逻辑分析仪的应用

逻辑分析仪的应用
逻辑分析仪的应用

第1章逻辑分析仪的应用

逻辑分析仪是分析数字系统逻辑关系的仪器。逻辑分析仪是属于数据域测试仪器中的一种总线分析仪,即以总线(多线)概念为基础,同时对多条数据线上的数据流进行观察和测试的仪器,这种仪器对复杂的数字系统的测试和分析十分有效。逻辑分析仪是利用时钟从测试设备上采集和显示数字信号的仪器,最主要作用在于时序判定。

一、逻辑分析仪的应用场合

通常在电子仪器行业,我们在以下情况下需要使用逻辑分析仪:

●调试并检验数字系统的运行;

●同时跟踪并使多个数字信号相关联;

●检验并分析总线中违反时限的操作以及瞬变状态;

●跟踪嵌入软件的执行情况。

二、逻辑分析仪的使用步骤

使用逻辑分析仪与数字信号相连、捕获数字信号并进行分析,一般有以下4个步骤:

●用逻辑探头与被测系统(DUT)相连;

●设置时钟模式和触发条件;

●捕获被测信号;

●分析与显示捕获的数据。

三、逻辑探头

在使用逻辑分析仪测试中,首先选择合适的逻辑探头与被测系统(DUT)相连,探头利用内部比较器将输入电压与门限电压相比较,确定信号的逻辑状态(1或0)。门限值由用户设定,范围由逻辑分析仪本身决定,常用的逻辑电平为TTL电平、CMOS电平、ECL电平等等。

逻辑分析仪的探头有各种各样的形状、大小,用户可以根据自己的需要,选择合适的探头夹具。常用的探头有用于点到点故障查找的“夹子状”,有用在电路板上专用的连接器高密度、多通道型探头。逻辑探头应能够捕获高质量的信号,并且对被测系统的影响最小。另外,逻辑分析仪的探头应能提供高质量信号并传递给逻辑分析仪,并且对被测系统造成的负载最小,而且要适合与电路板及设备以多种方式连接。

四、设置时钟模式和触发条件

在逻辑分析仪与被测系统连接好之后,需要设置时钟模式与触发条件。逻辑分析仪的数据捕获方式不同于示波器,它有两种捕获方式,分别是异步捕获,获取信号的时间信息和同步捕获,用于获取被测系统的状态信息。其中异步分析更类似于示波器的数据捕获方式,其中采样率、波形捕获率等概念都与示波器的相关概念类似。

1.异步捕获模式

在这个模式中,逻辑分析仪用内部时钟进行数据采样,采样速度越快,测试分辨率越高。采样速率对于异步定时分析非常重要,例如,当采样间隔为2ns时,即每隔2ns捕获新的数据存入存储器中,在采样时钟到来之后改变的数据不会被捕获,直到下一个采样时钟到来,由于无法确定2ns中不会被捕获的数据,直到下一个采样时钟到来,由于无法确定2ns中数据是否发生变化,所以最终分辨率是2ns。这种异步捕获模式常用在目标设备与分析仪捕获的数据之间没有固定的时间关系,而且被测系统的信号间的时间关系为主要考虑因素时,通常使用这种捕获模式。

2.同步捕获模式

同步捕获模式是用一个源自被测系统的信号做采样时钟信号,这种模式中用于为捕获确定时间的信号,可以是系统时钟、总线控制信号或一个引发被测系统改变状态的信号。逻辑分析仪在外部时钟信号的边缘采样,采到的数据代表逻辑信号稳定时被测电路所处的状态。对于引入的时钟信号是有限制的,一般要小于某一固定频率,这一频率被称为逻辑分析仪的最大状态速率,有的厂家称之为逻辑分析仪的带宽。在这种模式下,不考虑两个时钟事件之间的状态。

3.设置触发方式

触发方式的区别是逻辑分析仪与示波器的另一项重要区别。示波器同样配有触发器,但对于多通道的二进制信号而言,示波器的触发功能受限。相反,逻辑分析仪中可以对各种逻辑条件进行触发。触发的目的在于为逻辑分析仪设定什么时候开始捕获数据、捕获哪些数据,使逻辑分析仪跟踪被测电路的逻辑状态,并在被测系统中用户定义的事件处触发。

不同厂家的逻辑分析仪有着各种的不同的触发条件的设定,可以分为两大类:对单一通道的触发条件的设定;通道间触发条件的设计。单一通道的触发类似于示波器的触发。例如,高/低电平触发,上升沿/下降沿触发,脉冲宽度触发器等触发方式;而通道间的逻辑触发对于逻辑分析仪而言更为重要,因为逻辑分析仪主要用来观察通道间的逻辑关系以及逻辑状态。通道间的逻辑触发也可分为两大类:一类为单纯为每一通道设置触发条件,例如,当1、2通道为高电平,3、4通道为低电平,5通道为上升沿时触发;另一类称为码型触发或事件触发,例如,8根信号线可以看成8bit的码型(事件),这8bit可以用十六进制或二进制表示,设置值为0A(十六进制)时触发,即为码型触发。

五、捕获测试数据

逻辑分析仪探头、触发器和时钟系统均用于为实时捕获存储器传递数据。该存储器是测量仪的中心——不仅是来自被测系统的所有采样数据的最终目的地,也是测量仪进行分析和显示的数据源。

选择逻辑分析仪时,通道数和存储深度是非常重要的指标,为了决定逻辑分析仪的通道数和存储深度,首先确定要对多少信号进行捕获与分析?逻辑分析仪的通道数应与需捕获的信号数相对应。数字系统总线具有各自不同的宽度,通道数一般为总线宽度的3-4倍(数据线+地址线+控制线+时钟)。例如,对一个8位的数字系统进行测试,32通道的逻辑分析仪比较合适,要确保考虑到需同时捕获的所有信号的总线。其次,确定捕获操作将持续多长时间?这一步决定逻辑分析仪的存储深度,例如,采样间隔为1ns时,存储1s,存储深度为1M。存储深度越长,发现错误的几率越大。

六、分析与显示捕获的数据

存储于实时捕获存储器中的数据可用于各种显示和分析模式。一旦数据在系统中存储,它就能够以各种不同的格式查看,如时间波形,与二进制代码等。对于大多数的测试需要,用户都比较习惯于使用总线形式显示捕获的数据,而且,一般的逻辑分析仪可以同时观察几组并行总线,并观察他们之间的数据关系,了解逻辑代码的真正用意。在使用逻辑分析仪观察并行总线时,一般都会先观察同步状态数据,如果状态数据存在问题,在观察异步时钟数据,寻找问题所在。

