的反馈控制任务。 3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制与大系统的控制问题;而智能控制主要解决高度非线性、不确定性与复杂系统控制问题。 在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常就是学习积累非精确知识;传统控制通常就是用数学模型来描述系统,而智能控制系统则就是通过经验、规则用符号来描述系统。 在性能指标方面,传统控制有着严格的性能指标要求,智能控制没有统一的性能指标,而主要关注其目的与行为就是否达到。 但就是,智能控制与传统的或常规的控制有密切的关系,互相取长补短,而并非互相排斥。基于智能控制与传统控制在应用领域方面、理论方法上与性能指标等方面的差异,往往将常规控制包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题。 4 答:人工只能(AI)就是一个用来模拟人思维的知识处理系统,具有学习、记忆、信息处理、形式语言、启发推理等功能;自动控制(AC)描述系统的动力学特性,就是一种动态反馈;运筹学(OR)就是一种定量优化方法,如线性规划、网络规划、调度、管理、优化决策与多目标优化方法等;信息论(IT)信息论就是运用概率论与树立统计的方法研究信息、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。 早期产生的的二元结构被发现就是很大程度上局限于符号主义的人工智能,无助于智能控制的

长沙理工数字信号处理大作业数字滤波器设计

IIR及FIR数字滤波器 一题干 对模拟信号进行低通滤波处理,要求通带0≤f≤4kHz,通带衰减小于0.5dB,阻带4.5k Hz≤f<∞,阻带衰减大于50dB,设采样频率Fs=20kHz。 (1)设计巴特沃斯模拟低通滤波器,求出Ha(s)的分子、分母多项式系数B和A,并画出幅频响应损耗函数曲线。 (2)分别用脉冲响应不变法和双线性变换法设计IIR低通数字滤波器,求出Ha(z) 的分子、分母多项式系数Bz和Az,并画出幅频响应损耗函数曲线 (3)采用窗函数法(分别用汉宁窗、哈明窗、布莱克曼窗函数)设计满足要求的FIR 低通滤波器,求出h(n),并画出幅频响应损耗函数曲线. (4)用频率采样法设计满足要求的FIR低通滤波器,求出h(n),并画出幅频响应损耗函数曲线。

二求解过程 具体内容如下: (1)设计巴特沃斯模拟低通滤波器,求出Ha(s)的分子、分母多项式系数B和A,并画出幅频响应损耗函数曲线。 程序: wp=2*pi*4000; ws=2*pi*5800; Rp=0.5; As=50; [N,wc]=buttord(wp,ws,Rp,As,'s'); [B,A]=butter(N,wc,'s'); k=0:511; fk=0:20000/512:20000; wk=2*pi*fk; Hk=freqs(B,A,wk); plot(fk/1000,20*log10(abs(Hk))); grid on xlabel('频率/kHz'); ylabel('幅度/dB'); axis([0,6,-65,5]); 波形图:

A = 1.0e+207 * 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0020 2.1576 B = 1.0e+207 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.1576 N = 46

智能控制大作业

《智能控制》大作业 1、简答题: 1.1.根据目前智能控制系统的研究和发展,智能控制系统主要有哪些方面的工作可做进一步的探索和开展? 答:1)开展智能控制理论与应用研究。 2)充分运用神经生理学、心理学、认识科学和人工智能等学科的基本理论, 深入研究人类解决问题时表现出来的经验、技巧、策略,建立切实可行的智能控制的体系结构。 3)把所有的知识工程、模糊系统、信息论,进化论、神经网络理论和技术与传统的控制理论相结合,充分利用现有的控制理论,研究适合于当前的计算机资源条件的智能控制策略和系统。 4)研究人——机交互式的智能控制系统和学习系统,以不断提高智能控制系统的智能水平。 5)研究适合智能系统的并行处理机、信号处理器、智能传感器和智能开发工具软件,以解决智能控制系统在实际应用中的问题,使智能控制得到更广泛的应用。 1.2.画出模糊控制系统的基本结构图,并简述模糊控制器各组成部分所表示的意思? 模糊控制单元由规则库、模糊化接口、模糊推理和清晰化接口4个功能模块组成,模糊控制单元首先将输入信息,模糊化,然后经模糊推理规则,给出模糊输出,再将模糊指令化,控制操作变量。 1、规则库(rule base):由若干条控制规则组成,这些控制规则根据人类