逻辑分析仪使用手册.pdf

目录 概述 (1) 第1章逻辑分析仪原理及基本概念 (2) 1.1逻辑分析仪原理 (2) 1.2逻辑分析仪基本概念 (2) 1.2.1定时采样 (2) 1.2.2状态采样 (3) 1.2.3动态采样 (3) 1.2.4存储容量 (3) 1.2.5采样时间 (4) 1.2.6测量带宽 (4) 1.2.7门限电压 (5) 1.2.8触发 (5) 1.2.9触发位置优先 (5) 1.2.10触发状态优先 (5) 第2章致远逻辑分析仪 (6) 2.1命名规则 (6) 2.1.1LA系列逻辑分析仪 (6) 2.1.2LAB系列逻辑分析仪 (6) 2.2功能特色 (7) 2.2.1测量线 (7) 2.2.2逻辑笔 (7) 2.2.3频率计 (8) 2.2.4双边沿同步采样 (9) 2.2.5触发方式 (9) 2.2.6数据滤波 (10) 2.2.7数据导出 (11) 2.2.8协议分析 (11) 2.3型号对比 (11) 2.3.1LA系列对比 (11) 2.3.2LAB系列对比 (12) 2.3.3LA系列与LAB系列对比 (13) 第3章如何使用逻辑分析仪 (14) 3.1逻辑分析仪软件安装 (14) 3.1.1安装ZlgLogic软件 (14) 3.1.2安装驱动程序 (18) 3.1.3软件升级 (19) 3.2逻辑分析仪硬件连接 (21) 3.3逻辑分析仪使用步骤 (25) 3.3.1频率测量 (25) 3.3.2总线测量 (28) 3.3.3SPI测量 (31) 3.3.4SPI总线分析 (32) i

3.3.5SPI触发设置 (34) 3.4逻辑分析仪使用注意事项 (36) 3.4.1确保接地良好 (36) 3.4.2合理设置采样频率 (37) 3.4.3合理设置触发方式 (37) 3.4.4合理设置门限电压 (37) 3.4.5使用Timing-State模式 (38) 3.4.6差分信号测量 (38) 第4章逻辑分析仪的应用 (39) 4.1逻辑分析仪队列触发的应用 (39) 4.1.1队列触发在数字通信系统的应用 (39) 4.1.2队列触发在工业自动化领域的应用 (40) 4.2逻辑分析仪数据延迟触发的应用 (42) 4.2.1原理分析 (42) 4.2.2测试步骤 (42) 4.3逻辑分析仪插件触发的应用 (44) 4.4逻辑分析仪外部触发的应用 (44) 4.4.1触发输出在电路调试中的应用 (44) 4.4.2触发输入在电路调试中的应用 (46) 4.4.3其它应用 (47) 4.5逻辑分析仪在数据采集开发系统中的应用 (47) 4.6逻辑分析仪在1-wire总线开发中的应用 (49) 4.7逻辑分析在LIN总线开发中的应用 (51) 4.8逻辑分析仪在DALI总线开发中的应用 (53) 4.9逻辑分析仪在CAN总线开发中的应用 (54) 4.10逻辑分析仪在FPGA开发中的应用 (55) 4.11逻辑分析仪在ACTEL平台中的应用 (57) 4.11.1方案介绍 (58) 4.11.2实现过程 (58) 4.12逻辑分析仪在RFID开发中的应用 (60) 4.12.1方案介绍 (60) 4.12.2方案实现 (60) 4.12.3实现过程 (61) 4.13逻辑分析仪在SDRAM开发中的应用 (62) 4.13.1硬件平台介绍 (62) 4.13.2建立应用平台 (63) 4.13.3逻辑分析仪测量应用 (64) 4.14逻辑分析仪在USB开发中的应用 (65) 4.14.1测量方法 (66) 4.14.2应用实例 (67) 4.15逻辑分析仪在CF卡开发中的应用 (68) 4.15.1CF卡原理 (68) 4.15.2插件解码分析 (69) 4.16逻辑分析仪在SD卡开发中的应用 (71) ii

逻辑分析仪与示波器的比较

逻辑分析仪与示波器的比较 在电子测试领域,示波器是最早的测试设备,起源于雷达扫描原理,对信号波形的采集和再现,源于传统的模拟信号和模拟电路的测试基础。随着数字技术发展,对数字信号测试越来越重要,最早的数字信号测试,往往借着于示波器,后来出现了定时分析仪和状态分析仪,从定时和状态的角度分析和测试多路数字信号。由于当时的定时分析仪和状态分析仪价格昂贵,两者在市场上的概念很好,但影响不大,测试范围很窄。随着数字测试技术发展,融合数字定时和状态分析的逻辑分析仪应用而生。从诞生开始,逻辑分析仪往往给人三种印象:①价格昂贵,操作麻烦;②对使用者的要求较高;③与示波器功能大同小异,只是多增加了通道和部分时序功能。实质上现在逻辑分析仪和示波器既在融合,也在测试原理上发生了较大的差异;再加上IT技术发展,基于计 算机接口技术和处理技术的采集式虚拟逻辑分析仪出现,逻辑分析仪已逐渐在降低成本,走入普通研究室,逻辑分析仪和示波器一样已逐渐成为基本的测试工具。 逻辑分析仪是利用时钟从测试设备上采集和显示数字信号的仪器,最主要作用在于时序判定。由于逻辑分析仪不像示波器那样有许多电压等级,通常只显示两个电压(逻辑1和0),因此设定了参考电压后,逻辑分析仪将被测信号通过比较器进行判定,高于参考电压者为High,低于参考电压者为Low,在High 与Low之间形成数字波形。例如:一个待测信号使用200MHz采样率的逻辑分析仪,当参考电压设定为1.5V时,在测量时逻辑分析仪就会平均每5ns采取一个点,超过1.5V者为High(逻辑1),低于1.5V者为Low(逻辑0),而后的逻辑1和0可连接成一个简单波形,工程师便可在此连续波形中找出异常错误

逻辑分析仪讲义2009

逻辑分析仪实验讲义 大连理工大学 信息技术实验中心

前言 随着电子技术科学的飞速发展,近年来电子电路从模拟、单元电路过渡到数字、集成电路,而且电子技术本身所采用的器件、理论基础、设计方法以及应用技术都在数字化,并已广泛地应用到各个领域。因此,数字信号的检测、数字域测试已成为电子测量的重要分支之一。逻辑分析仪是数字域测试的主要仪器,这就要求未来电子技术设计人员不但要有较强的设计能力,而且还要掌握数字信号检测的主要仪器——逻辑分析仪的使用,国外的新趋势是“每个设计人员都拥有一台逻辑分析仪”。所以,学习并掌握逻辑分析仪的知识,对成为一个合格的电子工程师是必须的。 为了适应未来世界的数字化,跟踪电子技术的发展方向,加强学以致用的思想,我们开发了一套逻辑分析仪实验,将理论与实践相结合,基础与专业相结合,软件与硬件相结合,模拟与数字相结合,并且突出了实验的灵活性与实用性,实验分基础型和提高型两种,根据学生自身能力,自行选择,启发学生思考、探索,在强调普及知识的同时,重点是提高学生的应用能力、实践能力和创新设计能力。 本讲义各部分内容为:逻辑分析仪简介、触发介绍、逻辑分析仪操作说明、逻辑分析仪实验设计。 鉴于水平有限,加之时间仓促,因此本讲义中缺点错误在所难免,敬请各位读者批评指正。 编者 于大连理工大学 2008年3月

目录 第一章逻辑分析仪简介----------------------------------------------------------------4 第二章Agilent1693A逻辑分析仪操作说明---------------------------------------6 第三章触发介绍---------------------------------------17 第四章逻辑分析仪实验---------------------------------------------------------------20

labview的8位逻辑分析仪

目录 引言 (5) 一、LABVIEW和数字逻辑分析仪简介 (6) 1.1 LABVIEW简介 (6) 1.2 数字逻辑分析仪简介 (6) 1.3 实验平台简介 (8) 二、数字逻辑分析仪的总体设计 (8) 三、前面板设计 (11) 四、程序设计 (11) 五、调试及结果 (13) 六、总结心得 (14) 七、参考文献 (15)

引言 数字逻辑分析仪重点在于考察信号高于或低于某一门限电平值,以及这些数字信号与系统时间之间的相对关。逻辑分析仪是一种类似于示波器的波形测试设备,它可以监测硬件电路工作时的逻辑电平(高或低),并加以存储,用图形的方式直观地表达出来,便于用户检测,分析电路设计(硬件设计和软件设计) 中的错误,逻辑分析仪是设计中不可缺少的设备,通过它,可以迅速地定位错误,解决问题,达到事半功倍的效果。逻辑分析仪是利用时钟从测试设备上采集和显示数字信号的仪器,最主要作用在于时序判定。由于逻辑分析仪不像示波器那样有许多电压等级,通常只显示两个电压(逻辑1和0),因此设定了参考电压后,逻辑分析仪将被测信号通过比较器进行判定,高于参考电压者为High,低于参考电压者为Low,在High与Low之间形成数字波形。逻辑分析仪分为两大类:逻辑状态分析仪(Logic State Analyzer,简称LSA)和逻辑定时分析仪(Logic Timing Analyzer)。这两类分析仪的基本结构是相似的,主要区别表现在显示方式和定时方式上。 LabVIEW是目前国际上唯一的编译型图形化编程语言,使用“所见即所得”的可视化技术建立人机界面,使用图标表示功能模块迷失用图标之间的连线表示各模块间的数据传递。同时LabVIEW继承了高级编程语言的结构化和模块化编程的优点,支持模块化与层次化实际,这种结构的实际增强了程序的可读性。 LabVIEW是一种图形化的编程语言和开发环境,它广泛地被工业界、学术界和研究实验室所接收,被公认为是标准的数据采集和仪器控制软件。LabVIEW 是一个功能强大且灵活的软件,利用他可以方便的建立自己的虚拟仪器。以LabVIEW为代表的图形化编程语言,又称为“G”语言。使用这种语编程时,基本上不需要编写程序代码,而是“绘制”程序流程图。LabVIEW尽可能利用工程技术人员所熟悉的术语、图标和概念,因而它是一种面向最终用户的开发工具,可以增强工程人员构建自己的科学和工程系统的能力,可为实现仪器编程和数据采集系统提供便捷途径。 本次课程设计就是在LabVIEW基础上设计一个8位数字逻辑分析仪。并从中学习和了解LabVIEW的运用和编程。

逻辑分析仪UsbeeAXPro中文说明书

逻辑分析仪UsbeeAXPro中文说 明书

USBEE AX示波器逻辑分析仪 使用说明书 1. 简介 USBEE AX示波器逻辑分析仪是一款基于PC的高性价比的电路分析调试工具。全面兼容和支持“USBee AX Pro”上位机软件。能够实现示波器,逻辑分析仪等等很多功能。 注意:不正确的使用会造成设备损坏和人员伤害!使用中: ●保证GND线与你的目标板地电位相连; ●数字信号地接DGND.数字通道DCH0 - 7,正常测试电压范围为0-8V; ●模拟信号地接AGND.模拟通道ACH1 的电压范围-10到+10V;x10是 +/-100V; x0.2是+/-2V. ●注意ACH1,x10和x0.2不可同时接,比如测5V信号是接AGND和 ACH1,x10和x0.2悬空; ●数字通道DCH0 - 7保护电压(不损坏仪器,但测试结果不正确)最大 为10v; ●模拟通道保护电压为ACH1:+/-100v;x10:+/-300v;x0.2:+/-10v。 但不要长时间保持。 ●D3V3是仪器提供的输出3.3v的接口,可对外提供不超过100mA的电 流输出。

●USBEE AX的数字通道能够驱动输出,在使用前一定不要超过电压和电 流范围; ●先将USBEE AX连接到PC,再运行软件。 电脑系统要求 ●Windows 8.1/7/ XP或者Windows 操作系统; ●Pentium以上处理器; ●USB2.0高速接口,不支持USB1.1全速端口工作; 设备清单 ●USBEE AX设备一台; ●测试杜邦线一排10根(可选带测试夹); ●USB连接线一条; ●光盘(软件和说明文档,也可从商品描述页面提供的链接下载); 设备工作在最高的采样速度时,对USB带宽和处理器资源要求较高,为了保证稳定工作: ●不要在PC上连接其它USB高速设备; ●最好不要在软件采样和输出信号时运行其它的程序。 2.安装USBEE AX PRO 的步骤: 1. 安装软件前请勿连接硬件。 2.安装USBEE AX PRO 软件。注意: a)只有在WIN7 64/WIN8 64下才选择安装axsw64BIT_English文件夹。其余选择32位版本。

玩转逻辑分析仪,就是这么简单!