控制专家的经验总结得出,按照IF …is …AND …is …THEN …is…的形式表达。 2、模糊推理:以模糊集合论为基础描述工具,对以一般集合论为基础描述工具的数理逻辑进行扩展,从而建立了模糊推理理论。根据模糊输入和规则库中蕴涵的输入输出关系,通过第二章描述的模糊推理方法得到模糊控制器的输出模糊值。模糊推理是模糊控制器的核心,它具有模拟人的基于模糊概念的推理能力。该推理过程是基于模糊逻辑中的蕴含关系及推理规则来进行的。 3、模糊化接口(Fuzzification):这部分的作用是将输入的精确量转化成模糊化量。其中输入量包括外界的参考输入,系统的输出或状态等。 清晰化(解模糊接口) 4、清晰化接口:清晰化的作用是将模糊推理得到的控制量(模糊量)变换为实际用于控制的清晰量。它包含以下两部分内容: (1)将模糊控制量经清晰化变换变成表示在论域范围的清晰量。 (2)将表示在论域范围的清晰量经尺度变换变成实际的控制量。 1.3.画出感知器的基本结构模型,并简述其算法过程。

DSP大作业(哈工程)

DSP原理与应用 学号: 姓名: 日期:2017年5月23日星期二

1.DSP的生产厂商主要有哪些?分别有什么系列? 答: ①德州仪器公司(最有名的DSP芯片厂商)。TI公司在市场上主要的三个系 列产品: (1)面向数字控制、运动控制的TMS320C2000系列,主要包括TMS320C24x/F24x、TMS320LC240x/LF240x、TMS320C24xA/LF240xA、TMS320C28xx等; (2)面向低功耗、手持设备、无线终端应用的TMS320C5000系列,主要包括TMS320C54x、TMS320C54xx、TMS320C55x等; (3)面向高性能、多功能、复杂应用领域的TMS320C6000系列,主要包括TMS320C62xx、TMS320C64xx、TMS320C67xx等。 ②美国模拟器件公司。其主要的系列: (1)定点DSP芯片有ADSP2101/2103/2105、ADSP2111/2115、ADSP2126/2162/2164、ADSP2127/2181、ADSP-BF532以及Blackfin系列; (2)浮点DSP芯片有ADSP21000/21020、ADSP21060/21062,以及虎鲨TS101、TS201S。 ③Motorola公司(发布较晚)。其主要的系列包括: (1)定点DSP 处理器MC56001; (2)与IEEE浮点格式兼容的的浮点DSP芯片MC96002; (3)DSP53611、16位DSP56800、24位的DSP563XX和MSC8101等产品。 ④杰尔公司。主要系列有: 嵌入式DSP内核的SC1000和SC2000系列,主要面向电信基础设施、移动通信、多媒体服务器及其它新兴应用。 2.浮点DSP和定点DSP各自有什么特点? 答: 浮点DSP和定点DSP在宏观上有很大的特点区别,包括动态范围、速度、价格等等。 (1)动态范围:定点DSP的字长每增加1bit,动态范围扩大6dB。16bit字长的动态范围为96dB。程序员必须时刻关注溢出的发生。例如,在作图像处理时,图像作旋转、移动等,就很容易产生溢出。这时,要么不断地移位定标,要么作截尾。前者要耗费大量的程序空间和执行时间,后者则很快带来图像质量的劣化。总之,是使整个系统的性能下降。在处理低信噪比信号的场合,例如进行语音识别、雷达和声纳信号处理时,也会发生类似的问题。 32bit浮点运算DSP的动态范围可以作到1536dB,这不仅大大扩大了动态范围,提高了运算精度,还大大节省了运算时间和存储空间,因为大大减少了定标,移位和溢出检查。 由于浮点DSP的浮点运算用硬件来实现,可以在单周期内完成,因而其处理速度大大高于定点DSP。这一优点在实现高精度复杂算法时尤为突出,为复杂算法的实时处理提供了保证。 32bit浮点DSP的总线宽度较定点DSP宽得多,因而寻址空间也要大得多。这一方面为大型复杂算法提供了可能、因为省的DSP目标子程序已使用到几十MB存储器或更多;另一方面也为高级语言编译器、DSP操作系统等高级工具软件的应用提供了条件。DSP的进一步发展,必然是多处理器的应用。新型的浮点DSP已开始在通信口的设置和强化、资源共享等方面有所响应。

相关文档
最新文档