玩转逻辑分析仪,就是这么简单! 买回来一件宝贝,一般都会迫不及待的开包尝尝鲜,惊喜与失落,体验一把马上就知道。当然在收到产品时,有件事情一定不能忽略,那就确定购买的产品是正品。 图1 假货伤人心 验证产品是正品后,接着就一同来研究一下怎么玩这个东东,因为我手边只有致远电子的LAB6052逻辑分析仪,那么接下来我就以它为例给大家演示一下。 1、设备安装 在开始之前,总要做一些准备工作,好比在激烈运动前要做做热身运动。这期间连线,上电,驱动安装,平台软件安装一个都不能少。 图2 准备工作一定不能少 2、信号接入 将逻辑分析仪探头与被测信号接通(没引出的信号可用钩子去勾),记住一定要将逻辑分析仪的信号地与被测信号的地连到一起,否则会因参考电压不一致而导致波形错误。

图3 同样参考下对比才有意义 3、参数配置 使能对应的逻辑通道并为这些逻辑通道命名(以分析I2C总线为例)。 图4 总线设置 还需要设置采样相关信息,包括采样率(被测信号频率5倍数以上,如不确定请先用最高采样率)、存储容量(建议第一次设置到最大)、门限电压(区分高低电平的比较电压)、预触发控制等工作参数。

图5 采样设置 触发设置也非常重要,准确的触发帮助精确捕获感兴趣的波形。迄今为止,致远电子提供的逻辑分析仪具有最丰富的信号触发类型,提供更多样化的触发方式,精确锁定关键信号。 图6触发设置 看见对应通道的逻辑笔不停跳动,心里有点小激动,设置总算是大功告成,接下来就要开始捕获波形了。

4、波形捕获与观察 点击“启动”按钮,随着采集进度条到100%,确定波形已经采集完成,由于之前添加了协议分析插件所以波形对应的译码也已显示出来。为了便于观察波形,我们还可以使用快捷按键对波形进行缩放和水平移动。 图7波形观察 5、测量与分析 鼠标放到对应的脉冲上就能自动测出脉宽信息,如需测量更多类型的项目,那就要使用自动测量功能,不过也很简单,只需按需添加测量标签和测量项目即可,测量项目足以满足最广泛的需求。 图8 参数测量 如果您需要的协议分析软件并非是I2C,那么您可以根据需要选择其他的分析软件,并且还提供了协议数据的导出功能。致远电子LAB6052可提供40余种协议分析软件,而且全部都是免费的哦。

基于单片机的简易逻辑分析仪毕业设计论文

基于单片机的简易逻辑分析仪 目录 第1节引言 (3) 1.1系统概述 (3) 1.1.1系统的特点 (4) 1.1.2系统的功能 (4) 第2节系统主要硬件电路设计 (5) 2.1 系统结构框图 (5) 2.2 主体控制模块 (5) 2.3 系统硬件的主体实现 (7) 2.3.1 数字信号发生器模块的电路设计与实现 (7) 2.3.2 主控系统模块的电路设计与实现 (8) 2.3.3 LED显示模块的电路设计与实现 (10) 2.3.4 硬件的抗干扰措施 (12) 第3节系统软件设计 (13) 3.1 系统软件流程 (13) 3.2 中断服务子程序 (15) 3.3 AT24C04程序设计 (15) 第4节结束语 (19) 参考文献 (20) 基于单片机的简易逻辑分析仪

第1节引言 信息时代是数字化的时代,数字技术的高速发展,出现了以高性能计算机为核心的数字通信、数字测量的数字系统。在研究这些数字系统产品的应用性能的同时也必须研究在设计、生产和维修他们的过程中,如何验证数字电路设计的合理性、如何协调硬件及其驱动应用软件的工作、如何测量其技术指标以及如何评价其性能。逻辑分析仪的出现,为解决这些问题提供了可能。 随着数字系统复杂程序的增加,尤其是微处理器的高速发展,用示波器测试己显得有些无能为力。1973年在美国应运而生的逻辑分析仪(Logic Analyzer),能满足数字域测试的各种要求。它属于总线分析仪一类的数据域测试仪器*主要用于查找总线(或多线)相关故障.同时对于数据有很强的选择能力和跟踪能力,因此,逻辑分析汉在数字系统的测试中获得了广泛的应用。 逻辑分析仪(Logic Analyzer)是以逻辑信号为分析对象的测量仪器。是一种数据域仪器,其作用相当于时域测量中的示波器。正如在模拟电路错误分析中需要示波器一样,在数字电路故障分析中也需要一种仪器,它适应了数字化技术的要求,是数字、逻辑电路、仪器、设备的设计、分析及故障诊断工作中不可按少的工具。在测试数字电路、研制和维修电子计算机、微处理器以及各种集成化数字仪表和装置中具有广泛的用途;还是数字系统设计、侦错、软件开发和仿真的必备仪器;作为硬件设计中必不可少的检测工具,还可将其引入实验教学中,建立直观感性的印象,提升学生的硬件设计能力,可以全面提高教学质量;随着科技的发展,LA在多通道、大存储量、高采样速率、多触发功能方面得到更快的发展,在航天、军事、通信等数字系统领域得到越来越广泛的应用。 我们从上面可以看出逻辑分析仪在各个领域的广泛应用。那么我们在学习、应用的同时设计并制作一个简易的逻辑分析仪就显的意义重大了,这样这个过程既可以让我们更加深入理解其原理,又可以提高动手设计并制作整个系统电路的能力,还可以将其作为简易仪器应用于以后的实验中。 1.1系统概述 因在本节中,我们将对简易逻辑分析仪的应用进行分析。给出它的特点,能实现的功能以及系统的简单操作 1.1.1 系统的特点 逻辑分析仪也称逻辑示波器,它是用来分析数字系统逻辑关系的一种仪器。逻辑分析仪的主要作用有二个:一是用于观察的形式显示出数字系统的运行情况,相当于扩展了人们的视野,起一个逻辑显示器的作用;二是对系统运行进行分析和故障诊断。

逻辑分析仪(萧奋洛)

简易逻辑分析仪 作者:萧奋洛王元祥杨志专(华中科技大学)编号:1-59 赛前辅导教师:黄瑞光文稿整理辅导教师:肖看 摘要 本简易逻辑分析仪主要由数据信号发生器、程控逻辑门限设定、数据采集、触发控制、数据处理、波形存储、示波器显示控制和操作面板等功能模块组成。本逻辑分析仪以单片机AT89C55和FPGA(ACEX1K50)为控制核心,除了实现题目要求的全部功能以外,还采用240×128点阵型液晶实现波形显示和全程菜单操作,采用红外键盘实现全数字控制,使得系统智能化和人性化。此外,本系统还提供掉电保存和时钟显示等功能,使得系统更加实用。在软件方面,本系统以多机通信为基础,让多个处理器协调工作,使得系统稳定可靠。 一总体方案论证与设计 1 方案比较与选择 方案一:采用单片机作为系统控制核心。这种方案要求单片机除了完成基本处理分析以外,还需要完成8路TTL数据的采集与普通模拟示波器的显示控制。单片机虽然具备灵活的控制方式,但受工作速率的影响,可能会使示波器显示屏幕抖动和出现明显的回扫线,难以达到题目的要求。 方案二:采用CPLD/FPGA(或带有IP核的CPLD/FPGA)作为系统控制核心。即用CPLD/FPGA完成信号采集、触发控制与示波器的显示控制,由IP核实现人机交互和信号处理分析。本方案优点在于系统结构紧凑,有很高的工作速率,但是调试过程繁琐,不利于实现友善的用户交互界面。 方案三:采用单片机与FPGA结合的方式。即用单片机作为主处理器,完成人机界面、系统控制和触发控制。用FPGA作为协处理器,完成8路TTL数据的采集与普通模拟示波器的显示控制。这种方案兼顾了上述两种方案的优点,可以在硬、软件的结合上,使设计达到整体优化的效果。因此,我们采用方案三。 2 系统设计方案 本系统以单片机为主处理器,以FPGA为协处理器,其中FPGA主要完成8路TTL数据的采集与普通模拟示波器的显示控制。在系统结构上,我们采用总线方式实现单片机对FPGA的控制流传输,使用双口RAM实现大量高速数据流的交换,使系统非常稳定、可靠。图1给出了本系统的总体框图。

逻辑分析仪使用教程

声明: 本文来自 另外,将68013制作逻辑分析仪的原理说明简单整理了一下,大家可以看看,如果想DIY也就不难了。点击此处下载ourdev_578200.pdf(文件大小:203K)(原文件名:逻辑分析仪开发手册.pdf) 前言 一、什么是逻辑分析仪 二、使用介绍 三、安装说明 四、Saleae软件使用方法 五、逻辑分析仪硬件安装 六、使用Saleae分析电视红外遥控器通信协议 七、使用Saleae分析UART通信 八、使用Saleae分析IIC总线通信 九、使用Saleae分析SPI总线通信 十、Saleae逻辑分析仪使用问题和注意事项 https://www.360docs.net/doc/2316566711.html,/item.htm?id=6293581805

淘宝地址:https://www.360docs.net/doc/2316566711.html,/item.htm?id=6293581805 (原文件名:21.jpg) 前言: 工欲善其事,必先利其器。逻辑分析仪是电子行业不可或缺的工具。但是由于一直以来,逻辑分析仪都属于高端产品,所以价格居高不下。因此我们首先要感谢Cypress公司,提供给我们68013这么好的芯片,感谢俄罗斯毛子哥将这个Saleae逻辑分析仪开源出来,让我们用平民的价格,就可以得到贵族的待遇,获得一款性价比如此之高的逻辑分析仪,可以让我们在进行数字逻辑分析仪的时候,快速查找并且解决许多信号、时序等问题,进一步提高我们处理实际问题的能力。 原本计划,直接将Saleae的英文版本使用手册直接翻译过来提供给大家,我花费半天时间翻译完后,发现外国人写的东西不太符合我们国人的思维习惯,当然,也是由于我的英语水平有限,因此,我根据自己摸索这个Saleae的过程,写了一份个人认为符合中国人习惯的Saleae,提供给大家,希望大家在使用过程中少走弯路,快速掌握使用方法,更快的解决自己实际遇到的问题。 由于个人水平有限,因此在文章撰写的过程中难免存在问题和错误,如果有任何问题,希望大家能够提出来,我会虚心接受并且改进,希望通过我们的交流,给越来越多的人提供更加优秀的资料,共同进步。 一、什么是逻辑分析仪: 逻辑分析仪是一种类似于示波器的波形测试设备,它通过采集指定的信号,并通过图形或者数据统计化的方式展示给开发人员,开发人员通过这些图形化时序信号按照协议来分析硬件或者软件中的错误。逻辑分析仪是设计中不可缺少的设备,通过它,可以迅速定位错误,发现并解决问题,达到事半功倍的效果,尤其在分析时序,比如1wire、I2C、UART、SPI、CAN等数据的时候,应用逻辑分析仪解决问题非常快速。 如果在你的工作中有数字逻辑信号,你就有机会使用逻辑分析仪。因此应选好一种逻辑分析仪,既符合所用的功能,又不太超越所需的功能。用户多半会找一种容易操作的仪器,它在功能控制上操作步骤较少,菜单种类也不多,而且不太复杂。而Saleae就是一种低端的,比较适合大众化的逻辑分析仪,价格便宜,而且常用的逻辑分析功能足够,人机界面人性化,非常适合实用。 以下是一个Saleae分析I2C时序的一个典型例子:从图中我们可以清晰的看到,起始信号start,从地址是0x50的器件中去读取数据,第一个字节是0xc0,第二个字节是0x50,有了逻辑分析仪,我们可以快捷的找出我们的I2C时序读写数据的正确与否,可以很快将问题解决。后边的讲解中,我会详细讲解逻辑分析仪分析红外遥控器,UART时序,I2C 时序的具体方式方法。

对比3款USB逻辑分析仪

对比3款USB逻辑分析仪 前段时间听了佳营的TWLA500逻辑分析仪的讲座,感觉很有创新,同时他们也跟竞争对手做了对比,但一家言,必有偏颇,遂动了一探究竟的念头。值得说明的是目前市场上出售的USV逻辑分析仪种类繁多,龙蛇混杂。除了佳营目前只推出一款产品外,其余几家都是一个系列有好多产品,这里只选各家最高水平的产品,这样也可以对USB逻辑分析仪的现状和发展水平有个清晰的认识。 1. Actue TL2236 NTD$48,000 2. Link Instruments LA-55160 US$7,500

3. Techie Wave TWLA500 RMB12,000 Acute(皇晶)是一家台湾企业,https://www.360docs.net/doc/2316566711.html,/ 涉猎USB仪器已有相当时日,旗下产品线有逻辑分析仪,图形发生器,数字示波器,主打Pocket(口袋)仪器的概念。TL2236是唯一一款定时分析高达4GHz的USB逻辑分析仪,同时也支持200MHz状态分析。存储深度类似数字示波器是可变的,从定时分析4GHz时的2.5k bits/ch到200MHz时的2M bits/ch。最深的存储深度出现在1.6GHz定时分析时的16M bits/ch,不过这时候的可用通道数只有四个通道,适合分析高速需要长存储的信号。其它特点还有: ?突波觸發(500ps) ?250pS触发分辨率 ?4組條件式觸發(每組條件16階) ?支持预触发和触发 ?多次触发,可达4096次,(类似波形刷新率) 支持word,channel,transition,glitch,width触发种类 ?UART, I2C,I2S,SPI 串行协议的硬件触发 ?資料記錄(硬碟儲存) ?時間戳記錄模式(Time stamp) ?即時頻率顯示 ?即時狀態顯示 ?可與皇晶或其他DSO堆疊成混合訊號分析儀 ?可量測最低電壓0.25伏(Vpp) Link instruments始创于1986年,https://www.360docs.net/doc/2316566711.html,/。是由哥伦比亚大学的几个毕业生创建的,这点跟Rigol有点像。初期产品是基于ISA,PCI等插槽的,现在已全部转成USB2.0接口。旗下产品有逻辑分析仪,数字示波器,图形发生仪,频谱分析仪。在台湾的分公司叫克拉克,https://www.360docs.net/doc/2316566711.html,/p0.htm。现在大陆出售的逻辑分析仪多是来自克拉克,可能大家对它也比较熟悉。LA-55160是唯一支持高达160通道的USB逻辑分析仪,体积稍有点大,但比Agilent的1690要小很多。不过当通道数为96通道时,采样率达500M Sa/s,存储深度512kSa,当使用全部160通道时,采样率减少到250M Sa/s,存储深度256kSa,使用外部时钟采样率和存储深度进一步降到80M Sa/s和128kSa。其它特点包括: ?连续可变预触发/后触发位置,储存触发点附近多达512k事件样点 ?高阻抗探头减少负载效应(200kohm//3pF). ?可变阈值范围-6.4V to +6.4V

keil的软件逻辑分析仪使用教程

keil的软件逻辑分析仪(logic analyzer)使用教程 在keil MDK中软件逻辑分析仪很强的功能,可以分析数字信号,模拟化的信号,CPU的总线(UART、IIC等一切有输出的管脚),提供调试函数机制,用于产生自定义的信号,如Sin,三角波、澡声信号等,这些都可以定义。 以keil里自带的stm32的CPU为例,对PWM波形跟踪观测,打开 C:\Keil\ARM\Boards\Keil\MCBSTM32\PWM_2目录下的stm32的Dome,第一步:进行仿真配置,如图: (原文件名:1.jpg) 把开工程中的Abstract.txt文件有对工程的描述,PWM从PB0.8和PB0.9输出,稍后将它加入软件逻辑分析仪里。 The 'PWM' project is a simple program for the STM32F103RBT6 using Keil 'MCBSTM32' Evalua tion Board and demonstrating the use of PWM (Pulse Width Modulation) with Timer TIM4 . Example functionality: - Clock Settings: - XTAL = 8.00 MHz - SYSCLK = 72.00 MHz - HCLK = SYSCLK = 72.00 MHz - PCLK1 = HCLK/2 = 36.00 MHz - PCLK2 = HCLK = 72.00 MHz - ADCLK = PCLK2/6 = 12.00 MHz

- SYSTICK = HCLK/8 = 9.00 MHz - TIM4 is running at 100Hz. LEDs PB8, PB9 are dimmed using the PWM function of TIM4 channel3, channel4 The Timer program is available in different targets: Simulator: - configured for software Simulator MCBSTM32: - runs from Internal Flash located on chip (used for production or target debugging) 第二、选择软件仿真 (原文件名:2.jpg)

逻辑分析仪使用

泰克逻辑分析仪文章 ------------------------------------------------- 最大限度地利用逻辑分析仪 Chris Loberg,泰克公司 逻辑分析仪是一种多功能工具,可以帮助工程师进行数字硬件调试、设计检验和嵌入式软件调试。然而,许多工程师在应该使用逻辑分析仪时,却使用了数字示波器,其主要原因是工程师比逻辑分析仪更熟悉示波器。但逻辑分析仪在过去几年中已经取得了很大的进步,对许多应用,它们将比其它仪器帮助您用更少的时间找到麻烦的漏洞的根本原因。 当然,示波器和逻辑分析仪之间有很多类似的地方,但也有一些重要的差异。为了更好地了解两台仪器可以怎样满足您的特定需求,我们有必要先比较一下它们的各种功能。 数字示波器是一种通用的查看信号的基础工具。其高采样率和高带宽,可以在时间跨度内捕获许多数据点,测量信号跳变(边沿)、瞬态事件和小时间增量。示波器当然也能查看与逻辑分析仪相同的数字信号,但示波器一般用于模拟测量,如上升时间、下降时间、峰值幅度及边沿间经过的时间。 示波器一般有最多四条输入通道。但在您需要同时测量五个数字信号时,或您的数字系统拥有一条32位数据总线和一条64位地址总线时,该怎么办呢?这时需要工具中有多得多的输入。逻辑分析仪一般有34-136条通道。每条通道输入一个数字信号。某些复杂的系统设计要求数千条输入通道。市场上也为这些任务提供了近似规模的逻辑分析仪。 与示波器不同,逻辑分析仪不测量模拟细节,而是检测逻辑门限电平。逻辑分析仪只查找两个逻辑电平。在输入高于门限电压(V)时,我们把这个电平称为“高”或“1”。相反,我们把低于Vth的电平称为“低”或“0”。在逻辑分析仪对输入采样时,它存储一个“1”或一个“0”,具体视相对于电压门限的信号电平而定。 逻辑分析仪的波形定时显示与产品技术资料中找到的或仿真器生成的定时图类似。所有信号都时间相关,以便能够查看建立时间和保持时间、脉宽、外来数据或丢失数据。除高通道数外,逻辑分析仪提供了许多重要功能,支持数字设计检验和调试,包括: ?完善的触发功能,您可以指定逻辑分析仪采集数据的条件 ?高密度探头和适配器,简化与被测系统(SUT)的连接 ?分析功能,把捕获的数据转换成处理器指令,并关联到源代码 使用逻辑分析仪与使用其它仪器类似。下面几节将介绍四个主要步骤:连接,设置,采集,分析。 连接被测系统

逻辑分析仪的应用

第1章逻辑分析仪的应用 逻辑分析仪是分析数字系统逻辑关系的仪器。逻辑分析仪是属于数据域测试仪器中的一种总线分析仪,即以总线(多线)概念为基础,同时对多条数据线上的数据流进行观察和测试的仪器,这种仪器对复杂的数字系统的测试和分析十分有效。逻辑分析仪是利用时钟从测试设备上采集和显示数字信号的仪器,最主要作用在于时序判定。 一、逻辑分析仪的应用场合 通常在电子仪器行业,我们在以下情况下需要使用逻辑分析仪: ●调试并检验数字系统的运行; ●同时跟踪并使多个数字信号相关联; ●检验并分析总线中违反时限的操作以及瞬变状态; ●跟踪嵌入软件的执行情况。 二、逻辑分析仪的使用步骤 使用逻辑分析仪与数字信号相连、捕获数字信号并进行分析,一般有以下4个步骤: ●用逻辑探头与被测系统(DUT)相连; ●设置时钟模式和触发条件; ●捕获被测信号; ●分析与显示捕获的数据。 三、逻辑探头 在使用逻辑分析仪测试中,首先选择合适的逻辑探头与被测系统(DUT)相连,探头利用内部比较器将输入电压与门限电压相比较,确定信号的逻辑状态(1或0)。门限值由用户设定,范围由逻辑分析仪本身决定,常用的逻辑电平为TTL电平、CMOS电平、ECL电平等等。 逻辑分析仪的探头有各种各样的形状、大小,用户可以根据自己的需要,选择合适的探头夹具。常用的探头有用于点到点故障查找的“夹子状”,有用在电路板上专用的连接器高密度、多通道型探头。逻辑探头应能够捕获高质量的信号,并且对被测系统的影响最小。另外,逻辑分析仪的探头应能提供高质量信号并传递给逻辑分析仪,并且对被测系统造成的负载最小,而且要适合与电路板及设备以多种方式连接。 四、设置时钟模式和触发条件 在逻辑分析仪与被测系统连接好之后,需要设置时钟模式与触发条件。逻辑分析仪的数据捕获方式不同于示波器,它有两种捕获方式,分别是异步捕获,获取信号的时间信息和同步捕获,用于获取被测系统的状态信息。其中异步分析更类似于示波器的数据捕获方式,其中采样率、波形捕获率等概念都与示波器的相关概念类似。 1.异步捕获模式 在这个模式中,逻辑分析仪用内部时钟进行数据采样,采样速度越快,测试分辨率越高。采样速率对于异步定时分析非常重要,例如,当采样间隔为2ns时,即每隔2ns捕获新的数据存入存储器中,在采样时钟到来之后改变的数据不会被捕获,直到下一个采样时钟到来,由于无法确定2ns中不会被捕获的数据,直到下一个采样时钟到来,由于无法确定2ns中数据是否发生变化,所以最终分辨率是2ns。这种异步捕获模式常用在目标设备与分析仪捕获的数据之间没有固定的时间关系,而且被测系统的信号间的时间关系为主要考虑因素时,通常使用这种捕获模式。

逻辑分析仪简介

逻辑分析仪 一、概述 1、什么叫逻辑分析仪 逻辑分析仪(Logic Analyzer)是一种具有多路输入、能存储数字数据的测试仪器。由于它能对被测试系统的数字信号进行顺序的取样存储,且测试结果又能按照使用者的要求提供多样显示格式,因此,逻辑分析仪在数字域的实际作用,相当于一个高速电子照相机,能将一个复杂的数字电路多通道的动态信号及时拍摄记录下来。 一般的通用示波器在检查、测试复杂而密集的数字电路,以及实时分析数字系统的运行情况和诊断、寻找系统的故障源等方面,由于输入通道数不足、触发功能单一化等缺点,使得示波器在解决数字电路复杂测试问题上无能为力。 逻辑分析仪,特别是现在采用了微处理器技术的智能化逻辑分析仪,不仅能完成示波器难以完成的各项测试任务,而且容易操作。他可以通过软件目录来引导执行测量过程中的每一步骤,能提供即时出错信号;显示直观清晰,显示方式灵活多样;能将被测数据进行逻辑判断和存储;特别是它具有各种触发功能,如可用组合(字)、延迟(时钟计数)、序列(字或事件)以及毛刺(glitch)等来触发,有助于迅速解决最困难的问题。 2、逻辑分析仪的分类 逻辑分析仪主要分为两大类:逻辑定时分析仪(Logic Timing Analyzer)和逻辑状态分析仪(Logic State Analyzer)。这两类分析仪的基本结构是相似的,主要区别表现在显示和定时时钟上。分类的目的是便于用户更好地认识和使用。 逻辑定时分析仪是利用逻辑电平和时间关系图来显示检测信号的。它可以用内部的时钟控制记录数据,不必与被测系统时钟同步。这类分析仪主要用于对硬件的检测。该仪器一般具有锁定功能,最适合检测各种不正常的“毛刺”脉冲,便于进行数字电路与系统的调试与维修。 逻辑状态分析仪直接用“1”和“0”组成数据显示被测值,所显示的每一位与各有关通道的输入数据相对应。它实质上采用状态表(真值表)的形式显示数据,非常直观,可以迅速从大量数据中发现错误。由于该仪器内部没有时钟发生器,要用被测系统的时钟去控制记录数据,因此必须与被测系统时钟同步。这类分析主要用于软件检测。 对于现在的智能化逻辑分析仪,采用了微处理器计数,将逻辑定时分析仪和逻辑状态分析仪合二为一,使其具有功能更完善、分析判断更强的综合性分析能力。 3、逻辑分析仪同示波器的比较 逻辑分析仪同传统的示波器相比较有如下特点: (1)同时采集和显示多路信号的时序关系

逻辑分析仪基础知识

逻辑分析仪基础知识 1.1 什么是逻辑分析仪 何为逻辑分析仪?逻辑分析仪是分析数字系统逻辑关系的仪器,属于数据域测试的一种总线分析仪。逻辑分析仪以总线为基础,同时对多条是数据线上的数据进行观察和存储,利用时钟从测试是设备上采集和显示数字信号的仪器,最主要是作用于时序判定。由于逻辑分析仪不像示波器一样能够测量电流电压,通常只是显示两个电压,0或者1,因此设定了参考电压以后,逻辑分析仪讲被测信号通过比较器进行判定,从而确定时序关系。 1.2 逻辑分析仪的构成 逻辑分析仪的构成如图1.2所示。逻辑分析仪主要的作用是采样和存储。在组成部分上,逻辑分析仪由采样部分、触发控制部分、存储部分、和显示部分组成。其中最重要的是捕获和数据显示部分。逻辑分析仪一般采用先进行数据采集并存储,然后进行数据分析显示处理。 图错误!文档中没有指定样式的文字。.1逻辑分析仪的架构图 数据捕获部分包括信号输入、比较采样、触发控制、数据存储和时钟电路等。外部被测信号通过探头送到信号输入电路,在比较器中与设定的阀值电平(也称门限电压)进行比较,大于阀值电平的信号为高电平,反之为低电平。采样电路在采样时钟(外时钟和内时钟)控制下对信号进行采样,并将数据流送到触发模块中,产生触发信号。数据存储电路在触发信号的作用下进行相应的数据存储控制。数据捕获完成之后,由分析显示电路将存储的数据处理之后以相应的方式显示出来。 1.3 测试软件 测试软件相当于是逻辑分析仪的显示屏,可以将逻辑分析仪的采集的信号在PC端显示出来,然后通过对应的软件进行观察和分析,得出关于总线通讯是否异常的结论。首先在PC端安装Zlglogic_V5,然后通过USB正确连接PC段,这样就可以将逻辑分析仪采集的信息通过USB方式在PC端显示。 1.4 相关名词及功能 采样方式; 采样方式分为定时采样和状态采样。 定时采样也称异步采样,是使用逻辑分析仪内部时钟作为数据抽样时钟的采样模式,每个抽样点占用一个存储单元。而状态采样也称同步采样,是使用外部时钟作为数据抽样时钟的采样模式,每个外部时钟的有效沿对应的抽样点占用两个存储单元。

逻辑分析仪使用说明

Saleae 24M 8CH 逻辑分析仪 使用手册 https://www.360docs.net/doc/2316566711.html,/item.htm?id=8430104015

一,软件的安装以及基本使用 1,首先安装软件Logic Setup 1.1.4 (32-bit),可从https://www.360docs.net/doc/2316566711.html,/downloads 下载,还有支持其他操作系统的软件版本,可对应下载。 2,安装完毕之后启动一下我们可以到可以看到以下界面: 这个软件在没有接入硬件的时候可以模拟运行,我们可以看到 。点一下START SIMULATION 就可以看到波形,这时候的只是软件根据你设置的要分析的协议(如果你已经设置的话)模拟出来的,随机产生的。如下图:

用鼠标的左键点图形将实现ZOOM IN 放大,右键是ZOOM OUT缩小,如果使用的是三论鼠标,可以使用中键进行放大缩小。我们也可以移动底部的滑动条来查看波形。 3,安装完毕后插入硬件,出现找到新硬件提示,如下 点自动搜索驱动。之后就能完成驱动加载。在安装驱动的最后一步,询问你是否从新启动系统,你可以点否,不用重新启动就可以使用。此时驱动安装完毕。 4,再次启动软件会发现,我们看到现在按钮的名字变成了START 而不是没有接硬件之前的START SIMULATION。这时候点START将实现8路逻辑信号的采集。 二,关于采样深度和采样率

在软件的左上方有两个下拉选项, 左边一个是采样深度,右边一个是采样速率。采样深度就是你总共要采集多少数据,图上的每路都采集25MBIT ;采样速率更好理解,就是一秒采集多少次。比方说我们采25M标示每路 每路 集深度是1M采样速率也是1M,那总的采集时间就是1秒。采集一秒后自动停止采集,并在界面上显示波形。 三,关于波形信息 1在软件界面的右上方有波形信息,可以通过点击来选择自己感兴趣的参数。如下图: 2,以下图为例,看一下具体参数都是什么含义: Width :是图中的时间长度.Period :是图中的周期,也就是说将这个电平单独分析,其周期是多少。而接下来的DUTY Cycle自然就是这个电平作为一个周期来分析,其占空比为多少。FREQUENCY,当然就是周期的倒数。 T1和T2是可以设置的,是放置表现,我们点下,之后在图形上要放置的位置左点一下鼠标,表线1就放置完毕。我们会看到一个小三角,里面写着1,代表第一个表线。同样第2个标线也是这样放置在我们的感兴趣的位置。这

逻辑分析仪使用教程

声明: 本文来自 另外,将68013制作逻辑分析仪的原理说明简单整理了一下,大家可以瞧瞧,如果想DIY也就不难了。点击此处下载ourdev_578200、pdf(文件大小:203K)(原文件名:逻辑分析仪开发手册、pdf) 前言 一、什么就是逻辑分析仪 二、使用介绍 三、安装说明 四、Saleae软件使用方法 五、逻辑分析仪硬件安装 六、使用Saleae分析电视红外遥控器通信协议 七、使用Saleae分析UART通信 八、使用Saleae分析IIC总线通信 九、使用Saleae分析SPI总线通信 十、Saleae逻辑分析仪使用问题与注意事项

淘宝地址: (原文件名:21、jpg) 前言: 工欲善其事,必先利其器。逻辑分析仪就是电子行业不可或缺的工具。但就是由于一直以来,逻辑分析仪都属于高端产品,所以价格居高不下。因此我们首先要感谢Cypress公司,提供给我们68013这么好的芯片,感谢俄罗斯毛子哥将这个Saleae逻辑分析仪开源出来,让我们用平民的价格,就可以得到贵族的待遇,获得一款性价比如此之高的逻辑分析仪,可以让我们在进行数字逻辑分析仪的时候,快速查找并且解决许多信号、时序等问题,进一步提高我们处理实际问题的能力。 原本计划,直接将Saleae的英文版本使用手册直接翻译过来提供给大家,我花费半天时间翻译完后,发现外国人写的东西不太符合我们国人的思维习惯,当然,也就是由于我的英语水平有限,因此,我根据自己摸索这个Saleae的过程,写了一份个人认为符合中国人习惯的Saleae,提供给大家,希望大家在使用过程中少走弯路,快速掌握使用方法,更快的解决自己实际遇到的问题。 由于个人水平有限,因此在文章撰写的过程中难免存在问题与错误,如果有任何问题,希望大家能够提出来,我会虚心接受并且改进,希望通过我们的交流,给越来越多的人提供更加优秀的资料,共同进步。 一、什么就是逻辑分析仪: 逻辑分析仪就是一种类似于示波器的波形测试设备,它通过采集指定的信号,并通过图形或者数据统计化的方式展示给开发人员,开发人员通过这些图形化时序信号按照协议来分析硬件或者软件中的错误。逻辑分析仪就是设计中不可缺少的设备,通过它,可以迅速定位错误,发现并解决问题,达到事半功倍的效果,尤其在分析时序,比如1wire、I2C、UART、SPI、CAN等数据的时候,应用逻辑分析仪解决问题非常快速。 如果在您的工作中有数字逻辑信号,您就有机会使用逻辑分析仪。因此应选好一种逻辑分析仪,既符合所用的功能,又不太超越所需的功能。用户多半会找一种容易操作的仪器,它在功能控制上操作步骤较少,菜单种类也不多,而且不太复杂。而Saleae就就是一种低端的,比较适合大众化的逻辑分析仪,价格便宜,而且常用的逻辑分析功能足够,人机界面人性化,非常适合实用。 以下就是一个Saleae分析I2C时序的一个典型例子:从图中我们可以清晰的瞧到,起始信号start,从地址就是0x50的器件中去读取数据,第一个字节就是0xc0,第二个字节就是0x50,有了逻辑分析仪,我们可以快捷的找出我们的I2C时序读写数据的正确与否,可以很快将问题解决。后边的讲解中,我会详细讲解逻辑分析仪分析红外遥控器,UART时序,I2C时序的具体方式方法。

相关文档
最新文档